The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/contrib/openzfs/module/zfs/range_tree.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * CDDL HEADER START
    3  *
    4  * The contents of this file are subject to the terms of the
    5  * Common Development and Distribution License (the "License").
    6  * You may not use this file except in compliance with the License.
    7  *
    8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
    9  * or https://opensource.org/licenses/CDDL-1.0.
   10  * See the License for the specific language governing permissions
   11  * and limitations under the License.
   12  *
   13  * When distributing Covered Code, include this CDDL HEADER in each
   14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
   15  * If applicable, add the following below this CDDL HEADER, with the
   16  * fields enclosed by brackets "[]" replaced with your own identifying
   17  * information: Portions Copyright [yyyy] [name of copyright owner]
   18  *
   19  * CDDL HEADER END
   20  */
   21 /*
   22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
   23  * Use is subject to license terms.
   24  */
   25 /*
   26  * Copyright (c) 2013, 2019 by Delphix. All rights reserved.
   27  * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
   28  */
   29 
   30 #include <sys/zfs_context.h>
   31 #include <sys/spa.h>
   32 #include <sys/dmu.h>
   33 #include <sys/dnode.h>
   34 #include <sys/zio.h>
   35 #include <sys/range_tree.h>
   36 
   37 /*
   38  * Range trees are tree-based data structures that can be used to
   39  * track free space or generally any space allocation information.
   40  * A range tree keeps track of individual segments and automatically
   41  * provides facilities such as adjacent extent merging and extent
   42  * splitting in response to range add/remove requests.
   43  *
   44  * A range tree starts out completely empty, with no segments in it.
   45  * Adding an allocation via range_tree_add to the range tree can either:
   46  * 1) create a new extent
   47  * 2) extend an adjacent extent
   48  * 3) merge two adjacent extents
   49  * Conversely, removing an allocation via range_tree_remove can:
   50  * 1) completely remove an extent
   51  * 2) shorten an extent (if the allocation was near one of its ends)
   52  * 3) split an extent into two extents, in effect punching a hole
   53  *
   54  * A range tree is also capable of 'bridging' gaps when adding
   55  * allocations. This is useful for cases when close proximity of
   56  * allocations is an important detail that needs to be represented
   57  * in the range tree. See range_tree_set_gap(). The default behavior
   58  * is not to bridge gaps (i.e. the maximum allowed gap size is 0).
   59  *
   60  * In order to traverse a range tree, use either the range_tree_walk()
   61  * or range_tree_vacate() functions.
   62  *
   63  * To obtain more accurate information on individual segment
   64  * operations that the range tree performs "under the hood", you can
   65  * specify a set of callbacks by passing a range_tree_ops_t structure
   66  * to the range_tree_create function. Any callbacks that are non-NULL
   67  * are then called at the appropriate times.
   68  *
   69  * The range tree code also supports a special variant of range trees
   70  * that can bridge small gaps between segments. This kind of tree is used
   71  * by the dsl scanning code to group I/Os into mostly sequential chunks to
   72  * optimize disk performance. The code here attempts to do this with as
   73  * little memory and computational overhead as possible. One limitation of
   74  * this implementation is that segments of range trees with gaps can only
   75  * support removing complete segments.
   76  */
   77 
   78 static inline void
   79 rs_copy(range_seg_t *src, range_seg_t *dest, range_tree_t *rt)
   80 {
   81         ASSERT3U(rt->rt_type, <, RANGE_SEG_NUM_TYPES);
   82         size_t size = 0;
   83         switch (rt->rt_type) {
   84         case RANGE_SEG32:
   85                 size = sizeof (range_seg32_t);
   86                 break;
   87         case RANGE_SEG64:
   88                 size = sizeof (range_seg64_t);
   89                 break;
   90         case RANGE_SEG_GAP:
   91                 size = sizeof (range_seg_gap_t);
   92                 break;
   93         default:
   94                 __builtin_unreachable();
   95         }
   96         memcpy(dest, src, size);
   97 }
   98 
   99 void
  100 range_tree_stat_verify(range_tree_t *rt)
  101 {
  102         range_seg_t *rs;
  103         zfs_btree_index_t where;
  104         uint64_t hist[RANGE_TREE_HISTOGRAM_SIZE] = { 0 };
  105         int i;
  106 
  107         for (rs = zfs_btree_first(&rt->rt_root, &where); rs != NULL;
  108             rs = zfs_btree_next(&rt->rt_root, &where, &where)) {
  109                 uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt);
  110                 int idx = highbit64(size) - 1;
  111 
  112                 hist[idx]++;
  113                 ASSERT3U(hist[idx], !=, 0);
  114         }
  115 
  116         for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
  117                 if (hist[i] != rt->rt_histogram[i]) {
  118                         zfs_dbgmsg("i=%d, hist=%px, hist=%llu, rt_hist=%llu",
  119                             i, hist, (u_longlong_t)hist[i],
  120                             (u_longlong_t)rt->rt_histogram[i]);
  121                 }
  122                 VERIFY3U(hist[i], ==, rt->rt_histogram[i]);
  123         }
  124 }
  125 
  126 static void
  127 range_tree_stat_incr(range_tree_t *rt, range_seg_t *rs)
  128 {
  129         uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt);
  130         int idx = highbit64(size) - 1;
  131 
  132         ASSERT(size != 0);
  133         ASSERT3U(idx, <,
  134             sizeof (rt->rt_histogram) / sizeof (*rt->rt_histogram));
  135 
  136         rt->rt_histogram[idx]++;
  137         ASSERT3U(rt->rt_histogram[idx], !=, 0);
  138 }
  139 
  140 static void
  141 range_tree_stat_decr(range_tree_t *rt, range_seg_t *rs)
  142 {
  143         uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt);
  144         int idx = highbit64(size) - 1;
  145 
  146         ASSERT(size != 0);
  147         ASSERT3U(idx, <,
  148             sizeof (rt->rt_histogram) / sizeof (*rt->rt_histogram));
  149 
  150         ASSERT3U(rt->rt_histogram[idx], !=, 0);
  151         rt->rt_histogram[idx]--;
  152 }
  153 
  154 static int
  155 range_tree_seg32_compare(const void *x1, const void *x2)
  156 {
  157         const range_seg32_t *r1 = x1;
  158         const range_seg32_t *r2 = x2;
  159 
  160         ASSERT3U(r1->rs_start, <=, r1->rs_end);
  161         ASSERT3U(r2->rs_start, <=, r2->rs_end);
  162 
  163         return ((r1->rs_start >= r2->rs_end) - (r1->rs_end <= r2->rs_start));
  164 }
  165 
  166 static int
  167 range_tree_seg64_compare(const void *x1, const void *x2)
  168 {
  169         const range_seg64_t *r1 = x1;
  170         const range_seg64_t *r2 = x2;
  171 
  172         ASSERT3U(r1->rs_start, <=, r1->rs_end);
  173         ASSERT3U(r2->rs_start, <=, r2->rs_end);
  174 
  175         return ((r1->rs_start >= r2->rs_end) - (r1->rs_end <= r2->rs_start));
  176 }
  177 
  178 static int
  179 range_tree_seg_gap_compare(const void *x1, const void *x2)
  180 {
  181         const range_seg_gap_t *r1 = x1;
  182         const range_seg_gap_t *r2 = x2;
  183 
  184         ASSERT3U(r1->rs_start, <=, r1->rs_end);
  185         ASSERT3U(r2->rs_start, <=, r2->rs_end);
  186 
  187         return ((r1->rs_start >= r2->rs_end) - (r1->rs_end <= r2->rs_start));
  188 }
  189 
  190 range_tree_t *
  191 range_tree_create_gap(const range_tree_ops_t *ops, range_seg_type_t type,
  192     void *arg, uint64_t start, uint64_t shift, uint64_t gap)
  193 {
  194         range_tree_t *rt = kmem_zalloc(sizeof (range_tree_t), KM_SLEEP);
  195 
  196         ASSERT3U(shift, <, 64);
  197         ASSERT3U(type, <=, RANGE_SEG_NUM_TYPES);
  198         size_t size;
  199         int (*compare) (const void *, const void *);
  200         switch (type) {
  201         case RANGE_SEG32:
  202                 size = sizeof (range_seg32_t);
  203                 compare = range_tree_seg32_compare;
  204                 break;
  205         case RANGE_SEG64:
  206                 size = sizeof (range_seg64_t);
  207                 compare = range_tree_seg64_compare;
  208                 break;
  209         case RANGE_SEG_GAP:
  210                 size = sizeof (range_seg_gap_t);
  211                 compare = range_tree_seg_gap_compare;
  212                 break;
  213         default:
  214                 panic("Invalid range seg type %d", type);
  215         }
  216         zfs_btree_create(&rt->rt_root, compare, size);
  217 
  218         rt->rt_ops = ops;
  219         rt->rt_gap = gap;
  220         rt->rt_arg = arg;
  221         rt->rt_type = type;
  222         rt->rt_start = start;
  223         rt->rt_shift = shift;
  224 
  225         if (rt->rt_ops != NULL && rt->rt_ops->rtop_create != NULL)
  226                 rt->rt_ops->rtop_create(rt, rt->rt_arg);
  227 
  228         return (rt);
  229 }
  230 
  231 range_tree_t *
  232 range_tree_create(const range_tree_ops_t *ops, range_seg_type_t type,
  233     void *arg, uint64_t start, uint64_t shift)
  234 {
  235         return (range_tree_create_gap(ops, type, arg, start, shift, 0));
  236 }
  237 
  238 void
  239 range_tree_destroy(range_tree_t *rt)
  240 {
  241         VERIFY0(rt->rt_space);
  242 
  243         if (rt->rt_ops != NULL && rt->rt_ops->rtop_destroy != NULL)
  244                 rt->rt_ops->rtop_destroy(rt, rt->rt_arg);
  245 
  246         zfs_btree_destroy(&rt->rt_root);
  247         kmem_free(rt, sizeof (*rt));
  248 }
  249 
  250 void
  251 range_tree_adjust_fill(range_tree_t *rt, range_seg_t *rs, int64_t delta)
  252 {
  253         if (delta < 0 && delta * -1 >= rs_get_fill(rs, rt)) {
  254                 zfs_panic_recover("zfs: attempting to decrease fill to or "
  255                     "below 0; probable double remove in segment [%llx:%llx]",
  256                     (longlong_t)rs_get_start(rs, rt),
  257                     (longlong_t)rs_get_end(rs, rt));
  258         }
  259         if (rs_get_fill(rs, rt) + delta > rs_get_end(rs, rt) -
  260             rs_get_start(rs, rt)) {
  261                 zfs_panic_recover("zfs: attempting to increase fill beyond "
  262                     "max; probable double add in segment [%llx:%llx]",
  263                     (longlong_t)rs_get_start(rs, rt),
  264                     (longlong_t)rs_get_end(rs, rt));
  265         }
  266 
  267         if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
  268                 rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg);
  269         rs_set_fill(rs, rt, rs_get_fill(rs, rt) + delta);
  270         if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
  271                 rt->rt_ops->rtop_add(rt, rs, rt->rt_arg);
  272 }
  273 
  274 static void
  275 range_tree_add_impl(void *arg, uint64_t start, uint64_t size, uint64_t fill)
  276 {
  277         range_tree_t *rt = arg;
  278         zfs_btree_index_t where;
  279         range_seg_t *rs_before, *rs_after, *rs;
  280         range_seg_max_t tmp, rsearch;
  281         uint64_t end = start + size, gap = rt->rt_gap;
  282         uint64_t bridge_size = 0;
  283         boolean_t merge_before, merge_after;
  284 
  285         ASSERT3U(size, !=, 0);
  286         ASSERT3U(fill, <=, size);
  287         ASSERT3U(start + size, >, start);
  288 
  289         rs_set_start(&rsearch, rt, start);
  290         rs_set_end(&rsearch, rt, end);
  291         rs = zfs_btree_find(&rt->rt_root, &rsearch, &where);
  292 
  293         /*
  294          * If this is a gap-supporting range tree, it is possible that we
  295          * are inserting into an existing segment. In this case simply
  296          * bump the fill count and call the remove / add callbacks. If the
  297          * new range will extend an existing segment, we remove the
  298          * existing one, apply the new extent to it and re-insert it using
  299          * the normal code paths.
  300          */
  301         if (rs != NULL) {
  302                 if (gap == 0) {
  303                         zfs_panic_recover("zfs: adding existent segment to "
  304                             "range tree (offset=%llx size=%llx)",
  305                             (longlong_t)start, (longlong_t)size);
  306                         return;
  307                 }
  308                 uint64_t rstart = rs_get_start(rs, rt);
  309                 uint64_t rend = rs_get_end(rs, rt);
  310                 if (rstart <= start && rend >= end) {
  311                         range_tree_adjust_fill(rt, rs, fill);
  312                         return;
  313                 }
  314 
  315                 if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
  316                         rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg);
  317 
  318                 range_tree_stat_decr(rt, rs);
  319                 rt->rt_space -= rend - rstart;
  320 
  321                 fill += rs_get_fill(rs, rt);
  322                 start = MIN(start, rstart);
  323                 end = MAX(end, rend);
  324                 size = end - start;
  325 
  326                 zfs_btree_remove(&rt->rt_root, rs);
  327                 range_tree_add_impl(rt, start, size, fill);
  328                 return;
  329         }
  330 
  331         ASSERT3P(rs, ==, NULL);
  332 
  333         /*
  334          * Determine whether or not we will have to merge with our neighbors.
  335          * If gap != 0, we might need to merge with our neighbors even if we
  336          * aren't directly touching.
  337          */
  338         zfs_btree_index_t where_before, where_after;
  339         rs_before = zfs_btree_prev(&rt->rt_root, &where, &where_before);
  340         rs_after = zfs_btree_next(&rt->rt_root, &where, &where_after);
  341 
  342         merge_before = (rs_before != NULL && rs_get_end(rs_before, rt) >=
  343             start - gap);
  344         merge_after = (rs_after != NULL && rs_get_start(rs_after, rt) <= end +
  345             gap);
  346 
  347         if (merge_before && gap != 0)
  348                 bridge_size += start - rs_get_end(rs_before, rt);
  349         if (merge_after && gap != 0)
  350                 bridge_size += rs_get_start(rs_after, rt) - end;
  351 
  352         if (merge_before && merge_after) {
  353                 if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL) {
  354                         rt->rt_ops->rtop_remove(rt, rs_before, rt->rt_arg);
  355                         rt->rt_ops->rtop_remove(rt, rs_after, rt->rt_arg);
  356                 }
  357 
  358                 range_tree_stat_decr(rt, rs_before);
  359                 range_tree_stat_decr(rt, rs_after);
  360 
  361                 rs_copy(rs_after, &tmp, rt);
  362                 uint64_t before_start = rs_get_start_raw(rs_before, rt);
  363                 uint64_t before_fill = rs_get_fill(rs_before, rt);
  364                 uint64_t after_fill = rs_get_fill(rs_after, rt);
  365                 zfs_btree_remove_idx(&rt->rt_root, &where_before);
  366 
  367                 /*
  368                  * We have to re-find the node because our old reference is
  369                  * invalid as soon as we do any mutating btree operations.
  370                  */
  371                 rs_after = zfs_btree_find(&rt->rt_root, &tmp, &where_after);
  372                 ASSERT3P(rs_after, !=, NULL);
  373                 rs_set_start_raw(rs_after, rt, before_start);
  374                 rs_set_fill(rs_after, rt, after_fill + before_fill + fill);
  375                 rs = rs_after;
  376         } else if (merge_before) {
  377                 if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
  378                         rt->rt_ops->rtop_remove(rt, rs_before, rt->rt_arg);
  379 
  380                 range_tree_stat_decr(rt, rs_before);
  381 
  382                 uint64_t before_fill = rs_get_fill(rs_before, rt);
  383                 rs_set_end(rs_before, rt, end);
  384                 rs_set_fill(rs_before, rt, before_fill + fill);
  385                 rs = rs_before;
  386         } else if (merge_after) {
  387                 if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
  388                         rt->rt_ops->rtop_remove(rt, rs_after, rt->rt_arg);
  389 
  390                 range_tree_stat_decr(rt, rs_after);
  391 
  392                 uint64_t after_fill = rs_get_fill(rs_after, rt);
  393                 rs_set_start(rs_after, rt, start);
  394                 rs_set_fill(rs_after, rt, after_fill + fill);
  395                 rs = rs_after;
  396         } else {
  397                 rs = &tmp;
  398 
  399                 rs_set_start(rs, rt, start);
  400                 rs_set_end(rs, rt, end);
  401                 rs_set_fill(rs, rt, fill);
  402                 zfs_btree_add_idx(&rt->rt_root, rs, &where);
  403         }
  404 
  405         if (gap != 0) {
  406                 ASSERT3U(rs_get_fill(rs, rt), <=, rs_get_end(rs, rt) -
  407                     rs_get_start(rs, rt));
  408         } else {
  409                 ASSERT3U(rs_get_fill(rs, rt), ==, rs_get_end(rs, rt) -
  410                     rs_get_start(rs, rt));
  411         }
  412 
  413         if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
  414                 rt->rt_ops->rtop_add(rt, rs, rt->rt_arg);
  415 
  416         range_tree_stat_incr(rt, rs);
  417         rt->rt_space += size + bridge_size;
  418 }
  419 
  420 void
  421 range_tree_add(void *arg, uint64_t start, uint64_t size)
  422 {
  423         range_tree_add_impl(arg, start, size, size);
  424 }
  425 
  426 static void
  427 range_tree_remove_impl(range_tree_t *rt, uint64_t start, uint64_t size,
  428     boolean_t do_fill)
  429 {
  430         zfs_btree_index_t where;
  431         range_seg_t *rs;
  432         range_seg_max_t rsearch, rs_tmp;
  433         uint64_t end = start + size;
  434         boolean_t left_over, right_over;
  435 
  436         VERIFY3U(size, !=, 0);
  437         VERIFY3U(size, <=, rt->rt_space);
  438         if (rt->rt_type == RANGE_SEG64)
  439                 ASSERT3U(start + size, >, start);
  440 
  441         rs_set_start(&rsearch, rt, start);
  442         rs_set_end(&rsearch, rt, end);
  443         rs = zfs_btree_find(&rt->rt_root, &rsearch, &where);
  444 
  445         /* Make sure we completely overlap with someone */
  446         if (rs == NULL) {
  447                 zfs_panic_recover("zfs: removing nonexistent segment from "
  448                     "range tree (offset=%llx size=%llx)",
  449                     (longlong_t)start, (longlong_t)size);
  450                 return;
  451         }
  452 
  453         /*
  454          * Range trees with gap support must only remove complete segments
  455          * from the tree. This allows us to maintain accurate fill accounting
  456          * and to ensure that bridged sections are not leaked. If we need to
  457          * remove less than the full segment, we can only adjust the fill count.
  458          */
  459         if (rt->rt_gap != 0) {
  460                 if (do_fill) {
  461                         if (rs_get_fill(rs, rt) == size) {
  462                                 start = rs_get_start(rs, rt);
  463                                 end = rs_get_end(rs, rt);
  464                                 size = end - start;
  465                         } else {
  466                                 range_tree_adjust_fill(rt, rs, -size);
  467                                 return;
  468                         }
  469                 } else if (rs_get_start(rs, rt) != start ||
  470                     rs_get_end(rs, rt) != end) {
  471                         zfs_panic_recover("zfs: freeing partial segment of "
  472                             "gap tree (offset=%llx size=%llx) of "
  473                             "(offset=%llx size=%llx)",
  474                             (longlong_t)start, (longlong_t)size,
  475                             (longlong_t)rs_get_start(rs, rt),
  476                             (longlong_t)rs_get_end(rs, rt) - rs_get_start(rs,
  477                             rt));
  478                         return;
  479                 }
  480         }
  481 
  482         VERIFY3U(rs_get_start(rs, rt), <=, start);
  483         VERIFY3U(rs_get_end(rs, rt), >=, end);
  484 
  485         left_over = (rs_get_start(rs, rt) != start);
  486         right_over = (rs_get_end(rs, rt) != end);
  487 
  488         range_tree_stat_decr(rt, rs);
  489 
  490         if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
  491                 rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg);
  492 
  493         if (left_over && right_over) {
  494                 range_seg_max_t newseg;
  495                 rs_set_start(&newseg, rt, end);
  496                 rs_set_end_raw(&newseg, rt, rs_get_end_raw(rs, rt));
  497                 rs_set_fill(&newseg, rt, rs_get_end(rs, rt) - end);
  498                 range_tree_stat_incr(rt, &newseg);
  499 
  500                 // This modifies the buffer already inside the range tree
  501                 rs_set_end(rs, rt, start);
  502 
  503                 rs_copy(rs, &rs_tmp, rt);
  504                 if (zfs_btree_next(&rt->rt_root, &where, &where) != NULL)
  505                         zfs_btree_add_idx(&rt->rt_root, &newseg, &where);
  506                 else
  507                         zfs_btree_add(&rt->rt_root, &newseg);
  508 
  509                 if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
  510                         rt->rt_ops->rtop_add(rt, &newseg, rt->rt_arg);
  511         } else if (left_over) {
  512                 // This modifies the buffer already inside the range tree
  513                 rs_set_end(rs, rt, start);
  514                 rs_copy(rs, &rs_tmp, rt);
  515         } else if (right_over) {
  516                 // This modifies the buffer already inside the range tree
  517                 rs_set_start(rs, rt, end);
  518                 rs_copy(rs, &rs_tmp, rt);
  519         } else {
  520                 zfs_btree_remove_idx(&rt->rt_root, &where);
  521                 rs = NULL;
  522         }
  523 
  524         if (rs != NULL) {
  525                 /*
  526                  * The fill of the leftover segment will always be equal to
  527                  * the size, since we do not support removing partial segments
  528                  * of range trees with gaps.
  529                  */
  530                 rs_set_fill_raw(rs, rt, rs_get_end_raw(rs, rt) -
  531                     rs_get_start_raw(rs, rt));
  532                 range_tree_stat_incr(rt, &rs_tmp);
  533 
  534                 if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
  535                         rt->rt_ops->rtop_add(rt, &rs_tmp, rt->rt_arg);
  536         }
  537 
  538         rt->rt_space -= size;
  539 }
  540 
  541 void
  542 range_tree_remove(void *arg, uint64_t start, uint64_t size)
  543 {
  544         range_tree_remove_impl(arg, start, size, B_FALSE);
  545 }
  546 
  547 void
  548 range_tree_remove_fill(range_tree_t *rt, uint64_t start, uint64_t size)
  549 {
  550         range_tree_remove_impl(rt, start, size, B_TRUE);
  551 }
  552 
  553 void
  554 range_tree_resize_segment(range_tree_t *rt, range_seg_t *rs,
  555     uint64_t newstart, uint64_t newsize)
  556 {
  557         int64_t delta = newsize - (rs_get_end(rs, rt) - rs_get_start(rs, rt));
  558 
  559         range_tree_stat_decr(rt, rs);
  560         if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
  561                 rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg);
  562 
  563         rs_set_start(rs, rt, newstart);
  564         rs_set_end(rs, rt, newstart + newsize);
  565 
  566         range_tree_stat_incr(rt, rs);
  567         if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
  568                 rt->rt_ops->rtop_add(rt, rs, rt->rt_arg);
  569 
  570         rt->rt_space += delta;
  571 }
  572 
  573 static range_seg_t *
  574 range_tree_find_impl(range_tree_t *rt, uint64_t start, uint64_t size)
  575 {
  576         range_seg_max_t rsearch;
  577         uint64_t end = start + size;
  578 
  579         VERIFY(size != 0);
  580 
  581         rs_set_start(&rsearch, rt, start);
  582         rs_set_end(&rsearch, rt, end);
  583         return (zfs_btree_find(&rt->rt_root, &rsearch, NULL));
  584 }
  585 
  586 range_seg_t *
  587 range_tree_find(range_tree_t *rt, uint64_t start, uint64_t size)
  588 {
  589         if (rt->rt_type == RANGE_SEG64)
  590                 ASSERT3U(start + size, >, start);
  591 
  592         range_seg_t *rs = range_tree_find_impl(rt, start, size);
  593         if (rs != NULL && rs_get_start(rs, rt) <= start &&
  594             rs_get_end(rs, rt) >= start + size) {
  595                 return (rs);
  596         }
  597         return (NULL);
  598 }
  599 
  600 void
  601 range_tree_verify_not_present(range_tree_t *rt, uint64_t off, uint64_t size)
  602 {
  603         range_seg_t *rs = range_tree_find(rt, off, size);
  604         if (rs != NULL)
  605                 panic("segment already in tree; rs=%p", (void *)rs);
  606 }
  607 
  608 boolean_t
  609 range_tree_contains(range_tree_t *rt, uint64_t start, uint64_t size)
  610 {
  611         return (range_tree_find(rt, start, size) != NULL);
  612 }
  613 
  614 /*
  615  * Returns the first subset of the given range which overlaps with the range
  616  * tree. Returns true if there is a segment in the range, and false if there
  617  * isn't.
  618  */
  619 boolean_t
  620 range_tree_find_in(range_tree_t *rt, uint64_t start, uint64_t size,
  621     uint64_t *ostart, uint64_t *osize)
  622 {
  623         if (rt->rt_type == RANGE_SEG64)
  624                 ASSERT3U(start + size, >, start);
  625 
  626         range_seg_max_t rsearch;
  627         rs_set_start(&rsearch, rt, start);
  628         rs_set_end_raw(&rsearch, rt, rs_get_start_raw(&rsearch, rt) + 1);
  629 
  630         zfs_btree_index_t where;
  631         range_seg_t *rs = zfs_btree_find(&rt->rt_root, &rsearch, &where);
  632         if (rs != NULL) {
  633                 *ostart = start;
  634                 *osize = MIN(size, rs_get_end(rs, rt) - start);
  635                 return (B_TRUE);
  636         }
  637 
  638         rs = zfs_btree_next(&rt->rt_root, &where, &where);
  639         if (rs == NULL || rs_get_start(rs, rt) > start + size)
  640                 return (B_FALSE);
  641 
  642         *ostart = rs_get_start(rs, rt);
  643         *osize = MIN(start + size, rs_get_end(rs, rt)) -
  644             rs_get_start(rs, rt);
  645         return (B_TRUE);
  646 }
  647 
  648 /*
  649  * Ensure that this range is not in the tree, regardless of whether
  650  * it is currently in the tree.
  651  */
  652 void
  653 range_tree_clear(range_tree_t *rt, uint64_t start, uint64_t size)
  654 {
  655         range_seg_t *rs;
  656 
  657         if (size == 0)
  658                 return;
  659 
  660         if (rt->rt_type == RANGE_SEG64)
  661                 ASSERT3U(start + size, >, start);
  662 
  663         while ((rs = range_tree_find_impl(rt, start, size)) != NULL) {
  664                 uint64_t free_start = MAX(rs_get_start(rs, rt), start);
  665                 uint64_t free_end = MIN(rs_get_end(rs, rt), start + size);
  666                 range_tree_remove(rt, free_start, free_end - free_start);
  667         }
  668 }
  669 
  670 void
  671 range_tree_swap(range_tree_t **rtsrc, range_tree_t **rtdst)
  672 {
  673         range_tree_t *rt;
  674 
  675         ASSERT0(range_tree_space(*rtdst));
  676         ASSERT0(zfs_btree_numnodes(&(*rtdst)->rt_root));
  677 
  678         rt = *rtsrc;
  679         *rtsrc = *rtdst;
  680         *rtdst = rt;
  681 }
  682 
  683 void
  684 range_tree_vacate(range_tree_t *rt, range_tree_func_t *func, void *arg)
  685 {
  686         if (rt->rt_ops != NULL && rt->rt_ops->rtop_vacate != NULL)
  687                 rt->rt_ops->rtop_vacate(rt, rt->rt_arg);
  688 
  689         if (func != NULL) {
  690                 range_seg_t *rs;
  691                 zfs_btree_index_t *cookie = NULL;
  692 
  693                 while ((rs = zfs_btree_destroy_nodes(&rt->rt_root, &cookie)) !=
  694                     NULL) {
  695                         func(arg, rs_get_start(rs, rt), rs_get_end(rs, rt) -
  696                             rs_get_start(rs, rt));
  697                 }
  698         } else {
  699                 zfs_btree_clear(&rt->rt_root);
  700         }
  701 
  702         memset(rt->rt_histogram, 0, sizeof (rt->rt_histogram));
  703         rt->rt_space = 0;
  704 }
  705 
  706 void
  707 range_tree_walk(range_tree_t *rt, range_tree_func_t *func, void *arg)
  708 {
  709         zfs_btree_index_t where;
  710         for (range_seg_t *rs = zfs_btree_first(&rt->rt_root, &where);
  711             rs != NULL; rs = zfs_btree_next(&rt->rt_root, &where, &where)) {
  712                 func(arg, rs_get_start(rs, rt), rs_get_end(rs, rt) -
  713                     rs_get_start(rs, rt));
  714         }
  715 }
  716 
  717 range_seg_t *
  718 range_tree_first(range_tree_t *rt)
  719 {
  720         return (zfs_btree_first(&rt->rt_root, NULL));
  721 }
  722 
  723 uint64_t
  724 range_tree_space(range_tree_t *rt)
  725 {
  726         return (rt->rt_space);
  727 }
  728 
  729 uint64_t
  730 range_tree_numsegs(range_tree_t *rt)
  731 {
  732         return ((rt == NULL) ? 0 : zfs_btree_numnodes(&rt->rt_root));
  733 }
  734 
  735 boolean_t
  736 range_tree_is_empty(range_tree_t *rt)
  737 {
  738         ASSERT(rt != NULL);
  739         return (range_tree_space(rt) == 0);
  740 }
  741 
  742 /*
  743  * Remove any overlapping ranges between the given segment [start, end)
  744  * from removefrom. Add non-overlapping leftovers to addto.
  745  */
  746 void
  747 range_tree_remove_xor_add_segment(uint64_t start, uint64_t end,
  748     range_tree_t *removefrom, range_tree_t *addto)
  749 {
  750         zfs_btree_index_t where;
  751         range_seg_max_t starting_rs;
  752         rs_set_start(&starting_rs, removefrom, start);
  753         rs_set_end_raw(&starting_rs, removefrom, rs_get_start_raw(&starting_rs,
  754             removefrom) + 1);
  755 
  756         range_seg_t *curr = zfs_btree_find(&removefrom->rt_root,
  757             &starting_rs, &where);
  758 
  759         if (curr == NULL)
  760                 curr = zfs_btree_next(&removefrom->rt_root, &where, &where);
  761 
  762         range_seg_t *next;
  763         for (; curr != NULL; curr = next) {
  764                 if (start == end)
  765                         return;
  766                 VERIFY3U(start, <, end);
  767 
  768                 /* there is no overlap */
  769                 if (end <= rs_get_start(curr, removefrom)) {
  770                         range_tree_add(addto, start, end - start);
  771                         return;
  772                 }
  773 
  774                 uint64_t overlap_start = MAX(rs_get_start(curr, removefrom),
  775                     start);
  776                 uint64_t overlap_end = MIN(rs_get_end(curr, removefrom),
  777                     end);
  778                 uint64_t overlap_size = overlap_end - overlap_start;
  779                 ASSERT3S(overlap_size, >, 0);
  780                 range_seg_max_t rs;
  781                 rs_copy(curr, &rs, removefrom);
  782 
  783                 range_tree_remove(removefrom, overlap_start, overlap_size);
  784 
  785                 if (start < overlap_start)
  786                         range_tree_add(addto, start, overlap_start - start);
  787 
  788                 start = overlap_end;
  789                 next = zfs_btree_find(&removefrom->rt_root, &rs, &where);
  790                 /*
  791                  * If we find something here, we only removed part of the
  792                  * curr segment. Either there's some left at the end
  793                  * because we've reached the end of the range we're removing,
  794                  * or there's some left at the start because we started
  795                  * partway through the range.  Either way, we continue with
  796                  * the loop. If it's the former, we'll return at the start of
  797                  * the loop, and if it's the latter we'll see if there is more
  798                  * area to process.
  799                  */
  800                 if (next != NULL) {
  801                         ASSERT(start == end || start == rs_get_end(&rs,
  802                             removefrom));
  803                 }
  804 
  805                 next = zfs_btree_next(&removefrom->rt_root, &where, &where);
  806         }
  807         VERIFY3P(curr, ==, NULL);
  808 
  809         if (start != end) {
  810                 VERIFY3U(start, <, end);
  811                 range_tree_add(addto, start, end - start);
  812         } else {
  813                 VERIFY3U(start, ==, end);
  814         }
  815 }
  816 
  817 /*
  818  * For each entry in rt, if it exists in removefrom, remove it
  819  * from removefrom. Otherwise, add it to addto.
  820  */
  821 void
  822 range_tree_remove_xor_add(range_tree_t *rt, range_tree_t *removefrom,
  823     range_tree_t *addto)
  824 {
  825         zfs_btree_index_t where;
  826         for (range_seg_t *rs = zfs_btree_first(&rt->rt_root, &where); rs;
  827             rs = zfs_btree_next(&rt->rt_root, &where, &where)) {
  828                 range_tree_remove_xor_add_segment(rs_get_start(rs, rt),
  829                     rs_get_end(rs, rt), removefrom, addto);
  830         }
  831 }
  832 
  833 uint64_t
  834 range_tree_min(range_tree_t *rt)
  835 {
  836         range_seg_t *rs = zfs_btree_first(&rt->rt_root, NULL);
  837         return (rs != NULL ? rs_get_start(rs, rt) : 0);
  838 }
  839 
  840 uint64_t
  841 range_tree_max(range_tree_t *rt)
  842 {
  843         range_seg_t *rs = zfs_btree_last(&rt->rt_root, NULL);
  844         return (rs != NULL ? rs_get_end(rs, rt) : 0);
  845 }
  846 
  847 uint64_t
  848 range_tree_span(range_tree_t *rt)
  849 {
  850         return (range_tree_max(rt) - range_tree_min(rt));
  851 }

Cache object: 67f4337be6034c1413f0bbaaee724dfd


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.