1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25 * Copyright (c) 2018, Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright 2013 Saso Kiselkov. All rights reserved.
28 * Copyright (c) 2014 Integros [integros.com]
29 * Copyright 2016 Toomas Soome <tsoome@me.com>
30 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
31 * Copyright 2018 Joyent, Inc.
32 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
33 * Copyright 2017 Joyent, Inc.
34 * Copyright (c) 2017, Intel Corporation.
35 * Copyright (c) 2021, Colm Buckley <colm@tuatha.org>
36 */
37
38 /*
39 * SPA: Storage Pool Allocator
40 *
41 * This file contains all the routines used when modifying on-disk SPA state.
42 * This includes opening, importing, destroying, exporting a pool, and syncing a
43 * pool.
44 */
45
46 #include <sys/zfs_context.h>
47 #include <sys/fm/fs/zfs.h>
48 #include <sys/spa_impl.h>
49 #include <sys/zio.h>
50 #include <sys/zio_checksum.h>
51 #include <sys/dmu.h>
52 #include <sys/dmu_tx.h>
53 #include <sys/zap.h>
54 #include <sys/zil.h>
55 #include <sys/ddt.h>
56 #include <sys/vdev_impl.h>
57 #include <sys/vdev_removal.h>
58 #include <sys/vdev_indirect_mapping.h>
59 #include <sys/vdev_indirect_births.h>
60 #include <sys/vdev_initialize.h>
61 #include <sys/vdev_rebuild.h>
62 #include <sys/vdev_trim.h>
63 #include <sys/vdev_disk.h>
64 #include <sys/vdev_draid.h>
65 #include <sys/metaslab.h>
66 #include <sys/metaslab_impl.h>
67 #include <sys/mmp.h>
68 #include <sys/uberblock_impl.h>
69 #include <sys/txg.h>
70 #include <sys/avl.h>
71 #include <sys/bpobj.h>
72 #include <sys/dmu_traverse.h>
73 #include <sys/dmu_objset.h>
74 #include <sys/unique.h>
75 #include <sys/dsl_pool.h>
76 #include <sys/dsl_dataset.h>
77 #include <sys/dsl_dir.h>
78 #include <sys/dsl_prop.h>
79 #include <sys/dsl_synctask.h>
80 #include <sys/fs/zfs.h>
81 #include <sys/arc.h>
82 #include <sys/callb.h>
83 #include <sys/systeminfo.h>
84 #include <sys/zfs_ioctl.h>
85 #include <sys/dsl_scan.h>
86 #include <sys/zfeature.h>
87 #include <sys/dsl_destroy.h>
88 #include <sys/zvol.h>
89
90 #ifdef _KERNEL
91 #include <sys/fm/protocol.h>
92 #include <sys/fm/util.h>
93 #include <sys/callb.h>
94 #include <sys/zone.h>
95 #include <sys/vmsystm.h>
96 #endif /* _KERNEL */
97
98 #include "zfs_prop.h"
99 #include "zfs_comutil.h"
100
101 /*
102 * The interval, in seconds, at which failed configuration cache file writes
103 * should be retried.
104 */
105 int zfs_ccw_retry_interval = 300;
106
107 typedef enum zti_modes {
108 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
109 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */
110 ZTI_MODE_SCALE, /* Taskqs scale with CPUs. */
111 ZTI_MODE_NULL, /* don't create a taskq */
112 ZTI_NMODES
113 } zti_modes_t;
114
115 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
116 #define ZTI_PCT(n) { ZTI_MODE_ONLINE_PERCENT, (n), 1 }
117 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 }
118 #define ZTI_SCALE { ZTI_MODE_SCALE, 0, 1 }
119 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
120
121 #define ZTI_N(n) ZTI_P(n, 1)
122 #define ZTI_ONE ZTI_N(1)
123
124 typedef struct zio_taskq_info {
125 zti_modes_t zti_mode;
126 uint_t zti_value;
127 uint_t zti_count;
128 } zio_taskq_info_t;
129
130 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
131 "iss", "iss_h", "int", "int_h"
132 };
133
134 /*
135 * This table defines the taskq settings for each ZFS I/O type. When
136 * initializing a pool, we use this table to create an appropriately sized
137 * taskq. Some operations are low volume and therefore have a small, static
138 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
139 * macros. Other operations process a large amount of data; the ZTI_BATCH
140 * macro causes us to create a taskq oriented for throughput. Some operations
141 * are so high frequency and short-lived that the taskq itself can become a
142 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
143 * additional degree of parallelism specified by the number of threads per-
144 * taskq and the number of taskqs; when dispatching an event in this case, the
145 * particular taskq is chosen at random. ZTI_SCALE is similar to ZTI_BATCH,
146 * but with number of taskqs also scaling with number of CPUs.
147 *
148 * The different taskq priorities are to handle the different contexts (issue
149 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
150 * need to be handled with minimum delay.
151 */
152 static const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
153 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
154 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
155 { ZTI_N(8), ZTI_NULL, ZTI_SCALE, ZTI_NULL }, /* READ */
156 { ZTI_BATCH, ZTI_N(5), ZTI_SCALE, ZTI_N(5) }, /* WRITE */
157 { ZTI_SCALE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
158 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
159 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */
160 { ZTI_N(4), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* TRIM */
161 };
162
163 static void spa_sync_version(void *arg, dmu_tx_t *tx);
164 static void spa_sync_props(void *arg, dmu_tx_t *tx);
165 static boolean_t spa_has_active_shared_spare(spa_t *spa);
166 static int spa_load_impl(spa_t *spa, spa_import_type_t type,
167 const char **ereport);
168 static void spa_vdev_resilver_done(spa_t *spa);
169
170 static uint_t zio_taskq_batch_pct = 80; /* 1 thread per cpu in pset */
171 static uint_t zio_taskq_batch_tpq; /* threads per taskq */
172 static const boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
173 static const uint_t zio_taskq_basedc = 80; /* base duty cycle */
174
175 static const boolean_t spa_create_process = B_TRUE; /* no process => no sysdc */
176
177 /*
178 * Report any spa_load_verify errors found, but do not fail spa_load.
179 * This is used by zdb to analyze non-idle pools.
180 */
181 boolean_t spa_load_verify_dryrun = B_FALSE;
182
183 /*
184 * Allow read spacemaps in case of readonly import (spa_mode == SPA_MODE_READ).
185 * This is used by zdb for spacemaps verification.
186 */
187 boolean_t spa_mode_readable_spacemaps = B_FALSE;
188
189 /*
190 * This (illegal) pool name is used when temporarily importing a spa_t in order
191 * to get the vdev stats associated with the imported devices.
192 */
193 #define TRYIMPORT_NAME "$import"
194
195 /*
196 * For debugging purposes: print out vdev tree during pool import.
197 */
198 static int spa_load_print_vdev_tree = B_FALSE;
199
200 /*
201 * A non-zero value for zfs_max_missing_tvds means that we allow importing
202 * pools with missing top-level vdevs. This is strictly intended for advanced
203 * pool recovery cases since missing data is almost inevitable. Pools with
204 * missing devices can only be imported read-only for safety reasons, and their
205 * fail-mode will be automatically set to "continue".
206 *
207 * With 1 missing vdev we should be able to import the pool and mount all
208 * datasets. User data that was not modified after the missing device has been
209 * added should be recoverable. This means that snapshots created prior to the
210 * addition of that device should be completely intact.
211 *
212 * With 2 missing vdevs, some datasets may fail to mount since there are
213 * dataset statistics that are stored as regular metadata. Some data might be
214 * recoverable if those vdevs were added recently.
215 *
216 * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
217 * may be missing entirely. Chances of data recovery are very low. Note that
218 * there are also risks of performing an inadvertent rewind as we might be
219 * missing all the vdevs with the latest uberblocks.
220 */
221 uint64_t zfs_max_missing_tvds = 0;
222
223 /*
224 * The parameters below are similar to zfs_max_missing_tvds but are only
225 * intended for a preliminary open of the pool with an untrusted config which
226 * might be incomplete or out-dated.
227 *
228 * We are more tolerant for pools opened from a cachefile since we could have
229 * an out-dated cachefile where a device removal was not registered.
230 * We could have set the limit arbitrarily high but in the case where devices
231 * are really missing we would want to return the proper error codes; we chose
232 * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
233 * and we get a chance to retrieve the trusted config.
234 */
235 uint64_t zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
236
237 /*
238 * In the case where config was assembled by scanning device paths (/dev/dsks
239 * by default) we are less tolerant since all the existing devices should have
240 * been detected and we want spa_load to return the right error codes.
241 */
242 uint64_t zfs_max_missing_tvds_scan = 0;
243
244 /*
245 * Debugging aid that pauses spa_sync() towards the end.
246 */
247 static const boolean_t zfs_pause_spa_sync = B_FALSE;
248
249 /*
250 * Variables to indicate the livelist condense zthr func should wait at certain
251 * points for the livelist to be removed - used to test condense/destroy races
252 */
253 static int zfs_livelist_condense_zthr_pause = 0;
254 static int zfs_livelist_condense_sync_pause = 0;
255
256 /*
257 * Variables to track whether or not condense cancellation has been
258 * triggered in testing.
259 */
260 static int zfs_livelist_condense_sync_cancel = 0;
261 static int zfs_livelist_condense_zthr_cancel = 0;
262
263 /*
264 * Variable to track whether or not extra ALLOC blkptrs were added to a
265 * livelist entry while it was being condensed (caused by the way we track
266 * remapped blkptrs in dbuf_remap_impl)
267 */
268 static int zfs_livelist_condense_new_alloc = 0;
269
270 /*
271 * ==========================================================================
272 * SPA properties routines
273 * ==========================================================================
274 */
275
276 /*
277 * Add a (source=src, propname=propval) list to an nvlist.
278 */
279 static void
280 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, const char *strval,
281 uint64_t intval, zprop_source_t src)
282 {
283 const char *propname = zpool_prop_to_name(prop);
284 nvlist_t *propval;
285
286 propval = fnvlist_alloc();
287 fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
288
289 if (strval != NULL)
290 fnvlist_add_string(propval, ZPROP_VALUE, strval);
291 else
292 fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
293
294 fnvlist_add_nvlist(nvl, propname, propval);
295 nvlist_free(propval);
296 }
297
298 /*
299 * Get property values from the spa configuration.
300 */
301 static void
302 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
303 {
304 vdev_t *rvd = spa->spa_root_vdev;
305 dsl_pool_t *pool = spa->spa_dsl_pool;
306 uint64_t size, alloc, cap, version;
307 const zprop_source_t src = ZPROP_SRC_NONE;
308 spa_config_dirent_t *dp;
309 metaslab_class_t *mc = spa_normal_class(spa);
310
311 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
312
313 if (rvd != NULL) {
314 alloc = metaslab_class_get_alloc(mc);
315 alloc += metaslab_class_get_alloc(spa_special_class(spa));
316 alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
317 alloc += metaslab_class_get_alloc(spa_embedded_log_class(spa));
318
319 size = metaslab_class_get_space(mc);
320 size += metaslab_class_get_space(spa_special_class(spa));
321 size += metaslab_class_get_space(spa_dedup_class(spa));
322 size += metaslab_class_get_space(spa_embedded_log_class(spa));
323
324 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
325 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
326 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
327 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
328 size - alloc, src);
329 spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL,
330 spa->spa_checkpoint_info.sci_dspace, src);
331
332 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
333 metaslab_class_fragmentation(mc), src);
334 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
335 metaslab_class_expandable_space(mc), src);
336 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
337 (spa_mode(spa) == SPA_MODE_READ), src);
338
339 cap = (size == 0) ? 0 : (alloc * 100 / size);
340 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
341
342 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
343 ddt_get_pool_dedup_ratio(spa), src);
344
345 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
346 rvd->vdev_state, src);
347
348 version = spa_version(spa);
349 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) {
350 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
351 version, ZPROP_SRC_DEFAULT);
352 } else {
353 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
354 version, ZPROP_SRC_LOCAL);
355 }
356 spa_prop_add_list(*nvp, ZPOOL_PROP_LOAD_GUID,
357 NULL, spa_load_guid(spa), src);
358 }
359
360 if (pool != NULL) {
361 /*
362 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
363 * when opening pools before this version freedir will be NULL.
364 */
365 if (pool->dp_free_dir != NULL) {
366 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
367 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
368 src);
369 } else {
370 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
371 NULL, 0, src);
372 }
373
374 if (pool->dp_leak_dir != NULL) {
375 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
376 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
377 src);
378 } else {
379 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
380 NULL, 0, src);
381 }
382 }
383
384 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
385
386 if (spa->spa_comment != NULL) {
387 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
388 0, ZPROP_SRC_LOCAL);
389 }
390
391 if (spa->spa_compatibility != NULL) {
392 spa_prop_add_list(*nvp, ZPOOL_PROP_COMPATIBILITY,
393 spa->spa_compatibility, 0, ZPROP_SRC_LOCAL);
394 }
395
396 if (spa->spa_root != NULL)
397 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
398 0, ZPROP_SRC_LOCAL);
399
400 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
401 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
402 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
403 } else {
404 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
405 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
406 }
407
408 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
409 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
410 DNODE_MAX_SIZE, ZPROP_SRC_NONE);
411 } else {
412 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
413 DNODE_MIN_SIZE, ZPROP_SRC_NONE);
414 }
415
416 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
417 if (dp->scd_path == NULL) {
418 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
419 "none", 0, ZPROP_SRC_LOCAL);
420 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
421 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
422 dp->scd_path, 0, ZPROP_SRC_LOCAL);
423 }
424 }
425 }
426
427 /*
428 * Get zpool property values.
429 */
430 int
431 spa_prop_get(spa_t *spa, nvlist_t **nvp)
432 {
433 objset_t *mos = spa->spa_meta_objset;
434 zap_cursor_t zc;
435 zap_attribute_t za;
436 dsl_pool_t *dp;
437 int err;
438
439 err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP);
440 if (err)
441 return (err);
442
443 dp = spa_get_dsl(spa);
444 dsl_pool_config_enter(dp, FTAG);
445 mutex_enter(&spa->spa_props_lock);
446
447 /*
448 * Get properties from the spa config.
449 */
450 spa_prop_get_config(spa, nvp);
451
452 /* If no pool property object, no more prop to get. */
453 if (mos == NULL || spa->spa_pool_props_object == 0)
454 goto out;
455
456 /*
457 * Get properties from the MOS pool property object.
458 */
459 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
460 (err = zap_cursor_retrieve(&zc, &za)) == 0;
461 zap_cursor_advance(&zc)) {
462 uint64_t intval = 0;
463 char *strval = NULL;
464 zprop_source_t src = ZPROP_SRC_DEFAULT;
465 zpool_prop_t prop;
466
467 if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL)
468 continue;
469
470 switch (za.za_integer_length) {
471 case 8:
472 /* integer property */
473 if (za.za_first_integer !=
474 zpool_prop_default_numeric(prop))
475 src = ZPROP_SRC_LOCAL;
476
477 if (prop == ZPOOL_PROP_BOOTFS) {
478 dsl_dataset_t *ds = NULL;
479
480 err = dsl_dataset_hold_obj(dp,
481 za.za_first_integer, FTAG, &ds);
482 if (err != 0)
483 break;
484
485 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
486 KM_SLEEP);
487 dsl_dataset_name(ds, strval);
488 dsl_dataset_rele(ds, FTAG);
489 } else {
490 strval = NULL;
491 intval = za.za_first_integer;
492 }
493
494 spa_prop_add_list(*nvp, prop, strval, intval, src);
495
496 if (strval != NULL)
497 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
498
499 break;
500
501 case 1:
502 /* string property */
503 strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
504 err = zap_lookup(mos, spa->spa_pool_props_object,
505 za.za_name, 1, za.za_num_integers, strval);
506 if (err) {
507 kmem_free(strval, za.za_num_integers);
508 break;
509 }
510 spa_prop_add_list(*nvp, prop, strval, 0, src);
511 kmem_free(strval, za.za_num_integers);
512 break;
513
514 default:
515 break;
516 }
517 }
518 zap_cursor_fini(&zc);
519 out:
520 mutex_exit(&spa->spa_props_lock);
521 dsl_pool_config_exit(dp, FTAG);
522 if (err && err != ENOENT) {
523 nvlist_free(*nvp);
524 *nvp = NULL;
525 return (err);
526 }
527
528 return (0);
529 }
530
531 /*
532 * Validate the given pool properties nvlist and modify the list
533 * for the property values to be set.
534 */
535 static int
536 spa_prop_validate(spa_t *spa, nvlist_t *props)
537 {
538 nvpair_t *elem;
539 int error = 0, reset_bootfs = 0;
540 uint64_t objnum = 0;
541 boolean_t has_feature = B_FALSE;
542
543 elem = NULL;
544 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
545 uint64_t intval;
546 char *strval, *slash, *check, *fname;
547 const char *propname = nvpair_name(elem);
548 zpool_prop_t prop = zpool_name_to_prop(propname);
549
550 switch (prop) {
551 case ZPOOL_PROP_INVAL:
552 if (!zpool_prop_feature(propname)) {
553 error = SET_ERROR(EINVAL);
554 break;
555 }
556
557 /*
558 * Sanitize the input.
559 */
560 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
561 error = SET_ERROR(EINVAL);
562 break;
563 }
564
565 if (nvpair_value_uint64(elem, &intval) != 0) {
566 error = SET_ERROR(EINVAL);
567 break;
568 }
569
570 if (intval != 0) {
571 error = SET_ERROR(EINVAL);
572 break;
573 }
574
575 fname = strchr(propname, '@') + 1;
576 if (zfeature_lookup_name(fname, NULL) != 0) {
577 error = SET_ERROR(EINVAL);
578 break;
579 }
580
581 has_feature = B_TRUE;
582 break;
583
584 case ZPOOL_PROP_VERSION:
585 error = nvpair_value_uint64(elem, &intval);
586 if (!error &&
587 (intval < spa_version(spa) ||
588 intval > SPA_VERSION_BEFORE_FEATURES ||
589 has_feature))
590 error = SET_ERROR(EINVAL);
591 break;
592
593 case ZPOOL_PROP_DELEGATION:
594 case ZPOOL_PROP_AUTOREPLACE:
595 case ZPOOL_PROP_LISTSNAPS:
596 case ZPOOL_PROP_AUTOEXPAND:
597 case ZPOOL_PROP_AUTOTRIM:
598 error = nvpair_value_uint64(elem, &intval);
599 if (!error && intval > 1)
600 error = SET_ERROR(EINVAL);
601 break;
602
603 case ZPOOL_PROP_MULTIHOST:
604 error = nvpair_value_uint64(elem, &intval);
605 if (!error && intval > 1)
606 error = SET_ERROR(EINVAL);
607
608 if (!error) {
609 uint32_t hostid = zone_get_hostid(NULL);
610 if (hostid)
611 spa->spa_hostid = hostid;
612 else
613 error = SET_ERROR(ENOTSUP);
614 }
615
616 break;
617
618 case ZPOOL_PROP_BOOTFS:
619 /*
620 * If the pool version is less than SPA_VERSION_BOOTFS,
621 * or the pool is still being created (version == 0),
622 * the bootfs property cannot be set.
623 */
624 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
625 error = SET_ERROR(ENOTSUP);
626 break;
627 }
628
629 /*
630 * Make sure the vdev config is bootable
631 */
632 if (!vdev_is_bootable(spa->spa_root_vdev)) {
633 error = SET_ERROR(ENOTSUP);
634 break;
635 }
636
637 reset_bootfs = 1;
638
639 error = nvpair_value_string(elem, &strval);
640
641 if (!error) {
642 objset_t *os;
643
644 if (strval == NULL || strval[0] == '\0') {
645 objnum = zpool_prop_default_numeric(
646 ZPOOL_PROP_BOOTFS);
647 break;
648 }
649
650 error = dmu_objset_hold(strval, FTAG, &os);
651 if (error != 0)
652 break;
653
654 /* Must be ZPL. */
655 if (dmu_objset_type(os) != DMU_OST_ZFS) {
656 error = SET_ERROR(ENOTSUP);
657 } else {
658 objnum = dmu_objset_id(os);
659 }
660 dmu_objset_rele(os, FTAG);
661 }
662 break;
663
664 case ZPOOL_PROP_FAILUREMODE:
665 error = nvpair_value_uint64(elem, &intval);
666 if (!error && intval > ZIO_FAILURE_MODE_PANIC)
667 error = SET_ERROR(EINVAL);
668
669 /*
670 * This is a special case which only occurs when
671 * the pool has completely failed. This allows
672 * the user to change the in-core failmode property
673 * without syncing it out to disk (I/Os might
674 * currently be blocked). We do this by returning
675 * EIO to the caller (spa_prop_set) to trick it
676 * into thinking we encountered a property validation
677 * error.
678 */
679 if (!error && spa_suspended(spa)) {
680 spa->spa_failmode = intval;
681 error = SET_ERROR(EIO);
682 }
683 break;
684
685 case ZPOOL_PROP_CACHEFILE:
686 if ((error = nvpair_value_string(elem, &strval)) != 0)
687 break;
688
689 if (strval[0] == '\0')
690 break;
691
692 if (strcmp(strval, "none") == 0)
693 break;
694
695 if (strval[0] != '/') {
696 error = SET_ERROR(EINVAL);
697 break;
698 }
699
700 slash = strrchr(strval, '/');
701 ASSERT(slash != NULL);
702
703 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
704 strcmp(slash, "/..") == 0)
705 error = SET_ERROR(EINVAL);
706 break;
707
708 case ZPOOL_PROP_COMMENT:
709 if ((error = nvpair_value_string(elem, &strval)) != 0)
710 break;
711 for (check = strval; *check != '\0'; check++) {
712 if (!isprint(*check)) {
713 error = SET_ERROR(EINVAL);
714 break;
715 }
716 }
717 if (strlen(strval) > ZPROP_MAX_COMMENT)
718 error = SET_ERROR(E2BIG);
719 break;
720
721 default:
722 break;
723 }
724
725 if (error)
726 break;
727 }
728
729 (void) nvlist_remove_all(props,
730 zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO));
731
732 if (!error && reset_bootfs) {
733 error = nvlist_remove(props,
734 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
735
736 if (!error) {
737 error = nvlist_add_uint64(props,
738 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
739 }
740 }
741
742 return (error);
743 }
744
745 void
746 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
747 {
748 char *cachefile;
749 spa_config_dirent_t *dp;
750
751 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
752 &cachefile) != 0)
753 return;
754
755 dp = kmem_alloc(sizeof (spa_config_dirent_t),
756 KM_SLEEP);
757
758 if (cachefile[0] == '\0')
759 dp->scd_path = spa_strdup(spa_config_path);
760 else if (strcmp(cachefile, "none") == 0)
761 dp->scd_path = NULL;
762 else
763 dp->scd_path = spa_strdup(cachefile);
764
765 list_insert_head(&spa->spa_config_list, dp);
766 if (need_sync)
767 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
768 }
769
770 int
771 spa_prop_set(spa_t *spa, nvlist_t *nvp)
772 {
773 int error;
774 nvpair_t *elem = NULL;
775 boolean_t need_sync = B_FALSE;
776
777 if ((error = spa_prop_validate(spa, nvp)) != 0)
778 return (error);
779
780 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
781 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
782
783 if (prop == ZPOOL_PROP_CACHEFILE ||
784 prop == ZPOOL_PROP_ALTROOT ||
785 prop == ZPOOL_PROP_READONLY)
786 continue;
787
788 if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
789 uint64_t ver = 0;
790
791 if (prop == ZPOOL_PROP_VERSION) {
792 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
793 } else {
794 ASSERT(zpool_prop_feature(nvpair_name(elem)));
795 ver = SPA_VERSION_FEATURES;
796 need_sync = B_TRUE;
797 }
798
799 /* Save time if the version is already set. */
800 if (ver == spa_version(spa))
801 continue;
802
803 /*
804 * In addition to the pool directory object, we might
805 * create the pool properties object, the features for
806 * read object, the features for write object, or the
807 * feature descriptions object.
808 */
809 error = dsl_sync_task(spa->spa_name, NULL,
810 spa_sync_version, &ver,
811 6, ZFS_SPACE_CHECK_RESERVED);
812 if (error)
813 return (error);
814 continue;
815 }
816
817 need_sync = B_TRUE;
818 break;
819 }
820
821 if (need_sync) {
822 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
823 nvp, 6, ZFS_SPACE_CHECK_RESERVED));
824 }
825
826 return (0);
827 }
828
829 /*
830 * If the bootfs property value is dsobj, clear it.
831 */
832 void
833 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
834 {
835 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
836 VERIFY(zap_remove(spa->spa_meta_objset,
837 spa->spa_pool_props_object,
838 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
839 spa->spa_bootfs = 0;
840 }
841 }
842
843 static int
844 spa_change_guid_check(void *arg, dmu_tx_t *tx)
845 {
846 uint64_t *newguid __maybe_unused = arg;
847 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
848 vdev_t *rvd = spa->spa_root_vdev;
849 uint64_t vdev_state;
850
851 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
852 int error = (spa_has_checkpoint(spa)) ?
853 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
854 return (SET_ERROR(error));
855 }
856
857 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
858 vdev_state = rvd->vdev_state;
859 spa_config_exit(spa, SCL_STATE, FTAG);
860
861 if (vdev_state != VDEV_STATE_HEALTHY)
862 return (SET_ERROR(ENXIO));
863
864 ASSERT3U(spa_guid(spa), !=, *newguid);
865
866 return (0);
867 }
868
869 static void
870 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
871 {
872 uint64_t *newguid = arg;
873 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
874 uint64_t oldguid;
875 vdev_t *rvd = spa->spa_root_vdev;
876
877 oldguid = spa_guid(spa);
878
879 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
880 rvd->vdev_guid = *newguid;
881 rvd->vdev_guid_sum += (*newguid - oldguid);
882 vdev_config_dirty(rvd);
883 spa_config_exit(spa, SCL_STATE, FTAG);
884
885 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
886 (u_longlong_t)oldguid, (u_longlong_t)*newguid);
887 }
888
889 /*
890 * Change the GUID for the pool. This is done so that we can later
891 * re-import a pool built from a clone of our own vdevs. We will modify
892 * the root vdev's guid, our own pool guid, and then mark all of our
893 * vdevs dirty. Note that we must make sure that all our vdevs are
894 * online when we do this, or else any vdevs that weren't present
895 * would be orphaned from our pool. We are also going to issue a
896 * sysevent to update any watchers.
897 */
898 int
899 spa_change_guid(spa_t *spa)
900 {
901 int error;
902 uint64_t guid;
903
904 mutex_enter(&spa->spa_vdev_top_lock);
905 mutex_enter(&spa_namespace_lock);
906 guid = spa_generate_guid(NULL);
907
908 error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
909 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
910
911 if (error == 0) {
912 /*
913 * Clear the kobj flag from all the vdevs to allow
914 * vdev_cache_process_kobj_evt() to post events to all the
915 * vdevs since GUID is updated.
916 */
917 vdev_clear_kobj_evt(spa->spa_root_vdev);
918 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
919 vdev_clear_kobj_evt(spa->spa_l2cache.sav_vdevs[i]);
920
921 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
922 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
923 }
924
925 mutex_exit(&spa_namespace_lock);
926 mutex_exit(&spa->spa_vdev_top_lock);
927
928 return (error);
929 }
930
931 /*
932 * ==========================================================================
933 * SPA state manipulation (open/create/destroy/import/export)
934 * ==========================================================================
935 */
936
937 static int
938 spa_error_entry_compare(const void *a, const void *b)
939 {
940 const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
941 const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
942 int ret;
943
944 ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
945 sizeof (zbookmark_phys_t));
946
947 return (TREE_ISIGN(ret));
948 }
949
950 /*
951 * Utility function which retrieves copies of the current logs and
952 * re-initializes them in the process.
953 */
954 void
955 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
956 {
957 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
958
959 memcpy(last, &spa->spa_errlist_last, sizeof (avl_tree_t));
960 memcpy(scrub, &spa->spa_errlist_scrub, sizeof (avl_tree_t));
961
962 avl_create(&spa->spa_errlist_scrub,
963 spa_error_entry_compare, sizeof (spa_error_entry_t),
964 offsetof(spa_error_entry_t, se_avl));
965 avl_create(&spa->spa_errlist_last,
966 spa_error_entry_compare, sizeof (spa_error_entry_t),
967 offsetof(spa_error_entry_t, se_avl));
968 }
969
970 static void
971 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
972 {
973 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
974 enum zti_modes mode = ztip->zti_mode;
975 uint_t value = ztip->zti_value;
976 uint_t count = ztip->zti_count;
977 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
978 uint_t cpus, flags = TASKQ_DYNAMIC;
979 boolean_t batch = B_FALSE;
980
981 switch (mode) {
982 case ZTI_MODE_FIXED:
983 ASSERT3U(value, >, 0);
984 break;
985
986 case ZTI_MODE_BATCH:
987 batch = B_TRUE;
988 flags |= TASKQ_THREADS_CPU_PCT;
989 value = MIN(zio_taskq_batch_pct, 100);
990 break;
991
992 case ZTI_MODE_SCALE:
993 flags |= TASKQ_THREADS_CPU_PCT;
994 /*
995 * We want more taskqs to reduce lock contention, but we want
996 * less for better request ordering and CPU utilization.
997 */
998 cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100);
999 if (zio_taskq_batch_tpq > 0) {
1000 count = MAX(1, (cpus + zio_taskq_batch_tpq / 2) /
1001 zio_taskq_batch_tpq);
1002 } else {
1003 /*
1004 * Prefer 6 threads per taskq, but no more taskqs
1005 * than threads in them on large systems. For 80%:
1006 *
1007 * taskq taskq total
1008 * cpus taskqs percent threads threads
1009 * ------- ------- ------- ------- -------
1010 * 1 1 80% 1 1
1011 * 2 1 80% 1 1
1012 * 4 1 80% 3 3
1013 * 8 2 40% 3 6
1014 * 16 3 27% 4 12
1015 * 32 5 16% 5 25
1016 * 64 7 11% 7 49
1017 * 128 10 8% 10 100
1018 * 256 14 6% 15 210
1019 */
1020 count = 1 + cpus / 6;
1021 while (count * count > cpus)
1022 count--;
1023 }
1024 /* Limit each taskq within 100% to not trigger assertion. */
1025 count = MAX(count, (zio_taskq_batch_pct + 99) / 100);
1026 value = (zio_taskq_batch_pct + count / 2) / count;
1027 break;
1028
1029 case ZTI_MODE_NULL:
1030 tqs->stqs_count = 0;
1031 tqs->stqs_taskq = NULL;
1032 return;
1033
1034 default:
1035 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
1036 "spa_activate()",
1037 zio_type_name[t], zio_taskq_types[q], mode, value);
1038 break;
1039 }
1040
1041 ASSERT3U(count, >, 0);
1042 tqs->stqs_count = count;
1043 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
1044
1045 for (uint_t i = 0; i < count; i++) {
1046 taskq_t *tq;
1047 char name[32];
1048
1049 if (count > 1)
1050 (void) snprintf(name, sizeof (name), "%s_%s_%u",
1051 zio_type_name[t], zio_taskq_types[q], i);
1052 else
1053 (void) snprintf(name, sizeof (name), "%s_%s",
1054 zio_type_name[t], zio_taskq_types[q]);
1055
1056 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
1057 if (batch)
1058 flags |= TASKQ_DC_BATCH;
1059
1060 (void) zio_taskq_basedc;
1061 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
1062 spa->spa_proc, zio_taskq_basedc, flags);
1063 } else {
1064 pri_t pri = maxclsyspri;
1065 /*
1066 * The write issue taskq can be extremely CPU
1067 * intensive. Run it at slightly less important
1068 * priority than the other taskqs.
1069 *
1070 * Under Linux and FreeBSD this means incrementing
1071 * the priority value as opposed to platforms like
1072 * illumos where it should be decremented.
1073 *
1074 * On FreeBSD, if priorities divided by four (RQ_PPQ)
1075 * are equal then a difference between them is
1076 * insignificant.
1077 */
1078 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) {
1079 #if defined(__linux__)
1080 pri++;
1081 #elif defined(__FreeBSD__)
1082 pri += 4;
1083 #else
1084 #error "unknown OS"
1085 #endif
1086 }
1087 tq = taskq_create_proc(name, value, pri, 50,
1088 INT_MAX, spa->spa_proc, flags);
1089 }
1090
1091 tqs->stqs_taskq[i] = tq;
1092 }
1093 }
1094
1095 static void
1096 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1097 {
1098 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1099
1100 if (tqs->stqs_taskq == NULL) {
1101 ASSERT3U(tqs->stqs_count, ==, 0);
1102 return;
1103 }
1104
1105 for (uint_t i = 0; i < tqs->stqs_count; i++) {
1106 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1107 taskq_destroy(tqs->stqs_taskq[i]);
1108 }
1109
1110 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1111 tqs->stqs_taskq = NULL;
1112 }
1113
1114 /*
1115 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1116 * Note that a type may have multiple discrete taskqs to avoid lock contention
1117 * on the taskq itself. In that case we choose which taskq at random by using
1118 * the low bits of gethrtime().
1119 */
1120 void
1121 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1122 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
1123 {
1124 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1125 taskq_t *tq;
1126
1127 ASSERT3P(tqs->stqs_taskq, !=, NULL);
1128 ASSERT3U(tqs->stqs_count, !=, 0);
1129
1130 if (tqs->stqs_count == 1) {
1131 tq = tqs->stqs_taskq[0];
1132 } else {
1133 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1134 }
1135
1136 taskq_dispatch_ent(tq, func, arg, flags, ent);
1137 }
1138
1139 /*
1140 * Same as spa_taskq_dispatch_ent() but block on the task until completion.
1141 */
1142 void
1143 spa_taskq_dispatch_sync(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1144 task_func_t *func, void *arg, uint_t flags)
1145 {
1146 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1147 taskq_t *tq;
1148 taskqid_t id;
1149
1150 ASSERT3P(tqs->stqs_taskq, !=, NULL);
1151 ASSERT3U(tqs->stqs_count, !=, 0);
1152
1153 if (tqs->stqs_count == 1) {
1154 tq = tqs->stqs_taskq[0];
1155 } else {
1156 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1157 }
1158
1159 id = taskq_dispatch(tq, func, arg, flags);
1160 if (id)
1161 taskq_wait_id(tq, id);
1162 }
1163
1164 static void
1165 spa_create_zio_taskqs(spa_t *spa)
1166 {
1167 for (int t = 0; t < ZIO_TYPES; t++) {
1168 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1169 spa_taskqs_init(spa, t, q);
1170 }
1171 }
1172 }
1173
1174 /*
1175 * Disabled until spa_thread() can be adapted for Linux.
1176 */
1177 #undef HAVE_SPA_THREAD
1178
1179 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
1180 static void
1181 spa_thread(void *arg)
1182 {
1183 psetid_t zio_taskq_psrset_bind = PS_NONE;
1184 callb_cpr_t cprinfo;
1185
1186 spa_t *spa = arg;
1187 user_t *pu = PTOU(curproc);
1188
1189 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1190 spa->spa_name);
1191
1192 ASSERT(curproc != &p0);
1193 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1194 "zpool-%s", spa->spa_name);
1195 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1196
1197 /* bind this thread to the requested psrset */
1198 if (zio_taskq_psrset_bind != PS_NONE) {
1199 pool_lock();
1200 mutex_enter(&cpu_lock);
1201 mutex_enter(&pidlock);
1202 mutex_enter(&curproc->p_lock);
1203
1204 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1205 0, NULL, NULL) == 0) {
1206 curthread->t_bind_pset = zio_taskq_psrset_bind;
1207 } else {
1208 cmn_err(CE_WARN,
1209 "Couldn't bind process for zfs pool \"%s\" to "
1210 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1211 }
1212
1213 mutex_exit(&curproc->p_lock);
1214 mutex_exit(&pidlock);
1215 mutex_exit(&cpu_lock);
1216 pool_unlock();
1217 }
1218
1219 if (zio_taskq_sysdc) {
1220 sysdc_thread_enter(curthread, 100, 0);
1221 }
1222
1223 spa->spa_proc = curproc;
1224 spa->spa_did = curthread->t_did;
1225
1226 spa_create_zio_taskqs(spa);
1227
1228 mutex_enter(&spa->spa_proc_lock);
1229 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1230
1231 spa->spa_proc_state = SPA_PROC_ACTIVE;
1232 cv_broadcast(&spa->spa_proc_cv);
1233
1234 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1235 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1236 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1237 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1238
1239 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1240 spa->spa_proc_state = SPA_PROC_GONE;
1241 spa->spa_proc = &p0;
1242 cv_broadcast(&spa->spa_proc_cv);
1243 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
1244
1245 mutex_enter(&curproc->p_lock);
1246 lwp_exit();
1247 }
1248 #endif
1249
1250 /*
1251 * Activate an uninitialized pool.
1252 */
1253 static void
1254 spa_activate(spa_t *spa, spa_mode_t mode)
1255 {
1256 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1257
1258 spa->spa_state = POOL_STATE_ACTIVE;
1259 spa->spa_mode = mode;
1260 spa->spa_read_spacemaps = spa_mode_readable_spacemaps;
1261
1262 spa->spa_normal_class = metaslab_class_create(spa, &zfs_metaslab_ops);
1263 spa->spa_log_class = metaslab_class_create(spa, &zfs_metaslab_ops);
1264 spa->spa_embedded_log_class =
1265 metaslab_class_create(spa, &zfs_metaslab_ops);
1266 spa->spa_special_class = metaslab_class_create(spa, &zfs_metaslab_ops);
1267 spa->spa_dedup_class = metaslab_class_create(spa, &zfs_metaslab_ops);
1268
1269 /* Try to create a covering process */
1270 mutex_enter(&spa->spa_proc_lock);
1271 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1272 ASSERT(spa->spa_proc == &p0);
1273 spa->spa_did = 0;
1274
1275 (void) spa_create_process;
1276 #ifdef HAVE_SPA_THREAD
1277 /* Only create a process if we're going to be around a while. */
1278 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1279 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1280 NULL, 0) == 0) {
1281 spa->spa_proc_state = SPA_PROC_CREATED;
1282 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1283 cv_wait(&spa->spa_proc_cv,
1284 &spa->spa_proc_lock);
1285 }
1286 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1287 ASSERT(spa->spa_proc != &p0);
1288 ASSERT(spa->spa_did != 0);
1289 } else {
1290 #ifdef _KERNEL
1291 cmn_err(CE_WARN,
1292 "Couldn't create process for zfs pool \"%s\"\n",
1293 spa->spa_name);
1294 #endif
1295 }
1296 }
1297 #endif /* HAVE_SPA_THREAD */
1298 mutex_exit(&spa->spa_proc_lock);
1299
1300 /* If we didn't create a process, we need to create our taskqs. */
1301 if (spa->spa_proc == &p0) {
1302 spa_create_zio_taskqs(spa);
1303 }
1304
1305 for (size_t i = 0; i < TXG_SIZE; i++) {
1306 spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
1307 ZIO_FLAG_CANFAIL);
1308 }
1309
1310 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1311 offsetof(vdev_t, vdev_config_dirty_node));
1312 list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1313 offsetof(objset_t, os_evicting_node));
1314 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1315 offsetof(vdev_t, vdev_state_dirty_node));
1316
1317 txg_list_create(&spa->spa_vdev_txg_list, spa,
1318 offsetof(struct vdev, vdev_txg_node));
1319
1320 avl_create(&spa->spa_errlist_scrub,
1321 spa_error_entry_compare, sizeof (spa_error_entry_t),
1322 offsetof(spa_error_entry_t, se_avl));
1323 avl_create(&spa->spa_errlist_last,
1324 spa_error_entry_compare, sizeof (spa_error_entry_t),
1325 offsetof(spa_error_entry_t, se_avl));
1326 avl_create(&spa->spa_errlist_healed,
1327 spa_error_entry_compare, sizeof (spa_error_entry_t),
1328 offsetof(spa_error_entry_t, se_avl));
1329
1330 spa_activate_os(spa);
1331
1332 spa_keystore_init(&spa->spa_keystore);
1333
1334 /*
1335 * This taskq is used to perform zvol-minor-related tasks
1336 * asynchronously. This has several advantages, including easy
1337 * resolution of various deadlocks.
1338 *
1339 * The taskq must be single threaded to ensure tasks are always
1340 * processed in the order in which they were dispatched.
1341 *
1342 * A taskq per pool allows one to keep the pools independent.
1343 * This way if one pool is suspended, it will not impact another.
1344 *
1345 * The preferred location to dispatch a zvol minor task is a sync
1346 * task. In this context, there is easy access to the spa_t and minimal
1347 * error handling is required because the sync task must succeed.
1348 */
1349 spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri,
1350 1, INT_MAX, 0);
1351
1352 /*
1353 * Taskq dedicated to prefetcher threads: this is used to prevent the
1354 * pool traverse code from monopolizing the global (and limited)
1355 * system_taskq by inappropriately scheduling long running tasks on it.
1356 */
1357 spa->spa_prefetch_taskq = taskq_create("z_prefetch", 100,
1358 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1359
1360 /*
1361 * The taskq to upgrade datasets in this pool. Currently used by
1362 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA.
1363 */
1364 spa->spa_upgrade_taskq = taskq_create("z_upgrade", 100,
1365 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1366 }
1367
1368 /*
1369 * Opposite of spa_activate().
1370 */
1371 static void
1372 spa_deactivate(spa_t *spa)
1373 {
1374 ASSERT(spa->spa_sync_on == B_FALSE);
1375 ASSERT(spa->spa_dsl_pool == NULL);
1376 ASSERT(spa->spa_root_vdev == NULL);
1377 ASSERT(spa->spa_async_zio_root == NULL);
1378 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1379
1380 spa_evicting_os_wait(spa);
1381
1382 if (spa->spa_zvol_taskq) {
1383 taskq_destroy(spa->spa_zvol_taskq);
1384 spa->spa_zvol_taskq = NULL;
1385 }
1386
1387 if (spa->spa_prefetch_taskq) {
1388 taskq_destroy(spa->spa_prefetch_taskq);
1389 spa->spa_prefetch_taskq = NULL;
1390 }
1391
1392 if (spa->spa_upgrade_taskq) {
1393 taskq_destroy(spa->spa_upgrade_taskq);
1394 spa->spa_upgrade_taskq = NULL;
1395 }
1396
1397 txg_list_destroy(&spa->spa_vdev_txg_list);
1398
1399 list_destroy(&spa->spa_config_dirty_list);
1400 list_destroy(&spa->spa_evicting_os_list);
1401 list_destroy(&spa->spa_state_dirty_list);
1402
1403 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
1404
1405 for (int t = 0; t < ZIO_TYPES; t++) {
1406 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1407 spa_taskqs_fini(spa, t, q);
1408 }
1409 }
1410
1411 for (size_t i = 0; i < TXG_SIZE; i++) {
1412 ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1413 VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1414 spa->spa_txg_zio[i] = NULL;
1415 }
1416
1417 metaslab_class_destroy(spa->spa_normal_class);
1418 spa->spa_normal_class = NULL;
1419
1420 metaslab_class_destroy(spa->spa_log_class);
1421 spa->spa_log_class = NULL;
1422
1423 metaslab_class_destroy(spa->spa_embedded_log_class);
1424 spa->spa_embedded_log_class = NULL;
1425
1426 metaslab_class_destroy(spa->spa_special_class);
1427 spa->spa_special_class = NULL;
1428
1429 metaslab_class_destroy(spa->spa_dedup_class);
1430 spa->spa_dedup_class = NULL;
1431
1432 /*
1433 * If this was part of an import or the open otherwise failed, we may
1434 * still have errors left in the queues. Empty them just in case.
1435 */
1436 spa_errlog_drain(spa);
1437 avl_destroy(&spa->spa_errlist_scrub);
1438 avl_destroy(&spa->spa_errlist_last);
1439 avl_destroy(&spa->spa_errlist_healed);
1440
1441 spa_keystore_fini(&spa->spa_keystore);
1442
1443 spa->spa_state = POOL_STATE_UNINITIALIZED;
1444
1445 mutex_enter(&spa->spa_proc_lock);
1446 if (spa->spa_proc_state != SPA_PROC_NONE) {
1447 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1448 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1449 cv_broadcast(&spa->spa_proc_cv);
1450 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1451 ASSERT(spa->spa_proc != &p0);
1452 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1453 }
1454 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1455 spa->spa_proc_state = SPA_PROC_NONE;
1456 }
1457 ASSERT(spa->spa_proc == &p0);
1458 mutex_exit(&spa->spa_proc_lock);
1459
1460 /*
1461 * We want to make sure spa_thread() has actually exited the ZFS
1462 * module, so that the module can't be unloaded out from underneath
1463 * it.
1464 */
1465 if (spa->spa_did != 0) {
1466 thread_join(spa->spa_did);
1467 spa->spa_did = 0;
1468 }
1469
1470 spa_deactivate_os(spa);
1471
1472 }
1473
1474 /*
1475 * Verify a pool configuration, and construct the vdev tree appropriately. This
1476 * will create all the necessary vdevs in the appropriate layout, with each vdev
1477 * in the CLOSED state. This will prep the pool before open/creation/import.
1478 * All vdev validation is done by the vdev_alloc() routine.
1479 */
1480 int
1481 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1482 uint_t id, int atype)
1483 {
1484 nvlist_t **child;
1485 uint_t children;
1486 int error;
1487
1488 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1489 return (error);
1490
1491 if ((*vdp)->vdev_ops->vdev_op_leaf)
1492 return (0);
1493
1494 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1495 &child, &children);
1496
1497 if (error == ENOENT)
1498 return (0);
1499
1500 if (error) {
1501 vdev_free(*vdp);
1502 *vdp = NULL;
1503 return (SET_ERROR(EINVAL));
1504 }
1505
1506 for (int c = 0; c < children; c++) {
1507 vdev_t *vd;
1508 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1509 atype)) != 0) {
1510 vdev_free(*vdp);
1511 *vdp = NULL;
1512 return (error);
1513 }
1514 }
1515
1516 ASSERT(*vdp != NULL);
1517
1518 return (0);
1519 }
1520
1521 static boolean_t
1522 spa_should_flush_logs_on_unload(spa_t *spa)
1523 {
1524 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1525 return (B_FALSE);
1526
1527 if (!spa_writeable(spa))
1528 return (B_FALSE);
1529
1530 if (!spa->spa_sync_on)
1531 return (B_FALSE);
1532
1533 if (spa_state(spa) != POOL_STATE_EXPORTED)
1534 return (B_FALSE);
1535
1536 if (zfs_keep_log_spacemaps_at_export)
1537 return (B_FALSE);
1538
1539 return (B_TRUE);
1540 }
1541
1542 /*
1543 * Opens a transaction that will set the flag that will instruct
1544 * spa_sync to attempt to flush all the metaslabs for that txg.
1545 */
1546 static void
1547 spa_unload_log_sm_flush_all(spa_t *spa)
1548 {
1549 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1550 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1551
1552 ASSERT3U(spa->spa_log_flushall_txg, ==, 0);
1553 spa->spa_log_flushall_txg = dmu_tx_get_txg(tx);
1554
1555 dmu_tx_commit(tx);
1556 txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg);
1557 }
1558
1559 static void
1560 spa_unload_log_sm_metadata(spa_t *spa)
1561 {
1562 void *cookie = NULL;
1563 spa_log_sm_t *sls;
1564 while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg,
1565 &cookie)) != NULL) {
1566 VERIFY0(sls->sls_mscount);
1567 kmem_free(sls, sizeof (spa_log_sm_t));
1568 }
1569
1570 for (log_summary_entry_t *e = list_head(&spa->spa_log_summary);
1571 e != NULL; e = list_head(&spa->spa_log_summary)) {
1572 VERIFY0(e->lse_mscount);
1573 list_remove(&spa->spa_log_summary, e);
1574 kmem_free(e, sizeof (log_summary_entry_t));
1575 }
1576
1577 spa->spa_unflushed_stats.sus_nblocks = 0;
1578 spa->spa_unflushed_stats.sus_memused = 0;
1579 spa->spa_unflushed_stats.sus_blocklimit = 0;
1580 }
1581
1582 static void
1583 spa_destroy_aux_threads(spa_t *spa)
1584 {
1585 if (spa->spa_condense_zthr != NULL) {
1586 zthr_destroy(spa->spa_condense_zthr);
1587 spa->spa_condense_zthr = NULL;
1588 }
1589 if (spa->spa_checkpoint_discard_zthr != NULL) {
1590 zthr_destroy(spa->spa_checkpoint_discard_zthr);
1591 spa->spa_checkpoint_discard_zthr = NULL;
1592 }
1593 if (spa->spa_livelist_delete_zthr != NULL) {
1594 zthr_destroy(spa->spa_livelist_delete_zthr);
1595 spa->spa_livelist_delete_zthr = NULL;
1596 }
1597 if (spa->spa_livelist_condense_zthr != NULL) {
1598 zthr_destroy(spa->spa_livelist_condense_zthr);
1599 spa->spa_livelist_condense_zthr = NULL;
1600 }
1601 }
1602
1603 /*
1604 * Opposite of spa_load().
1605 */
1606 static void
1607 spa_unload(spa_t *spa)
1608 {
1609 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1610 ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED);
1611
1612 spa_import_progress_remove(spa_guid(spa));
1613 spa_load_note(spa, "UNLOADING");
1614
1615 spa_wake_waiters(spa);
1616
1617 /*
1618 * If we have set the spa_final_txg, we have already performed the
1619 * tasks below in spa_export_common(). We should not redo it here since
1620 * we delay the final TXGs beyond what spa_final_txg is set at.
1621 */
1622 if (spa->spa_final_txg == UINT64_MAX) {
1623 /*
1624 * If the log space map feature is enabled and the pool is
1625 * getting exported (but not destroyed), we want to spend some
1626 * time flushing as many metaslabs as we can in an attempt to
1627 * destroy log space maps and save import time.
1628 */
1629 if (spa_should_flush_logs_on_unload(spa))
1630 spa_unload_log_sm_flush_all(spa);
1631
1632 /*
1633 * Stop async tasks.
1634 */
1635 spa_async_suspend(spa);
1636
1637 if (spa->spa_root_vdev) {
1638 vdev_t *root_vdev = spa->spa_root_vdev;
1639 vdev_initialize_stop_all(root_vdev,
1640 VDEV_INITIALIZE_ACTIVE);
1641 vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE);
1642 vdev_autotrim_stop_all(spa);
1643 vdev_rebuild_stop_all(spa);
1644 }
1645 }
1646
1647 /*
1648 * Stop syncing.
1649 */
1650 if (spa->spa_sync_on) {
1651 txg_sync_stop(spa->spa_dsl_pool);
1652 spa->spa_sync_on = B_FALSE;
1653 }
1654
1655 /*
1656 * This ensures that there is no async metaslab prefetching
1657 * while we attempt to unload the spa.
1658 */
1659 if (spa->spa_root_vdev != NULL) {
1660 for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++) {
1661 vdev_t *vc = spa->spa_root_vdev->vdev_child[c];
1662 if (vc->vdev_mg != NULL)
1663 taskq_wait(vc->vdev_mg->mg_taskq);
1664 }
1665 }
1666
1667 if (spa->spa_mmp.mmp_thread)
1668 mmp_thread_stop(spa);
1669
1670 /*
1671 * Wait for any outstanding async I/O to complete.
1672 */
1673 if (spa->spa_async_zio_root != NULL) {
1674 for (int i = 0; i < max_ncpus; i++)
1675 (void) zio_wait(spa->spa_async_zio_root[i]);
1676 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1677 spa->spa_async_zio_root = NULL;
1678 }
1679
1680 if (spa->spa_vdev_removal != NULL) {
1681 spa_vdev_removal_destroy(spa->spa_vdev_removal);
1682 spa->spa_vdev_removal = NULL;
1683 }
1684
1685 spa_destroy_aux_threads(spa);
1686
1687 spa_condense_fini(spa);
1688
1689 bpobj_close(&spa->spa_deferred_bpobj);
1690
1691 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1692
1693 /*
1694 * Close all vdevs.
1695 */
1696 if (spa->spa_root_vdev)
1697 vdev_free(spa->spa_root_vdev);
1698 ASSERT(spa->spa_root_vdev == NULL);
1699
1700 /*
1701 * Close the dsl pool.
1702 */
1703 if (spa->spa_dsl_pool) {
1704 dsl_pool_close(spa->spa_dsl_pool);
1705 spa->spa_dsl_pool = NULL;
1706 spa->spa_meta_objset = NULL;
1707 }
1708
1709 ddt_unload(spa);
1710 spa_unload_log_sm_metadata(spa);
1711
1712 /*
1713 * Drop and purge level 2 cache
1714 */
1715 spa_l2cache_drop(spa);
1716
1717 for (int i = 0; i < spa->spa_spares.sav_count; i++)
1718 vdev_free(spa->spa_spares.sav_vdevs[i]);
1719 if (spa->spa_spares.sav_vdevs) {
1720 kmem_free(spa->spa_spares.sav_vdevs,
1721 spa->spa_spares.sav_count * sizeof (void *));
1722 spa->spa_spares.sav_vdevs = NULL;
1723 }
1724 if (spa->spa_spares.sav_config) {
1725 nvlist_free(spa->spa_spares.sav_config);
1726 spa->spa_spares.sav_config = NULL;
1727 }
1728 spa->spa_spares.sav_count = 0;
1729
1730 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1731 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1732 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1733 }
1734 if (spa->spa_l2cache.sav_vdevs) {
1735 kmem_free(spa->spa_l2cache.sav_vdevs,
1736 spa->spa_l2cache.sav_count * sizeof (void *));
1737 spa->spa_l2cache.sav_vdevs = NULL;
1738 }
1739 if (spa->spa_l2cache.sav_config) {
1740 nvlist_free(spa->spa_l2cache.sav_config);
1741 spa->spa_l2cache.sav_config = NULL;
1742 }
1743 spa->spa_l2cache.sav_count = 0;
1744
1745 spa->spa_async_suspended = 0;
1746
1747 spa->spa_indirect_vdevs_loaded = B_FALSE;
1748
1749 if (spa->spa_comment != NULL) {
1750 spa_strfree(spa->spa_comment);
1751 spa->spa_comment = NULL;
1752 }
1753 if (spa->spa_compatibility != NULL) {
1754 spa_strfree(spa->spa_compatibility);
1755 spa->spa_compatibility = NULL;
1756 }
1757
1758 spa_config_exit(spa, SCL_ALL, spa);
1759 }
1760
1761 /*
1762 * Load (or re-load) the current list of vdevs describing the active spares for
1763 * this pool. When this is called, we have some form of basic information in
1764 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
1765 * then re-generate a more complete list including status information.
1766 */
1767 void
1768 spa_load_spares(spa_t *spa)
1769 {
1770 nvlist_t **spares;
1771 uint_t nspares;
1772 int i;
1773 vdev_t *vd, *tvd;
1774
1775 #ifndef _KERNEL
1776 /*
1777 * zdb opens both the current state of the pool and the
1778 * checkpointed state (if present), with a different spa_t.
1779 *
1780 * As spare vdevs are shared among open pools, we skip loading
1781 * them when we load the checkpointed state of the pool.
1782 */
1783 if (!spa_writeable(spa))
1784 return;
1785 #endif
1786
1787 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1788
1789 /*
1790 * First, close and free any existing spare vdevs.
1791 */
1792 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1793 vd = spa->spa_spares.sav_vdevs[i];
1794
1795 /* Undo the call to spa_activate() below */
1796 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1797 B_FALSE)) != NULL && tvd->vdev_isspare)
1798 spa_spare_remove(tvd);
1799 vdev_close(vd);
1800 vdev_free(vd);
1801 }
1802
1803 if (spa->spa_spares.sav_vdevs)
1804 kmem_free(spa->spa_spares.sav_vdevs,
1805 spa->spa_spares.sav_count * sizeof (void *));
1806
1807 if (spa->spa_spares.sav_config == NULL)
1808 nspares = 0;
1809 else
1810 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1811 ZPOOL_CONFIG_SPARES, &spares, &nspares));
1812
1813 spa->spa_spares.sav_count = (int)nspares;
1814 spa->spa_spares.sav_vdevs = NULL;
1815
1816 if (nspares == 0)
1817 return;
1818
1819 /*
1820 * Construct the array of vdevs, opening them to get status in the
1821 * process. For each spare, there is potentially two different vdev_t
1822 * structures associated with it: one in the list of spares (used only
1823 * for basic validation purposes) and one in the active vdev
1824 * configuration (if it's spared in). During this phase we open and
1825 * validate each vdev on the spare list. If the vdev also exists in the
1826 * active configuration, then we also mark this vdev as an active spare.
1827 */
1828 spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *),
1829 KM_SLEEP);
1830 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1831 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1832 VDEV_ALLOC_SPARE) == 0);
1833 ASSERT(vd != NULL);
1834
1835 spa->spa_spares.sav_vdevs[i] = vd;
1836
1837 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1838 B_FALSE)) != NULL) {
1839 if (!tvd->vdev_isspare)
1840 spa_spare_add(tvd);
1841
1842 /*
1843 * We only mark the spare active if we were successfully
1844 * able to load the vdev. Otherwise, importing a pool
1845 * with a bad active spare would result in strange
1846 * behavior, because multiple pool would think the spare
1847 * is actively in use.
1848 *
1849 * There is a vulnerability here to an equally bizarre
1850 * circumstance, where a dead active spare is later
1851 * brought back to life (onlined or otherwise). Given
1852 * the rarity of this scenario, and the extra complexity
1853 * it adds, we ignore the possibility.
1854 */
1855 if (!vdev_is_dead(tvd))
1856 spa_spare_activate(tvd);
1857 }
1858
1859 vd->vdev_top = vd;
1860 vd->vdev_aux = &spa->spa_spares;
1861
1862 if (vdev_open(vd) != 0)
1863 continue;
1864
1865 if (vdev_validate_aux(vd) == 0)
1866 spa_spare_add(vd);
1867 }
1868
1869 /*
1870 * Recompute the stashed list of spares, with status information
1871 * this time.
1872 */
1873 fnvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES);
1874
1875 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1876 KM_SLEEP);
1877 for (i = 0; i < spa->spa_spares.sav_count; i++)
1878 spares[i] = vdev_config_generate(spa,
1879 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1880 fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
1881 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
1882 spa->spa_spares.sav_count);
1883 for (i = 0; i < spa->spa_spares.sav_count; i++)
1884 nvlist_free(spares[i]);
1885 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1886 }
1887
1888 /*
1889 * Load (or re-load) the current list of vdevs describing the active l2cache for
1890 * this pool. When this is called, we have some form of basic information in
1891 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
1892 * then re-generate a more complete list including status information.
1893 * Devices which are already active have their details maintained, and are
1894 * not re-opened.
1895 */
1896 void
1897 spa_load_l2cache(spa_t *spa)
1898 {
1899 nvlist_t **l2cache = NULL;
1900 uint_t nl2cache;
1901 int i, j, oldnvdevs;
1902 uint64_t guid;
1903 vdev_t *vd, **oldvdevs, **newvdevs;
1904 spa_aux_vdev_t *sav = &spa->spa_l2cache;
1905
1906 #ifndef _KERNEL
1907 /*
1908 * zdb opens both the current state of the pool and the
1909 * checkpointed state (if present), with a different spa_t.
1910 *
1911 * As L2 caches are part of the ARC which is shared among open
1912 * pools, we skip loading them when we load the checkpointed
1913 * state of the pool.
1914 */
1915 if (!spa_writeable(spa))
1916 return;
1917 #endif
1918
1919 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1920
1921 oldvdevs = sav->sav_vdevs;
1922 oldnvdevs = sav->sav_count;
1923 sav->sav_vdevs = NULL;
1924 sav->sav_count = 0;
1925
1926 if (sav->sav_config == NULL) {
1927 nl2cache = 0;
1928 newvdevs = NULL;
1929 goto out;
1930 }
1931
1932 VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config,
1933 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
1934 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1935
1936 /*
1937 * Process new nvlist of vdevs.
1938 */
1939 for (i = 0; i < nl2cache; i++) {
1940 guid = fnvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID);
1941
1942 newvdevs[i] = NULL;
1943 for (j = 0; j < oldnvdevs; j++) {
1944 vd = oldvdevs[j];
1945 if (vd != NULL && guid == vd->vdev_guid) {
1946 /*
1947 * Retain previous vdev for add/remove ops.
1948 */
1949 newvdevs[i] = vd;
1950 oldvdevs[j] = NULL;
1951 break;
1952 }
1953 }
1954
1955 if (newvdevs[i] == NULL) {
1956 /*
1957 * Create new vdev
1958 */
1959 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1960 VDEV_ALLOC_L2CACHE) == 0);
1961 ASSERT(vd != NULL);
1962 newvdevs[i] = vd;
1963
1964 /*
1965 * Commit this vdev as an l2cache device,
1966 * even if it fails to open.
1967 */
1968 spa_l2cache_add(vd);
1969
1970 vd->vdev_top = vd;
1971 vd->vdev_aux = sav;
1972
1973 spa_l2cache_activate(vd);
1974
1975 if (vdev_open(vd) != 0)
1976 continue;
1977
1978 (void) vdev_validate_aux(vd);
1979
1980 if (!vdev_is_dead(vd))
1981 l2arc_add_vdev(spa, vd);
1982
1983 /*
1984 * Upon cache device addition to a pool or pool
1985 * creation with a cache device or if the header
1986 * of the device is invalid we issue an async
1987 * TRIM command for the whole device which will
1988 * execute if l2arc_trim_ahead > 0.
1989 */
1990 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
1991 }
1992 }
1993
1994 sav->sav_vdevs = newvdevs;
1995 sav->sav_count = (int)nl2cache;
1996
1997 /*
1998 * Recompute the stashed list of l2cache devices, with status
1999 * information this time.
2000 */
2001 fnvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE);
2002
2003 if (sav->sav_count > 0)
2004 l2cache = kmem_alloc(sav->sav_count * sizeof (void *),
2005 KM_SLEEP);
2006 for (i = 0; i < sav->sav_count; i++)
2007 l2cache[i] = vdev_config_generate(spa,
2008 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
2009 fnvlist_add_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
2010 (const nvlist_t * const *)l2cache, sav->sav_count);
2011
2012 out:
2013 /*
2014 * Purge vdevs that were dropped
2015 */
2016 for (i = 0; i < oldnvdevs; i++) {
2017 uint64_t pool;
2018
2019 vd = oldvdevs[i];
2020 if (vd != NULL) {
2021 ASSERT(vd->vdev_isl2cache);
2022
2023 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
2024 pool != 0ULL && l2arc_vdev_present(vd))
2025 l2arc_remove_vdev(vd);
2026 vdev_clear_stats(vd);
2027 vdev_free(vd);
2028 }
2029 }
2030
2031 if (oldvdevs)
2032 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
2033
2034 for (i = 0; i < sav->sav_count; i++)
2035 nvlist_free(l2cache[i]);
2036 if (sav->sav_count)
2037 kmem_free(l2cache, sav->sav_count * sizeof (void *));
2038 }
2039
2040 static int
2041 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
2042 {
2043 dmu_buf_t *db;
2044 char *packed = NULL;
2045 size_t nvsize = 0;
2046 int error;
2047 *value = NULL;
2048
2049 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
2050 if (error)
2051 return (error);
2052
2053 nvsize = *(uint64_t *)db->db_data;
2054 dmu_buf_rele(db, FTAG);
2055
2056 packed = vmem_alloc(nvsize, KM_SLEEP);
2057 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
2058 DMU_READ_PREFETCH);
2059 if (error == 0)
2060 error = nvlist_unpack(packed, nvsize, value, 0);
2061 vmem_free(packed, nvsize);
2062
2063 return (error);
2064 }
2065
2066 /*
2067 * Concrete top-level vdevs that are not missing and are not logs. At every
2068 * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
2069 */
2070 static uint64_t
2071 spa_healthy_core_tvds(spa_t *spa)
2072 {
2073 vdev_t *rvd = spa->spa_root_vdev;
2074 uint64_t tvds = 0;
2075
2076 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
2077 vdev_t *vd = rvd->vdev_child[i];
2078 if (vd->vdev_islog)
2079 continue;
2080 if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
2081 tvds++;
2082 }
2083
2084 return (tvds);
2085 }
2086
2087 /*
2088 * Checks to see if the given vdev could not be opened, in which case we post a
2089 * sysevent to notify the autoreplace code that the device has been removed.
2090 */
2091 static void
2092 spa_check_removed(vdev_t *vd)
2093 {
2094 for (uint64_t c = 0; c < vd->vdev_children; c++)
2095 spa_check_removed(vd->vdev_child[c]);
2096
2097 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
2098 vdev_is_concrete(vd)) {
2099 zfs_post_autoreplace(vd->vdev_spa, vd);
2100 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
2101 }
2102 }
2103
2104 static int
2105 spa_check_for_missing_logs(spa_t *spa)
2106 {
2107 vdev_t *rvd = spa->spa_root_vdev;
2108
2109 /*
2110 * If we're doing a normal import, then build up any additional
2111 * diagnostic information about missing log devices.
2112 * We'll pass this up to the user for further processing.
2113 */
2114 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
2115 nvlist_t **child, *nv;
2116 uint64_t idx = 0;
2117
2118 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
2119 KM_SLEEP);
2120 nv = fnvlist_alloc();
2121
2122 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2123 vdev_t *tvd = rvd->vdev_child[c];
2124
2125 /*
2126 * We consider a device as missing only if it failed
2127 * to open (i.e. offline or faulted is not considered
2128 * as missing).
2129 */
2130 if (tvd->vdev_islog &&
2131 tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2132 child[idx++] = vdev_config_generate(spa, tvd,
2133 B_FALSE, VDEV_CONFIG_MISSING);
2134 }
2135 }
2136
2137 if (idx > 0) {
2138 fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
2139 (const nvlist_t * const *)child, idx);
2140 fnvlist_add_nvlist(spa->spa_load_info,
2141 ZPOOL_CONFIG_MISSING_DEVICES, nv);
2142
2143 for (uint64_t i = 0; i < idx; i++)
2144 nvlist_free(child[i]);
2145 }
2146 nvlist_free(nv);
2147 kmem_free(child, rvd->vdev_children * sizeof (char **));
2148
2149 if (idx > 0) {
2150 spa_load_failed(spa, "some log devices are missing");
2151 vdev_dbgmsg_print_tree(rvd, 2);
2152 return (SET_ERROR(ENXIO));
2153 }
2154 } else {
2155 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2156 vdev_t *tvd = rvd->vdev_child[c];
2157
2158 if (tvd->vdev_islog &&
2159 tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2160 spa_set_log_state(spa, SPA_LOG_CLEAR);
2161 spa_load_note(spa, "some log devices are "
2162 "missing, ZIL is dropped.");
2163 vdev_dbgmsg_print_tree(rvd, 2);
2164 break;
2165 }
2166 }
2167 }
2168
2169 return (0);
2170 }
2171
2172 /*
2173 * Check for missing log devices
2174 */
2175 static boolean_t
2176 spa_check_logs(spa_t *spa)
2177 {
2178 boolean_t rv = B_FALSE;
2179 dsl_pool_t *dp = spa_get_dsl(spa);
2180
2181 switch (spa->spa_log_state) {
2182 default:
2183 break;
2184 case SPA_LOG_MISSING:
2185 /* need to recheck in case slog has been restored */
2186 case SPA_LOG_UNKNOWN:
2187 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2188 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
2189 if (rv)
2190 spa_set_log_state(spa, SPA_LOG_MISSING);
2191 break;
2192 }
2193 return (rv);
2194 }
2195
2196 /*
2197 * Passivate any log vdevs (note, does not apply to embedded log metaslabs).
2198 */
2199 static boolean_t
2200 spa_passivate_log(spa_t *spa)
2201 {
2202 vdev_t *rvd = spa->spa_root_vdev;
2203 boolean_t slog_found = B_FALSE;
2204
2205 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2206
2207 for (int c = 0; c < rvd->vdev_children; c++) {
2208 vdev_t *tvd = rvd->vdev_child[c];
2209
2210 if (tvd->vdev_islog) {
2211 ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2212 metaslab_group_passivate(tvd->vdev_mg);
2213 slog_found = B_TRUE;
2214 }
2215 }
2216
2217 return (slog_found);
2218 }
2219
2220 /*
2221 * Activate any log vdevs (note, does not apply to embedded log metaslabs).
2222 */
2223 static void
2224 spa_activate_log(spa_t *spa)
2225 {
2226 vdev_t *rvd = spa->spa_root_vdev;
2227
2228 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2229
2230 for (int c = 0; c < rvd->vdev_children; c++) {
2231 vdev_t *tvd = rvd->vdev_child[c];
2232
2233 if (tvd->vdev_islog) {
2234 ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2235 metaslab_group_activate(tvd->vdev_mg);
2236 }
2237 }
2238 }
2239
2240 int
2241 spa_reset_logs(spa_t *spa)
2242 {
2243 int error;
2244
2245 error = dmu_objset_find(spa_name(spa), zil_reset,
2246 NULL, DS_FIND_CHILDREN);
2247 if (error == 0) {
2248 /*
2249 * We successfully offlined the log device, sync out the
2250 * current txg so that the "stubby" block can be removed
2251 * by zil_sync().
2252 */
2253 txg_wait_synced(spa->spa_dsl_pool, 0);
2254 }
2255 return (error);
2256 }
2257
2258 static void
2259 spa_aux_check_removed(spa_aux_vdev_t *sav)
2260 {
2261 for (int i = 0; i < sav->sav_count; i++)
2262 spa_check_removed(sav->sav_vdevs[i]);
2263 }
2264
2265 void
2266 spa_claim_notify(zio_t *zio)
2267 {
2268 spa_t *spa = zio->io_spa;
2269
2270 if (zio->io_error)
2271 return;
2272
2273 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
2274 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
2275 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
2276 mutex_exit(&spa->spa_props_lock);
2277 }
2278
2279 typedef struct spa_load_error {
2280 boolean_t sle_verify_data;
2281 uint64_t sle_meta_count;
2282 uint64_t sle_data_count;
2283 } spa_load_error_t;
2284
2285 static void
2286 spa_load_verify_done(zio_t *zio)
2287 {
2288 blkptr_t *bp = zio->io_bp;
2289 spa_load_error_t *sle = zio->io_private;
2290 dmu_object_type_t type = BP_GET_TYPE(bp);
2291 int error = zio->io_error;
2292 spa_t *spa = zio->io_spa;
2293
2294 abd_free(zio->io_abd);
2295 if (error) {
2296 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
2297 type != DMU_OT_INTENT_LOG)
2298 atomic_inc_64(&sle->sle_meta_count);
2299 else
2300 atomic_inc_64(&sle->sle_data_count);
2301 }
2302
2303 mutex_enter(&spa->spa_scrub_lock);
2304 spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
2305 cv_broadcast(&spa->spa_scrub_io_cv);
2306 mutex_exit(&spa->spa_scrub_lock);
2307 }
2308
2309 /*
2310 * Maximum number of inflight bytes is the log2 fraction of the arc size.
2311 * By default, we set it to 1/16th of the arc.
2312 */
2313 static uint_t spa_load_verify_shift = 4;
2314 static int spa_load_verify_metadata = B_TRUE;
2315 static int spa_load_verify_data = B_TRUE;
2316
2317 static int
2318 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2319 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2320 {
2321 zio_t *rio = arg;
2322 spa_load_error_t *sle = rio->io_private;
2323
2324 (void) zilog, (void) dnp;
2325
2326 /*
2327 * Note: normally this routine will not be called if
2328 * spa_load_verify_metadata is not set. However, it may be useful
2329 * to manually set the flag after the traversal has begun.
2330 */
2331 if (!spa_load_verify_metadata)
2332 return (0);
2333
2334 /*
2335 * Sanity check the block pointer in order to detect obvious damage
2336 * before using the contents in subsequent checks or in zio_read().
2337 * When damaged consider it to be a metadata error since we cannot
2338 * trust the BP_GET_TYPE and BP_GET_LEVEL values.
2339 */
2340 if (!zfs_blkptr_verify(spa, bp, B_FALSE, BLK_VERIFY_LOG)) {
2341 atomic_inc_64(&sle->sle_meta_count);
2342 return (0);
2343 }
2344
2345 if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) ||
2346 BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
2347 return (0);
2348
2349 if (!BP_IS_METADATA(bp) &&
2350 (!spa_load_verify_data || !sle->sle_verify_data))
2351 return (0);
2352
2353 uint64_t maxinflight_bytes =
2354 arc_target_bytes() >> spa_load_verify_shift;
2355 size_t size = BP_GET_PSIZE(bp);
2356
2357 mutex_enter(&spa->spa_scrub_lock);
2358 while (spa->spa_load_verify_bytes >= maxinflight_bytes)
2359 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2360 spa->spa_load_verify_bytes += size;
2361 mutex_exit(&spa->spa_scrub_lock);
2362
2363 zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2364 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2365 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2366 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2367 return (0);
2368 }
2369
2370 static int
2371 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2372 {
2373 (void) dp, (void) arg;
2374
2375 if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2376 return (SET_ERROR(ENAMETOOLONG));
2377
2378 return (0);
2379 }
2380
2381 static int
2382 spa_load_verify(spa_t *spa)
2383 {
2384 zio_t *rio;
2385 spa_load_error_t sle = { 0 };
2386 zpool_load_policy_t policy;
2387 boolean_t verify_ok = B_FALSE;
2388 int error = 0;
2389
2390 zpool_get_load_policy(spa->spa_config, &policy);
2391
2392 if (policy.zlp_rewind & ZPOOL_NEVER_REWIND ||
2393 policy.zlp_maxmeta == UINT64_MAX)
2394 return (0);
2395
2396 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2397 error = dmu_objset_find_dp(spa->spa_dsl_pool,
2398 spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2399 DS_FIND_CHILDREN);
2400 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2401 if (error != 0)
2402 return (error);
2403
2404 /*
2405 * Verify data only if we are rewinding or error limit was set.
2406 * Otherwise nothing except dbgmsg care about it to waste time.
2407 */
2408 sle.sle_verify_data = (policy.zlp_rewind & ZPOOL_REWIND_MASK) ||
2409 (policy.zlp_maxdata < UINT64_MAX);
2410
2411 rio = zio_root(spa, NULL, &sle,
2412 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2413
2414 if (spa_load_verify_metadata) {
2415 if (spa->spa_extreme_rewind) {
2416 spa_load_note(spa, "performing a complete scan of the "
2417 "pool since extreme rewind is on. This may take "
2418 "a very long time.\n (spa_load_verify_data=%u, "
2419 "spa_load_verify_metadata=%u)",
2420 spa_load_verify_data, spa_load_verify_metadata);
2421 }
2422
2423 error = traverse_pool(spa, spa->spa_verify_min_txg,
2424 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
2425 TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio);
2426 }
2427
2428 (void) zio_wait(rio);
2429 ASSERT0(spa->spa_load_verify_bytes);
2430
2431 spa->spa_load_meta_errors = sle.sle_meta_count;
2432 spa->spa_load_data_errors = sle.sle_data_count;
2433
2434 if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2435 spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2436 "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2437 (u_longlong_t)sle.sle_data_count);
2438 }
2439
2440 if (spa_load_verify_dryrun ||
2441 (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
2442 sle.sle_data_count <= policy.zlp_maxdata)) {
2443 int64_t loss = 0;
2444
2445 verify_ok = B_TRUE;
2446 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2447 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2448
2449 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2450 fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_LOAD_TIME,
2451 spa->spa_load_txg_ts);
2452 fnvlist_add_int64(spa->spa_load_info, ZPOOL_CONFIG_REWIND_TIME,
2453 loss);
2454 fnvlist_add_uint64(spa->spa_load_info,
2455 ZPOOL_CONFIG_LOAD_META_ERRORS, sle.sle_meta_count);
2456 fnvlist_add_uint64(spa->spa_load_info,
2457 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count);
2458 } else {
2459 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2460 }
2461
2462 if (spa_load_verify_dryrun)
2463 return (0);
2464
2465 if (error) {
2466 if (error != ENXIO && error != EIO)
2467 error = SET_ERROR(EIO);
2468 return (error);
2469 }
2470
2471 return (verify_ok ? 0 : EIO);
2472 }
2473
2474 /*
2475 * Find a value in the pool props object.
2476 */
2477 static void
2478 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2479 {
2480 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2481 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2482 }
2483
2484 /*
2485 * Find a value in the pool directory object.
2486 */
2487 static int
2488 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2489 {
2490 int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2491 name, sizeof (uint64_t), 1, val);
2492
2493 if (error != 0 && (error != ENOENT || log_enoent)) {
2494 spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2495 "[error=%d]", name, error);
2496 }
2497
2498 return (error);
2499 }
2500
2501 static int
2502 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2503 {
2504 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2505 return (SET_ERROR(err));
2506 }
2507
2508 boolean_t
2509 spa_livelist_delete_check(spa_t *spa)
2510 {
2511 return (spa->spa_livelists_to_delete != 0);
2512 }
2513
2514 static boolean_t
2515 spa_livelist_delete_cb_check(void *arg, zthr_t *z)
2516 {
2517 (void) z;
2518 spa_t *spa = arg;
2519 return (spa_livelist_delete_check(spa));
2520 }
2521
2522 static int
2523 delete_blkptr_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
2524 {
2525 spa_t *spa = arg;
2526 zio_free(spa, tx->tx_txg, bp);
2527 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
2528 -bp_get_dsize_sync(spa, bp),
2529 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
2530 return (0);
2531 }
2532
2533 static int
2534 dsl_get_next_livelist_obj(objset_t *os, uint64_t zap_obj, uint64_t *llp)
2535 {
2536 int err;
2537 zap_cursor_t zc;
2538 zap_attribute_t za;
2539 zap_cursor_init(&zc, os, zap_obj);
2540 err = zap_cursor_retrieve(&zc, &za);
2541 zap_cursor_fini(&zc);
2542 if (err == 0)
2543 *llp = za.za_first_integer;
2544 return (err);
2545 }
2546
2547 /*
2548 * Components of livelist deletion that must be performed in syncing
2549 * context: freeing block pointers and updating the pool-wide data
2550 * structures to indicate how much work is left to do
2551 */
2552 typedef struct sublist_delete_arg {
2553 spa_t *spa;
2554 dsl_deadlist_t *ll;
2555 uint64_t key;
2556 bplist_t *to_free;
2557 } sublist_delete_arg_t;
2558
2559 static void
2560 sublist_delete_sync(void *arg, dmu_tx_t *tx)
2561 {
2562 sublist_delete_arg_t *sda = arg;
2563 spa_t *spa = sda->spa;
2564 dsl_deadlist_t *ll = sda->ll;
2565 uint64_t key = sda->key;
2566 bplist_t *to_free = sda->to_free;
2567
2568 bplist_iterate(to_free, delete_blkptr_cb, spa, tx);
2569 dsl_deadlist_remove_entry(ll, key, tx);
2570 }
2571
2572 typedef struct livelist_delete_arg {
2573 spa_t *spa;
2574 uint64_t ll_obj;
2575 uint64_t zap_obj;
2576 } livelist_delete_arg_t;
2577
2578 static void
2579 livelist_delete_sync(void *arg, dmu_tx_t *tx)
2580 {
2581 livelist_delete_arg_t *lda = arg;
2582 spa_t *spa = lda->spa;
2583 uint64_t ll_obj = lda->ll_obj;
2584 uint64_t zap_obj = lda->zap_obj;
2585 objset_t *mos = spa->spa_meta_objset;
2586 uint64_t count;
2587
2588 /* free the livelist and decrement the feature count */
2589 VERIFY0(zap_remove_int(mos, zap_obj, ll_obj, tx));
2590 dsl_deadlist_free(mos, ll_obj, tx);
2591 spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx);
2592 VERIFY0(zap_count(mos, zap_obj, &count));
2593 if (count == 0) {
2594 /* no more livelists to delete */
2595 VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
2596 DMU_POOL_DELETED_CLONES, tx));
2597 VERIFY0(zap_destroy(mos, zap_obj, tx));
2598 spa->spa_livelists_to_delete = 0;
2599 spa_notify_waiters(spa);
2600 }
2601 }
2602
2603 /*
2604 * Load in the value for the livelist to be removed and open it. Then,
2605 * load its first sublist and determine which block pointers should actually
2606 * be freed. Then, call a synctask which performs the actual frees and updates
2607 * the pool-wide livelist data.
2608 */
2609 static void
2610 spa_livelist_delete_cb(void *arg, zthr_t *z)
2611 {
2612 spa_t *spa = arg;
2613 uint64_t ll_obj = 0, count;
2614 objset_t *mos = spa->spa_meta_objset;
2615 uint64_t zap_obj = spa->spa_livelists_to_delete;
2616 /*
2617 * Determine the next livelist to delete. This function should only
2618 * be called if there is at least one deleted clone.
2619 */
2620 VERIFY0(dsl_get_next_livelist_obj(mos, zap_obj, &ll_obj));
2621 VERIFY0(zap_count(mos, ll_obj, &count));
2622 if (count > 0) {
2623 dsl_deadlist_t *ll;
2624 dsl_deadlist_entry_t *dle;
2625 bplist_t to_free;
2626 ll = kmem_zalloc(sizeof (dsl_deadlist_t), KM_SLEEP);
2627 dsl_deadlist_open(ll, mos, ll_obj);
2628 dle = dsl_deadlist_first(ll);
2629 ASSERT3P(dle, !=, NULL);
2630 bplist_create(&to_free);
2631 int err = dsl_process_sub_livelist(&dle->dle_bpobj, &to_free,
2632 z, NULL);
2633 if (err == 0) {
2634 sublist_delete_arg_t sync_arg = {
2635 .spa = spa,
2636 .ll = ll,
2637 .key = dle->dle_mintxg,
2638 .to_free = &to_free
2639 };
2640 zfs_dbgmsg("deleting sublist (id %llu) from"
2641 " livelist %llu, %lld remaining",
2642 (u_longlong_t)dle->dle_bpobj.bpo_object,
2643 (u_longlong_t)ll_obj, (longlong_t)count - 1);
2644 VERIFY0(dsl_sync_task(spa_name(spa), NULL,
2645 sublist_delete_sync, &sync_arg, 0,
2646 ZFS_SPACE_CHECK_DESTROY));
2647 } else {
2648 VERIFY3U(err, ==, EINTR);
2649 }
2650 bplist_clear(&to_free);
2651 bplist_destroy(&to_free);
2652 dsl_deadlist_close(ll);
2653 kmem_free(ll, sizeof (dsl_deadlist_t));
2654 } else {
2655 livelist_delete_arg_t sync_arg = {
2656 .spa = spa,
2657 .ll_obj = ll_obj,
2658 .zap_obj = zap_obj
2659 };
2660 zfs_dbgmsg("deletion of livelist %llu completed",
2661 (u_longlong_t)ll_obj);
2662 VERIFY0(dsl_sync_task(spa_name(spa), NULL, livelist_delete_sync,
2663 &sync_arg, 0, ZFS_SPACE_CHECK_DESTROY));
2664 }
2665 }
2666
2667 static void
2668 spa_start_livelist_destroy_thread(spa_t *spa)
2669 {
2670 ASSERT3P(spa->spa_livelist_delete_zthr, ==, NULL);
2671 spa->spa_livelist_delete_zthr =
2672 zthr_create("z_livelist_destroy",
2673 spa_livelist_delete_cb_check, spa_livelist_delete_cb, spa,
2674 minclsyspri);
2675 }
2676
2677 typedef struct livelist_new_arg {
2678 bplist_t *allocs;
2679 bplist_t *frees;
2680 } livelist_new_arg_t;
2681
2682 static int
2683 livelist_track_new_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
2684 dmu_tx_t *tx)
2685 {
2686 ASSERT(tx == NULL);
2687 livelist_new_arg_t *lna = arg;
2688 if (bp_freed) {
2689 bplist_append(lna->frees, bp);
2690 } else {
2691 bplist_append(lna->allocs, bp);
2692 zfs_livelist_condense_new_alloc++;
2693 }
2694 return (0);
2695 }
2696
2697 typedef struct livelist_condense_arg {
2698 spa_t *spa;
2699 bplist_t to_keep;
2700 uint64_t first_size;
2701 uint64_t next_size;
2702 } livelist_condense_arg_t;
2703
2704 static void
2705 spa_livelist_condense_sync(void *arg, dmu_tx_t *tx)
2706 {
2707 livelist_condense_arg_t *lca = arg;
2708 spa_t *spa = lca->spa;
2709 bplist_t new_frees;
2710 dsl_dataset_t *ds = spa->spa_to_condense.ds;
2711
2712 /* Have we been cancelled? */
2713 if (spa->spa_to_condense.cancelled) {
2714 zfs_livelist_condense_sync_cancel++;
2715 goto out;
2716 }
2717
2718 dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
2719 dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
2720 dsl_deadlist_t *ll = &ds->ds_dir->dd_livelist;
2721
2722 /*
2723 * It's possible that the livelist was changed while the zthr was
2724 * running. Therefore, we need to check for new blkptrs in the two
2725 * entries being condensed and continue to track them in the livelist.
2726 * Because of the way we handle remapped blkptrs (see dbuf_remap_impl),
2727 * it's possible that the newly added blkptrs are FREEs or ALLOCs so
2728 * we need to sort them into two different bplists.
2729 */
2730 uint64_t first_obj = first->dle_bpobj.bpo_object;
2731 uint64_t next_obj = next->dle_bpobj.bpo_object;
2732 uint64_t cur_first_size = first->dle_bpobj.bpo_phys->bpo_num_blkptrs;
2733 uint64_t cur_next_size = next->dle_bpobj.bpo_phys->bpo_num_blkptrs;
2734
2735 bplist_create(&new_frees);
2736 livelist_new_arg_t new_bps = {
2737 .allocs = &lca->to_keep,
2738 .frees = &new_frees,
2739 };
2740
2741 if (cur_first_size > lca->first_size) {
2742 VERIFY0(livelist_bpobj_iterate_from_nofree(&first->dle_bpobj,
2743 livelist_track_new_cb, &new_bps, lca->first_size));
2744 }
2745 if (cur_next_size > lca->next_size) {
2746 VERIFY0(livelist_bpobj_iterate_from_nofree(&next->dle_bpobj,
2747 livelist_track_new_cb, &new_bps, lca->next_size));
2748 }
2749
2750 dsl_deadlist_clear_entry(first, ll, tx);
2751 ASSERT(bpobj_is_empty(&first->dle_bpobj));
2752 dsl_deadlist_remove_entry(ll, next->dle_mintxg, tx);
2753
2754 bplist_iterate(&lca->to_keep, dsl_deadlist_insert_alloc_cb, ll, tx);
2755 bplist_iterate(&new_frees, dsl_deadlist_insert_free_cb, ll, tx);
2756 bplist_destroy(&new_frees);
2757
2758 char dsname[ZFS_MAX_DATASET_NAME_LEN];
2759 dsl_dataset_name(ds, dsname);
2760 zfs_dbgmsg("txg %llu condensing livelist of %s (id %llu), bpobj %llu "
2761 "(%llu blkptrs) and bpobj %llu (%llu blkptrs) -> bpobj %llu "
2762 "(%llu blkptrs)", (u_longlong_t)tx->tx_txg, dsname,
2763 (u_longlong_t)ds->ds_object, (u_longlong_t)first_obj,
2764 (u_longlong_t)cur_first_size, (u_longlong_t)next_obj,
2765 (u_longlong_t)cur_next_size,
2766 (u_longlong_t)first->dle_bpobj.bpo_object,
2767 (u_longlong_t)first->dle_bpobj.bpo_phys->bpo_num_blkptrs);
2768 out:
2769 dmu_buf_rele(ds->ds_dbuf, spa);
2770 spa->spa_to_condense.ds = NULL;
2771 bplist_clear(&lca->to_keep);
2772 bplist_destroy(&lca->to_keep);
2773 kmem_free(lca, sizeof (livelist_condense_arg_t));
2774 spa->spa_to_condense.syncing = B_FALSE;
2775 }
2776
2777 static void
2778 spa_livelist_condense_cb(void *arg, zthr_t *t)
2779 {
2780 while (zfs_livelist_condense_zthr_pause &&
2781 !(zthr_has_waiters(t) || zthr_iscancelled(t)))
2782 delay(1);
2783
2784 spa_t *spa = arg;
2785 dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
2786 dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
2787 uint64_t first_size, next_size;
2788
2789 livelist_condense_arg_t *lca =
2790 kmem_alloc(sizeof (livelist_condense_arg_t), KM_SLEEP);
2791 bplist_create(&lca->to_keep);
2792
2793 /*
2794 * Process the livelists (matching FREEs and ALLOCs) in open context
2795 * so we have minimal work in syncing context to condense.
2796 *
2797 * We save bpobj sizes (first_size and next_size) to use later in
2798 * syncing context to determine if entries were added to these sublists
2799 * while in open context. This is possible because the clone is still
2800 * active and open for normal writes and we want to make sure the new,
2801 * unprocessed blockpointers are inserted into the livelist normally.
2802 *
2803 * Note that dsl_process_sub_livelist() both stores the size number of
2804 * blockpointers and iterates over them while the bpobj's lock held, so
2805 * the sizes returned to us are consistent which what was actually
2806 * processed.
2807 */
2808 int err = dsl_process_sub_livelist(&first->dle_bpobj, &lca->to_keep, t,
2809 &first_size);
2810 if (err == 0)
2811 err = dsl_process_sub_livelist(&next->dle_bpobj, &lca->to_keep,
2812 t, &next_size);
2813
2814 if (err == 0) {
2815 while (zfs_livelist_condense_sync_pause &&
2816 !(zthr_has_waiters(t) || zthr_iscancelled(t)))
2817 delay(1);
2818
2819 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
2820 dmu_tx_mark_netfree(tx);
2821 dmu_tx_hold_space(tx, 1);
2822 err = dmu_tx_assign(tx, TXG_NOWAIT | TXG_NOTHROTTLE);
2823 if (err == 0) {
2824 /*
2825 * Prevent the condense zthr restarting before
2826 * the synctask completes.
2827 */
2828 spa->spa_to_condense.syncing = B_TRUE;
2829 lca->spa = spa;
2830 lca->first_size = first_size;
2831 lca->next_size = next_size;
2832 dsl_sync_task_nowait(spa_get_dsl(spa),
2833 spa_livelist_condense_sync, lca, tx);
2834 dmu_tx_commit(tx);
2835 return;
2836 }
2837 }
2838 /*
2839 * Condensing can not continue: either it was externally stopped or
2840 * we were unable to assign to a tx because the pool has run out of
2841 * space. In the second case, we'll just end up trying to condense
2842 * again in a later txg.
2843 */
2844 ASSERT(err != 0);
2845 bplist_clear(&lca->to_keep);
2846 bplist_destroy(&lca->to_keep);
2847 kmem_free(lca, sizeof (livelist_condense_arg_t));
2848 dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, spa);
2849 spa->spa_to_condense.ds = NULL;
2850 if (err == EINTR)
2851 zfs_livelist_condense_zthr_cancel++;
2852 }
2853
2854 /*
2855 * Check that there is something to condense but that a condense is not
2856 * already in progress and that condensing has not been cancelled.
2857 */
2858 static boolean_t
2859 spa_livelist_condense_cb_check(void *arg, zthr_t *z)
2860 {
2861 (void) z;
2862 spa_t *spa = arg;
2863 if ((spa->spa_to_condense.ds != NULL) &&
2864 (spa->spa_to_condense.syncing == B_FALSE) &&
2865 (spa->spa_to_condense.cancelled == B_FALSE)) {
2866 return (B_TRUE);
2867 }
2868 return (B_FALSE);
2869 }
2870
2871 static void
2872 spa_start_livelist_condensing_thread(spa_t *spa)
2873 {
2874 spa->spa_to_condense.ds = NULL;
2875 spa->spa_to_condense.first = NULL;
2876 spa->spa_to_condense.next = NULL;
2877 spa->spa_to_condense.syncing = B_FALSE;
2878 spa->spa_to_condense.cancelled = B_FALSE;
2879
2880 ASSERT3P(spa->spa_livelist_condense_zthr, ==, NULL);
2881 spa->spa_livelist_condense_zthr =
2882 zthr_create("z_livelist_condense",
2883 spa_livelist_condense_cb_check,
2884 spa_livelist_condense_cb, spa, minclsyspri);
2885 }
2886
2887 static void
2888 spa_spawn_aux_threads(spa_t *spa)
2889 {
2890 ASSERT(spa_writeable(spa));
2891
2892 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2893
2894 spa_start_indirect_condensing_thread(spa);
2895 spa_start_livelist_destroy_thread(spa);
2896 spa_start_livelist_condensing_thread(spa);
2897
2898 ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
2899 spa->spa_checkpoint_discard_zthr =
2900 zthr_create("z_checkpoint_discard",
2901 spa_checkpoint_discard_thread_check,
2902 spa_checkpoint_discard_thread, spa, minclsyspri);
2903 }
2904
2905 /*
2906 * Fix up config after a partly-completed split. This is done with the
2907 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
2908 * pool have that entry in their config, but only the splitting one contains
2909 * a list of all the guids of the vdevs that are being split off.
2910 *
2911 * This function determines what to do with that list: either rejoin
2912 * all the disks to the pool, or complete the splitting process. To attempt
2913 * the rejoin, each disk that is offlined is marked online again, and
2914 * we do a reopen() call. If the vdev label for every disk that was
2915 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2916 * then we call vdev_split() on each disk, and complete the split.
2917 *
2918 * Otherwise we leave the config alone, with all the vdevs in place in
2919 * the original pool.
2920 */
2921 static void
2922 spa_try_repair(spa_t *spa, nvlist_t *config)
2923 {
2924 uint_t extracted;
2925 uint64_t *glist;
2926 uint_t i, gcount;
2927 nvlist_t *nvl;
2928 vdev_t **vd;
2929 boolean_t attempt_reopen;
2930
2931 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2932 return;
2933
2934 /* check that the config is complete */
2935 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2936 &glist, &gcount) != 0)
2937 return;
2938
2939 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2940
2941 /* attempt to online all the vdevs & validate */
2942 attempt_reopen = B_TRUE;
2943 for (i = 0; i < gcount; i++) {
2944 if (glist[i] == 0) /* vdev is hole */
2945 continue;
2946
2947 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2948 if (vd[i] == NULL) {
2949 /*
2950 * Don't bother attempting to reopen the disks;
2951 * just do the split.
2952 */
2953 attempt_reopen = B_FALSE;
2954 } else {
2955 /* attempt to re-online it */
2956 vd[i]->vdev_offline = B_FALSE;
2957 }
2958 }
2959
2960 if (attempt_reopen) {
2961 vdev_reopen(spa->spa_root_vdev);
2962
2963 /* check each device to see what state it's in */
2964 for (extracted = 0, i = 0; i < gcount; i++) {
2965 if (vd[i] != NULL &&
2966 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2967 break;
2968 ++extracted;
2969 }
2970 }
2971
2972 /*
2973 * If every disk has been moved to the new pool, or if we never
2974 * even attempted to look at them, then we split them off for
2975 * good.
2976 */
2977 if (!attempt_reopen || gcount == extracted) {
2978 for (i = 0; i < gcount; i++)
2979 if (vd[i] != NULL)
2980 vdev_split(vd[i]);
2981 vdev_reopen(spa->spa_root_vdev);
2982 }
2983
2984 kmem_free(vd, gcount * sizeof (vdev_t *));
2985 }
2986
2987 static int
2988 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
2989 {
2990 const char *ereport = FM_EREPORT_ZFS_POOL;
2991 int error;
2992
2993 spa->spa_load_state = state;
2994 (void) spa_import_progress_set_state(spa_guid(spa),
2995 spa_load_state(spa));
2996
2997 gethrestime(&spa->spa_loaded_ts);
2998 error = spa_load_impl(spa, type, &ereport);
2999
3000 /*
3001 * Don't count references from objsets that are already closed
3002 * and are making their way through the eviction process.
3003 */
3004 spa_evicting_os_wait(spa);
3005 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
3006 if (error) {
3007 if (error != EEXIST) {
3008 spa->spa_loaded_ts.tv_sec = 0;
3009 spa->spa_loaded_ts.tv_nsec = 0;
3010 }
3011 if (error != EBADF) {
3012 (void) zfs_ereport_post(ereport, spa,
3013 NULL, NULL, NULL, 0);
3014 }
3015 }
3016 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
3017 spa->spa_ena = 0;
3018
3019 (void) spa_import_progress_set_state(spa_guid(spa),
3020 spa_load_state(spa));
3021
3022 return (error);
3023 }
3024
3025 #ifdef ZFS_DEBUG
3026 /*
3027 * Count the number of per-vdev ZAPs associated with all of the vdevs in the
3028 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
3029 * spa's per-vdev ZAP list.
3030 */
3031 static uint64_t
3032 vdev_count_verify_zaps(vdev_t *vd)
3033 {
3034 spa_t *spa = vd->vdev_spa;
3035 uint64_t total = 0;
3036
3037 if (vd->vdev_top_zap != 0) {
3038 total++;
3039 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3040 spa->spa_all_vdev_zaps, vd->vdev_top_zap));
3041 }
3042 if (vd->vdev_leaf_zap != 0) {
3043 total++;
3044 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3045 spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
3046 }
3047
3048 for (uint64_t i = 0; i < vd->vdev_children; i++) {
3049 total += vdev_count_verify_zaps(vd->vdev_child[i]);
3050 }
3051
3052 return (total);
3053 }
3054 #else
3055 #define vdev_count_verify_zaps(vd) ((void) sizeof (vd), 0)
3056 #endif
3057
3058 /*
3059 * Determine whether the activity check is required.
3060 */
3061 static boolean_t
3062 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
3063 nvlist_t *config)
3064 {
3065 uint64_t state = 0;
3066 uint64_t hostid = 0;
3067 uint64_t tryconfig_txg = 0;
3068 uint64_t tryconfig_timestamp = 0;
3069 uint16_t tryconfig_mmp_seq = 0;
3070 nvlist_t *nvinfo;
3071
3072 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3073 nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
3074 (void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
3075 &tryconfig_txg);
3076 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3077 &tryconfig_timestamp);
3078 (void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ,
3079 &tryconfig_mmp_seq);
3080 }
3081
3082 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
3083
3084 /*
3085 * Disable the MMP activity check - This is used by zdb which
3086 * is intended to be used on potentially active pools.
3087 */
3088 if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
3089 return (B_FALSE);
3090
3091 /*
3092 * Skip the activity check when the MMP feature is disabled.
3093 */
3094 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
3095 return (B_FALSE);
3096
3097 /*
3098 * If the tryconfig_ values are nonzero, they are the results of an
3099 * earlier tryimport. If they all match the uberblock we just found,
3100 * then the pool has not changed and we return false so we do not test
3101 * a second time.
3102 */
3103 if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
3104 tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp &&
3105 tryconfig_mmp_seq && tryconfig_mmp_seq ==
3106 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0))
3107 return (B_FALSE);
3108
3109 /*
3110 * Allow the activity check to be skipped when importing the pool
3111 * on the same host which last imported it. Since the hostid from
3112 * configuration may be stale use the one read from the label.
3113 */
3114 if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
3115 hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
3116
3117 if (hostid == spa_get_hostid(spa))
3118 return (B_FALSE);
3119
3120 /*
3121 * Skip the activity test when the pool was cleanly exported.
3122 */
3123 if (state != POOL_STATE_ACTIVE)
3124 return (B_FALSE);
3125
3126 return (B_TRUE);
3127 }
3128
3129 /*
3130 * Nanoseconds the activity check must watch for changes on-disk.
3131 */
3132 static uint64_t
3133 spa_activity_check_duration(spa_t *spa, uberblock_t *ub)
3134 {
3135 uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
3136 uint64_t multihost_interval = MSEC2NSEC(
3137 MMP_INTERVAL_OK(zfs_multihost_interval));
3138 uint64_t import_delay = MAX(NANOSEC, import_intervals *
3139 multihost_interval);
3140
3141 /*
3142 * Local tunables determine a minimum duration except for the case
3143 * where we know when the remote host will suspend the pool if MMP
3144 * writes do not land.
3145 *
3146 * See Big Theory comment at the top of mmp.c for the reasoning behind
3147 * these cases and times.
3148 */
3149
3150 ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100);
3151
3152 if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3153 MMP_FAIL_INT(ub) > 0) {
3154
3155 /* MMP on remote host will suspend pool after failed writes */
3156 import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) *
3157 MMP_IMPORT_SAFETY_FACTOR / 100;
3158
3159 zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp "
3160 "mmp_fails=%llu ub_mmp mmp_interval=%llu "
3161 "import_intervals=%llu", (u_longlong_t)import_delay,
3162 (u_longlong_t)MMP_FAIL_INT(ub),
3163 (u_longlong_t)MMP_INTERVAL(ub),
3164 (u_longlong_t)import_intervals);
3165
3166 } else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3167 MMP_FAIL_INT(ub) == 0) {
3168
3169 /* MMP on remote host will never suspend pool */
3170 import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) +
3171 ub->ub_mmp_delay) * import_intervals);
3172
3173 zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp "
3174 "mmp_interval=%llu ub_mmp_delay=%llu "
3175 "import_intervals=%llu", (u_longlong_t)import_delay,
3176 (u_longlong_t)MMP_INTERVAL(ub),
3177 (u_longlong_t)ub->ub_mmp_delay,
3178 (u_longlong_t)import_intervals);
3179
3180 } else if (MMP_VALID(ub)) {
3181 /*
3182 * zfs-0.7 compatibility case
3183 */
3184
3185 import_delay = MAX(import_delay, (multihost_interval +
3186 ub->ub_mmp_delay) * import_intervals);
3187
3188 zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu "
3189 "import_intervals=%llu leaves=%u",
3190 (u_longlong_t)import_delay,
3191 (u_longlong_t)ub->ub_mmp_delay,
3192 (u_longlong_t)import_intervals,
3193 vdev_count_leaves(spa));
3194 } else {
3195 /* Using local tunings is the only reasonable option */
3196 zfs_dbgmsg("pool last imported on non-MMP aware "
3197 "host using import_delay=%llu multihost_interval=%llu "
3198 "import_intervals=%llu", (u_longlong_t)import_delay,
3199 (u_longlong_t)multihost_interval,
3200 (u_longlong_t)import_intervals);
3201 }
3202
3203 return (import_delay);
3204 }
3205
3206 /*
3207 * Perform the import activity check. If the user canceled the import or
3208 * we detected activity then fail.
3209 */
3210 static int
3211 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config)
3212 {
3213 uint64_t txg = ub->ub_txg;
3214 uint64_t timestamp = ub->ub_timestamp;
3215 uint64_t mmp_config = ub->ub_mmp_config;
3216 uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0;
3217 uint64_t import_delay;
3218 hrtime_t import_expire;
3219 nvlist_t *mmp_label = NULL;
3220 vdev_t *rvd = spa->spa_root_vdev;
3221 kcondvar_t cv;
3222 kmutex_t mtx;
3223 int error = 0;
3224
3225 cv_init(&cv, NULL, CV_DEFAULT, NULL);
3226 mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
3227 mutex_enter(&mtx);
3228
3229 /*
3230 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
3231 * during the earlier tryimport. If the txg recorded there is 0 then
3232 * the pool is known to be active on another host.
3233 *
3234 * Otherwise, the pool might be in use on another host. Check for
3235 * changes in the uberblocks on disk if necessary.
3236 */
3237 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3238 nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
3239 ZPOOL_CONFIG_LOAD_INFO);
3240
3241 if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
3242 fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
3243 vdev_uberblock_load(rvd, ub, &mmp_label);
3244 error = SET_ERROR(EREMOTEIO);
3245 goto out;
3246 }
3247 }
3248
3249 import_delay = spa_activity_check_duration(spa, ub);
3250
3251 /* Add a small random factor in case of simultaneous imports (0-25%) */
3252 import_delay += import_delay * random_in_range(250) / 1000;
3253
3254 import_expire = gethrtime() + import_delay;
3255
3256 while (gethrtime() < import_expire) {
3257 (void) spa_import_progress_set_mmp_check(spa_guid(spa),
3258 NSEC2SEC(import_expire - gethrtime()));
3259
3260 vdev_uberblock_load(rvd, ub, &mmp_label);
3261
3262 if (txg != ub->ub_txg || timestamp != ub->ub_timestamp ||
3263 mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) {
3264 zfs_dbgmsg("multihost activity detected "
3265 "txg %llu ub_txg %llu "
3266 "timestamp %llu ub_timestamp %llu "
3267 "mmp_config %#llx ub_mmp_config %#llx",
3268 (u_longlong_t)txg, (u_longlong_t)ub->ub_txg,
3269 (u_longlong_t)timestamp,
3270 (u_longlong_t)ub->ub_timestamp,
3271 (u_longlong_t)mmp_config,
3272 (u_longlong_t)ub->ub_mmp_config);
3273
3274 error = SET_ERROR(EREMOTEIO);
3275 break;
3276 }
3277
3278 if (mmp_label) {
3279 nvlist_free(mmp_label);
3280 mmp_label = NULL;
3281 }
3282
3283 error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
3284 if (error != -1) {
3285 error = SET_ERROR(EINTR);
3286 break;
3287 }
3288 error = 0;
3289 }
3290
3291 out:
3292 mutex_exit(&mtx);
3293 mutex_destroy(&mtx);
3294 cv_destroy(&cv);
3295
3296 /*
3297 * If the pool is determined to be active store the status in the
3298 * spa->spa_load_info nvlist. If the remote hostname or hostid are
3299 * available from configuration read from disk store them as well.
3300 * This allows 'zpool import' to generate a more useful message.
3301 *
3302 * ZPOOL_CONFIG_MMP_STATE - observed pool status (mandatory)
3303 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
3304 * ZPOOL_CONFIG_MMP_HOSTID - hostid from the active pool
3305 */
3306 if (error == EREMOTEIO) {
3307 const char *hostname = "<unknown>";
3308 uint64_t hostid = 0;
3309
3310 if (mmp_label) {
3311 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
3312 hostname = fnvlist_lookup_string(mmp_label,
3313 ZPOOL_CONFIG_HOSTNAME);
3314 fnvlist_add_string(spa->spa_load_info,
3315 ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
3316 }
3317
3318 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
3319 hostid = fnvlist_lookup_uint64(mmp_label,
3320 ZPOOL_CONFIG_HOSTID);
3321 fnvlist_add_uint64(spa->spa_load_info,
3322 ZPOOL_CONFIG_MMP_HOSTID, hostid);
3323 }
3324 }
3325
3326 fnvlist_add_uint64(spa->spa_load_info,
3327 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
3328 fnvlist_add_uint64(spa->spa_load_info,
3329 ZPOOL_CONFIG_MMP_TXG, 0);
3330
3331 error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
3332 }
3333
3334 if (mmp_label)
3335 nvlist_free(mmp_label);
3336
3337 return (error);
3338 }
3339
3340 static int
3341 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
3342 {
3343 uint64_t hostid;
3344 char *hostname;
3345 uint64_t myhostid = 0;
3346
3347 if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
3348 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
3349 hostname = fnvlist_lookup_string(mos_config,
3350 ZPOOL_CONFIG_HOSTNAME);
3351
3352 myhostid = zone_get_hostid(NULL);
3353
3354 if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
3355 cmn_err(CE_WARN, "pool '%s' could not be "
3356 "loaded as it was last accessed by "
3357 "another system (host: %s hostid: 0x%llx). "
3358 "See: https://openzfs.github.io/openzfs-docs/msg/"
3359 "ZFS-8000-EY",
3360 spa_name(spa), hostname, (u_longlong_t)hostid);
3361 spa_load_failed(spa, "hostid verification failed: pool "
3362 "last accessed by host: %s (hostid: 0x%llx)",
3363 hostname, (u_longlong_t)hostid);
3364 return (SET_ERROR(EBADF));
3365 }
3366 }
3367
3368 return (0);
3369 }
3370
3371 static int
3372 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
3373 {
3374 int error = 0;
3375 nvlist_t *nvtree, *nvl, *config = spa->spa_config;
3376 int parse;
3377 vdev_t *rvd;
3378 uint64_t pool_guid;
3379 char *comment;
3380 char *compatibility;
3381
3382 /*
3383 * Versioning wasn't explicitly added to the label until later, so if
3384 * it's not present treat it as the initial version.
3385 */
3386 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
3387 &spa->spa_ubsync.ub_version) != 0)
3388 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
3389
3390 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
3391 spa_load_failed(spa, "invalid config provided: '%s' missing",
3392 ZPOOL_CONFIG_POOL_GUID);
3393 return (SET_ERROR(EINVAL));
3394 }
3395
3396 /*
3397 * If we are doing an import, ensure that the pool is not already
3398 * imported by checking if its pool guid already exists in the
3399 * spa namespace.
3400 *
3401 * The only case that we allow an already imported pool to be
3402 * imported again, is when the pool is checkpointed and we want to
3403 * look at its checkpointed state from userland tools like zdb.
3404 */
3405 #ifdef _KERNEL
3406 if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3407 spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3408 spa_guid_exists(pool_guid, 0)) {
3409 #else
3410 if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3411 spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3412 spa_guid_exists(pool_guid, 0) &&
3413 !spa_importing_readonly_checkpoint(spa)) {
3414 #endif
3415 spa_load_failed(spa, "a pool with guid %llu is already open",
3416 (u_longlong_t)pool_guid);
3417 return (SET_ERROR(EEXIST));
3418 }
3419
3420 spa->spa_config_guid = pool_guid;
3421
3422 nvlist_free(spa->spa_load_info);
3423 spa->spa_load_info = fnvlist_alloc();
3424
3425 ASSERT(spa->spa_comment == NULL);
3426 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
3427 spa->spa_comment = spa_strdup(comment);
3428
3429 ASSERT(spa->spa_compatibility == NULL);
3430 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMPATIBILITY,
3431 &compatibility) == 0)
3432 spa->spa_compatibility = spa_strdup(compatibility);
3433
3434 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
3435 &spa->spa_config_txg);
3436
3437 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
3438 spa->spa_config_splitting = fnvlist_dup(nvl);
3439
3440 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
3441 spa_load_failed(spa, "invalid config provided: '%s' missing",
3442 ZPOOL_CONFIG_VDEV_TREE);
3443 return (SET_ERROR(EINVAL));
3444 }
3445
3446 /*
3447 * Create "The Godfather" zio to hold all async IOs
3448 */
3449 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3450 KM_SLEEP);
3451 for (int i = 0; i < max_ncpus; i++) {
3452 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3453 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3454 ZIO_FLAG_GODFATHER);
3455 }
3456
3457 /*
3458 * Parse the configuration into a vdev tree. We explicitly set the
3459 * value that will be returned by spa_version() since parsing the
3460 * configuration requires knowing the version number.
3461 */
3462 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3463 parse = (type == SPA_IMPORT_EXISTING ?
3464 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
3465 error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
3466 spa_config_exit(spa, SCL_ALL, FTAG);
3467
3468 if (error != 0) {
3469 spa_load_failed(spa, "unable to parse config [error=%d]",
3470 error);
3471 return (error);
3472 }
3473
3474 ASSERT(spa->spa_root_vdev == rvd);
3475 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
3476 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
3477
3478 if (type != SPA_IMPORT_ASSEMBLE) {
3479 ASSERT(spa_guid(spa) == pool_guid);
3480 }
3481
3482 return (0);
3483 }
3484
3485 /*
3486 * Recursively open all vdevs in the vdev tree. This function is called twice:
3487 * first with the untrusted config, then with the trusted config.
3488 */
3489 static int
3490 spa_ld_open_vdevs(spa_t *spa)
3491 {
3492 int error = 0;
3493
3494 /*
3495 * spa_missing_tvds_allowed defines how many top-level vdevs can be
3496 * missing/unopenable for the root vdev to be still considered openable.
3497 */
3498 if (spa->spa_trust_config) {
3499 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
3500 } else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
3501 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
3502 } else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
3503 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
3504 } else {
3505 spa->spa_missing_tvds_allowed = 0;
3506 }
3507
3508 spa->spa_missing_tvds_allowed =
3509 MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
3510
3511 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3512 error = vdev_open(spa->spa_root_vdev);
3513 spa_config_exit(spa, SCL_ALL, FTAG);
3514
3515 if (spa->spa_missing_tvds != 0) {
3516 spa_load_note(spa, "vdev tree has %lld missing top-level "
3517 "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
3518 if (spa->spa_trust_config && (spa->spa_mode & SPA_MODE_WRITE)) {
3519 /*
3520 * Although theoretically we could allow users to open
3521 * incomplete pools in RW mode, we'd need to add a lot
3522 * of extra logic (e.g. adjust pool space to account
3523 * for missing vdevs).
3524 * This limitation also prevents users from accidentally
3525 * opening the pool in RW mode during data recovery and
3526 * damaging it further.
3527 */
3528 spa_load_note(spa, "pools with missing top-level "
3529 "vdevs can only be opened in read-only mode.");
3530 error = SET_ERROR(ENXIO);
3531 } else {
3532 spa_load_note(spa, "current settings allow for maximum "
3533 "%lld missing top-level vdevs at this stage.",
3534 (u_longlong_t)spa->spa_missing_tvds_allowed);
3535 }
3536 }
3537 if (error != 0) {
3538 spa_load_failed(spa, "unable to open vdev tree [error=%d]",
3539 error);
3540 }
3541 if (spa->spa_missing_tvds != 0 || error != 0)
3542 vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
3543
3544 return (error);
3545 }
3546
3547 /*
3548 * We need to validate the vdev labels against the configuration that
3549 * we have in hand. This function is called twice: first with an untrusted
3550 * config, then with a trusted config. The validation is more strict when the
3551 * config is trusted.
3552 */
3553 static int
3554 spa_ld_validate_vdevs(spa_t *spa)
3555 {
3556 int error = 0;
3557 vdev_t *rvd = spa->spa_root_vdev;
3558
3559 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3560 error = vdev_validate(rvd);
3561 spa_config_exit(spa, SCL_ALL, FTAG);
3562
3563 if (error != 0) {
3564 spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
3565 return (error);
3566 }
3567
3568 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
3569 spa_load_failed(spa, "cannot open vdev tree after invalidating "
3570 "some vdevs");
3571 vdev_dbgmsg_print_tree(rvd, 2);
3572 return (SET_ERROR(ENXIO));
3573 }
3574
3575 return (0);
3576 }
3577
3578 static void
3579 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
3580 {
3581 spa->spa_state = POOL_STATE_ACTIVE;
3582 spa->spa_ubsync = spa->spa_uberblock;
3583 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
3584 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
3585 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
3586 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
3587 spa->spa_claim_max_txg = spa->spa_first_txg;
3588 spa->spa_prev_software_version = ub->ub_software_version;
3589 }
3590
3591 static int
3592 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
3593 {
3594 vdev_t *rvd = spa->spa_root_vdev;
3595 nvlist_t *label;
3596 uberblock_t *ub = &spa->spa_uberblock;
3597 boolean_t activity_check = B_FALSE;
3598
3599 /*
3600 * If we are opening the checkpointed state of the pool by
3601 * rewinding to it, at this point we will have written the
3602 * checkpointed uberblock to the vdev labels, so searching
3603 * the labels will find the right uberblock. However, if
3604 * we are opening the checkpointed state read-only, we have
3605 * not modified the labels. Therefore, we must ignore the
3606 * labels and continue using the spa_uberblock that was set
3607 * by spa_ld_checkpoint_rewind.
3608 *
3609 * Note that it would be fine to ignore the labels when
3610 * rewinding (opening writeable) as well. However, if we
3611 * crash just after writing the labels, we will end up
3612 * searching the labels. Doing so in the common case means
3613 * that this code path gets exercised normally, rather than
3614 * just in the edge case.
3615 */
3616 if (ub->ub_checkpoint_txg != 0 &&
3617 spa_importing_readonly_checkpoint(spa)) {
3618 spa_ld_select_uberblock_done(spa, ub);
3619 return (0);
3620 }
3621
3622 /*
3623 * Find the best uberblock.
3624 */
3625 vdev_uberblock_load(rvd, ub, &label);
3626
3627 /*
3628 * If we weren't able to find a single valid uberblock, return failure.
3629 */
3630 if (ub->ub_txg == 0) {
3631 nvlist_free(label);
3632 spa_load_failed(spa, "no valid uberblock found");
3633 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
3634 }
3635
3636 if (spa->spa_load_max_txg != UINT64_MAX) {
3637 (void) spa_import_progress_set_max_txg(spa_guid(spa),
3638 (u_longlong_t)spa->spa_load_max_txg);
3639 }
3640 spa_load_note(spa, "using uberblock with txg=%llu",
3641 (u_longlong_t)ub->ub_txg);
3642
3643
3644 /*
3645 * For pools which have the multihost property on determine if the
3646 * pool is truly inactive and can be safely imported. Prevent
3647 * hosts which don't have a hostid set from importing the pool.
3648 */
3649 activity_check = spa_activity_check_required(spa, ub, label,
3650 spa->spa_config);
3651 if (activity_check) {
3652 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
3653 spa_get_hostid(spa) == 0) {
3654 nvlist_free(label);
3655 fnvlist_add_uint64(spa->spa_load_info,
3656 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
3657 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
3658 }
3659
3660 int error = spa_activity_check(spa, ub, spa->spa_config);
3661 if (error) {
3662 nvlist_free(label);
3663 return (error);
3664 }
3665
3666 fnvlist_add_uint64(spa->spa_load_info,
3667 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
3668 fnvlist_add_uint64(spa->spa_load_info,
3669 ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
3670 fnvlist_add_uint16(spa->spa_load_info,
3671 ZPOOL_CONFIG_MMP_SEQ,
3672 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0));
3673 }
3674
3675 /*
3676 * If the pool has an unsupported version we can't open it.
3677 */
3678 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
3679 nvlist_free(label);
3680 spa_load_failed(spa, "version %llu is not supported",
3681 (u_longlong_t)ub->ub_version);
3682 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
3683 }
3684
3685 if (ub->ub_version >= SPA_VERSION_FEATURES) {
3686 nvlist_t *features;
3687
3688 /*
3689 * If we weren't able to find what's necessary for reading the
3690 * MOS in the label, return failure.
3691 */
3692 if (label == NULL) {
3693 spa_load_failed(spa, "label config unavailable");
3694 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3695 ENXIO));
3696 }
3697
3698 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
3699 &features) != 0) {
3700 nvlist_free(label);
3701 spa_load_failed(spa, "invalid label: '%s' missing",
3702 ZPOOL_CONFIG_FEATURES_FOR_READ);
3703 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3704 ENXIO));
3705 }
3706
3707 /*
3708 * Update our in-core representation with the definitive values
3709 * from the label.
3710 */
3711 nvlist_free(spa->spa_label_features);
3712 spa->spa_label_features = fnvlist_dup(features);
3713 }
3714
3715 nvlist_free(label);
3716
3717 /*
3718 * Look through entries in the label nvlist's features_for_read. If
3719 * there is a feature listed there which we don't understand then we
3720 * cannot open a pool.
3721 */
3722 if (ub->ub_version >= SPA_VERSION_FEATURES) {
3723 nvlist_t *unsup_feat;
3724
3725 unsup_feat = fnvlist_alloc();
3726
3727 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
3728 NULL); nvp != NULL;
3729 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
3730 if (!zfeature_is_supported(nvpair_name(nvp))) {
3731 fnvlist_add_string(unsup_feat,
3732 nvpair_name(nvp), "");
3733 }
3734 }
3735
3736 if (!nvlist_empty(unsup_feat)) {
3737 fnvlist_add_nvlist(spa->spa_load_info,
3738 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
3739 nvlist_free(unsup_feat);
3740 spa_load_failed(spa, "some features are unsupported");
3741 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
3742 ENOTSUP));
3743 }
3744
3745 nvlist_free(unsup_feat);
3746 }
3747
3748 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
3749 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3750 spa_try_repair(spa, spa->spa_config);
3751 spa_config_exit(spa, SCL_ALL, FTAG);
3752 nvlist_free(spa->spa_config_splitting);
3753 spa->spa_config_splitting = NULL;
3754 }
3755
3756 /*
3757 * Initialize internal SPA structures.
3758 */
3759 spa_ld_select_uberblock_done(spa, ub);
3760
3761 return (0);
3762 }
3763
3764 static int
3765 spa_ld_open_rootbp(spa_t *spa)
3766 {
3767 int error = 0;
3768 vdev_t *rvd = spa->spa_root_vdev;
3769
3770 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
3771 if (error != 0) {
3772 spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
3773 "[error=%d]", error);
3774 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3775 }
3776 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
3777
3778 return (0);
3779 }
3780
3781 static int
3782 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
3783 boolean_t reloading)
3784 {
3785 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
3786 nvlist_t *nv, *mos_config, *policy;
3787 int error = 0, copy_error;
3788 uint64_t healthy_tvds, healthy_tvds_mos;
3789 uint64_t mos_config_txg;
3790
3791 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
3792 != 0)
3793 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3794
3795 /*
3796 * If we're assembling a pool from a split, the config provided is
3797 * already trusted so there is nothing to do.
3798 */
3799 if (type == SPA_IMPORT_ASSEMBLE)
3800 return (0);
3801
3802 healthy_tvds = spa_healthy_core_tvds(spa);
3803
3804 if (load_nvlist(spa, spa->spa_config_object, &mos_config)
3805 != 0) {
3806 spa_load_failed(spa, "unable to retrieve MOS config");
3807 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3808 }
3809
3810 /*
3811 * If we are doing an open, pool owner wasn't verified yet, thus do
3812 * the verification here.
3813 */
3814 if (spa->spa_load_state == SPA_LOAD_OPEN) {
3815 error = spa_verify_host(spa, mos_config);
3816 if (error != 0) {
3817 nvlist_free(mos_config);
3818 return (error);
3819 }
3820 }
3821
3822 nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
3823
3824 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3825
3826 /*
3827 * Build a new vdev tree from the trusted config
3828 */
3829 error = spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD);
3830 if (error != 0) {
3831 nvlist_free(mos_config);
3832 spa_config_exit(spa, SCL_ALL, FTAG);
3833 spa_load_failed(spa, "spa_config_parse failed [error=%d]",
3834 error);
3835 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3836 }
3837
3838 /*
3839 * Vdev paths in the MOS may be obsolete. If the untrusted config was
3840 * obtained by scanning /dev/dsk, then it will have the right vdev
3841 * paths. We update the trusted MOS config with this information.
3842 * We first try to copy the paths with vdev_copy_path_strict, which
3843 * succeeds only when both configs have exactly the same vdev tree.
3844 * If that fails, we fall back to a more flexible method that has a
3845 * best effort policy.
3846 */
3847 copy_error = vdev_copy_path_strict(rvd, mrvd);
3848 if (copy_error != 0 || spa_load_print_vdev_tree) {
3849 spa_load_note(spa, "provided vdev tree:");
3850 vdev_dbgmsg_print_tree(rvd, 2);
3851 spa_load_note(spa, "MOS vdev tree:");
3852 vdev_dbgmsg_print_tree(mrvd, 2);
3853 }
3854 if (copy_error != 0) {
3855 spa_load_note(spa, "vdev_copy_path_strict failed, falling "
3856 "back to vdev_copy_path_relaxed");
3857 vdev_copy_path_relaxed(rvd, mrvd);
3858 }
3859
3860 vdev_close(rvd);
3861 vdev_free(rvd);
3862 spa->spa_root_vdev = mrvd;
3863 rvd = mrvd;
3864 spa_config_exit(spa, SCL_ALL, FTAG);
3865
3866 /*
3867 * We will use spa_config if we decide to reload the spa or if spa_load
3868 * fails and we rewind. We must thus regenerate the config using the
3869 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
3870 * pass settings on how to load the pool and is not stored in the MOS.
3871 * We copy it over to our new, trusted config.
3872 */
3873 mos_config_txg = fnvlist_lookup_uint64(mos_config,
3874 ZPOOL_CONFIG_POOL_TXG);
3875 nvlist_free(mos_config);
3876 mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
3877 if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
3878 &policy) == 0)
3879 fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
3880 spa_config_set(spa, mos_config);
3881 spa->spa_config_source = SPA_CONFIG_SRC_MOS;
3882
3883 /*
3884 * Now that we got the config from the MOS, we should be more strict
3885 * in checking blkptrs and can make assumptions about the consistency
3886 * of the vdev tree. spa_trust_config must be set to true before opening
3887 * vdevs in order for them to be writeable.
3888 */
3889 spa->spa_trust_config = B_TRUE;
3890
3891 /*
3892 * Open and validate the new vdev tree
3893 */
3894 error = spa_ld_open_vdevs(spa);
3895 if (error != 0)
3896 return (error);
3897
3898 error = spa_ld_validate_vdevs(spa);
3899 if (error != 0)
3900 return (error);
3901
3902 if (copy_error != 0 || spa_load_print_vdev_tree) {
3903 spa_load_note(spa, "final vdev tree:");
3904 vdev_dbgmsg_print_tree(rvd, 2);
3905 }
3906
3907 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
3908 !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
3909 /*
3910 * Sanity check to make sure that we are indeed loading the
3911 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
3912 * in the config provided and they happened to be the only ones
3913 * to have the latest uberblock, we could involuntarily perform
3914 * an extreme rewind.
3915 */
3916 healthy_tvds_mos = spa_healthy_core_tvds(spa);
3917 if (healthy_tvds_mos - healthy_tvds >=
3918 SPA_SYNC_MIN_VDEVS) {
3919 spa_load_note(spa, "config provided misses too many "
3920 "top-level vdevs compared to MOS (%lld vs %lld). ",
3921 (u_longlong_t)healthy_tvds,
3922 (u_longlong_t)healthy_tvds_mos);
3923 spa_load_note(spa, "vdev tree:");
3924 vdev_dbgmsg_print_tree(rvd, 2);
3925 if (reloading) {
3926 spa_load_failed(spa, "config was already "
3927 "provided from MOS. Aborting.");
3928 return (spa_vdev_err(rvd,
3929 VDEV_AUX_CORRUPT_DATA, EIO));
3930 }
3931 spa_load_note(spa, "spa must be reloaded using MOS "
3932 "config");
3933 return (SET_ERROR(EAGAIN));
3934 }
3935 }
3936
3937 error = spa_check_for_missing_logs(spa);
3938 if (error != 0)
3939 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
3940
3941 if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
3942 spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
3943 "guid sum (%llu != %llu)",
3944 (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
3945 (u_longlong_t)rvd->vdev_guid_sum);
3946 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
3947 ENXIO));
3948 }
3949
3950 return (0);
3951 }
3952
3953 static int
3954 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
3955 {
3956 int error = 0;
3957 vdev_t *rvd = spa->spa_root_vdev;
3958
3959 /*
3960 * Everything that we read before spa_remove_init() must be stored
3961 * on concreted vdevs. Therefore we do this as early as possible.
3962 */
3963 error = spa_remove_init(spa);
3964 if (error != 0) {
3965 spa_load_failed(spa, "spa_remove_init failed [error=%d]",
3966 error);
3967 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3968 }
3969
3970 /*
3971 * Retrieve information needed to condense indirect vdev mappings.
3972 */
3973 error = spa_condense_init(spa);
3974 if (error != 0) {
3975 spa_load_failed(spa, "spa_condense_init failed [error=%d]",
3976 error);
3977 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3978 }
3979
3980 return (0);
3981 }
3982
3983 static int
3984 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
3985 {
3986 int error = 0;
3987 vdev_t *rvd = spa->spa_root_vdev;
3988
3989 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
3990 boolean_t missing_feat_read = B_FALSE;
3991 nvlist_t *unsup_feat, *enabled_feat;
3992
3993 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
3994 &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
3995 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3996 }
3997
3998 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
3999 &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
4000 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4001 }
4002
4003 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
4004 &spa->spa_feat_desc_obj, B_TRUE) != 0) {
4005 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4006 }
4007
4008 enabled_feat = fnvlist_alloc();
4009 unsup_feat = fnvlist_alloc();
4010
4011 if (!spa_features_check(spa, B_FALSE,
4012 unsup_feat, enabled_feat))
4013 missing_feat_read = B_TRUE;
4014
4015 if (spa_writeable(spa) ||
4016 spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
4017 if (!spa_features_check(spa, B_TRUE,
4018 unsup_feat, enabled_feat)) {
4019 *missing_feat_writep = B_TRUE;
4020 }
4021 }
4022
4023 fnvlist_add_nvlist(spa->spa_load_info,
4024 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
4025
4026 if (!nvlist_empty(unsup_feat)) {
4027 fnvlist_add_nvlist(spa->spa_load_info,
4028 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
4029 }
4030
4031 fnvlist_free(enabled_feat);
4032 fnvlist_free(unsup_feat);
4033
4034 if (!missing_feat_read) {
4035 fnvlist_add_boolean(spa->spa_load_info,
4036 ZPOOL_CONFIG_CAN_RDONLY);
4037 }
4038
4039 /*
4040 * If the state is SPA_LOAD_TRYIMPORT, our objective is
4041 * twofold: to determine whether the pool is available for
4042 * import in read-write mode and (if it is not) whether the
4043 * pool is available for import in read-only mode. If the pool
4044 * is available for import in read-write mode, it is displayed
4045 * as available in userland; if it is not available for import
4046 * in read-only mode, it is displayed as unavailable in
4047 * userland. If the pool is available for import in read-only
4048 * mode but not read-write mode, it is displayed as unavailable
4049 * in userland with a special note that the pool is actually
4050 * available for open in read-only mode.
4051 *
4052 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
4053 * missing a feature for write, we must first determine whether
4054 * the pool can be opened read-only before returning to
4055 * userland in order to know whether to display the
4056 * abovementioned note.
4057 */
4058 if (missing_feat_read || (*missing_feat_writep &&
4059 spa_writeable(spa))) {
4060 spa_load_failed(spa, "pool uses unsupported features");
4061 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
4062 ENOTSUP));
4063 }
4064
4065 /*
4066 * Load refcounts for ZFS features from disk into an in-memory
4067 * cache during SPA initialization.
4068 */
4069 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
4070 uint64_t refcount;
4071
4072 error = feature_get_refcount_from_disk(spa,
4073 &spa_feature_table[i], &refcount);
4074 if (error == 0) {
4075 spa->spa_feat_refcount_cache[i] = refcount;
4076 } else if (error == ENOTSUP) {
4077 spa->spa_feat_refcount_cache[i] =
4078 SPA_FEATURE_DISABLED;
4079 } else {
4080 spa_load_failed(spa, "error getting refcount "
4081 "for feature %s [error=%d]",
4082 spa_feature_table[i].fi_guid, error);
4083 return (spa_vdev_err(rvd,
4084 VDEV_AUX_CORRUPT_DATA, EIO));
4085 }
4086 }
4087 }
4088
4089 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
4090 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
4091 &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
4092 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4093 }
4094
4095 /*
4096 * Encryption was added before bookmark_v2, even though bookmark_v2
4097 * is now a dependency. If this pool has encryption enabled without
4098 * bookmark_v2, trigger an errata message.
4099 */
4100 if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) &&
4101 !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) {
4102 spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION;
4103 }
4104
4105 return (0);
4106 }
4107
4108 static int
4109 spa_ld_load_special_directories(spa_t *spa)
4110 {
4111 int error = 0;
4112 vdev_t *rvd = spa->spa_root_vdev;
4113
4114 spa->spa_is_initializing = B_TRUE;
4115 error = dsl_pool_open(spa->spa_dsl_pool);
4116 spa->spa_is_initializing = B_FALSE;
4117 if (error != 0) {
4118 spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
4119 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4120 }
4121
4122 return (0);
4123 }
4124
4125 static int
4126 spa_ld_get_props(spa_t *spa)
4127 {
4128 int error = 0;
4129 uint64_t obj;
4130 vdev_t *rvd = spa->spa_root_vdev;
4131
4132 /* Grab the checksum salt from the MOS. */
4133 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4134 DMU_POOL_CHECKSUM_SALT, 1,
4135 sizeof (spa->spa_cksum_salt.zcs_bytes),
4136 spa->spa_cksum_salt.zcs_bytes);
4137 if (error == ENOENT) {
4138 /* Generate a new salt for subsequent use */
4139 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
4140 sizeof (spa->spa_cksum_salt.zcs_bytes));
4141 } else if (error != 0) {
4142 spa_load_failed(spa, "unable to retrieve checksum salt from "
4143 "MOS [error=%d]", error);
4144 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4145 }
4146
4147 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
4148 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4149 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
4150 if (error != 0) {
4151 spa_load_failed(spa, "error opening deferred-frees bpobj "
4152 "[error=%d]", error);
4153 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4154 }
4155
4156 /*
4157 * Load the bit that tells us to use the new accounting function
4158 * (raid-z deflation). If we have an older pool, this will not
4159 * be present.
4160 */
4161 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
4162 if (error != 0 && error != ENOENT)
4163 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4164
4165 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
4166 &spa->spa_creation_version, B_FALSE);
4167 if (error != 0 && error != ENOENT)
4168 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4169
4170 /*
4171 * Load the persistent error log. If we have an older pool, this will
4172 * not be present.
4173 */
4174 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
4175 B_FALSE);
4176 if (error != 0 && error != ENOENT)
4177 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4178
4179 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
4180 &spa->spa_errlog_scrub, B_FALSE);
4181 if (error != 0 && error != ENOENT)
4182 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4183
4184 /*
4185 * Load the livelist deletion field. If a livelist is queued for
4186 * deletion, indicate that in the spa
4187 */
4188 error = spa_dir_prop(spa, DMU_POOL_DELETED_CLONES,
4189 &spa->spa_livelists_to_delete, B_FALSE);
4190 if (error != 0 && error != ENOENT)
4191 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4192
4193 /*
4194 * Load the history object. If we have an older pool, this
4195 * will not be present.
4196 */
4197 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
4198 if (error != 0 && error != ENOENT)
4199 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4200
4201 /*
4202 * Load the per-vdev ZAP map. If we have an older pool, this will not
4203 * be present; in this case, defer its creation to a later time to
4204 * avoid dirtying the MOS this early / out of sync context. See
4205 * spa_sync_config_object.
4206 */
4207
4208 /* The sentinel is only available in the MOS config. */
4209 nvlist_t *mos_config;
4210 if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
4211 spa_load_failed(spa, "unable to retrieve MOS config");
4212 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4213 }
4214
4215 error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
4216 &spa->spa_all_vdev_zaps, B_FALSE);
4217
4218 if (error == ENOENT) {
4219 VERIFY(!nvlist_exists(mos_config,
4220 ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
4221 spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
4222 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4223 } else if (error != 0) {
4224 nvlist_free(mos_config);
4225 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4226 } else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
4227 /*
4228 * An older version of ZFS overwrote the sentinel value, so
4229 * we have orphaned per-vdev ZAPs in the MOS. Defer their
4230 * destruction to later; see spa_sync_config_object.
4231 */
4232 spa->spa_avz_action = AVZ_ACTION_DESTROY;
4233 /*
4234 * We're assuming that no vdevs have had their ZAPs created
4235 * before this. Better be sure of it.
4236 */
4237 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4238 }
4239 nvlist_free(mos_config);
4240
4241 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
4242
4243 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
4244 B_FALSE);
4245 if (error && error != ENOENT)
4246 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4247
4248 if (error == 0) {
4249 uint64_t autoreplace = 0;
4250
4251 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
4252 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
4253 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
4254 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
4255 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
4256 spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
4257 spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim);
4258 spa->spa_autoreplace = (autoreplace != 0);
4259 }
4260
4261 /*
4262 * If we are importing a pool with missing top-level vdevs,
4263 * we enforce that the pool doesn't panic or get suspended on
4264 * error since the likelihood of missing data is extremely high.
4265 */
4266 if (spa->spa_missing_tvds > 0 &&
4267 spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
4268 spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4269 spa_load_note(spa, "forcing failmode to 'continue' "
4270 "as some top level vdevs are missing");
4271 spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
4272 }
4273
4274 return (0);
4275 }
4276
4277 static int
4278 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
4279 {
4280 int error = 0;
4281 vdev_t *rvd = spa->spa_root_vdev;
4282
4283 /*
4284 * If we're assembling the pool from the split-off vdevs of
4285 * an existing pool, we don't want to attach the spares & cache
4286 * devices.
4287 */
4288
4289 /*
4290 * Load any hot spares for this pool.
4291 */
4292 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
4293 B_FALSE);
4294 if (error != 0 && error != ENOENT)
4295 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4296 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4297 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
4298 if (load_nvlist(spa, spa->spa_spares.sav_object,
4299 &spa->spa_spares.sav_config) != 0) {
4300 spa_load_failed(spa, "error loading spares nvlist");
4301 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4302 }
4303
4304 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4305 spa_load_spares(spa);
4306 spa_config_exit(spa, SCL_ALL, FTAG);
4307 } else if (error == 0) {
4308 spa->spa_spares.sav_sync = B_TRUE;
4309 }
4310
4311 /*
4312 * Load any level 2 ARC devices for this pool.
4313 */
4314 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
4315 &spa->spa_l2cache.sav_object, B_FALSE);
4316 if (error != 0 && error != ENOENT)
4317 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4318 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4319 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
4320 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
4321 &spa->spa_l2cache.sav_config) != 0) {
4322 spa_load_failed(spa, "error loading l2cache nvlist");
4323 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4324 }
4325
4326 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4327 spa_load_l2cache(spa);
4328 spa_config_exit(spa, SCL_ALL, FTAG);
4329 } else if (error == 0) {
4330 spa->spa_l2cache.sav_sync = B_TRUE;
4331 }
4332
4333 return (0);
4334 }
4335
4336 static int
4337 spa_ld_load_vdev_metadata(spa_t *spa)
4338 {
4339 int error = 0;
4340 vdev_t *rvd = spa->spa_root_vdev;
4341
4342 /*
4343 * If the 'multihost' property is set, then never allow a pool to
4344 * be imported when the system hostid is zero. The exception to
4345 * this rule is zdb which is always allowed to access pools.
4346 */
4347 if (spa_multihost(spa) && spa_get_hostid(spa) == 0 &&
4348 (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
4349 fnvlist_add_uint64(spa->spa_load_info,
4350 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
4351 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
4352 }
4353
4354 /*
4355 * If the 'autoreplace' property is set, then post a resource notifying
4356 * the ZFS DE that it should not issue any faults for unopenable
4357 * devices. We also iterate over the vdevs, and post a sysevent for any
4358 * unopenable vdevs so that the normal autoreplace handler can take
4359 * over.
4360 */
4361 if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4362 spa_check_removed(spa->spa_root_vdev);
4363 /*
4364 * For the import case, this is done in spa_import(), because
4365 * at this point we're using the spare definitions from
4366 * the MOS config, not necessarily from the userland config.
4367 */
4368 if (spa->spa_load_state != SPA_LOAD_IMPORT) {
4369 spa_aux_check_removed(&spa->spa_spares);
4370 spa_aux_check_removed(&spa->spa_l2cache);
4371 }
4372 }
4373
4374 /*
4375 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
4376 */
4377 error = vdev_load(rvd);
4378 if (error != 0) {
4379 spa_load_failed(spa, "vdev_load failed [error=%d]", error);
4380 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4381 }
4382
4383 error = spa_ld_log_spacemaps(spa);
4384 if (error != 0) {
4385 spa_load_failed(spa, "spa_ld_log_spacemaps failed [error=%d]",
4386 error);
4387 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4388 }
4389
4390 /*
4391 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
4392 */
4393 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4394 vdev_dtl_reassess(rvd, 0, 0, B_FALSE, B_FALSE);
4395 spa_config_exit(spa, SCL_ALL, FTAG);
4396
4397 return (0);
4398 }
4399
4400 static int
4401 spa_ld_load_dedup_tables(spa_t *spa)
4402 {
4403 int error = 0;
4404 vdev_t *rvd = spa->spa_root_vdev;
4405
4406 error = ddt_load(spa);
4407 if (error != 0) {
4408 spa_load_failed(spa, "ddt_load failed [error=%d]", error);
4409 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4410 }
4411
4412 return (0);
4413 }
4414
4415 static int
4416 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, const char **ereport)
4417 {
4418 vdev_t *rvd = spa->spa_root_vdev;
4419
4420 if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
4421 boolean_t missing = spa_check_logs(spa);
4422 if (missing) {
4423 if (spa->spa_missing_tvds != 0) {
4424 spa_load_note(spa, "spa_check_logs failed "
4425 "so dropping the logs");
4426 } else {
4427 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
4428 spa_load_failed(spa, "spa_check_logs failed");
4429 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
4430 ENXIO));
4431 }
4432 }
4433 }
4434
4435 return (0);
4436 }
4437
4438 static int
4439 spa_ld_verify_pool_data(spa_t *spa)
4440 {
4441 int error = 0;
4442 vdev_t *rvd = spa->spa_root_vdev;
4443
4444 /*
4445 * We've successfully opened the pool, verify that we're ready
4446 * to start pushing transactions.
4447 */
4448 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4449 error = spa_load_verify(spa);
4450 if (error != 0) {
4451 spa_load_failed(spa, "spa_load_verify failed "
4452 "[error=%d]", error);
4453 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4454 error));
4455 }
4456 }
4457
4458 return (0);
4459 }
4460
4461 static void
4462 spa_ld_claim_log_blocks(spa_t *spa)
4463 {
4464 dmu_tx_t *tx;
4465 dsl_pool_t *dp = spa_get_dsl(spa);
4466
4467 /*
4468 * Claim log blocks that haven't been committed yet.
4469 * This must all happen in a single txg.
4470 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
4471 * invoked from zil_claim_log_block()'s i/o done callback.
4472 * Price of rollback is that we abandon the log.
4473 */
4474 spa->spa_claiming = B_TRUE;
4475
4476 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
4477 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
4478 zil_claim, tx, DS_FIND_CHILDREN);
4479 dmu_tx_commit(tx);
4480
4481 spa->spa_claiming = B_FALSE;
4482
4483 spa_set_log_state(spa, SPA_LOG_GOOD);
4484 }
4485
4486 static void
4487 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
4488 boolean_t update_config_cache)
4489 {
4490 vdev_t *rvd = spa->spa_root_vdev;
4491 int need_update = B_FALSE;
4492
4493 /*
4494 * If the config cache is stale, or we have uninitialized
4495 * metaslabs (see spa_vdev_add()), then update the config.
4496 *
4497 * If this is a verbatim import, trust the current
4498 * in-core spa_config and update the disk labels.
4499 */
4500 if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
4501 spa->spa_load_state == SPA_LOAD_IMPORT ||
4502 spa->spa_load_state == SPA_LOAD_RECOVER ||
4503 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
4504 need_update = B_TRUE;
4505
4506 for (int c = 0; c < rvd->vdev_children; c++)
4507 if (rvd->vdev_child[c]->vdev_ms_array == 0)
4508 need_update = B_TRUE;
4509
4510 /*
4511 * Update the config cache asynchronously in case we're the
4512 * root pool, in which case the config cache isn't writable yet.
4513 */
4514 if (need_update)
4515 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
4516 }
4517
4518 static void
4519 spa_ld_prepare_for_reload(spa_t *spa)
4520 {
4521 spa_mode_t mode = spa->spa_mode;
4522 int async_suspended = spa->spa_async_suspended;
4523
4524 spa_unload(spa);
4525 spa_deactivate(spa);
4526 spa_activate(spa, mode);
4527
4528 /*
4529 * We save the value of spa_async_suspended as it gets reset to 0 by
4530 * spa_unload(). We want to restore it back to the original value before
4531 * returning as we might be calling spa_async_resume() later.
4532 */
4533 spa->spa_async_suspended = async_suspended;
4534 }
4535
4536 static int
4537 spa_ld_read_checkpoint_txg(spa_t *spa)
4538 {
4539 uberblock_t checkpoint;
4540 int error = 0;
4541
4542 ASSERT0(spa->spa_checkpoint_txg);
4543 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4544
4545 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4546 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
4547 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
4548
4549 if (error == ENOENT)
4550 return (0);
4551
4552 if (error != 0)
4553 return (error);
4554
4555 ASSERT3U(checkpoint.ub_txg, !=, 0);
4556 ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
4557 ASSERT3U(checkpoint.ub_timestamp, !=, 0);
4558 spa->spa_checkpoint_txg = checkpoint.ub_txg;
4559 spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
4560
4561 return (0);
4562 }
4563
4564 static int
4565 spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
4566 {
4567 int error = 0;
4568
4569 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4570 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
4571
4572 /*
4573 * Never trust the config that is provided unless we are assembling
4574 * a pool following a split.
4575 * This means don't trust blkptrs and the vdev tree in general. This
4576 * also effectively puts the spa in read-only mode since
4577 * spa_writeable() checks for spa_trust_config to be true.
4578 * We will later load a trusted config from the MOS.
4579 */
4580 if (type != SPA_IMPORT_ASSEMBLE)
4581 spa->spa_trust_config = B_FALSE;
4582
4583 /*
4584 * Parse the config provided to create a vdev tree.
4585 */
4586 error = spa_ld_parse_config(spa, type);
4587 if (error != 0)
4588 return (error);
4589
4590 spa_import_progress_add(spa);
4591
4592 /*
4593 * Now that we have the vdev tree, try to open each vdev. This involves
4594 * opening the underlying physical device, retrieving its geometry and
4595 * probing the vdev with a dummy I/O. The state of each vdev will be set
4596 * based on the success of those operations. After this we'll be ready
4597 * to read from the vdevs.
4598 */
4599 error = spa_ld_open_vdevs(spa);
4600 if (error != 0)
4601 return (error);
4602
4603 /*
4604 * Read the label of each vdev and make sure that the GUIDs stored
4605 * there match the GUIDs in the config provided.
4606 * If we're assembling a new pool that's been split off from an
4607 * existing pool, the labels haven't yet been updated so we skip
4608 * validation for now.
4609 */
4610 if (type != SPA_IMPORT_ASSEMBLE) {
4611 error = spa_ld_validate_vdevs(spa);
4612 if (error != 0)
4613 return (error);
4614 }
4615
4616 /*
4617 * Read all vdev labels to find the best uberblock (i.e. latest,
4618 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
4619 * get the list of features required to read blkptrs in the MOS from
4620 * the vdev label with the best uberblock and verify that our version
4621 * of zfs supports them all.
4622 */
4623 error = spa_ld_select_uberblock(spa, type);
4624 if (error != 0)
4625 return (error);
4626
4627 /*
4628 * Pass that uberblock to the dsl_pool layer which will open the root
4629 * blkptr. This blkptr points to the latest version of the MOS and will
4630 * allow us to read its contents.
4631 */
4632 error = spa_ld_open_rootbp(spa);
4633 if (error != 0)
4634 return (error);
4635
4636 return (0);
4637 }
4638
4639 static int
4640 spa_ld_checkpoint_rewind(spa_t *spa)
4641 {
4642 uberblock_t checkpoint;
4643 int error = 0;
4644
4645 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4646 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4647
4648 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4649 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
4650 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
4651
4652 if (error != 0) {
4653 spa_load_failed(spa, "unable to retrieve checkpointed "
4654 "uberblock from the MOS config [error=%d]", error);
4655
4656 if (error == ENOENT)
4657 error = ZFS_ERR_NO_CHECKPOINT;
4658
4659 return (error);
4660 }
4661
4662 ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
4663 ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
4664
4665 /*
4666 * We need to update the txg and timestamp of the checkpointed
4667 * uberblock to be higher than the latest one. This ensures that
4668 * the checkpointed uberblock is selected if we were to close and
4669 * reopen the pool right after we've written it in the vdev labels.
4670 * (also see block comment in vdev_uberblock_compare)
4671 */
4672 checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
4673 checkpoint.ub_timestamp = gethrestime_sec();
4674
4675 /*
4676 * Set current uberblock to be the checkpointed uberblock.
4677 */
4678 spa->spa_uberblock = checkpoint;
4679
4680 /*
4681 * If we are doing a normal rewind, then the pool is open for
4682 * writing and we sync the "updated" checkpointed uberblock to
4683 * disk. Once this is done, we've basically rewound the whole
4684 * pool and there is no way back.
4685 *
4686 * There are cases when we don't want to attempt and sync the
4687 * checkpointed uberblock to disk because we are opening a
4688 * pool as read-only. Specifically, verifying the checkpointed
4689 * state with zdb, and importing the checkpointed state to get
4690 * a "preview" of its content.
4691 */
4692 if (spa_writeable(spa)) {
4693 vdev_t *rvd = spa->spa_root_vdev;
4694
4695 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4696 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
4697 int svdcount = 0;
4698 int children = rvd->vdev_children;
4699 int c0 = random_in_range(children);
4700
4701 for (int c = 0; c < children; c++) {
4702 vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
4703
4704 /* Stop when revisiting the first vdev */
4705 if (c > 0 && svd[0] == vd)
4706 break;
4707
4708 if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
4709 !vdev_is_concrete(vd))
4710 continue;
4711
4712 svd[svdcount++] = vd;
4713 if (svdcount == SPA_SYNC_MIN_VDEVS)
4714 break;
4715 }
4716 error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
4717 if (error == 0)
4718 spa->spa_last_synced_guid = rvd->vdev_guid;
4719 spa_config_exit(spa, SCL_ALL, FTAG);
4720
4721 if (error != 0) {
4722 spa_load_failed(spa, "failed to write checkpointed "
4723 "uberblock to the vdev labels [error=%d]", error);
4724 return (error);
4725 }
4726 }
4727
4728 return (0);
4729 }
4730
4731 static int
4732 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
4733 boolean_t *update_config_cache)
4734 {
4735 int error;
4736
4737 /*
4738 * Parse the config for pool, open and validate vdevs,
4739 * select an uberblock, and use that uberblock to open
4740 * the MOS.
4741 */
4742 error = spa_ld_mos_init(spa, type);
4743 if (error != 0)
4744 return (error);
4745
4746 /*
4747 * Retrieve the trusted config stored in the MOS and use it to create
4748 * a new, exact version of the vdev tree, then reopen all vdevs.
4749 */
4750 error = spa_ld_trusted_config(spa, type, B_FALSE);
4751 if (error == EAGAIN) {
4752 if (update_config_cache != NULL)
4753 *update_config_cache = B_TRUE;
4754
4755 /*
4756 * Redo the loading process with the trusted config if it is
4757 * too different from the untrusted config.
4758 */
4759 spa_ld_prepare_for_reload(spa);
4760 spa_load_note(spa, "RELOADING");
4761 error = spa_ld_mos_init(spa, type);
4762 if (error != 0)
4763 return (error);
4764
4765 error = spa_ld_trusted_config(spa, type, B_TRUE);
4766 if (error != 0)
4767 return (error);
4768
4769 } else if (error != 0) {
4770 return (error);
4771 }
4772
4773 return (0);
4774 }
4775
4776 /*
4777 * Load an existing storage pool, using the config provided. This config
4778 * describes which vdevs are part of the pool and is later validated against
4779 * partial configs present in each vdev's label and an entire copy of the
4780 * config stored in the MOS.
4781 */
4782 static int
4783 spa_load_impl(spa_t *spa, spa_import_type_t type, const char **ereport)
4784 {
4785 int error = 0;
4786 boolean_t missing_feat_write = B_FALSE;
4787 boolean_t checkpoint_rewind =
4788 (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4789 boolean_t update_config_cache = B_FALSE;
4790
4791 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4792 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
4793
4794 spa_load_note(spa, "LOADING");
4795
4796 error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
4797 if (error != 0)
4798 return (error);
4799
4800 /*
4801 * If we are rewinding to the checkpoint then we need to repeat
4802 * everything we've done so far in this function but this time
4803 * selecting the checkpointed uberblock and using that to open
4804 * the MOS.
4805 */
4806 if (checkpoint_rewind) {
4807 /*
4808 * If we are rewinding to the checkpoint update config cache
4809 * anyway.
4810 */
4811 update_config_cache = B_TRUE;
4812
4813 /*
4814 * Extract the checkpointed uberblock from the current MOS
4815 * and use this as the pool's uberblock from now on. If the
4816 * pool is imported as writeable we also write the checkpoint
4817 * uberblock to the labels, making the rewind permanent.
4818 */
4819 error = spa_ld_checkpoint_rewind(spa);
4820 if (error != 0)
4821 return (error);
4822
4823 /*
4824 * Redo the loading process again with the
4825 * checkpointed uberblock.
4826 */
4827 spa_ld_prepare_for_reload(spa);
4828 spa_load_note(spa, "LOADING checkpointed uberblock");
4829 error = spa_ld_mos_with_trusted_config(spa, type, NULL);
4830 if (error != 0)
4831 return (error);
4832 }
4833
4834 /*
4835 * Retrieve the checkpoint txg if the pool has a checkpoint.
4836 */
4837 error = spa_ld_read_checkpoint_txg(spa);
4838 if (error != 0)
4839 return (error);
4840
4841 /*
4842 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
4843 * from the pool and their contents were re-mapped to other vdevs. Note
4844 * that everything that we read before this step must have been
4845 * rewritten on concrete vdevs after the last device removal was
4846 * initiated. Otherwise we could be reading from indirect vdevs before
4847 * we have loaded their mappings.
4848 */
4849 error = spa_ld_open_indirect_vdev_metadata(spa);
4850 if (error != 0)
4851 return (error);
4852
4853 /*
4854 * Retrieve the full list of active features from the MOS and check if
4855 * they are all supported.
4856 */
4857 error = spa_ld_check_features(spa, &missing_feat_write);
4858 if (error != 0)
4859 return (error);
4860
4861 /*
4862 * Load several special directories from the MOS needed by the dsl_pool
4863 * layer.
4864 */
4865 error = spa_ld_load_special_directories(spa);
4866 if (error != 0)
4867 return (error);
4868
4869 /*
4870 * Retrieve pool properties from the MOS.
4871 */
4872 error = spa_ld_get_props(spa);
4873 if (error != 0)
4874 return (error);
4875
4876 /*
4877 * Retrieve the list of auxiliary devices - cache devices and spares -
4878 * and open them.
4879 */
4880 error = spa_ld_open_aux_vdevs(spa, type);
4881 if (error != 0)
4882 return (error);
4883
4884 /*
4885 * Load the metadata for all vdevs. Also check if unopenable devices
4886 * should be autoreplaced.
4887 */
4888 error = spa_ld_load_vdev_metadata(spa);
4889 if (error != 0)
4890 return (error);
4891
4892 error = spa_ld_load_dedup_tables(spa);
4893 if (error != 0)
4894 return (error);
4895
4896 /*
4897 * Verify the logs now to make sure we don't have any unexpected errors
4898 * when we claim log blocks later.
4899 */
4900 error = spa_ld_verify_logs(spa, type, ereport);
4901 if (error != 0)
4902 return (error);
4903
4904 if (missing_feat_write) {
4905 ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
4906
4907 /*
4908 * At this point, we know that we can open the pool in
4909 * read-only mode but not read-write mode. We now have enough
4910 * information and can return to userland.
4911 */
4912 return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
4913 ENOTSUP));
4914 }
4915
4916 /*
4917 * Traverse the last txgs to make sure the pool was left off in a safe
4918 * state. When performing an extreme rewind, we verify the whole pool,
4919 * which can take a very long time.
4920 */
4921 error = spa_ld_verify_pool_data(spa);
4922 if (error != 0)
4923 return (error);
4924
4925 /*
4926 * Calculate the deflated space for the pool. This must be done before
4927 * we write anything to the pool because we'd need to update the space
4928 * accounting using the deflated sizes.
4929 */
4930 spa_update_dspace(spa);
4931
4932 /*
4933 * We have now retrieved all the information we needed to open the
4934 * pool. If we are importing the pool in read-write mode, a few
4935 * additional steps must be performed to finish the import.
4936 */
4937 if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
4938 spa->spa_load_max_txg == UINT64_MAX)) {
4939 uint64_t config_cache_txg = spa->spa_config_txg;
4940
4941 ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
4942
4943 /*
4944 * In case of a checkpoint rewind, log the original txg
4945 * of the checkpointed uberblock.
4946 */
4947 if (checkpoint_rewind) {
4948 spa_history_log_internal(spa, "checkpoint rewind",
4949 NULL, "rewound state to txg=%llu",
4950 (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
4951 }
4952
4953 /*
4954 * Traverse the ZIL and claim all blocks.
4955 */
4956 spa_ld_claim_log_blocks(spa);
4957
4958 /*
4959 * Kick-off the syncing thread.
4960 */
4961 spa->spa_sync_on = B_TRUE;
4962 txg_sync_start(spa->spa_dsl_pool);
4963 mmp_thread_start(spa);
4964
4965 /*
4966 * Wait for all claims to sync. We sync up to the highest
4967 * claimed log block birth time so that claimed log blocks
4968 * don't appear to be from the future. spa_claim_max_txg
4969 * will have been set for us by ZIL traversal operations
4970 * performed above.
4971 */
4972 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
4973
4974 /*
4975 * Check if we need to request an update of the config. On the
4976 * next sync, we would update the config stored in vdev labels
4977 * and the cachefile (by default /etc/zfs/zpool.cache).
4978 */
4979 spa_ld_check_for_config_update(spa, config_cache_txg,
4980 update_config_cache);
4981
4982 /*
4983 * Check if a rebuild was in progress and if so resume it.
4984 * Then check all DTLs to see if anything needs resilvering.
4985 * The resilver will be deferred if a rebuild was started.
4986 */
4987 if (vdev_rebuild_active(spa->spa_root_vdev)) {
4988 vdev_rebuild_restart(spa);
4989 } else if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
4990 vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
4991 spa_async_request(spa, SPA_ASYNC_RESILVER);
4992 }
4993
4994 /*
4995 * Log the fact that we booted up (so that we can detect if
4996 * we rebooted in the middle of an operation).
4997 */
4998 spa_history_log_version(spa, "open", NULL);
4999
5000 spa_restart_removal(spa);
5001 spa_spawn_aux_threads(spa);
5002
5003 /*
5004 * Delete any inconsistent datasets.
5005 *
5006 * Note:
5007 * Since we may be issuing deletes for clones here,
5008 * we make sure to do so after we've spawned all the
5009 * auxiliary threads above (from which the livelist
5010 * deletion zthr is part of).
5011 */
5012 (void) dmu_objset_find(spa_name(spa),
5013 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
5014
5015 /*
5016 * Clean up any stale temporary dataset userrefs.
5017 */
5018 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
5019
5020 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5021 vdev_initialize_restart(spa->spa_root_vdev);
5022 vdev_trim_restart(spa->spa_root_vdev);
5023 vdev_autotrim_restart(spa);
5024 spa_config_exit(spa, SCL_CONFIG, FTAG);
5025 }
5026
5027 spa_import_progress_remove(spa_guid(spa));
5028 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
5029
5030 spa_load_note(spa, "LOADED");
5031
5032 return (0);
5033 }
5034
5035 static int
5036 spa_load_retry(spa_t *spa, spa_load_state_t state)
5037 {
5038 spa_mode_t mode = spa->spa_mode;
5039
5040 spa_unload(spa);
5041 spa_deactivate(spa);
5042
5043 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
5044
5045 spa_activate(spa, mode);
5046 spa_async_suspend(spa);
5047
5048 spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
5049 (u_longlong_t)spa->spa_load_max_txg);
5050
5051 return (spa_load(spa, state, SPA_IMPORT_EXISTING));
5052 }
5053
5054 /*
5055 * If spa_load() fails this function will try loading prior txg's. If
5056 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
5057 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
5058 * function will not rewind the pool and will return the same error as
5059 * spa_load().
5060 */
5061 static int
5062 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
5063 int rewind_flags)
5064 {
5065 nvlist_t *loadinfo = NULL;
5066 nvlist_t *config = NULL;
5067 int load_error, rewind_error;
5068 uint64_t safe_rewind_txg;
5069 uint64_t min_txg;
5070
5071 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
5072 spa->spa_load_max_txg = spa->spa_load_txg;
5073 spa_set_log_state(spa, SPA_LOG_CLEAR);
5074 } else {
5075 spa->spa_load_max_txg = max_request;
5076 if (max_request != UINT64_MAX)
5077 spa->spa_extreme_rewind = B_TRUE;
5078 }
5079
5080 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
5081 if (load_error == 0)
5082 return (0);
5083 if (load_error == ZFS_ERR_NO_CHECKPOINT) {
5084 /*
5085 * When attempting checkpoint-rewind on a pool with no
5086 * checkpoint, we should not attempt to load uberblocks
5087 * from previous txgs when spa_load fails.
5088 */
5089 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5090 spa_import_progress_remove(spa_guid(spa));
5091 return (load_error);
5092 }
5093
5094 if (spa->spa_root_vdev != NULL)
5095 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5096
5097 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
5098 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
5099
5100 if (rewind_flags & ZPOOL_NEVER_REWIND) {
5101 nvlist_free(config);
5102 spa_import_progress_remove(spa_guid(spa));
5103 return (load_error);
5104 }
5105
5106 if (state == SPA_LOAD_RECOVER) {
5107 /* Price of rolling back is discarding txgs, including log */
5108 spa_set_log_state(spa, SPA_LOG_CLEAR);
5109 } else {
5110 /*
5111 * If we aren't rolling back save the load info from our first
5112 * import attempt so that we can restore it after attempting
5113 * to rewind.
5114 */
5115 loadinfo = spa->spa_load_info;
5116 spa->spa_load_info = fnvlist_alloc();
5117 }
5118
5119 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
5120 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
5121 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
5122 TXG_INITIAL : safe_rewind_txg;
5123
5124 /*
5125 * Continue as long as we're finding errors, we're still within
5126 * the acceptable rewind range, and we're still finding uberblocks
5127 */
5128 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
5129 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
5130 if (spa->spa_load_max_txg < safe_rewind_txg)
5131 spa->spa_extreme_rewind = B_TRUE;
5132 rewind_error = spa_load_retry(spa, state);
5133 }
5134
5135 spa->spa_extreme_rewind = B_FALSE;
5136 spa->spa_load_max_txg = UINT64_MAX;
5137
5138 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
5139 spa_config_set(spa, config);
5140 else
5141 nvlist_free(config);
5142
5143 if (state == SPA_LOAD_RECOVER) {
5144 ASSERT3P(loadinfo, ==, NULL);
5145 spa_import_progress_remove(spa_guid(spa));
5146 return (rewind_error);
5147 } else {
5148 /* Store the rewind info as part of the initial load info */
5149 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
5150 spa->spa_load_info);
5151
5152 /* Restore the initial load info */
5153 fnvlist_free(spa->spa_load_info);
5154 spa->spa_load_info = loadinfo;
5155
5156 spa_import_progress_remove(spa_guid(spa));
5157 return (load_error);
5158 }
5159 }
5160
5161 /*
5162 * Pool Open/Import
5163 *
5164 * The import case is identical to an open except that the configuration is sent
5165 * down from userland, instead of grabbed from the configuration cache. For the
5166 * case of an open, the pool configuration will exist in the
5167 * POOL_STATE_UNINITIALIZED state.
5168 *
5169 * The stats information (gen/count/ustats) is used to gather vdev statistics at
5170 * the same time open the pool, without having to keep around the spa_t in some
5171 * ambiguous state.
5172 */
5173 static int
5174 spa_open_common(const char *pool, spa_t **spapp, const void *tag,
5175 nvlist_t *nvpolicy, nvlist_t **config)
5176 {
5177 spa_t *spa;
5178 spa_load_state_t state = SPA_LOAD_OPEN;
5179 int error;
5180 int locked = B_FALSE;
5181 int firstopen = B_FALSE;
5182
5183 *spapp = NULL;
5184
5185 /*
5186 * As disgusting as this is, we need to support recursive calls to this
5187 * function because dsl_dir_open() is called during spa_load(), and ends
5188 * up calling spa_open() again. The real fix is to figure out how to
5189 * avoid dsl_dir_open() calling this in the first place.
5190 */
5191 if (MUTEX_NOT_HELD(&spa_namespace_lock)) {
5192 mutex_enter(&spa_namespace_lock);
5193 locked = B_TRUE;
5194 }
5195
5196 if ((spa = spa_lookup(pool)) == NULL) {
5197 if (locked)
5198 mutex_exit(&spa_namespace_lock);
5199 return (SET_ERROR(ENOENT));
5200 }
5201
5202 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
5203 zpool_load_policy_t policy;
5204
5205 firstopen = B_TRUE;
5206
5207 zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
5208 &policy);
5209 if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5210 state = SPA_LOAD_RECOVER;
5211
5212 spa_activate(spa, spa_mode_global);
5213
5214 if (state != SPA_LOAD_RECOVER)
5215 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5216 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5217
5218 zfs_dbgmsg("spa_open_common: opening %s", pool);
5219 error = spa_load_best(spa, state, policy.zlp_txg,
5220 policy.zlp_rewind);
5221
5222 if (error == EBADF) {
5223 /*
5224 * If vdev_validate() returns failure (indicated by
5225 * EBADF), it indicates that one of the vdevs indicates
5226 * that the pool has been exported or destroyed. If
5227 * this is the case, the config cache is out of sync and
5228 * we should remove the pool from the namespace.
5229 */
5230 spa_unload(spa);
5231 spa_deactivate(spa);
5232 spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
5233 spa_remove(spa);
5234 if (locked)
5235 mutex_exit(&spa_namespace_lock);
5236 return (SET_ERROR(ENOENT));
5237 }
5238
5239 if (error) {
5240 /*
5241 * We can't open the pool, but we still have useful
5242 * information: the state of each vdev after the
5243 * attempted vdev_open(). Return this to the user.
5244 */
5245 if (config != NULL && spa->spa_config) {
5246 *config = fnvlist_dup(spa->spa_config);
5247 fnvlist_add_nvlist(*config,
5248 ZPOOL_CONFIG_LOAD_INFO,
5249 spa->spa_load_info);
5250 }
5251 spa_unload(spa);
5252 spa_deactivate(spa);
5253 spa->spa_last_open_failed = error;
5254 if (locked)
5255 mutex_exit(&spa_namespace_lock);
5256 *spapp = NULL;
5257 return (error);
5258 }
5259 }
5260
5261 spa_open_ref(spa, tag);
5262
5263 if (config != NULL)
5264 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5265
5266 /*
5267 * If we've recovered the pool, pass back any information we
5268 * gathered while doing the load.
5269 */
5270 if (state == SPA_LOAD_RECOVER && config != NULL) {
5271 fnvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
5272 spa->spa_load_info);
5273 }
5274
5275 if (locked) {
5276 spa->spa_last_open_failed = 0;
5277 spa->spa_last_ubsync_txg = 0;
5278 spa->spa_load_txg = 0;
5279 mutex_exit(&spa_namespace_lock);
5280 }
5281
5282 if (firstopen)
5283 zvol_create_minors_recursive(spa_name(spa));
5284
5285 *spapp = spa;
5286
5287 return (0);
5288 }
5289
5290 int
5291 spa_open_rewind(const char *name, spa_t **spapp, const void *tag,
5292 nvlist_t *policy, nvlist_t **config)
5293 {
5294 return (spa_open_common(name, spapp, tag, policy, config));
5295 }
5296
5297 int
5298 spa_open(const char *name, spa_t **spapp, const void *tag)
5299 {
5300 return (spa_open_common(name, spapp, tag, NULL, NULL));
5301 }
5302
5303 /*
5304 * Lookup the given spa_t, incrementing the inject count in the process,
5305 * preventing it from being exported or destroyed.
5306 */
5307 spa_t *
5308 spa_inject_addref(char *name)
5309 {
5310 spa_t *spa;
5311
5312 mutex_enter(&spa_namespace_lock);
5313 if ((spa = spa_lookup(name)) == NULL) {
5314 mutex_exit(&spa_namespace_lock);
5315 return (NULL);
5316 }
5317 spa->spa_inject_ref++;
5318 mutex_exit(&spa_namespace_lock);
5319
5320 return (spa);
5321 }
5322
5323 void
5324 spa_inject_delref(spa_t *spa)
5325 {
5326 mutex_enter(&spa_namespace_lock);
5327 spa->spa_inject_ref--;
5328 mutex_exit(&spa_namespace_lock);
5329 }
5330
5331 /*
5332 * Add spares device information to the nvlist.
5333 */
5334 static void
5335 spa_add_spares(spa_t *spa, nvlist_t *config)
5336 {
5337 nvlist_t **spares;
5338 uint_t i, nspares;
5339 nvlist_t *nvroot;
5340 uint64_t guid;
5341 vdev_stat_t *vs;
5342 uint_t vsc;
5343 uint64_t pool;
5344
5345 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5346
5347 if (spa->spa_spares.sav_count == 0)
5348 return;
5349
5350 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
5351 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5352 ZPOOL_CONFIG_SPARES, &spares, &nspares));
5353 if (nspares != 0) {
5354 fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5355 (const nvlist_t * const *)spares, nspares);
5356 VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5357 &spares, &nspares));
5358
5359 /*
5360 * Go through and find any spares which have since been
5361 * repurposed as an active spare. If this is the case, update
5362 * their status appropriately.
5363 */
5364 for (i = 0; i < nspares; i++) {
5365 guid = fnvlist_lookup_uint64(spares[i],
5366 ZPOOL_CONFIG_GUID);
5367 if (spa_spare_exists(guid, &pool, NULL) &&
5368 pool != 0ULL) {
5369 VERIFY0(nvlist_lookup_uint64_array(spares[i],
5370 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs,
5371 &vsc));
5372 vs->vs_state = VDEV_STATE_CANT_OPEN;
5373 vs->vs_aux = VDEV_AUX_SPARED;
5374 }
5375 }
5376 }
5377 }
5378
5379 /*
5380 * Add l2cache device information to the nvlist, including vdev stats.
5381 */
5382 static void
5383 spa_add_l2cache(spa_t *spa, nvlist_t *config)
5384 {
5385 nvlist_t **l2cache;
5386 uint_t i, j, nl2cache;
5387 nvlist_t *nvroot;
5388 uint64_t guid;
5389 vdev_t *vd;
5390 vdev_stat_t *vs;
5391 uint_t vsc;
5392
5393 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5394
5395 if (spa->spa_l2cache.sav_count == 0)
5396 return;
5397
5398 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
5399 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5400 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
5401 if (nl2cache != 0) {
5402 fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5403 (const nvlist_t * const *)l2cache, nl2cache);
5404 VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5405 &l2cache, &nl2cache));
5406
5407 /*
5408 * Update level 2 cache device stats.
5409 */
5410
5411 for (i = 0; i < nl2cache; i++) {
5412 guid = fnvlist_lookup_uint64(l2cache[i],
5413 ZPOOL_CONFIG_GUID);
5414
5415 vd = NULL;
5416 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
5417 if (guid ==
5418 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
5419 vd = spa->spa_l2cache.sav_vdevs[j];
5420 break;
5421 }
5422 }
5423 ASSERT(vd != NULL);
5424
5425 VERIFY0(nvlist_lookup_uint64_array(l2cache[i],
5426 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
5427 vdev_get_stats(vd, vs);
5428 vdev_config_generate_stats(vd, l2cache[i]);
5429
5430 }
5431 }
5432 }
5433
5434 static void
5435 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features)
5436 {
5437 zap_cursor_t zc;
5438 zap_attribute_t za;
5439
5440 if (spa->spa_feat_for_read_obj != 0) {
5441 for (zap_cursor_init(&zc, spa->spa_meta_objset,
5442 spa->spa_feat_for_read_obj);
5443 zap_cursor_retrieve(&zc, &za) == 0;
5444 zap_cursor_advance(&zc)) {
5445 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
5446 za.za_num_integers == 1);
5447 VERIFY0(nvlist_add_uint64(features, za.za_name,
5448 za.za_first_integer));
5449 }
5450 zap_cursor_fini(&zc);
5451 }
5452
5453 if (spa->spa_feat_for_write_obj != 0) {
5454 for (zap_cursor_init(&zc, spa->spa_meta_objset,
5455 spa->spa_feat_for_write_obj);
5456 zap_cursor_retrieve(&zc, &za) == 0;
5457 zap_cursor_advance(&zc)) {
5458 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
5459 za.za_num_integers == 1);
5460 VERIFY0(nvlist_add_uint64(features, za.za_name,
5461 za.za_first_integer));
5462 }
5463 zap_cursor_fini(&zc);
5464 }
5465 }
5466
5467 static void
5468 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features)
5469 {
5470 int i;
5471
5472 for (i = 0; i < SPA_FEATURES; i++) {
5473 zfeature_info_t feature = spa_feature_table[i];
5474 uint64_t refcount;
5475
5476 if (feature_get_refcount(spa, &feature, &refcount) != 0)
5477 continue;
5478
5479 VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount));
5480 }
5481 }
5482
5483 /*
5484 * Store a list of pool features and their reference counts in the
5485 * config.
5486 *
5487 * The first time this is called on a spa, allocate a new nvlist, fetch
5488 * the pool features and reference counts from disk, then save the list
5489 * in the spa. In subsequent calls on the same spa use the saved nvlist
5490 * and refresh its values from the cached reference counts. This
5491 * ensures we don't block here on I/O on a suspended pool so 'zpool
5492 * clear' can resume the pool.
5493 */
5494 static void
5495 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
5496 {
5497 nvlist_t *features;
5498
5499 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5500
5501 mutex_enter(&spa->spa_feat_stats_lock);
5502 features = spa->spa_feat_stats;
5503
5504 if (features != NULL) {
5505 spa_feature_stats_from_cache(spa, features);
5506 } else {
5507 VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP));
5508 spa->spa_feat_stats = features;
5509 spa_feature_stats_from_disk(spa, features);
5510 }
5511
5512 VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
5513 features));
5514
5515 mutex_exit(&spa->spa_feat_stats_lock);
5516 }
5517
5518 int
5519 spa_get_stats(const char *name, nvlist_t **config,
5520 char *altroot, size_t buflen)
5521 {
5522 int error;
5523 spa_t *spa;
5524
5525 *config = NULL;
5526 error = spa_open_common(name, &spa, FTAG, NULL, config);
5527
5528 if (spa != NULL) {
5529 /*
5530 * This still leaves a window of inconsistency where the spares
5531 * or l2cache devices could change and the config would be
5532 * self-inconsistent.
5533 */
5534 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5535
5536 if (*config != NULL) {
5537 uint64_t loadtimes[2];
5538
5539 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
5540 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
5541 fnvlist_add_uint64_array(*config,
5542 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2);
5543
5544 fnvlist_add_uint64(*config,
5545 ZPOOL_CONFIG_ERRCOUNT,
5546 spa_approx_errlog_size(spa));
5547
5548 if (spa_suspended(spa)) {
5549 fnvlist_add_uint64(*config,
5550 ZPOOL_CONFIG_SUSPENDED,
5551 spa->spa_failmode);
5552 fnvlist_add_uint64(*config,
5553 ZPOOL_CONFIG_SUSPENDED_REASON,
5554 spa->spa_suspended);
5555 }
5556
5557 spa_add_spares(spa, *config);
5558 spa_add_l2cache(spa, *config);
5559 spa_add_feature_stats(spa, *config);
5560 }
5561 }
5562
5563 /*
5564 * We want to get the alternate root even for faulted pools, so we cheat
5565 * and call spa_lookup() directly.
5566 */
5567 if (altroot) {
5568 if (spa == NULL) {
5569 mutex_enter(&spa_namespace_lock);
5570 spa = spa_lookup(name);
5571 if (spa)
5572 spa_altroot(spa, altroot, buflen);
5573 else
5574 altroot[0] = '\0';
5575 spa = NULL;
5576 mutex_exit(&spa_namespace_lock);
5577 } else {
5578 spa_altroot(spa, altroot, buflen);
5579 }
5580 }
5581
5582 if (spa != NULL) {
5583 spa_config_exit(spa, SCL_CONFIG, FTAG);
5584 spa_close(spa, FTAG);
5585 }
5586
5587 return (error);
5588 }
5589
5590 /*
5591 * Validate that the auxiliary device array is well formed. We must have an
5592 * array of nvlists, each which describes a valid leaf vdev. If this is an
5593 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
5594 * specified, as long as they are well-formed.
5595 */
5596 static int
5597 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
5598 spa_aux_vdev_t *sav, const char *config, uint64_t version,
5599 vdev_labeltype_t label)
5600 {
5601 nvlist_t **dev;
5602 uint_t i, ndev;
5603 vdev_t *vd;
5604 int error;
5605
5606 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5607
5608 /*
5609 * It's acceptable to have no devs specified.
5610 */
5611 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
5612 return (0);
5613
5614 if (ndev == 0)
5615 return (SET_ERROR(EINVAL));
5616
5617 /*
5618 * Make sure the pool is formatted with a version that supports this
5619 * device type.
5620 */
5621 if (spa_version(spa) < version)
5622 return (SET_ERROR(ENOTSUP));
5623
5624 /*
5625 * Set the pending device list so we correctly handle device in-use
5626 * checking.
5627 */
5628 sav->sav_pending = dev;
5629 sav->sav_npending = ndev;
5630
5631 for (i = 0; i < ndev; i++) {
5632 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
5633 mode)) != 0)
5634 goto out;
5635
5636 if (!vd->vdev_ops->vdev_op_leaf) {
5637 vdev_free(vd);
5638 error = SET_ERROR(EINVAL);
5639 goto out;
5640 }
5641
5642 vd->vdev_top = vd;
5643
5644 if ((error = vdev_open(vd)) == 0 &&
5645 (error = vdev_label_init(vd, crtxg, label)) == 0) {
5646 fnvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
5647 vd->vdev_guid);
5648 }
5649
5650 vdev_free(vd);
5651
5652 if (error &&
5653 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
5654 goto out;
5655 else
5656 error = 0;
5657 }
5658
5659 out:
5660 sav->sav_pending = NULL;
5661 sav->sav_npending = 0;
5662 return (error);
5663 }
5664
5665 static int
5666 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
5667 {
5668 int error;
5669
5670 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5671
5672 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
5673 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
5674 VDEV_LABEL_SPARE)) != 0) {
5675 return (error);
5676 }
5677
5678 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
5679 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
5680 VDEV_LABEL_L2CACHE));
5681 }
5682
5683 static void
5684 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
5685 const char *config)
5686 {
5687 int i;
5688
5689 if (sav->sav_config != NULL) {
5690 nvlist_t **olddevs;
5691 uint_t oldndevs;
5692 nvlist_t **newdevs;
5693
5694 /*
5695 * Generate new dev list by concatenating with the
5696 * current dev list.
5697 */
5698 VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config, config,
5699 &olddevs, &oldndevs));
5700
5701 newdevs = kmem_alloc(sizeof (void *) *
5702 (ndevs + oldndevs), KM_SLEEP);
5703 for (i = 0; i < oldndevs; i++)
5704 newdevs[i] = fnvlist_dup(olddevs[i]);
5705 for (i = 0; i < ndevs; i++)
5706 newdevs[i + oldndevs] = fnvlist_dup(devs[i]);
5707
5708 fnvlist_remove(sav->sav_config, config);
5709
5710 fnvlist_add_nvlist_array(sav->sav_config, config,
5711 (const nvlist_t * const *)newdevs, ndevs + oldndevs);
5712 for (i = 0; i < oldndevs + ndevs; i++)
5713 nvlist_free(newdevs[i]);
5714 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
5715 } else {
5716 /*
5717 * Generate a new dev list.
5718 */
5719 sav->sav_config = fnvlist_alloc();
5720 fnvlist_add_nvlist_array(sav->sav_config, config,
5721 (const nvlist_t * const *)devs, ndevs);
5722 }
5723 }
5724
5725 /*
5726 * Stop and drop level 2 ARC devices
5727 */
5728 void
5729 spa_l2cache_drop(spa_t *spa)
5730 {
5731 vdev_t *vd;
5732 int i;
5733 spa_aux_vdev_t *sav = &spa->spa_l2cache;
5734
5735 for (i = 0; i < sav->sav_count; i++) {
5736 uint64_t pool;
5737
5738 vd = sav->sav_vdevs[i];
5739 ASSERT(vd != NULL);
5740
5741 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
5742 pool != 0ULL && l2arc_vdev_present(vd))
5743 l2arc_remove_vdev(vd);
5744 }
5745 }
5746
5747 /*
5748 * Verify encryption parameters for spa creation. If we are encrypting, we must
5749 * have the encryption feature flag enabled.
5750 */
5751 static int
5752 spa_create_check_encryption_params(dsl_crypto_params_t *dcp,
5753 boolean_t has_encryption)
5754 {
5755 if (dcp->cp_crypt != ZIO_CRYPT_OFF &&
5756 dcp->cp_crypt != ZIO_CRYPT_INHERIT &&
5757 !has_encryption)
5758 return (SET_ERROR(ENOTSUP));
5759
5760 return (dmu_objset_create_crypt_check(NULL, dcp, NULL));
5761 }
5762
5763 /*
5764 * Pool Creation
5765 */
5766 int
5767 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
5768 nvlist_t *zplprops, dsl_crypto_params_t *dcp)
5769 {
5770 spa_t *spa;
5771 char *altroot = NULL;
5772 vdev_t *rvd;
5773 dsl_pool_t *dp;
5774 dmu_tx_t *tx;
5775 int error = 0;
5776 uint64_t txg = TXG_INITIAL;
5777 nvlist_t **spares, **l2cache;
5778 uint_t nspares, nl2cache;
5779 uint64_t version, obj, ndraid = 0;
5780 boolean_t has_features;
5781 boolean_t has_encryption;
5782 boolean_t has_allocclass;
5783 spa_feature_t feat;
5784 char *feat_name;
5785 char *poolname;
5786 nvlist_t *nvl;
5787
5788 if (props == NULL ||
5789 nvlist_lookup_string(props, "tname", &poolname) != 0)
5790 poolname = (char *)pool;
5791
5792 /*
5793 * If this pool already exists, return failure.
5794 */
5795 mutex_enter(&spa_namespace_lock);
5796 if (spa_lookup(poolname) != NULL) {
5797 mutex_exit(&spa_namespace_lock);
5798 return (SET_ERROR(EEXIST));
5799 }
5800
5801 /*
5802 * Allocate a new spa_t structure.
5803 */
5804 nvl = fnvlist_alloc();
5805 fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
5806 (void) nvlist_lookup_string(props,
5807 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5808 spa = spa_add(poolname, nvl, altroot);
5809 fnvlist_free(nvl);
5810 spa_activate(spa, spa_mode_global);
5811
5812 if (props && (error = spa_prop_validate(spa, props))) {
5813 spa_deactivate(spa);
5814 spa_remove(spa);
5815 mutex_exit(&spa_namespace_lock);
5816 return (error);
5817 }
5818
5819 /*
5820 * Temporary pool names should never be written to disk.
5821 */
5822 if (poolname != pool)
5823 spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
5824
5825 has_features = B_FALSE;
5826 has_encryption = B_FALSE;
5827 has_allocclass = B_FALSE;
5828 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
5829 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
5830 if (zpool_prop_feature(nvpair_name(elem))) {
5831 has_features = B_TRUE;
5832
5833 feat_name = strchr(nvpair_name(elem), '@') + 1;
5834 VERIFY0(zfeature_lookup_name(feat_name, &feat));
5835 if (feat == SPA_FEATURE_ENCRYPTION)
5836 has_encryption = B_TRUE;
5837 if (feat == SPA_FEATURE_ALLOCATION_CLASSES)
5838 has_allocclass = B_TRUE;
5839 }
5840 }
5841
5842 /* verify encryption params, if they were provided */
5843 if (dcp != NULL) {
5844 error = spa_create_check_encryption_params(dcp, has_encryption);
5845 if (error != 0) {
5846 spa_deactivate(spa);
5847 spa_remove(spa);
5848 mutex_exit(&spa_namespace_lock);
5849 return (error);
5850 }
5851 }
5852 if (!has_allocclass && zfs_special_devs(nvroot, NULL)) {
5853 spa_deactivate(spa);
5854 spa_remove(spa);
5855 mutex_exit(&spa_namespace_lock);
5856 return (ENOTSUP);
5857 }
5858
5859 if (has_features || nvlist_lookup_uint64(props,
5860 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
5861 version = SPA_VERSION;
5862 }
5863 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5864
5865 spa->spa_first_txg = txg;
5866 spa->spa_uberblock.ub_txg = txg - 1;
5867 spa->spa_uberblock.ub_version = version;
5868 spa->spa_ubsync = spa->spa_uberblock;
5869 spa->spa_load_state = SPA_LOAD_CREATE;
5870 spa->spa_removing_phys.sr_state = DSS_NONE;
5871 spa->spa_removing_phys.sr_removing_vdev = -1;
5872 spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
5873 spa->spa_indirect_vdevs_loaded = B_TRUE;
5874
5875 /*
5876 * Create "The Godfather" zio to hold all async IOs
5877 */
5878 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
5879 KM_SLEEP);
5880 for (int i = 0; i < max_ncpus; i++) {
5881 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
5882 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
5883 ZIO_FLAG_GODFATHER);
5884 }
5885
5886 /*
5887 * Create the root vdev.
5888 */
5889 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5890
5891 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
5892
5893 ASSERT(error != 0 || rvd != NULL);
5894 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
5895
5896 if (error == 0 && !zfs_allocatable_devs(nvroot))
5897 error = SET_ERROR(EINVAL);
5898
5899 if (error == 0 &&
5900 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
5901 (error = vdev_draid_spare_create(nvroot, rvd, &ndraid, 0)) == 0 &&
5902 (error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) == 0) {
5903 /*
5904 * instantiate the metaslab groups (this will dirty the vdevs)
5905 * we can no longer error exit past this point
5906 */
5907 for (int c = 0; error == 0 && c < rvd->vdev_children; c++) {
5908 vdev_t *vd = rvd->vdev_child[c];
5909
5910 vdev_metaslab_set_size(vd);
5911 vdev_expand(vd, txg);
5912 }
5913 }
5914
5915 spa_config_exit(spa, SCL_ALL, FTAG);
5916
5917 if (error != 0) {
5918 spa_unload(spa);
5919 spa_deactivate(spa);
5920 spa_remove(spa);
5921 mutex_exit(&spa_namespace_lock);
5922 return (error);
5923 }
5924
5925 /*
5926 * Get the list of spares, if specified.
5927 */
5928 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5929 &spares, &nspares) == 0) {
5930 spa->spa_spares.sav_config = fnvlist_alloc();
5931 fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
5932 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
5933 nspares);
5934 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5935 spa_load_spares(spa);
5936 spa_config_exit(spa, SCL_ALL, FTAG);
5937 spa->spa_spares.sav_sync = B_TRUE;
5938 }
5939
5940 /*
5941 * Get the list of level 2 cache devices, if specified.
5942 */
5943 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5944 &l2cache, &nl2cache) == 0) {
5945 VERIFY0(nvlist_alloc(&spa->spa_l2cache.sav_config,
5946 NV_UNIQUE_NAME, KM_SLEEP));
5947 fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
5948 ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
5949 nl2cache);
5950 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5951 spa_load_l2cache(spa);
5952 spa_config_exit(spa, SCL_ALL, FTAG);
5953 spa->spa_l2cache.sav_sync = B_TRUE;
5954 }
5955
5956 spa->spa_is_initializing = B_TRUE;
5957 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg);
5958 spa->spa_is_initializing = B_FALSE;
5959
5960 /*
5961 * Create DDTs (dedup tables).
5962 */
5963 ddt_create(spa);
5964
5965 spa_update_dspace(spa);
5966
5967 tx = dmu_tx_create_assigned(dp, txg);
5968
5969 /*
5970 * Create the pool's history object.
5971 */
5972 if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history)
5973 spa_history_create_obj(spa, tx);
5974
5975 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
5976 spa_history_log_version(spa, "create", tx);
5977
5978 /*
5979 * Create the pool config object.
5980 */
5981 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
5982 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
5983 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
5984
5985 if (zap_add(spa->spa_meta_objset,
5986 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
5987 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
5988 cmn_err(CE_PANIC, "failed to add pool config");
5989 }
5990
5991 if (zap_add(spa->spa_meta_objset,
5992 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
5993 sizeof (uint64_t), 1, &version, tx) != 0) {
5994 cmn_err(CE_PANIC, "failed to add pool version");
5995 }
5996
5997 /* Newly created pools with the right version are always deflated. */
5998 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
5999 spa->spa_deflate = TRUE;
6000 if (zap_add(spa->spa_meta_objset,
6001 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6002 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
6003 cmn_err(CE_PANIC, "failed to add deflate");
6004 }
6005 }
6006
6007 /*
6008 * Create the deferred-free bpobj. Turn off compression
6009 * because sync-to-convergence takes longer if the blocksize
6010 * keeps changing.
6011 */
6012 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
6013 dmu_object_set_compress(spa->spa_meta_objset, obj,
6014 ZIO_COMPRESS_OFF, tx);
6015 if (zap_add(spa->spa_meta_objset,
6016 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
6017 sizeof (uint64_t), 1, &obj, tx) != 0) {
6018 cmn_err(CE_PANIC, "failed to add bpobj");
6019 }
6020 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
6021 spa->spa_meta_objset, obj));
6022
6023 /*
6024 * Generate some random noise for salted checksums to operate on.
6025 */
6026 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
6027 sizeof (spa->spa_cksum_salt.zcs_bytes));
6028
6029 /*
6030 * Set pool properties.
6031 */
6032 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
6033 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
6034 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
6035 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
6036 spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
6037 spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM);
6038
6039 if (props != NULL) {
6040 spa_configfile_set(spa, props, B_FALSE);
6041 spa_sync_props(props, tx);
6042 }
6043
6044 for (int i = 0; i < ndraid; i++)
6045 spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
6046
6047 dmu_tx_commit(tx);
6048
6049 spa->spa_sync_on = B_TRUE;
6050 txg_sync_start(dp);
6051 mmp_thread_start(spa);
6052 txg_wait_synced(dp, txg);
6053
6054 spa_spawn_aux_threads(spa);
6055
6056 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
6057
6058 /*
6059 * Don't count references from objsets that are already closed
6060 * and are making their way through the eviction process.
6061 */
6062 spa_evicting_os_wait(spa);
6063 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
6064 spa->spa_load_state = SPA_LOAD_NONE;
6065
6066 spa_import_os(spa);
6067
6068 mutex_exit(&spa_namespace_lock);
6069
6070 return (0);
6071 }
6072
6073 /*
6074 * Import a non-root pool into the system.
6075 */
6076 int
6077 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
6078 {
6079 spa_t *spa;
6080 char *altroot = NULL;
6081 spa_load_state_t state = SPA_LOAD_IMPORT;
6082 zpool_load_policy_t policy;
6083 spa_mode_t mode = spa_mode_global;
6084 uint64_t readonly = B_FALSE;
6085 int error;
6086 nvlist_t *nvroot;
6087 nvlist_t **spares, **l2cache;
6088 uint_t nspares, nl2cache;
6089
6090 /*
6091 * If a pool with this name exists, return failure.
6092 */
6093 mutex_enter(&spa_namespace_lock);
6094 if (spa_lookup(pool) != NULL) {
6095 mutex_exit(&spa_namespace_lock);
6096 return (SET_ERROR(EEXIST));
6097 }
6098
6099 /*
6100 * Create and initialize the spa structure.
6101 */
6102 (void) nvlist_lookup_string(props,
6103 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6104 (void) nvlist_lookup_uint64(props,
6105 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
6106 if (readonly)
6107 mode = SPA_MODE_READ;
6108 spa = spa_add(pool, config, altroot);
6109 spa->spa_import_flags = flags;
6110
6111 /*
6112 * Verbatim import - Take a pool and insert it into the namespace
6113 * as if it had been loaded at boot.
6114 */
6115 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
6116 if (props != NULL)
6117 spa_configfile_set(spa, props, B_FALSE);
6118
6119 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE);
6120 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6121 zfs_dbgmsg("spa_import: verbatim import of %s", pool);
6122 mutex_exit(&spa_namespace_lock);
6123 return (0);
6124 }
6125
6126 spa_activate(spa, mode);
6127
6128 /*
6129 * Don't start async tasks until we know everything is healthy.
6130 */
6131 spa_async_suspend(spa);
6132
6133 zpool_get_load_policy(config, &policy);
6134 if (policy.zlp_rewind & ZPOOL_DO_REWIND)
6135 state = SPA_LOAD_RECOVER;
6136
6137 spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
6138
6139 if (state != SPA_LOAD_RECOVER) {
6140 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
6141 zfs_dbgmsg("spa_import: importing %s", pool);
6142 } else {
6143 zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
6144 "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
6145 }
6146 error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
6147
6148 /*
6149 * Propagate anything learned while loading the pool and pass it
6150 * back to caller (i.e. rewind info, missing devices, etc).
6151 */
6152 fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info);
6153
6154 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6155 /*
6156 * Toss any existing sparelist, as it doesn't have any validity
6157 * anymore, and conflicts with spa_has_spare().
6158 */
6159 if (spa->spa_spares.sav_config) {
6160 nvlist_free(spa->spa_spares.sav_config);
6161 spa->spa_spares.sav_config = NULL;
6162 spa_load_spares(spa);
6163 }
6164 if (spa->spa_l2cache.sav_config) {
6165 nvlist_free(spa->spa_l2cache.sav_config);
6166 spa->spa_l2cache.sav_config = NULL;
6167 spa_load_l2cache(spa);
6168 }
6169
6170 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
6171 spa_config_exit(spa, SCL_ALL, FTAG);
6172
6173 if (props != NULL)
6174 spa_configfile_set(spa, props, B_FALSE);
6175
6176 if (error != 0 || (props && spa_writeable(spa) &&
6177 (error = spa_prop_set(spa, props)))) {
6178 spa_unload(spa);
6179 spa_deactivate(spa);
6180 spa_remove(spa);
6181 mutex_exit(&spa_namespace_lock);
6182 return (error);
6183 }
6184
6185 spa_async_resume(spa);
6186
6187 /*
6188 * Override any spares and level 2 cache devices as specified by
6189 * the user, as these may have correct device names/devids, etc.
6190 */
6191 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6192 &spares, &nspares) == 0) {
6193 if (spa->spa_spares.sav_config)
6194 fnvlist_remove(spa->spa_spares.sav_config,
6195 ZPOOL_CONFIG_SPARES);
6196 else
6197 spa->spa_spares.sav_config = fnvlist_alloc();
6198 fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
6199 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
6200 nspares);
6201 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6202 spa_load_spares(spa);
6203 spa_config_exit(spa, SCL_ALL, FTAG);
6204 spa->spa_spares.sav_sync = B_TRUE;
6205 }
6206 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6207 &l2cache, &nl2cache) == 0) {
6208 if (spa->spa_l2cache.sav_config)
6209 fnvlist_remove(spa->spa_l2cache.sav_config,
6210 ZPOOL_CONFIG_L2CACHE);
6211 else
6212 spa->spa_l2cache.sav_config = fnvlist_alloc();
6213 fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6214 ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
6215 nl2cache);
6216 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6217 spa_load_l2cache(spa);
6218 spa_config_exit(spa, SCL_ALL, FTAG);
6219 spa->spa_l2cache.sav_sync = B_TRUE;
6220 }
6221
6222 /*
6223 * Check for any removed devices.
6224 */
6225 if (spa->spa_autoreplace) {
6226 spa_aux_check_removed(&spa->spa_spares);
6227 spa_aux_check_removed(&spa->spa_l2cache);
6228 }
6229
6230 if (spa_writeable(spa)) {
6231 /*
6232 * Update the config cache to include the newly-imported pool.
6233 */
6234 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6235 }
6236
6237 /*
6238 * It's possible that the pool was expanded while it was exported.
6239 * We kick off an async task to handle this for us.
6240 */
6241 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
6242
6243 spa_history_log_version(spa, "import", NULL);
6244
6245 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6246
6247 mutex_exit(&spa_namespace_lock);
6248
6249 zvol_create_minors_recursive(pool);
6250
6251 spa_import_os(spa);
6252
6253 return (0);
6254 }
6255
6256 nvlist_t *
6257 spa_tryimport(nvlist_t *tryconfig)
6258 {
6259 nvlist_t *config = NULL;
6260 char *poolname, *cachefile;
6261 spa_t *spa;
6262 uint64_t state;
6263 int error;
6264 zpool_load_policy_t policy;
6265
6266 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
6267 return (NULL);
6268
6269 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
6270 return (NULL);
6271
6272 /*
6273 * Create and initialize the spa structure.
6274 */
6275 mutex_enter(&spa_namespace_lock);
6276 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
6277 spa_activate(spa, SPA_MODE_READ);
6278
6279 /*
6280 * Rewind pool if a max txg was provided.
6281 */
6282 zpool_get_load_policy(spa->spa_config, &policy);
6283 if (policy.zlp_txg != UINT64_MAX) {
6284 spa->spa_load_max_txg = policy.zlp_txg;
6285 spa->spa_extreme_rewind = B_TRUE;
6286 zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
6287 poolname, (longlong_t)policy.zlp_txg);
6288 } else {
6289 zfs_dbgmsg("spa_tryimport: importing %s", poolname);
6290 }
6291
6292 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
6293 == 0) {
6294 zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
6295 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
6296 } else {
6297 spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
6298 }
6299
6300 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
6301
6302 /*
6303 * If 'tryconfig' was at least parsable, return the current config.
6304 */
6305 if (spa->spa_root_vdev != NULL) {
6306 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
6307 fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, poolname);
6308 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, state);
6309 fnvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
6310 spa->spa_uberblock.ub_timestamp);
6311 fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
6312 spa->spa_load_info);
6313 fnvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA,
6314 spa->spa_errata);
6315
6316 /*
6317 * If the bootfs property exists on this pool then we
6318 * copy it out so that external consumers can tell which
6319 * pools are bootable.
6320 */
6321 if ((!error || error == EEXIST) && spa->spa_bootfs) {
6322 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6323
6324 /*
6325 * We have to play games with the name since the
6326 * pool was opened as TRYIMPORT_NAME.
6327 */
6328 if (dsl_dsobj_to_dsname(spa_name(spa),
6329 spa->spa_bootfs, tmpname) == 0) {
6330 char *cp;
6331 char *dsname;
6332
6333 dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6334
6335 cp = strchr(tmpname, '/');
6336 if (cp == NULL) {
6337 (void) strlcpy(dsname, tmpname,
6338 MAXPATHLEN);
6339 } else {
6340 (void) snprintf(dsname, MAXPATHLEN,
6341 "%s/%s", poolname, ++cp);
6342 }
6343 fnvlist_add_string(config, ZPOOL_CONFIG_BOOTFS,
6344 dsname);
6345 kmem_free(dsname, MAXPATHLEN);
6346 }
6347 kmem_free(tmpname, MAXPATHLEN);
6348 }
6349
6350 /*
6351 * Add the list of hot spares and level 2 cache devices.
6352 */
6353 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6354 spa_add_spares(spa, config);
6355 spa_add_l2cache(spa, config);
6356 spa_config_exit(spa, SCL_CONFIG, FTAG);
6357 }
6358
6359 spa_unload(spa);
6360 spa_deactivate(spa);
6361 spa_remove(spa);
6362 mutex_exit(&spa_namespace_lock);
6363
6364 return (config);
6365 }
6366
6367 /*
6368 * Pool export/destroy
6369 *
6370 * The act of destroying or exporting a pool is very simple. We make sure there
6371 * is no more pending I/O and any references to the pool are gone. Then, we
6372 * update the pool state and sync all the labels to disk, removing the
6373 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
6374 * we don't sync the labels or remove the configuration cache.
6375 */
6376 static int
6377 spa_export_common(const char *pool, int new_state, nvlist_t **oldconfig,
6378 boolean_t force, boolean_t hardforce)
6379 {
6380 int error;
6381 spa_t *spa;
6382
6383 if (oldconfig)
6384 *oldconfig = NULL;
6385
6386 if (!(spa_mode_global & SPA_MODE_WRITE))
6387 return (SET_ERROR(EROFS));
6388
6389 mutex_enter(&spa_namespace_lock);
6390 if ((spa = spa_lookup(pool)) == NULL) {
6391 mutex_exit(&spa_namespace_lock);
6392 return (SET_ERROR(ENOENT));
6393 }
6394
6395 if (spa->spa_is_exporting) {
6396 /* the pool is being exported by another thread */
6397 mutex_exit(&spa_namespace_lock);
6398 return (SET_ERROR(ZFS_ERR_EXPORT_IN_PROGRESS));
6399 }
6400 spa->spa_is_exporting = B_TRUE;
6401
6402 /*
6403 * Put a hold on the pool, drop the namespace lock, stop async tasks,
6404 * reacquire the namespace lock, and see if we can export.
6405 */
6406 spa_open_ref(spa, FTAG);
6407 mutex_exit(&spa_namespace_lock);
6408 spa_async_suspend(spa);
6409 if (spa->spa_zvol_taskq) {
6410 zvol_remove_minors(spa, spa_name(spa), B_TRUE);
6411 taskq_wait(spa->spa_zvol_taskq);
6412 }
6413 mutex_enter(&spa_namespace_lock);
6414 spa_close(spa, FTAG);
6415
6416 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
6417 goto export_spa;
6418 /*
6419 * The pool will be in core if it's openable, in which case we can
6420 * modify its state. Objsets may be open only because they're dirty,
6421 * so we have to force it to sync before checking spa_refcnt.
6422 */
6423 if (spa->spa_sync_on) {
6424 txg_wait_synced(spa->spa_dsl_pool, 0);
6425 spa_evicting_os_wait(spa);
6426 }
6427
6428 /*
6429 * A pool cannot be exported or destroyed if there are active
6430 * references. If we are resetting a pool, allow references by
6431 * fault injection handlers.
6432 */
6433 if (!spa_refcount_zero(spa) || (spa->spa_inject_ref != 0)) {
6434 error = SET_ERROR(EBUSY);
6435 goto fail;
6436 }
6437
6438 if (spa->spa_sync_on) {
6439 vdev_t *rvd = spa->spa_root_vdev;
6440 /*
6441 * A pool cannot be exported if it has an active shared spare.
6442 * This is to prevent other pools stealing the active spare
6443 * from an exported pool. At user's own will, such pool can
6444 * be forcedly exported.
6445 */
6446 if (!force && new_state == POOL_STATE_EXPORTED &&
6447 spa_has_active_shared_spare(spa)) {
6448 error = SET_ERROR(EXDEV);
6449 goto fail;
6450 }
6451
6452 /*
6453 * We're about to export or destroy this pool. Make sure
6454 * we stop all initialization and trim activity here before
6455 * we set the spa_final_txg. This will ensure that all
6456 * dirty data resulting from the initialization is
6457 * committed to disk before we unload the pool.
6458 */
6459 vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE);
6460 vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE);
6461 vdev_autotrim_stop_all(spa);
6462 vdev_rebuild_stop_all(spa);
6463
6464 /*
6465 * We want this to be reflected on every label,
6466 * so mark them all dirty. spa_unload() will do the
6467 * final sync that pushes these changes out.
6468 */
6469 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
6470 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6471 spa->spa_state = new_state;
6472 vdev_config_dirty(rvd);
6473 spa_config_exit(spa, SCL_ALL, FTAG);
6474 }
6475
6476 /*
6477 * If the log space map feature is enabled and the pool is
6478 * getting exported (but not destroyed), we want to spend some
6479 * time flushing as many metaslabs as we can in an attempt to
6480 * destroy log space maps and save import time. This has to be
6481 * done before we set the spa_final_txg, otherwise
6482 * spa_sync() -> spa_flush_metaslabs() may dirty the final TXGs.
6483 * spa_should_flush_logs_on_unload() should be called after
6484 * spa_state has been set to the new_state.
6485 */
6486 if (spa_should_flush_logs_on_unload(spa))
6487 spa_unload_log_sm_flush_all(spa);
6488
6489 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
6490 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6491 spa->spa_final_txg = spa_last_synced_txg(spa) +
6492 TXG_DEFER_SIZE + 1;
6493 spa_config_exit(spa, SCL_ALL, FTAG);
6494 }
6495 }
6496
6497 export_spa:
6498 spa_export_os(spa);
6499
6500 if (new_state == POOL_STATE_DESTROYED)
6501 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
6502 else if (new_state == POOL_STATE_EXPORTED)
6503 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT);
6504
6505 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6506 spa_unload(spa);
6507 spa_deactivate(spa);
6508 }
6509
6510 if (oldconfig && spa->spa_config)
6511 *oldconfig = fnvlist_dup(spa->spa_config);
6512
6513 if (new_state != POOL_STATE_UNINITIALIZED) {
6514 if (!hardforce)
6515 spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
6516 spa_remove(spa);
6517 } else {
6518 /*
6519 * If spa_remove() is not called for this spa_t and
6520 * there is any possibility that it can be reused,
6521 * we make sure to reset the exporting flag.
6522 */
6523 spa->spa_is_exporting = B_FALSE;
6524 }
6525
6526 mutex_exit(&spa_namespace_lock);
6527 return (0);
6528
6529 fail:
6530 spa->spa_is_exporting = B_FALSE;
6531 spa_async_resume(spa);
6532 mutex_exit(&spa_namespace_lock);
6533 return (error);
6534 }
6535
6536 /*
6537 * Destroy a storage pool.
6538 */
6539 int
6540 spa_destroy(const char *pool)
6541 {
6542 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
6543 B_FALSE, B_FALSE));
6544 }
6545
6546 /*
6547 * Export a storage pool.
6548 */
6549 int
6550 spa_export(const char *pool, nvlist_t **oldconfig, boolean_t force,
6551 boolean_t hardforce)
6552 {
6553 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
6554 force, hardforce));
6555 }
6556
6557 /*
6558 * Similar to spa_export(), this unloads the spa_t without actually removing it
6559 * from the namespace in any way.
6560 */
6561 int
6562 spa_reset(const char *pool)
6563 {
6564 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
6565 B_FALSE, B_FALSE));
6566 }
6567
6568 /*
6569 * ==========================================================================
6570 * Device manipulation
6571 * ==========================================================================
6572 */
6573
6574 /*
6575 * This is called as a synctask to increment the draid feature flag
6576 */
6577 static void
6578 spa_draid_feature_incr(void *arg, dmu_tx_t *tx)
6579 {
6580 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6581 int draid = (int)(uintptr_t)arg;
6582
6583 for (int c = 0; c < draid; c++)
6584 spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
6585 }
6586
6587 /*
6588 * Add a device to a storage pool.
6589 */
6590 int
6591 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
6592 {
6593 uint64_t txg, ndraid = 0;
6594 int error;
6595 vdev_t *rvd = spa->spa_root_vdev;
6596 vdev_t *vd, *tvd;
6597 nvlist_t **spares, **l2cache;
6598 uint_t nspares, nl2cache;
6599
6600 ASSERT(spa_writeable(spa));
6601
6602 txg = spa_vdev_enter(spa);
6603
6604 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
6605 VDEV_ALLOC_ADD)) != 0)
6606 return (spa_vdev_exit(spa, NULL, txg, error));
6607
6608 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
6609
6610 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
6611 &nspares) != 0)
6612 nspares = 0;
6613
6614 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
6615 &nl2cache) != 0)
6616 nl2cache = 0;
6617
6618 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
6619 return (spa_vdev_exit(spa, vd, txg, EINVAL));
6620
6621 if (vd->vdev_children != 0 &&
6622 (error = vdev_create(vd, txg, B_FALSE)) != 0) {
6623 return (spa_vdev_exit(spa, vd, txg, error));
6624 }
6625
6626 /*
6627 * The virtual dRAID spares must be added after vdev tree is created
6628 * and the vdev guids are generated. The guid of their associated
6629 * dRAID is stored in the config and used when opening the spare.
6630 */
6631 if ((error = vdev_draid_spare_create(nvroot, vd, &ndraid,
6632 rvd->vdev_children)) == 0) {
6633 if (ndraid > 0 && nvlist_lookup_nvlist_array(nvroot,
6634 ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0)
6635 nspares = 0;
6636 } else {
6637 return (spa_vdev_exit(spa, vd, txg, error));
6638 }
6639
6640 /*
6641 * We must validate the spares and l2cache devices after checking the
6642 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
6643 */
6644 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
6645 return (spa_vdev_exit(spa, vd, txg, error));
6646
6647 /*
6648 * If we are in the middle of a device removal, we can only add
6649 * devices which match the existing devices in the pool.
6650 * If we are in the middle of a removal, or have some indirect
6651 * vdevs, we can not add raidz or dRAID top levels.
6652 */
6653 if (spa->spa_vdev_removal != NULL ||
6654 spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
6655 for (int c = 0; c < vd->vdev_children; c++) {
6656 tvd = vd->vdev_child[c];
6657 if (spa->spa_vdev_removal != NULL &&
6658 tvd->vdev_ashift != spa->spa_max_ashift) {
6659 return (spa_vdev_exit(spa, vd, txg, EINVAL));
6660 }
6661 /* Fail if top level vdev is raidz or a dRAID */
6662 if (vdev_get_nparity(tvd) != 0)
6663 return (spa_vdev_exit(spa, vd, txg, EINVAL));
6664
6665 /*
6666 * Need the top level mirror to be
6667 * a mirror of leaf vdevs only
6668 */
6669 if (tvd->vdev_ops == &vdev_mirror_ops) {
6670 for (uint64_t cid = 0;
6671 cid < tvd->vdev_children; cid++) {
6672 vdev_t *cvd = tvd->vdev_child[cid];
6673 if (!cvd->vdev_ops->vdev_op_leaf) {
6674 return (spa_vdev_exit(spa, vd,
6675 txg, EINVAL));
6676 }
6677 }
6678 }
6679 }
6680 }
6681
6682 for (int c = 0; c < vd->vdev_children; c++) {
6683 tvd = vd->vdev_child[c];
6684 vdev_remove_child(vd, tvd);
6685 tvd->vdev_id = rvd->vdev_children;
6686 vdev_add_child(rvd, tvd);
6687 vdev_config_dirty(tvd);
6688 }
6689
6690 if (nspares != 0) {
6691 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
6692 ZPOOL_CONFIG_SPARES);
6693 spa_load_spares(spa);
6694 spa->spa_spares.sav_sync = B_TRUE;
6695 }
6696
6697 if (nl2cache != 0) {
6698 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
6699 ZPOOL_CONFIG_L2CACHE);
6700 spa_load_l2cache(spa);
6701 spa->spa_l2cache.sav_sync = B_TRUE;
6702 }
6703
6704 /*
6705 * We can't increment a feature while holding spa_vdev so we
6706 * have to do it in a synctask.
6707 */
6708 if (ndraid != 0) {
6709 dmu_tx_t *tx;
6710
6711 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
6712 dsl_sync_task_nowait(spa->spa_dsl_pool, spa_draid_feature_incr,
6713 (void *)(uintptr_t)ndraid, tx);
6714 dmu_tx_commit(tx);
6715 }
6716
6717 /*
6718 * We have to be careful when adding new vdevs to an existing pool.
6719 * If other threads start allocating from these vdevs before we
6720 * sync the config cache, and we lose power, then upon reboot we may
6721 * fail to open the pool because there are DVAs that the config cache
6722 * can't translate. Therefore, we first add the vdevs without
6723 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
6724 * and then let spa_config_update() initialize the new metaslabs.
6725 *
6726 * spa_load() checks for added-but-not-initialized vdevs, so that
6727 * if we lose power at any point in this sequence, the remaining
6728 * steps will be completed the next time we load the pool.
6729 */
6730 (void) spa_vdev_exit(spa, vd, txg, 0);
6731
6732 mutex_enter(&spa_namespace_lock);
6733 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6734 spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
6735 mutex_exit(&spa_namespace_lock);
6736
6737 return (0);
6738 }
6739
6740 /*
6741 * Attach a device to a mirror. The arguments are the path to any device
6742 * in the mirror, and the nvroot for the new device. If the path specifies
6743 * a device that is not mirrored, we automatically insert the mirror vdev.
6744 *
6745 * If 'replacing' is specified, the new device is intended to replace the
6746 * existing device; in this case the two devices are made into their own
6747 * mirror using the 'replacing' vdev, which is functionally identical to
6748 * the mirror vdev (it actually reuses all the same ops) but has a few
6749 * extra rules: you can't attach to it after it's been created, and upon
6750 * completion of resilvering, the first disk (the one being replaced)
6751 * is automatically detached.
6752 *
6753 * If 'rebuild' is specified, then sequential reconstruction (a.ka. rebuild)
6754 * should be performed instead of traditional healing reconstruction. From
6755 * an administrators perspective these are both resilver operations.
6756 */
6757 int
6758 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing,
6759 int rebuild)
6760 {
6761 uint64_t txg, dtl_max_txg;
6762 vdev_t *rvd = spa->spa_root_vdev;
6763 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
6764 vdev_ops_t *pvops;
6765 char *oldvdpath, *newvdpath;
6766 int newvd_isspare;
6767 int error;
6768
6769 ASSERT(spa_writeable(spa));
6770
6771 txg = spa_vdev_enter(spa);
6772
6773 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
6774
6775 ASSERT(MUTEX_HELD(&spa_namespace_lock));
6776 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6777 error = (spa_has_checkpoint(spa)) ?
6778 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6779 return (spa_vdev_exit(spa, NULL, txg, error));
6780 }
6781
6782 if (rebuild) {
6783 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD))
6784 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6785
6786 if (dsl_scan_resilvering(spa_get_dsl(spa)))
6787 return (spa_vdev_exit(spa, NULL, txg,
6788 ZFS_ERR_RESILVER_IN_PROGRESS));
6789 } else {
6790 if (vdev_rebuild_active(rvd))
6791 return (spa_vdev_exit(spa, NULL, txg,
6792 ZFS_ERR_REBUILD_IN_PROGRESS));
6793 }
6794
6795 if (spa->spa_vdev_removal != NULL)
6796 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6797
6798 if (oldvd == NULL)
6799 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
6800
6801 if (!oldvd->vdev_ops->vdev_op_leaf)
6802 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6803
6804 pvd = oldvd->vdev_parent;
6805
6806 if (spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
6807 VDEV_ALLOC_ATTACH) != 0)
6808 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6809
6810 if (newrootvd->vdev_children != 1)
6811 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6812
6813 newvd = newrootvd->vdev_child[0];
6814
6815 if (!newvd->vdev_ops->vdev_op_leaf)
6816 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6817
6818 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
6819 return (spa_vdev_exit(spa, newrootvd, txg, error));
6820
6821 /*
6822 * log, dedup and special vdevs should not be replaced by spares.
6823 */
6824 if ((oldvd->vdev_top->vdev_alloc_bias != VDEV_BIAS_NONE ||
6825 oldvd->vdev_top->vdev_islog) && newvd->vdev_isspare) {
6826 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6827 }
6828
6829 /*
6830 * A dRAID spare can only replace a child of its parent dRAID vdev.
6831 */
6832 if (newvd->vdev_ops == &vdev_draid_spare_ops &&
6833 oldvd->vdev_top != vdev_draid_spare_get_parent(newvd)) {
6834 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6835 }
6836
6837 if (rebuild) {
6838 /*
6839 * For rebuilds, the top vdev must support reconstruction
6840 * using only space maps. This means the only allowable
6841 * vdevs types are the root vdev, a mirror, or dRAID.
6842 */
6843 tvd = pvd;
6844 if (pvd->vdev_top != NULL)
6845 tvd = pvd->vdev_top;
6846
6847 if (tvd->vdev_ops != &vdev_mirror_ops &&
6848 tvd->vdev_ops != &vdev_root_ops &&
6849 tvd->vdev_ops != &vdev_draid_ops) {
6850 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6851 }
6852 }
6853
6854 if (!replacing) {
6855 /*
6856 * For attach, the only allowable parent is a mirror or the root
6857 * vdev.
6858 */
6859 if (pvd->vdev_ops != &vdev_mirror_ops &&
6860 pvd->vdev_ops != &vdev_root_ops)
6861 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6862
6863 pvops = &vdev_mirror_ops;
6864 } else {
6865 /*
6866 * Active hot spares can only be replaced by inactive hot
6867 * spares.
6868 */
6869 if (pvd->vdev_ops == &vdev_spare_ops &&
6870 oldvd->vdev_isspare &&
6871 !spa_has_spare(spa, newvd->vdev_guid))
6872 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6873
6874 /*
6875 * If the source is a hot spare, and the parent isn't already a
6876 * spare, then we want to create a new hot spare. Otherwise, we
6877 * want to create a replacing vdev. The user is not allowed to
6878 * attach to a spared vdev child unless the 'isspare' state is
6879 * the same (spare replaces spare, non-spare replaces
6880 * non-spare).
6881 */
6882 if (pvd->vdev_ops == &vdev_replacing_ops &&
6883 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
6884 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6885 } else if (pvd->vdev_ops == &vdev_spare_ops &&
6886 newvd->vdev_isspare != oldvd->vdev_isspare) {
6887 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6888 }
6889
6890 if (newvd->vdev_isspare)
6891 pvops = &vdev_spare_ops;
6892 else
6893 pvops = &vdev_replacing_ops;
6894 }
6895
6896 /*
6897 * Make sure the new device is big enough.
6898 */
6899 if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
6900 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
6901
6902 /*
6903 * The new device cannot have a higher alignment requirement
6904 * than the top-level vdev.
6905 */
6906 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
6907 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6908
6909 /*
6910 * If this is an in-place replacement, update oldvd's path and devid
6911 * to make it distinguishable from newvd, and unopenable from now on.
6912 */
6913 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
6914 spa_strfree(oldvd->vdev_path);
6915 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
6916 KM_SLEEP);
6917 (void) snprintf(oldvd->vdev_path, strlen(newvd->vdev_path) + 5,
6918 "%s/%s", newvd->vdev_path, "old");
6919 if (oldvd->vdev_devid != NULL) {
6920 spa_strfree(oldvd->vdev_devid);
6921 oldvd->vdev_devid = NULL;
6922 }
6923 }
6924
6925 /*
6926 * If the parent is not a mirror, or if we're replacing, insert the new
6927 * mirror/replacing/spare vdev above oldvd.
6928 */
6929 if (pvd->vdev_ops != pvops)
6930 pvd = vdev_add_parent(oldvd, pvops);
6931
6932 ASSERT(pvd->vdev_top->vdev_parent == rvd);
6933 ASSERT(pvd->vdev_ops == pvops);
6934 ASSERT(oldvd->vdev_parent == pvd);
6935
6936 /*
6937 * Extract the new device from its root and add it to pvd.
6938 */
6939 vdev_remove_child(newrootvd, newvd);
6940 newvd->vdev_id = pvd->vdev_children;
6941 newvd->vdev_crtxg = oldvd->vdev_crtxg;
6942 vdev_add_child(pvd, newvd);
6943
6944 /*
6945 * Reevaluate the parent vdev state.
6946 */
6947 vdev_propagate_state(pvd);
6948
6949 tvd = newvd->vdev_top;
6950 ASSERT(pvd->vdev_top == tvd);
6951 ASSERT(tvd->vdev_parent == rvd);
6952
6953 vdev_config_dirty(tvd);
6954
6955 /*
6956 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
6957 * for any dmu_sync-ed blocks. It will propagate upward when
6958 * spa_vdev_exit() calls vdev_dtl_reassess().
6959 */
6960 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
6961
6962 vdev_dtl_dirty(newvd, DTL_MISSING,
6963 TXG_INITIAL, dtl_max_txg - TXG_INITIAL);
6964
6965 if (newvd->vdev_isspare) {
6966 spa_spare_activate(newvd);
6967 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
6968 }
6969
6970 oldvdpath = spa_strdup(oldvd->vdev_path);
6971 newvdpath = spa_strdup(newvd->vdev_path);
6972 newvd_isspare = newvd->vdev_isspare;
6973
6974 /*
6975 * Mark newvd's DTL dirty in this txg.
6976 */
6977 vdev_dirty(tvd, VDD_DTL, newvd, txg);
6978
6979 /*
6980 * Schedule the resilver or rebuild to restart in the future. We do
6981 * this to ensure that dmu_sync-ed blocks have been stitched into the
6982 * respective datasets.
6983 */
6984 if (rebuild) {
6985 newvd->vdev_rebuild_txg = txg;
6986
6987 vdev_rebuild(tvd);
6988 } else {
6989 newvd->vdev_resilver_txg = txg;
6990
6991 if (dsl_scan_resilvering(spa_get_dsl(spa)) &&
6992 spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER)) {
6993 vdev_defer_resilver(newvd);
6994 } else {
6995 dsl_scan_restart_resilver(spa->spa_dsl_pool,
6996 dtl_max_txg);
6997 }
6998 }
6999
7000 if (spa->spa_bootfs)
7001 spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
7002
7003 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
7004
7005 /*
7006 * Commit the config
7007 */
7008 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
7009
7010 spa_history_log_internal(spa, "vdev attach", NULL,
7011 "%s vdev=%s %s vdev=%s",
7012 replacing && newvd_isspare ? "spare in" :
7013 replacing ? "replace" : "attach", newvdpath,
7014 replacing ? "for" : "to", oldvdpath);
7015
7016 spa_strfree(oldvdpath);
7017 spa_strfree(newvdpath);
7018
7019 return (0);
7020 }
7021
7022 /*
7023 * Detach a device from a mirror or replacing vdev.
7024 *
7025 * If 'replace_done' is specified, only detach if the parent
7026 * is a replacing vdev.
7027 */
7028 int
7029 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
7030 {
7031 uint64_t txg;
7032 int error;
7033 vdev_t *rvd __maybe_unused = spa->spa_root_vdev;
7034 vdev_t *vd, *pvd, *cvd, *tvd;
7035 boolean_t unspare = B_FALSE;
7036 uint64_t unspare_guid = 0;
7037 char *vdpath;
7038
7039 ASSERT(spa_writeable(spa));
7040
7041 txg = spa_vdev_detach_enter(spa, guid);
7042
7043 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7044
7045 /*
7046 * Besides being called directly from the userland through the
7047 * ioctl interface, spa_vdev_detach() can be potentially called
7048 * at the end of spa_vdev_resilver_done().
7049 *
7050 * In the regular case, when we have a checkpoint this shouldn't
7051 * happen as we never empty the DTLs of a vdev during the scrub
7052 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
7053 * should never get here when we have a checkpoint.
7054 *
7055 * That said, even in a case when we checkpoint the pool exactly
7056 * as spa_vdev_resilver_done() calls this function everything
7057 * should be fine as the resilver will return right away.
7058 */
7059 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7060 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7061 error = (spa_has_checkpoint(spa)) ?
7062 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7063 return (spa_vdev_exit(spa, NULL, txg, error));
7064 }
7065
7066 if (vd == NULL)
7067 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
7068
7069 if (!vd->vdev_ops->vdev_op_leaf)
7070 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7071
7072 pvd = vd->vdev_parent;
7073
7074 /*
7075 * If the parent/child relationship is not as expected, don't do it.
7076 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
7077 * vdev that's replacing B with C. The user's intent in replacing
7078 * is to go from M(A,B) to M(A,C). If the user decides to cancel
7079 * the replace by detaching C, the expected behavior is to end up
7080 * M(A,B). But suppose that right after deciding to detach C,
7081 * the replacement of B completes. We would have M(A,C), and then
7082 * ask to detach C, which would leave us with just A -- not what
7083 * the user wanted. To prevent this, we make sure that the
7084 * parent/child relationship hasn't changed -- in this example,
7085 * that C's parent is still the replacing vdev R.
7086 */
7087 if (pvd->vdev_guid != pguid && pguid != 0)
7088 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7089
7090 /*
7091 * Only 'replacing' or 'spare' vdevs can be replaced.
7092 */
7093 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
7094 pvd->vdev_ops != &vdev_spare_ops)
7095 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7096
7097 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
7098 spa_version(spa) >= SPA_VERSION_SPARES);
7099
7100 /*
7101 * Only mirror, replacing, and spare vdevs support detach.
7102 */
7103 if (pvd->vdev_ops != &vdev_replacing_ops &&
7104 pvd->vdev_ops != &vdev_mirror_ops &&
7105 pvd->vdev_ops != &vdev_spare_ops)
7106 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7107
7108 /*
7109 * If this device has the only valid copy of some data,
7110 * we cannot safely detach it.
7111 */
7112 if (vdev_dtl_required(vd))
7113 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7114
7115 ASSERT(pvd->vdev_children >= 2);
7116
7117 /*
7118 * If we are detaching the second disk from a replacing vdev, then
7119 * check to see if we changed the original vdev's path to have "/old"
7120 * at the end in spa_vdev_attach(). If so, undo that change now.
7121 */
7122 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
7123 vd->vdev_path != NULL) {
7124 size_t len = strlen(vd->vdev_path);
7125
7126 for (int c = 0; c < pvd->vdev_children; c++) {
7127 cvd = pvd->vdev_child[c];
7128
7129 if (cvd == vd || cvd->vdev_path == NULL)
7130 continue;
7131
7132 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
7133 strcmp(cvd->vdev_path + len, "/old") == 0) {
7134 spa_strfree(cvd->vdev_path);
7135 cvd->vdev_path = spa_strdup(vd->vdev_path);
7136 break;
7137 }
7138 }
7139 }
7140
7141 /*
7142 * If we are detaching the original disk from a normal spare, then it
7143 * implies that the spare should become a real disk, and be removed
7144 * from the active spare list for the pool. dRAID spares on the
7145 * other hand are coupled to the pool and thus should never be removed
7146 * from the spares list.
7147 */
7148 if (pvd->vdev_ops == &vdev_spare_ops && vd->vdev_id == 0) {
7149 vdev_t *last_cvd = pvd->vdev_child[pvd->vdev_children - 1];
7150
7151 if (last_cvd->vdev_isspare &&
7152 last_cvd->vdev_ops != &vdev_draid_spare_ops) {
7153 unspare = B_TRUE;
7154 }
7155 }
7156
7157 /*
7158 * Erase the disk labels so the disk can be used for other things.
7159 * This must be done after all other error cases are handled,
7160 * but before we disembowel vd (so we can still do I/O to it).
7161 * But if we can't do it, don't treat the error as fatal --
7162 * it may be that the unwritability of the disk is the reason
7163 * it's being detached!
7164 */
7165 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
7166
7167 /*
7168 * Remove vd from its parent and compact the parent's children.
7169 */
7170 vdev_remove_child(pvd, vd);
7171 vdev_compact_children(pvd);
7172
7173 /*
7174 * Remember one of the remaining children so we can get tvd below.
7175 */
7176 cvd = pvd->vdev_child[pvd->vdev_children - 1];
7177
7178 /*
7179 * If we need to remove the remaining child from the list of hot spares,
7180 * do it now, marking the vdev as no longer a spare in the process.
7181 * We must do this before vdev_remove_parent(), because that can
7182 * change the GUID if it creates a new toplevel GUID. For a similar
7183 * reason, we must remove the spare now, in the same txg as the detach;
7184 * otherwise someone could attach a new sibling, change the GUID, and
7185 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
7186 */
7187 if (unspare) {
7188 ASSERT(cvd->vdev_isspare);
7189 spa_spare_remove(cvd);
7190 unspare_guid = cvd->vdev_guid;
7191 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
7192 cvd->vdev_unspare = B_TRUE;
7193 }
7194
7195 /*
7196 * If the parent mirror/replacing vdev only has one child,
7197 * the parent is no longer needed. Remove it from the tree.
7198 */
7199 if (pvd->vdev_children == 1) {
7200 if (pvd->vdev_ops == &vdev_spare_ops)
7201 cvd->vdev_unspare = B_FALSE;
7202 vdev_remove_parent(cvd);
7203 }
7204
7205 /*
7206 * We don't set tvd until now because the parent we just removed
7207 * may have been the previous top-level vdev.
7208 */
7209 tvd = cvd->vdev_top;
7210 ASSERT(tvd->vdev_parent == rvd);
7211
7212 /*
7213 * Reevaluate the parent vdev state.
7214 */
7215 vdev_propagate_state(cvd);
7216
7217 /*
7218 * If the 'autoexpand' property is set on the pool then automatically
7219 * try to expand the size of the pool. For example if the device we
7220 * just detached was smaller than the others, it may be possible to
7221 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
7222 * first so that we can obtain the updated sizes of the leaf vdevs.
7223 */
7224 if (spa->spa_autoexpand) {
7225 vdev_reopen(tvd);
7226 vdev_expand(tvd, txg);
7227 }
7228
7229 vdev_config_dirty(tvd);
7230
7231 /*
7232 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
7233 * vd->vdev_detached is set and free vd's DTL object in syncing context.
7234 * But first make sure we're not on any *other* txg's DTL list, to
7235 * prevent vd from being accessed after it's freed.
7236 */
7237 vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none");
7238 for (int t = 0; t < TXG_SIZE; t++)
7239 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
7240 vd->vdev_detached = B_TRUE;
7241 vdev_dirty(tvd, VDD_DTL, vd, txg);
7242
7243 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
7244 spa_notify_waiters(spa);
7245
7246 /* hang on to the spa before we release the lock */
7247 spa_open_ref(spa, FTAG);
7248
7249 error = spa_vdev_exit(spa, vd, txg, 0);
7250
7251 spa_history_log_internal(spa, "detach", NULL,
7252 "vdev=%s", vdpath);
7253 spa_strfree(vdpath);
7254
7255 /*
7256 * If this was the removal of the original device in a hot spare vdev,
7257 * then we want to go through and remove the device from the hot spare
7258 * list of every other pool.
7259 */
7260 if (unspare) {
7261 spa_t *altspa = NULL;
7262
7263 mutex_enter(&spa_namespace_lock);
7264 while ((altspa = spa_next(altspa)) != NULL) {
7265 if (altspa->spa_state != POOL_STATE_ACTIVE ||
7266 altspa == spa)
7267 continue;
7268
7269 spa_open_ref(altspa, FTAG);
7270 mutex_exit(&spa_namespace_lock);
7271 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
7272 mutex_enter(&spa_namespace_lock);
7273 spa_close(altspa, FTAG);
7274 }
7275 mutex_exit(&spa_namespace_lock);
7276
7277 /* search the rest of the vdevs for spares to remove */
7278 spa_vdev_resilver_done(spa);
7279 }
7280
7281 /* all done with the spa; OK to release */
7282 mutex_enter(&spa_namespace_lock);
7283 spa_close(spa, FTAG);
7284 mutex_exit(&spa_namespace_lock);
7285
7286 return (error);
7287 }
7288
7289 static int
7290 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
7291 list_t *vd_list)
7292 {
7293 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7294
7295 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7296
7297 /* Look up vdev and ensure it's a leaf. */
7298 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7299 if (vd == NULL || vd->vdev_detached) {
7300 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7301 return (SET_ERROR(ENODEV));
7302 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
7303 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7304 return (SET_ERROR(EINVAL));
7305 } else if (!vdev_writeable(vd)) {
7306 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7307 return (SET_ERROR(EROFS));
7308 }
7309 mutex_enter(&vd->vdev_initialize_lock);
7310 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7311
7312 /*
7313 * When we activate an initialize action we check to see
7314 * if the vdev_initialize_thread is NULL. We do this instead
7315 * of using the vdev_initialize_state since there might be
7316 * a previous initialization process which has completed but
7317 * the thread is not exited.
7318 */
7319 if (cmd_type == POOL_INITIALIZE_START &&
7320 (vd->vdev_initialize_thread != NULL ||
7321 vd->vdev_top->vdev_removing)) {
7322 mutex_exit(&vd->vdev_initialize_lock);
7323 return (SET_ERROR(EBUSY));
7324 } else if (cmd_type == POOL_INITIALIZE_CANCEL &&
7325 (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
7326 vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
7327 mutex_exit(&vd->vdev_initialize_lock);
7328 return (SET_ERROR(ESRCH));
7329 } else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
7330 vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
7331 mutex_exit(&vd->vdev_initialize_lock);
7332 return (SET_ERROR(ESRCH));
7333 }
7334
7335 switch (cmd_type) {
7336 case POOL_INITIALIZE_START:
7337 vdev_initialize(vd);
7338 break;
7339 case POOL_INITIALIZE_CANCEL:
7340 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list);
7341 break;
7342 case POOL_INITIALIZE_SUSPEND:
7343 vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list);
7344 break;
7345 default:
7346 panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
7347 }
7348 mutex_exit(&vd->vdev_initialize_lock);
7349
7350 return (0);
7351 }
7352
7353 int
7354 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
7355 nvlist_t *vdev_errlist)
7356 {
7357 int total_errors = 0;
7358 list_t vd_list;
7359
7360 list_create(&vd_list, sizeof (vdev_t),
7361 offsetof(vdev_t, vdev_initialize_node));
7362
7363 /*
7364 * We hold the namespace lock through the whole function
7365 * to prevent any changes to the pool while we're starting or
7366 * stopping initialization. The config and state locks are held so that
7367 * we can properly assess the vdev state before we commit to
7368 * the initializing operation.
7369 */
7370 mutex_enter(&spa_namespace_lock);
7371
7372 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
7373 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
7374 uint64_t vdev_guid = fnvpair_value_uint64(pair);
7375
7376 int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type,
7377 &vd_list);
7378 if (error != 0) {
7379 char guid_as_str[MAXNAMELEN];
7380
7381 (void) snprintf(guid_as_str, sizeof (guid_as_str),
7382 "%llu", (unsigned long long)vdev_guid);
7383 fnvlist_add_int64(vdev_errlist, guid_as_str, error);
7384 total_errors++;
7385 }
7386 }
7387
7388 /* Wait for all initialize threads to stop. */
7389 vdev_initialize_stop_wait(spa, &vd_list);
7390
7391 /* Sync out the initializing state */
7392 txg_wait_synced(spa->spa_dsl_pool, 0);
7393 mutex_exit(&spa_namespace_lock);
7394
7395 list_destroy(&vd_list);
7396
7397 return (total_errors);
7398 }
7399
7400 static int
7401 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
7402 uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list)
7403 {
7404 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7405
7406 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7407
7408 /* Look up vdev and ensure it's a leaf. */
7409 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7410 if (vd == NULL || vd->vdev_detached) {
7411 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7412 return (SET_ERROR(ENODEV));
7413 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
7414 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7415 return (SET_ERROR(EINVAL));
7416 } else if (!vdev_writeable(vd)) {
7417 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7418 return (SET_ERROR(EROFS));
7419 } else if (!vd->vdev_has_trim) {
7420 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7421 return (SET_ERROR(EOPNOTSUPP));
7422 } else if (secure && !vd->vdev_has_securetrim) {
7423 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7424 return (SET_ERROR(EOPNOTSUPP));
7425 }
7426 mutex_enter(&vd->vdev_trim_lock);
7427 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7428
7429 /*
7430 * When we activate a TRIM action we check to see if the
7431 * vdev_trim_thread is NULL. We do this instead of using the
7432 * vdev_trim_state since there might be a previous TRIM process
7433 * which has completed but the thread is not exited.
7434 */
7435 if (cmd_type == POOL_TRIM_START &&
7436 (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing)) {
7437 mutex_exit(&vd->vdev_trim_lock);
7438 return (SET_ERROR(EBUSY));
7439 } else if (cmd_type == POOL_TRIM_CANCEL &&
7440 (vd->vdev_trim_state != VDEV_TRIM_ACTIVE &&
7441 vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) {
7442 mutex_exit(&vd->vdev_trim_lock);
7443 return (SET_ERROR(ESRCH));
7444 } else if (cmd_type == POOL_TRIM_SUSPEND &&
7445 vd->vdev_trim_state != VDEV_TRIM_ACTIVE) {
7446 mutex_exit(&vd->vdev_trim_lock);
7447 return (SET_ERROR(ESRCH));
7448 }
7449
7450 switch (cmd_type) {
7451 case POOL_TRIM_START:
7452 vdev_trim(vd, rate, partial, secure);
7453 break;
7454 case POOL_TRIM_CANCEL:
7455 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list);
7456 break;
7457 case POOL_TRIM_SUSPEND:
7458 vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list);
7459 break;
7460 default:
7461 panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
7462 }
7463 mutex_exit(&vd->vdev_trim_lock);
7464
7465 return (0);
7466 }
7467
7468 /*
7469 * Initiates a manual TRIM for the requested vdevs. This kicks off individual
7470 * TRIM threads for each child vdev. These threads pass over all of the free
7471 * space in the vdev's metaslabs and issues TRIM commands for that space.
7472 */
7473 int
7474 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate,
7475 boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist)
7476 {
7477 int total_errors = 0;
7478 list_t vd_list;
7479
7480 list_create(&vd_list, sizeof (vdev_t),
7481 offsetof(vdev_t, vdev_trim_node));
7482
7483 /*
7484 * We hold the namespace lock through the whole function
7485 * to prevent any changes to the pool while we're starting or
7486 * stopping TRIM. The config and state locks are held so that
7487 * we can properly assess the vdev state before we commit to
7488 * the TRIM operation.
7489 */
7490 mutex_enter(&spa_namespace_lock);
7491
7492 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
7493 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
7494 uint64_t vdev_guid = fnvpair_value_uint64(pair);
7495
7496 int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type,
7497 rate, partial, secure, &vd_list);
7498 if (error != 0) {
7499 char guid_as_str[MAXNAMELEN];
7500
7501 (void) snprintf(guid_as_str, sizeof (guid_as_str),
7502 "%llu", (unsigned long long)vdev_guid);
7503 fnvlist_add_int64(vdev_errlist, guid_as_str, error);
7504 total_errors++;
7505 }
7506 }
7507
7508 /* Wait for all TRIM threads to stop. */
7509 vdev_trim_stop_wait(spa, &vd_list);
7510
7511 /* Sync out the TRIM state */
7512 txg_wait_synced(spa->spa_dsl_pool, 0);
7513 mutex_exit(&spa_namespace_lock);
7514
7515 list_destroy(&vd_list);
7516
7517 return (total_errors);
7518 }
7519
7520 /*
7521 * Split a set of devices from their mirrors, and create a new pool from them.
7522 */
7523 int
7524 spa_vdev_split_mirror(spa_t *spa, const char *newname, nvlist_t *config,
7525 nvlist_t *props, boolean_t exp)
7526 {
7527 int error = 0;
7528 uint64_t txg, *glist;
7529 spa_t *newspa;
7530 uint_t c, children, lastlog;
7531 nvlist_t **child, *nvl, *tmp;
7532 dmu_tx_t *tx;
7533 char *altroot = NULL;
7534 vdev_t *rvd, **vml = NULL; /* vdev modify list */
7535 boolean_t activate_slog;
7536
7537 ASSERT(spa_writeable(spa));
7538
7539 txg = spa_vdev_enter(spa);
7540
7541 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7542 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7543 error = (spa_has_checkpoint(spa)) ?
7544 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7545 return (spa_vdev_exit(spa, NULL, txg, error));
7546 }
7547
7548 /* clear the log and flush everything up to now */
7549 activate_slog = spa_passivate_log(spa);
7550 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
7551 error = spa_reset_logs(spa);
7552 txg = spa_vdev_config_enter(spa);
7553
7554 if (activate_slog)
7555 spa_activate_log(spa);
7556
7557 if (error != 0)
7558 return (spa_vdev_exit(spa, NULL, txg, error));
7559
7560 /* check new spa name before going any further */
7561 if (spa_lookup(newname) != NULL)
7562 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
7563
7564 /*
7565 * scan through all the children to ensure they're all mirrors
7566 */
7567 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
7568 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
7569 &children) != 0)
7570 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7571
7572 /* first, check to ensure we've got the right child count */
7573 rvd = spa->spa_root_vdev;
7574 lastlog = 0;
7575 for (c = 0; c < rvd->vdev_children; c++) {
7576 vdev_t *vd = rvd->vdev_child[c];
7577
7578 /* don't count the holes & logs as children */
7579 if (vd->vdev_islog || (vd->vdev_ops != &vdev_indirect_ops &&
7580 !vdev_is_concrete(vd))) {
7581 if (lastlog == 0)
7582 lastlog = c;
7583 continue;
7584 }
7585
7586 lastlog = 0;
7587 }
7588 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
7589 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7590
7591 /* next, ensure no spare or cache devices are part of the split */
7592 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
7593 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
7594 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7595
7596 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
7597 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
7598
7599 /* then, loop over each vdev and validate it */
7600 for (c = 0; c < children; c++) {
7601 uint64_t is_hole = 0;
7602
7603 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
7604 &is_hole);
7605
7606 if (is_hole != 0) {
7607 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
7608 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
7609 continue;
7610 } else {
7611 error = SET_ERROR(EINVAL);
7612 break;
7613 }
7614 }
7615
7616 /* deal with indirect vdevs */
7617 if (spa->spa_root_vdev->vdev_child[c]->vdev_ops ==
7618 &vdev_indirect_ops)
7619 continue;
7620
7621 /* which disk is going to be split? */
7622 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
7623 &glist[c]) != 0) {
7624 error = SET_ERROR(EINVAL);
7625 break;
7626 }
7627
7628 /* look it up in the spa */
7629 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
7630 if (vml[c] == NULL) {
7631 error = SET_ERROR(ENODEV);
7632 break;
7633 }
7634
7635 /* make sure there's nothing stopping the split */
7636 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
7637 vml[c]->vdev_islog ||
7638 !vdev_is_concrete(vml[c]) ||
7639 vml[c]->vdev_isspare ||
7640 vml[c]->vdev_isl2cache ||
7641 !vdev_writeable(vml[c]) ||
7642 vml[c]->vdev_children != 0 ||
7643 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
7644 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
7645 error = SET_ERROR(EINVAL);
7646 break;
7647 }
7648
7649 if (vdev_dtl_required(vml[c]) ||
7650 vdev_resilver_needed(vml[c], NULL, NULL)) {
7651 error = SET_ERROR(EBUSY);
7652 break;
7653 }
7654
7655 /* we need certain info from the top level */
7656 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
7657 vml[c]->vdev_top->vdev_ms_array);
7658 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
7659 vml[c]->vdev_top->vdev_ms_shift);
7660 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
7661 vml[c]->vdev_top->vdev_asize);
7662 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
7663 vml[c]->vdev_top->vdev_ashift);
7664
7665 /* transfer per-vdev ZAPs */
7666 ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
7667 VERIFY0(nvlist_add_uint64(child[c],
7668 ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
7669
7670 ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
7671 VERIFY0(nvlist_add_uint64(child[c],
7672 ZPOOL_CONFIG_VDEV_TOP_ZAP,
7673 vml[c]->vdev_parent->vdev_top_zap));
7674 }
7675
7676 if (error != 0) {
7677 kmem_free(vml, children * sizeof (vdev_t *));
7678 kmem_free(glist, children * sizeof (uint64_t));
7679 return (spa_vdev_exit(spa, NULL, txg, error));
7680 }
7681
7682 /* stop writers from using the disks */
7683 for (c = 0; c < children; c++) {
7684 if (vml[c] != NULL)
7685 vml[c]->vdev_offline = B_TRUE;
7686 }
7687 vdev_reopen(spa->spa_root_vdev);
7688
7689 /*
7690 * Temporarily record the splitting vdevs in the spa config. This
7691 * will disappear once the config is regenerated.
7692 */
7693 nvl = fnvlist_alloc();
7694 fnvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, glist, children);
7695 kmem_free(glist, children * sizeof (uint64_t));
7696
7697 mutex_enter(&spa->spa_props_lock);
7698 fnvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, nvl);
7699 mutex_exit(&spa->spa_props_lock);
7700 spa->spa_config_splitting = nvl;
7701 vdev_config_dirty(spa->spa_root_vdev);
7702
7703 /* configure and create the new pool */
7704 fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname);
7705 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
7706 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE);
7707 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa_version(spa));
7708 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg);
7709 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
7710 spa_generate_guid(NULL));
7711 VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
7712 (void) nvlist_lookup_string(props,
7713 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
7714
7715 /* add the new pool to the namespace */
7716 newspa = spa_add(newname, config, altroot);
7717 newspa->spa_avz_action = AVZ_ACTION_REBUILD;
7718 newspa->spa_config_txg = spa->spa_config_txg;
7719 spa_set_log_state(newspa, SPA_LOG_CLEAR);
7720
7721 /* release the spa config lock, retaining the namespace lock */
7722 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
7723
7724 if (zio_injection_enabled)
7725 zio_handle_panic_injection(spa, FTAG, 1);
7726
7727 spa_activate(newspa, spa_mode_global);
7728 spa_async_suspend(newspa);
7729
7730 /*
7731 * Temporarily stop the initializing and TRIM activity. We set the
7732 * state to ACTIVE so that we know to resume initializing or TRIM
7733 * once the split has completed.
7734 */
7735 list_t vd_initialize_list;
7736 list_create(&vd_initialize_list, sizeof (vdev_t),
7737 offsetof(vdev_t, vdev_initialize_node));
7738
7739 list_t vd_trim_list;
7740 list_create(&vd_trim_list, sizeof (vdev_t),
7741 offsetof(vdev_t, vdev_trim_node));
7742
7743 for (c = 0; c < children; c++) {
7744 if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
7745 mutex_enter(&vml[c]->vdev_initialize_lock);
7746 vdev_initialize_stop(vml[c],
7747 VDEV_INITIALIZE_ACTIVE, &vd_initialize_list);
7748 mutex_exit(&vml[c]->vdev_initialize_lock);
7749
7750 mutex_enter(&vml[c]->vdev_trim_lock);
7751 vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list);
7752 mutex_exit(&vml[c]->vdev_trim_lock);
7753 }
7754 }
7755
7756 vdev_initialize_stop_wait(spa, &vd_initialize_list);
7757 vdev_trim_stop_wait(spa, &vd_trim_list);
7758
7759 list_destroy(&vd_initialize_list);
7760 list_destroy(&vd_trim_list);
7761
7762 newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
7763 newspa->spa_is_splitting = B_TRUE;
7764
7765 /* create the new pool from the disks of the original pool */
7766 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
7767 if (error)
7768 goto out;
7769
7770 /* if that worked, generate a real config for the new pool */
7771 if (newspa->spa_root_vdev != NULL) {
7772 newspa->spa_config_splitting = fnvlist_alloc();
7773 fnvlist_add_uint64(newspa->spa_config_splitting,
7774 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa));
7775 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
7776 B_TRUE));
7777 }
7778
7779 /* set the props */
7780 if (props != NULL) {
7781 spa_configfile_set(newspa, props, B_FALSE);
7782 error = spa_prop_set(newspa, props);
7783 if (error)
7784 goto out;
7785 }
7786
7787 /* flush everything */
7788 txg = spa_vdev_config_enter(newspa);
7789 vdev_config_dirty(newspa->spa_root_vdev);
7790 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
7791
7792 if (zio_injection_enabled)
7793 zio_handle_panic_injection(spa, FTAG, 2);
7794
7795 spa_async_resume(newspa);
7796
7797 /* finally, update the original pool's config */
7798 txg = spa_vdev_config_enter(spa);
7799 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
7800 error = dmu_tx_assign(tx, TXG_WAIT);
7801 if (error != 0)
7802 dmu_tx_abort(tx);
7803 for (c = 0; c < children; c++) {
7804 if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
7805 vdev_t *tvd = vml[c]->vdev_top;
7806
7807 /*
7808 * Need to be sure the detachable VDEV is not
7809 * on any *other* txg's DTL list to prevent it
7810 * from being accessed after it's freed.
7811 */
7812 for (int t = 0; t < TXG_SIZE; t++) {
7813 (void) txg_list_remove_this(
7814 &tvd->vdev_dtl_list, vml[c], t);
7815 }
7816
7817 vdev_split(vml[c]);
7818 if (error == 0)
7819 spa_history_log_internal(spa, "detach", tx,
7820 "vdev=%s", vml[c]->vdev_path);
7821
7822 vdev_free(vml[c]);
7823 }
7824 }
7825 spa->spa_avz_action = AVZ_ACTION_REBUILD;
7826 vdev_config_dirty(spa->spa_root_vdev);
7827 spa->spa_config_splitting = NULL;
7828 nvlist_free(nvl);
7829 if (error == 0)
7830 dmu_tx_commit(tx);
7831 (void) spa_vdev_exit(spa, NULL, txg, 0);
7832
7833 if (zio_injection_enabled)
7834 zio_handle_panic_injection(spa, FTAG, 3);
7835
7836 /* split is complete; log a history record */
7837 spa_history_log_internal(newspa, "split", NULL,
7838 "from pool %s", spa_name(spa));
7839
7840 newspa->spa_is_splitting = B_FALSE;
7841 kmem_free(vml, children * sizeof (vdev_t *));
7842
7843 /* if we're not going to mount the filesystems in userland, export */
7844 if (exp)
7845 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
7846 B_FALSE, B_FALSE);
7847
7848 return (error);
7849
7850 out:
7851 spa_unload(newspa);
7852 spa_deactivate(newspa);
7853 spa_remove(newspa);
7854
7855 txg = spa_vdev_config_enter(spa);
7856
7857 /* re-online all offlined disks */
7858 for (c = 0; c < children; c++) {
7859 if (vml[c] != NULL)
7860 vml[c]->vdev_offline = B_FALSE;
7861 }
7862
7863 /* restart initializing or trimming disks as necessary */
7864 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
7865 spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
7866 spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
7867
7868 vdev_reopen(spa->spa_root_vdev);
7869
7870 nvlist_free(spa->spa_config_splitting);
7871 spa->spa_config_splitting = NULL;
7872 (void) spa_vdev_exit(spa, NULL, txg, error);
7873
7874 kmem_free(vml, children * sizeof (vdev_t *));
7875 return (error);
7876 }
7877
7878 /*
7879 * Find any device that's done replacing, or a vdev marked 'unspare' that's
7880 * currently spared, so we can detach it.
7881 */
7882 static vdev_t *
7883 spa_vdev_resilver_done_hunt(vdev_t *vd)
7884 {
7885 vdev_t *newvd, *oldvd;
7886
7887 for (int c = 0; c < vd->vdev_children; c++) {
7888 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
7889 if (oldvd != NULL)
7890 return (oldvd);
7891 }
7892
7893 /*
7894 * Check for a completed replacement. We always consider the first
7895 * vdev in the list to be the oldest vdev, and the last one to be
7896 * the newest (see spa_vdev_attach() for how that works). In
7897 * the case where the newest vdev is faulted, we will not automatically
7898 * remove it after a resilver completes. This is OK as it will require
7899 * user intervention to determine which disk the admin wishes to keep.
7900 */
7901 if (vd->vdev_ops == &vdev_replacing_ops) {
7902 ASSERT(vd->vdev_children > 1);
7903
7904 newvd = vd->vdev_child[vd->vdev_children - 1];
7905 oldvd = vd->vdev_child[0];
7906
7907 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
7908 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
7909 !vdev_dtl_required(oldvd))
7910 return (oldvd);
7911 }
7912
7913 /*
7914 * Check for a completed resilver with the 'unspare' flag set.
7915 * Also potentially update faulted state.
7916 */
7917 if (vd->vdev_ops == &vdev_spare_ops) {
7918 vdev_t *first = vd->vdev_child[0];
7919 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
7920
7921 if (last->vdev_unspare) {
7922 oldvd = first;
7923 newvd = last;
7924 } else if (first->vdev_unspare) {
7925 oldvd = last;
7926 newvd = first;
7927 } else {
7928 oldvd = NULL;
7929 }
7930
7931 if (oldvd != NULL &&
7932 vdev_dtl_empty(newvd, DTL_MISSING) &&
7933 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
7934 !vdev_dtl_required(oldvd))
7935 return (oldvd);
7936
7937 vdev_propagate_state(vd);
7938
7939 /*
7940 * If there are more than two spares attached to a disk,
7941 * and those spares are not required, then we want to
7942 * attempt to free them up now so that they can be used
7943 * by other pools. Once we're back down to a single
7944 * disk+spare, we stop removing them.
7945 */
7946 if (vd->vdev_children > 2) {
7947 newvd = vd->vdev_child[1];
7948
7949 if (newvd->vdev_isspare && last->vdev_isspare &&
7950 vdev_dtl_empty(last, DTL_MISSING) &&
7951 vdev_dtl_empty(last, DTL_OUTAGE) &&
7952 !vdev_dtl_required(newvd))
7953 return (newvd);
7954 }
7955 }
7956
7957 return (NULL);
7958 }
7959
7960 static void
7961 spa_vdev_resilver_done(spa_t *spa)
7962 {
7963 vdev_t *vd, *pvd, *ppvd;
7964 uint64_t guid, sguid, pguid, ppguid;
7965
7966 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7967
7968 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
7969 pvd = vd->vdev_parent;
7970 ppvd = pvd->vdev_parent;
7971 guid = vd->vdev_guid;
7972 pguid = pvd->vdev_guid;
7973 ppguid = ppvd->vdev_guid;
7974 sguid = 0;
7975 /*
7976 * If we have just finished replacing a hot spared device, then
7977 * we need to detach the parent's first child (the original hot
7978 * spare) as well.
7979 */
7980 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
7981 ppvd->vdev_children == 2) {
7982 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
7983 sguid = ppvd->vdev_child[1]->vdev_guid;
7984 }
7985 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
7986
7987 spa_config_exit(spa, SCL_ALL, FTAG);
7988 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
7989 return;
7990 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
7991 return;
7992 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7993 }
7994
7995 spa_config_exit(spa, SCL_ALL, FTAG);
7996
7997 /*
7998 * If a detach was not performed above replace waiters will not have
7999 * been notified. In which case we must do so now.
8000 */
8001 spa_notify_waiters(spa);
8002 }
8003
8004 /*
8005 * Update the stored path or FRU for this vdev.
8006 */
8007 static int
8008 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
8009 boolean_t ispath)
8010 {
8011 vdev_t *vd;
8012 boolean_t sync = B_FALSE;
8013
8014 ASSERT(spa_writeable(spa));
8015
8016 spa_vdev_state_enter(spa, SCL_ALL);
8017
8018 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
8019 return (spa_vdev_state_exit(spa, NULL, ENOENT));
8020
8021 if (!vd->vdev_ops->vdev_op_leaf)
8022 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
8023
8024 if (ispath) {
8025 if (strcmp(value, vd->vdev_path) != 0) {
8026 spa_strfree(vd->vdev_path);
8027 vd->vdev_path = spa_strdup(value);
8028 sync = B_TRUE;
8029 }
8030 } else {
8031 if (vd->vdev_fru == NULL) {
8032 vd->vdev_fru = spa_strdup(value);
8033 sync = B_TRUE;
8034 } else if (strcmp(value, vd->vdev_fru) != 0) {
8035 spa_strfree(vd->vdev_fru);
8036 vd->vdev_fru = spa_strdup(value);
8037 sync = B_TRUE;
8038 }
8039 }
8040
8041 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
8042 }
8043
8044 int
8045 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
8046 {
8047 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
8048 }
8049
8050 int
8051 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
8052 {
8053 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
8054 }
8055
8056 /*
8057 * ==========================================================================
8058 * SPA Scanning
8059 * ==========================================================================
8060 */
8061 int
8062 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
8063 {
8064 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8065
8066 if (dsl_scan_resilvering(spa->spa_dsl_pool))
8067 return (SET_ERROR(EBUSY));
8068
8069 return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
8070 }
8071
8072 int
8073 spa_scan_stop(spa_t *spa)
8074 {
8075 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8076 if (dsl_scan_resilvering(spa->spa_dsl_pool))
8077 return (SET_ERROR(EBUSY));
8078 return (dsl_scan_cancel(spa->spa_dsl_pool));
8079 }
8080
8081 int
8082 spa_scan(spa_t *spa, pool_scan_func_t func)
8083 {
8084 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8085
8086 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
8087 return (SET_ERROR(ENOTSUP));
8088
8089 if (func == POOL_SCAN_RESILVER &&
8090 !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
8091 return (SET_ERROR(ENOTSUP));
8092
8093 /*
8094 * If a resilver was requested, but there is no DTL on a
8095 * writeable leaf device, we have nothing to do.
8096 */
8097 if (func == POOL_SCAN_RESILVER &&
8098 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
8099 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
8100 return (0);
8101 }
8102
8103 return (dsl_scan(spa->spa_dsl_pool, func));
8104 }
8105
8106 /*
8107 * ==========================================================================
8108 * SPA async task processing
8109 * ==========================================================================
8110 */
8111
8112 static void
8113 spa_async_remove(spa_t *spa, vdev_t *vd)
8114 {
8115 if (vd->vdev_remove_wanted) {
8116 vd->vdev_remove_wanted = B_FALSE;
8117 vd->vdev_delayed_close = B_FALSE;
8118 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
8119
8120 /*
8121 * We want to clear the stats, but we don't want to do a full
8122 * vdev_clear() as that will cause us to throw away
8123 * degraded/faulted state as well as attempt to reopen the
8124 * device, all of which is a waste.
8125 */
8126 vd->vdev_stat.vs_read_errors = 0;
8127 vd->vdev_stat.vs_write_errors = 0;
8128 vd->vdev_stat.vs_checksum_errors = 0;
8129
8130 vdev_state_dirty(vd->vdev_top);
8131
8132 /* Tell userspace that the vdev is gone. */
8133 zfs_post_remove(spa, vd);
8134 }
8135
8136 for (int c = 0; c < vd->vdev_children; c++)
8137 spa_async_remove(spa, vd->vdev_child[c]);
8138 }
8139
8140 static void
8141 spa_async_probe(spa_t *spa, vdev_t *vd)
8142 {
8143 if (vd->vdev_probe_wanted) {
8144 vd->vdev_probe_wanted = B_FALSE;
8145 vdev_reopen(vd); /* vdev_open() does the actual probe */
8146 }
8147
8148 for (int c = 0; c < vd->vdev_children; c++)
8149 spa_async_probe(spa, vd->vdev_child[c]);
8150 }
8151
8152 static void
8153 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
8154 {
8155 if (!spa->spa_autoexpand)
8156 return;
8157
8158 for (int c = 0; c < vd->vdev_children; c++) {
8159 vdev_t *cvd = vd->vdev_child[c];
8160 spa_async_autoexpand(spa, cvd);
8161 }
8162
8163 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
8164 return;
8165
8166 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND);
8167 }
8168
8169 static __attribute__((noreturn)) void
8170 spa_async_thread(void *arg)
8171 {
8172 spa_t *spa = (spa_t *)arg;
8173 dsl_pool_t *dp = spa->spa_dsl_pool;
8174 int tasks;
8175
8176 ASSERT(spa->spa_sync_on);
8177
8178 mutex_enter(&spa->spa_async_lock);
8179 tasks = spa->spa_async_tasks;
8180 spa->spa_async_tasks = 0;
8181 mutex_exit(&spa->spa_async_lock);
8182
8183 /*
8184 * See if the config needs to be updated.
8185 */
8186 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
8187 uint64_t old_space, new_space;
8188
8189 mutex_enter(&spa_namespace_lock);
8190 old_space = metaslab_class_get_space(spa_normal_class(spa));
8191 old_space += metaslab_class_get_space(spa_special_class(spa));
8192 old_space += metaslab_class_get_space(spa_dedup_class(spa));
8193 old_space += metaslab_class_get_space(
8194 spa_embedded_log_class(spa));
8195
8196 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
8197
8198 new_space = metaslab_class_get_space(spa_normal_class(spa));
8199 new_space += metaslab_class_get_space(spa_special_class(spa));
8200 new_space += metaslab_class_get_space(spa_dedup_class(spa));
8201 new_space += metaslab_class_get_space(
8202 spa_embedded_log_class(spa));
8203 mutex_exit(&spa_namespace_lock);
8204
8205 /*
8206 * If the pool grew as a result of the config update,
8207 * then log an internal history event.
8208 */
8209 if (new_space != old_space) {
8210 spa_history_log_internal(spa, "vdev online", NULL,
8211 "pool '%s' size: %llu(+%llu)",
8212 spa_name(spa), (u_longlong_t)new_space,
8213 (u_longlong_t)(new_space - old_space));
8214 }
8215 }
8216
8217 /*
8218 * See if any devices need to be marked REMOVED.
8219 */
8220 if (tasks & SPA_ASYNC_REMOVE) {
8221 spa_vdev_state_enter(spa, SCL_NONE);
8222 spa_async_remove(spa, spa->spa_root_vdev);
8223 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
8224 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
8225 for (int i = 0; i < spa->spa_spares.sav_count; i++)
8226 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
8227 (void) spa_vdev_state_exit(spa, NULL, 0);
8228 }
8229
8230 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
8231 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8232 spa_async_autoexpand(spa, spa->spa_root_vdev);
8233 spa_config_exit(spa, SCL_CONFIG, FTAG);
8234 }
8235
8236 /*
8237 * See if any devices need to be probed.
8238 */
8239 if (tasks & SPA_ASYNC_PROBE) {
8240 spa_vdev_state_enter(spa, SCL_NONE);
8241 spa_async_probe(spa, spa->spa_root_vdev);
8242 (void) spa_vdev_state_exit(spa, NULL, 0);
8243 }
8244
8245 /*
8246 * If any devices are done replacing, detach them.
8247 */
8248 if (tasks & SPA_ASYNC_RESILVER_DONE ||
8249 tasks & SPA_ASYNC_REBUILD_DONE) {
8250 spa_vdev_resilver_done(spa);
8251 }
8252
8253 /*
8254 * Kick off a resilver.
8255 */
8256 if (tasks & SPA_ASYNC_RESILVER &&
8257 !vdev_rebuild_active(spa->spa_root_vdev) &&
8258 (!dsl_scan_resilvering(dp) ||
8259 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)))
8260 dsl_scan_restart_resilver(dp, 0);
8261
8262 if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
8263 mutex_enter(&spa_namespace_lock);
8264 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8265 vdev_initialize_restart(spa->spa_root_vdev);
8266 spa_config_exit(spa, SCL_CONFIG, FTAG);
8267 mutex_exit(&spa_namespace_lock);
8268 }
8269
8270 if (tasks & SPA_ASYNC_TRIM_RESTART) {
8271 mutex_enter(&spa_namespace_lock);
8272 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8273 vdev_trim_restart(spa->spa_root_vdev);
8274 spa_config_exit(spa, SCL_CONFIG, FTAG);
8275 mutex_exit(&spa_namespace_lock);
8276 }
8277
8278 if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) {
8279 mutex_enter(&spa_namespace_lock);
8280 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8281 vdev_autotrim_restart(spa);
8282 spa_config_exit(spa, SCL_CONFIG, FTAG);
8283 mutex_exit(&spa_namespace_lock);
8284 }
8285
8286 /*
8287 * Kick off L2 cache whole device TRIM.
8288 */
8289 if (tasks & SPA_ASYNC_L2CACHE_TRIM) {
8290 mutex_enter(&spa_namespace_lock);
8291 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8292 vdev_trim_l2arc(spa);
8293 spa_config_exit(spa, SCL_CONFIG, FTAG);
8294 mutex_exit(&spa_namespace_lock);
8295 }
8296
8297 /*
8298 * Kick off L2 cache rebuilding.
8299 */
8300 if (tasks & SPA_ASYNC_L2CACHE_REBUILD) {
8301 mutex_enter(&spa_namespace_lock);
8302 spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER);
8303 l2arc_spa_rebuild_start(spa);
8304 spa_config_exit(spa, SCL_L2ARC, FTAG);
8305 mutex_exit(&spa_namespace_lock);
8306 }
8307
8308 /*
8309 * Let the world know that we're done.
8310 */
8311 mutex_enter(&spa->spa_async_lock);
8312 spa->spa_async_thread = NULL;
8313 cv_broadcast(&spa->spa_async_cv);
8314 mutex_exit(&spa->spa_async_lock);
8315 thread_exit();
8316 }
8317
8318 void
8319 spa_async_suspend(spa_t *spa)
8320 {
8321 mutex_enter(&spa->spa_async_lock);
8322 spa->spa_async_suspended++;
8323 while (spa->spa_async_thread != NULL)
8324 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
8325 mutex_exit(&spa->spa_async_lock);
8326
8327 spa_vdev_remove_suspend(spa);
8328
8329 zthr_t *condense_thread = spa->spa_condense_zthr;
8330 if (condense_thread != NULL)
8331 zthr_cancel(condense_thread);
8332
8333 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
8334 if (discard_thread != NULL)
8335 zthr_cancel(discard_thread);
8336
8337 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
8338 if (ll_delete_thread != NULL)
8339 zthr_cancel(ll_delete_thread);
8340
8341 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
8342 if (ll_condense_thread != NULL)
8343 zthr_cancel(ll_condense_thread);
8344 }
8345
8346 void
8347 spa_async_resume(spa_t *spa)
8348 {
8349 mutex_enter(&spa->spa_async_lock);
8350 ASSERT(spa->spa_async_suspended != 0);
8351 spa->spa_async_suspended--;
8352 mutex_exit(&spa->spa_async_lock);
8353 spa_restart_removal(spa);
8354
8355 zthr_t *condense_thread = spa->spa_condense_zthr;
8356 if (condense_thread != NULL)
8357 zthr_resume(condense_thread);
8358
8359 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
8360 if (discard_thread != NULL)
8361 zthr_resume(discard_thread);
8362
8363 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
8364 if (ll_delete_thread != NULL)
8365 zthr_resume(ll_delete_thread);
8366
8367 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
8368 if (ll_condense_thread != NULL)
8369 zthr_resume(ll_condense_thread);
8370 }
8371
8372 static boolean_t
8373 spa_async_tasks_pending(spa_t *spa)
8374 {
8375 uint_t non_config_tasks;
8376 uint_t config_task;
8377 boolean_t config_task_suspended;
8378
8379 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
8380 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
8381 if (spa->spa_ccw_fail_time == 0) {
8382 config_task_suspended = B_FALSE;
8383 } else {
8384 config_task_suspended =
8385 (gethrtime() - spa->spa_ccw_fail_time) <
8386 ((hrtime_t)zfs_ccw_retry_interval * NANOSEC);
8387 }
8388
8389 return (non_config_tasks || (config_task && !config_task_suspended));
8390 }
8391
8392 static void
8393 spa_async_dispatch(spa_t *spa)
8394 {
8395 mutex_enter(&spa->spa_async_lock);
8396 if (spa_async_tasks_pending(spa) &&
8397 !spa->spa_async_suspended &&
8398 spa->spa_async_thread == NULL)
8399 spa->spa_async_thread = thread_create(NULL, 0,
8400 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
8401 mutex_exit(&spa->spa_async_lock);
8402 }
8403
8404 void
8405 spa_async_request(spa_t *spa, int task)
8406 {
8407 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
8408 mutex_enter(&spa->spa_async_lock);
8409 spa->spa_async_tasks |= task;
8410 mutex_exit(&spa->spa_async_lock);
8411 }
8412
8413 int
8414 spa_async_tasks(spa_t *spa)
8415 {
8416 return (spa->spa_async_tasks);
8417 }
8418
8419 /*
8420 * ==========================================================================
8421 * SPA syncing routines
8422 * ==========================================================================
8423 */
8424
8425
8426 static int
8427 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
8428 dmu_tx_t *tx)
8429 {
8430 bpobj_t *bpo = arg;
8431 bpobj_enqueue(bpo, bp, bp_freed, tx);
8432 return (0);
8433 }
8434
8435 int
8436 bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8437 {
8438 return (bpobj_enqueue_cb(arg, bp, B_FALSE, tx));
8439 }
8440
8441 int
8442 bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8443 {
8444 return (bpobj_enqueue_cb(arg, bp, B_TRUE, tx));
8445 }
8446
8447 static int
8448 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8449 {
8450 zio_t *pio = arg;
8451
8452 zio_nowait(zio_free_sync(pio, pio->io_spa, dmu_tx_get_txg(tx), bp,
8453 pio->io_flags));
8454 return (0);
8455 }
8456
8457 static int
8458 bpobj_spa_free_sync_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
8459 dmu_tx_t *tx)
8460 {
8461 ASSERT(!bp_freed);
8462 return (spa_free_sync_cb(arg, bp, tx));
8463 }
8464
8465 /*
8466 * Note: this simple function is not inlined to make it easier to dtrace the
8467 * amount of time spent syncing frees.
8468 */
8469 static void
8470 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
8471 {
8472 zio_t *zio = zio_root(spa, NULL, NULL, 0);
8473 bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
8474 VERIFY(zio_wait(zio) == 0);
8475 }
8476
8477 /*
8478 * Note: this simple function is not inlined to make it easier to dtrace the
8479 * amount of time spent syncing deferred frees.
8480 */
8481 static void
8482 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
8483 {
8484 if (spa_sync_pass(spa) != 1)
8485 return;
8486
8487 /*
8488 * Note:
8489 * If the log space map feature is active, we stop deferring
8490 * frees to the next TXG and therefore running this function
8491 * would be considered a no-op as spa_deferred_bpobj should
8492 * not have any entries.
8493 *
8494 * That said we run this function anyway (instead of returning
8495 * immediately) for the edge-case scenario where we just
8496 * activated the log space map feature in this TXG but we have
8497 * deferred frees from the previous TXG.
8498 */
8499 zio_t *zio = zio_root(spa, NULL, NULL, 0);
8500 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
8501 bpobj_spa_free_sync_cb, zio, tx), ==, 0);
8502 VERIFY0(zio_wait(zio));
8503 }
8504
8505 static void
8506 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
8507 {
8508 char *packed = NULL;
8509 size_t bufsize;
8510 size_t nvsize = 0;
8511 dmu_buf_t *db;
8512
8513 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
8514
8515 /*
8516 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
8517 * information. This avoids the dmu_buf_will_dirty() path and
8518 * saves us a pre-read to get data we don't actually care about.
8519 */
8520 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
8521 packed = vmem_alloc(bufsize, KM_SLEEP);
8522
8523 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
8524 KM_SLEEP) == 0);
8525 memset(packed + nvsize, 0, bufsize - nvsize);
8526
8527 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
8528
8529 vmem_free(packed, bufsize);
8530
8531 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
8532 dmu_buf_will_dirty(db, tx);
8533 *(uint64_t *)db->db_data = nvsize;
8534 dmu_buf_rele(db, FTAG);
8535 }
8536
8537 static void
8538 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
8539 const char *config, const char *entry)
8540 {
8541 nvlist_t *nvroot;
8542 nvlist_t **list;
8543 int i;
8544
8545 if (!sav->sav_sync)
8546 return;
8547
8548 /*
8549 * Update the MOS nvlist describing the list of available devices.
8550 * spa_validate_aux() will have already made sure this nvlist is
8551 * valid and the vdevs are labeled appropriately.
8552 */
8553 if (sav->sav_object == 0) {
8554 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
8555 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
8556 sizeof (uint64_t), tx);
8557 VERIFY(zap_update(spa->spa_meta_objset,
8558 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
8559 &sav->sav_object, tx) == 0);
8560 }
8561
8562 nvroot = fnvlist_alloc();
8563 if (sav->sav_count == 0) {
8564 fnvlist_add_nvlist_array(nvroot, config,
8565 (const nvlist_t * const *)NULL, 0);
8566 } else {
8567 list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP);
8568 for (i = 0; i < sav->sav_count; i++)
8569 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
8570 B_FALSE, VDEV_CONFIG_L2CACHE);
8571 fnvlist_add_nvlist_array(nvroot, config,
8572 (const nvlist_t * const *)list, sav->sav_count);
8573 for (i = 0; i < sav->sav_count; i++)
8574 nvlist_free(list[i]);
8575 kmem_free(list, sav->sav_count * sizeof (void *));
8576 }
8577
8578 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
8579 nvlist_free(nvroot);
8580
8581 sav->sav_sync = B_FALSE;
8582 }
8583
8584 /*
8585 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
8586 * The all-vdev ZAP must be empty.
8587 */
8588 static void
8589 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
8590 {
8591 spa_t *spa = vd->vdev_spa;
8592
8593 if (vd->vdev_top_zap != 0) {
8594 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
8595 vd->vdev_top_zap, tx));
8596 }
8597 if (vd->vdev_leaf_zap != 0) {
8598 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
8599 vd->vdev_leaf_zap, tx));
8600 }
8601 for (uint64_t i = 0; i < vd->vdev_children; i++) {
8602 spa_avz_build(vd->vdev_child[i], avz, tx);
8603 }
8604 }
8605
8606 static void
8607 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
8608 {
8609 nvlist_t *config;
8610
8611 /*
8612 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
8613 * its config may not be dirty but we still need to build per-vdev ZAPs.
8614 * Similarly, if the pool is being assembled (e.g. after a split), we
8615 * need to rebuild the AVZ although the config may not be dirty.
8616 */
8617 if (list_is_empty(&spa->spa_config_dirty_list) &&
8618 spa->spa_avz_action == AVZ_ACTION_NONE)
8619 return;
8620
8621 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8622
8623 ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
8624 spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
8625 spa->spa_all_vdev_zaps != 0);
8626
8627 if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
8628 /* Make and build the new AVZ */
8629 uint64_t new_avz = zap_create(spa->spa_meta_objset,
8630 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
8631 spa_avz_build(spa->spa_root_vdev, new_avz, tx);
8632
8633 /* Diff old AVZ with new one */
8634 zap_cursor_t zc;
8635 zap_attribute_t za;
8636
8637 for (zap_cursor_init(&zc, spa->spa_meta_objset,
8638 spa->spa_all_vdev_zaps);
8639 zap_cursor_retrieve(&zc, &za) == 0;
8640 zap_cursor_advance(&zc)) {
8641 uint64_t vdzap = za.za_first_integer;
8642 if (zap_lookup_int(spa->spa_meta_objset, new_avz,
8643 vdzap) == ENOENT) {
8644 /*
8645 * ZAP is listed in old AVZ but not in new one;
8646 * destroy it
8647 */
8648 VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
8649 tx));
8650 }
8651 }
8652
8653 zap_cursor_fini(&zc);
8654
8655 /* Destroy the old AVZ */
8656 VERIFY0(zap_destroy(spa->spa_meta_objset,
8657 spa->spa_all_vdev_zaps, tx));
8658
8659 /* Replace the old AVZ in the dir obj with the new one */
8660 VERIFY0(zap_update(spa->spa_meta_objset,
8661 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
8662 sizeof (new_avz), 1, &new_avz, tx));
8663
8664 spa->spa_all_vdev_zaps = new_avz;
8665 } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
8666 zap_cursor_t zc;
8667 zap_attribute_t za;
8668
8669 /* Walk through the AVZ and destroy all listed ZAPs */
8670 for (zap_cursor_init(&zc, spa->spa_meta_objset,
8671 spa->spa_all_vdev_zaps);
8672 zap_cursor_retrieve(&zc, &za) == 0;
8673 zap_cursor_advance(&zc)) {
8674 uint64_t zap = za.za_first_integer;
8675 VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
8676 }
8677
8678 zap_cursor_fini(&zc);
8679
8680 /* Destroy and unlink the AVZ itself */
8681 VERIFY0(zap_destroy(spa->spa_meta_objset,
8682 spa->spa_all_vdev_zaps, tx));
8683 VERIFY0(zap_remove(spa->spa_meta_objset,
8684 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
8685 spa->spa_all_vdev_zaps = 0;
8686 }
8687
8688 if (spa->spa_all_vdev_zaps == 0) {
8689 spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
8690 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
8691 DMU_POOL_VDEV_ZAP_MAP, tx);
8692 }
8693 spa->spa_avz_action = AVZ_ACTION_NONE;
8694
8695 /* Create ZAPs for vdevs that don't have them. */
8696 vdev_construct_zaps(spa->spa_root_vdev, tx);
8697
8698 config = spa_config_generate(spa, spa->spa_root_vdev,
8699 dmu_tx_get_txg(tx), B_FALSE);
8700
8701 /*
8702 * If we're upgrading the spa version then make sure that
8703 * the config object gets updated with the correct version.
8704 */
8705 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
8706 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
8707 spa->spa_uberblock.ub_version);
8708
8709 spa_config_exit(spa, SCL_STATE, FTAG);
8710
8711 nvlist_free(spa->spa_config_syncing);
8712 spa->spa_config_syncing = config;
8713
8714 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
8715 }
8716
8717 static void
8718 spa_sync_version(void *arg, dmu_tx_t *tx)
8719 {
8720 uint64_t *versionp = arg;
8721 uint64_t version = *versionp;
8722 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
8723
8724 /*
8725 * Setting the version is special cased when first creating the pool.
8726 */
8727 ASSERT(tx->tx_txg != TXG_INITIAL);
8728
8729 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
8730 ASSERT(version >= spa_version(spa));
8731
8732 spa->spa_uberblock.ub_version = version;
8733 vdev_config_dirty(spa->spa_root_vdev);
8734 spa_history_log_internal(spa, "set", tx, "version=%lld",
8735 (longlong_t)version);
8736 }
8737
8738 /*
8739 * Set zpool properties.
8740 */
8741 static void
8742 spa_sync_props(void *arg, dmu_tx_t *tx)
8743 {
8744 nvlist_t *nvp = arg;
8745 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
8746 objset_t *mos = spa->spa_meta_objset;
8747 nvpair_t *elem = NULL;
8748
8749 mutex_enter(&spa->spa_props_lock);
8750
8751 while ((elem = nvlist_next_nvpair(nvp, elem))) {
8752 uint64_t intval;
8753 char *strval, *fname;
8754 zpool_prop_t prop;
8755 const char *propname;
8756 zprop_type_t proptype;
8757 spa_feature_t fid;
8758
8759 switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
8760 case ZPOOL_PROP_INVAL:
8761 /*
8762 * We checked this earlier in spa_prop_validate().
8763 */
8764 ASSERT(zpool_prop_feature(nvpair_name(elem)));
8765
8766 fname = strchr(nvpair_name(elem), '@') + 1;
8767 VERIFY0(zfeature_lookup_name(fname, &fid));
8768
8769 spa_feature_enable(spa, fid, tx);
8770 spa_history_log_internal(spa, "set", tx,
8771 "%s=enabled", nvpair_name(elem));
8772 break;
8773
8774 case ZPOOL_PROP_VERSION:
8775 intval = fnvpair_value_uint64(elem);
8776 /*
8777 * The version is synced separately before other
8778 * properties and should be correct by now.
8779 */
8780 ASSERT3U(spa_version(spa), >=, intval);
8781 break;
8782
8783 case ZPOOL_PROP_ALTROOT:
8784 /*
8785 * 'altroot' is a non-persistent property. It should
8786 * have been set temporarily at creation or import time.
8787 */
8788 ASSERT(spa->spa_root != NULL);
8789 break;
8790
8791 case ZPOOL_PROP_READONLY:
8792 case ZPOOL_PROP_CACHEFILE:
8793 /*
8794 * 'readonly' and 'cachefile' are also non-persistent
8795 * properties.
8796 */
8797 break;
8798 case ZPOOL_PROP_COMMENT:
8799 strval = fnvpair_value_string(elem);
8800 if (spa->spa_comment != NULL)
8801 spa_strfree(spa->spa_comment);
8802 spa->spa_comment = spa_strdup(strval);
8803 /*
8804 * We need to dirty the configuration on all the vdevs
8805 * so that their labels get updated. We also need to
8806 * update the cache file to keep it in sync with the
8807 * MOS version. It's unnecessary to do this for pool
8808 * creation since the vdev's configuration has already
8809 * been dirtied.
8810 */
8811 if (tx->tx_txg != TXG_INITIAL) {
8812 vdev_config_dirty(spa->spa_root_vdev);
8813 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
8814 }
8815 spa_history_log_internal(spa, "set", tx,
8816 "%s=%s", nvpair_name(elem), strval);
8817 break;
8818 case ZPOOL_PROP_COMPATIBILITY:
8819 strval = fnvpair_value_string(elem);
8820 if (spa->spa_compatibility != NULL)
8821 spa_strfree(spa->spa_compatibility);
8822 spa->spa_compatibility = spa_strdup(strval);
8823 /*
8824 * Dirty the configuration on vdevs as above.
8825 */
8826 if (tx->tx_txg != TXG_INITIAL) {
8827 vdev_config_dirty(spa->spa_root_vdev);
8828 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
8829 }
8830
8831 spa_history_log_internal(spa, "set", tx,
8832 "%s=%s", nvpair_name(elem), strval);
8833 break;
8834
8835 default:
8836 /*
8837 * Set pool property values in the poolprops mos object.
8838 */
8839 if (spa->spa_pool_props_object == 0) {
8840 spa->spa_pool_props_object =
8841 zap_create_link(mos, DMU_OT_POOL_PROPS,
8842 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
8843 tx);
8844 }
8845
8846 /* normalize the property name */
8847 propname = zpool_prop_to_name(prop);
8848 proptype = zpool_prop_get_type(prop);
8849
8850 if (nvpair_type(elem) == DATA_TYPE_STRING) {
8851 ASSERT(proptype == PROP_TYPE_STRING);
8852 strval = fnvpair_value_string(elem);
8853 VERIFY0(zap_update(mos,
8854 spa->spa_pool_props_object, propname,
8855 1, strlen(strval) + 1, strval, tx));
8856 spa_history_log_internal(spa, "set", tx,
8857 "%s=%s", nvpair_name(elem), strval);
8858 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
8859 intval = fnvpair_value_uint64(elem);
8860
8861 if (proptype == PROP_TYPE_INDEX) {
8862 const char *unused;
8863 VERIFY0(zpool_prop_index_to_string(
8864 prop, intval, &unused));
8865 }
8866 VERIFY0(zap_update(mos,
8867 spa->spa_pool_props_object, propname,
8868 8, 1, &intval, tx));
8869 spa_history_log_internal(spa, "set", tx,
8870 "%s=%lld", nvpair_name(elem),
8871 (longlong_t)intval);
8872
8873 switch (prop) {
8874 case ZPOOL_PROP_DELEGATION:
8875 spa->spa_delegation = intval;
8876 break;
8877 case ZPOOL_PROP_BOOTFS:
8878 spa->spa_bootfs = intval;
8879 break;
8880 case ZPOOL_PROP_FAILUREMODE:
8881 spa->spa_failmode = intval;
8882 break;
8883 case ZPOOL_PROP_AUTOTRIM:
8884 spa->spa_autotrim = intval;
8885 spa_async_request(spa,
8886 SPA_ASYNC_AUTOTRIM_RESTART);
8887 break;
8888 case ZPOOL_PROP_AUTOEXPAND:
8889 spa->spa_autoexpand = intval;
8890 if (tx->tx_txg != TXG_INITIAL)
8891 spa_async_request(spa,
8892 SPA_ASYNC_AUTOEXPAND);
8893 break;
8894 case ZPOOL_PROP_MULTIHOST:
8895 spa->spa_multihost = intval;
8896 break;
8897 default:
8898 break;
8899 }
8900 } else {
8901 ASSERT(0); /* not allowed */
8902 }
8903 }
8904
8905 }
8906
8907 mutex_exit(&spa->spa_props_lock);
8908 }
8909
8910 /*
8911 * Perform one-time upgrade on-disk changes. spa_version() does not
8912 * reflect the new version this txg, so there must be no changes this
8913 * txg to anything that the upgrade code depends on after it executes.
8914 * Therefore this must be called after dsl_pool_sync() does the sync
8915 * tasks.
8916 */
8917 static void
8918 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
8919 {
8920 if (spa_sync_pass(spa) != 1)
8921 return;
8922
8923 dsl_pool_t *dp = spa->spa_dsl_pool;
8924 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
8925
8926 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
8927 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
8928 dsl_pool_create_origin(dp, tx);
8929
8930 /* Keeping the origin open increases spa_minref */
8931 spa->spa_minref += 3;
8932 }
8933
8934 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
8935 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
8936 dsl_pool_upgrade_clones(dp, tx);
8937 }
8938
8939 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
8940 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
8941 dsl_pool_upgrade_dir_clones(dp, tx);
8942
8943 /* Keeping the freedir open increases spa_minref */
8944 spa->spa_minref += 3;
8945 }
8946
8947 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
8948 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
8949 spa_feature_create_zap_objects(spa, tx);
8950 }
8951
8952 /*
8953 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
8954 * when possibility to use lz4 compression for metadata was added
8955 * Old pools that have this feature enabled must be upgraded to have
8956 * this feature active
8957 */
8958 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
8959 boolean_t lz4_en = spa_feature_is_enabled(spa,
8960 SPA_FEATURE_LZ4_COMPRESS);
8961 boolean_t lz4_ac = spa_feature_is_active(spa,
8962 SPA_FEATURE_LZ4_COMPRESS);
8963
8964 if (lz4_en && !lz4_ac)
8965 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
8966 }
8967
8968 /*
8969 * If we haven't written the salt, do so now. Note that the
8970 * feature may not be activated yet, but that's fine since
8971 * the presence of this ZAP entry is backwards compatible.
8972 */
8973 if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
8974 DMU_POOL_CHECKSUM_SALT) == ENOENT) {
8975 VERIFY0(zap_add(spa->spa_meta_objset,
8976 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
8977 sizeof (spa->spa_cksum_salt.zcs_bytes),
8978 spa->spa_cksum_salt.zcs_bytes, tx));
8979 }
8980
8981 rrw_exit(&dp->dp_config_rwlock, FTAG);
8982 }
8983
8984 static void
8985 vdev_indirect_state_sync_verify(vdev_t *vd)
8986 {
8987 vdev_indirect_mapping_t *vim __maybe_unused = vd->vdev_indirect_mapping;
8988 vdev_indirect_births_t *vib __maybe_unused = vd->vdev_indirect_births;
8989
8990 if (vd->vdev_ops == &vdev_indirect_ops) {
8991 ASSERT(vim != NULL);
8992 ASSERT(vib != NULL);
8993 }
8994
8995 uint64_t obsolete_sm_object = 0;
8996 ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
8997 if (obsolete_sm_object != 0) {
8998 ASSERT(vd->vdev_obsolete_sm != NULL);
8999 ASSERT(vd->vdev_removing ||
9000 vd->vdev_ops == &vdev_indirect_ops);
9001 ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
9002 ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
9003 ASSERT3U(obsolete_sm_object, ==,
9004 space_map_object(vd->vdev_obsolete_sm));
9005 ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
9006 space_map_allocated(vd->vdev_obsolete_sm));
9007 }
9008 ASSERT(vd->vdev_obsolete_segments != NULL);
9009
9010 /*
9011 * Since frees / remaps to an indirect vdev can only
9012 * happen in syncing context, the obsolete segments
9013 * tree must be empty when we start syncing.
9014 */
9015 ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
9016 }
9017
9018 /*
9019 * Set the top-level vdev's max queue depth. Evaluate each top-level's
9020 * async write queue depth in case it changed. The max queue depth will
9021 * not change in the middle of syncing out this txg.
9022 */
9023 static void
9024 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa)
9025 {
9026 ASSERT(spa_writeable(spa));
9027
9028 vdev_t *rvd = spa->spa_root_vdev;
9029 uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
9030 zfs_vdev_queue_depth_pct / 100;
9031 metaslab_class_t *normal = spa_normal_class(spa);
9032 metaslab_class_t *special = spa_special_class(spa);
9033 metaslab_class_t *dedup = spa_dedup_class(spa);
9034
9035 uint64_t slots_per_allocator = 0;
9036 for (int c = 0; c < rvd->vdev_children; c++) {
9037 vdev_t *tvd = rvd->vdev_child[c];
9038
9039 metaslab_group_t *mg = tvd->vdev_mg;
9040 if (mg == NULL || !metaslab_group_initialized(mg))
9041 continue;
9042
9043 metaslab_class_t *mc = mg->mg_class;
9044 if (mc != normal && mc != special && mc != dedup)
9045 continue;
9046
9047 /*
9048 * It is safe to do a lock-free check here because only async
9049 * allocations look at mg_max_alloc_queue_depth, and async
9050 * allocations all happen from spa_sync().
9051 */
9052 for (int i = 0; i < mg->mg_allocators; i++) {
9053 ASSERT0(zfs_refcount_count(
9054 &(mg->mg_allocator[i].mga_alloc_queue_depth)));
9055 }
9056 mg->mg_max_alloc_queue_depth = max_queue_depth;
9057
9058 for (int i = 0; i < mg->mg_allocators; i++) {
9059 mg->mg_allocator[i].mga_cur_max_alloc_queue_depth =
9060 zfs_vdev_def_queue_depth;
9061 }
9062 slots_per_allocator += zfs_vdev_def_queue_depth;
9063 }
9064
9065 for (int i = 0; i < spa->spa_alloc_count; i++) {
9066 ASSERT0(zfs_refcount_count(&normal->mc_allocator[i].
9067 mca_alloc_slots));
9068 ASSERT0(zfs_refcount_count(&special->mc_allocator[i].
9069 mca_alloc_slots));
9070 ASSERT0(zfs_refcount_count(&dedup->mc_allocator[i].
9071 mca_alloc_slots));
9072 normal->mc_allocator[i].mca_alloc_max_slots =
9073 slots_per_allocator;
9074 special->mc_allocator[i].mca_alloc_max_slots =
9075 slots_per_allocator;
9076 dedup->mc_allocator[i].mca_alloc_max_slots =
9077 slots_per_allocator;
9078 }
9079 normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9080 special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9081 dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9082 }
9083
9084 static void
9085 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx)
9086 {
9087 ASSERT(spa_writeable(spa));
9088
9089 vdev_t *rvd = spa->spa_root_vdev;
9090 for (int c = 0; c < rvd->vdev_children; c++) {
9091 vdev_t *vd = rvd->vdev_child[c];
9092 vdev_indirect_state_sync_verify(vd);
9093
9094 if (vdev_indirect_should_condense(vd)) {
9095 spa_condense_indirect_start_sync(vd, tx);
9096 break;
9097 }
9098 }
9099 }
9100
9101 static void
9102 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx)
9103 {
9104 objset_t *mos = spa->spa_meta_objset;
9105 dsl_pool_t *dp = spa->spa_dsl_pool;
9106 uint64_t txg = tx->tx_txg;
9107 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
9108
9109 do {
9110 int pass = ++spa->spa_sync_pass;
9111
9112 spa_sync_config_object(spa, tx);
9113 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
9114 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
9115 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
9116 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
9117 spa_errlog_sync(spa, txg);
9118 dsl_pool_sync(dp, txg);
9119
9120 if (pass < zfs_sync_pass_deferred_free ||
9121 spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
9122 /*
9123 * If the log space map feature is active we don't
9124 * care about deferred frees and the deferred bpobj
9125 * as the log space map should effectively have the
9126 * same results (i.e. appending only to one object).
9127 */
9128 spa_sync_frees(spa, free_bpl, tx);
9129 } else {
9130 /*
9131 * We can not defer frees in pass 1, because
9132 * we sync the deferred frees later in pass 1.
9133 */
9134 ASSERT3U(pass, >, 1);
9135 bplist_iterate(free_bpl, bpobj_enqueue_alloc_cb,
9136 &spa->spa_deferred_bpobj, tx);
9137 }
9138
9139 ddt_sync(spa, txg);
9140 dsl_scan_sync(dp, tx);
9141 svr_sync(spa, tx);
9142 spa_sync_upgrades(spa, tx);
9143
9144 spa_flush_metaslabs(spa, tx);
9145
9146 vdev_t *vd = NULL;
9147 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
9148 != NULL)
9149 vdev_sync(vd, txg);
9150
9151 /*
9152 * Note: We need to check if the MOS is dirty because we could
9153 * have marked the MOS dirty without updating the uberblock
9154 * (e.g. if we have sync tasks but no dirty user data). We need
9155 * to check the uberblock's rootbp because it is updated if we
9156 * have synced out dirty data (though in this case the MOS will
9157 * most likely also be dirty due to second order effects, we
9158 * don't want to rely on that here).
9159 */
9160 if (pass == 1 &&
9161 spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
9162 !dmu_objset_is_dirty(mos, txg)) {
9163 /*
9164 * Nothing changed on the first pass, therefore this
9165 * TXG is a no-op. Avoid syncing deferred frees, so
9166 * that we can keep this TXG as a no-op.
9167 */
9168 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
9169 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
9170 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
9171 ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg));
9172 break;
9173 }
9174
9175 spa_sync_deferred_frees(spa, tx);
9176 } while (dmu_objset_is_dirty(mos, txg));
9177 }
9178
9179 /*
9180 * Rewrite the vdev configuration (which includes the uberblock) to
9181 * commit the transaction group.
9182 *
9183 * If there are no dirty vdevs, we sync the uberblock to a few random
9184 * top-level vdevs that are known to be visible in the config cache
9185 * (see spa_vdev_add() for a complete description). If there *are* dirty
9186 * vdevs, sync the uberblock to all vdevs.
9187 */
9188 static void
9189 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx)
9190 {
9191 vdev_t *rvd = spa->spa_root_vdev;
9192 uint64_t txg = tx->tx_txg;
9193
9194 for (;;) {
9195 int error = 0;
9196
9197 /*
9198 * We hold SCL_STATE to prevent vdev open/close/etc.
9199 * while we're attempting to write the vdev labels.
9200 */
9201 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9202
9203 if (list_is_empty(&spa->spa_config_dirty_list)) {
9204 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
9205 int svdcount = 0;
9206 int children = rvd->vdev_children;
9207 int c0 = random_in_range(children);
9208
9209 for (int c = 0; c < children; c++) {
9210 vdev_t *vd =
9211 rvd->vdev_child[(c0 + c) % children];
9212
9213 /* Stop when revisiting the first vdev */
9214 if (c > 0 && svd[0] == vd)
9215 break;
9216
9217 if (vd->vdev_ms_array == 0 ||
9218 vd->vdev_islog ||
9219 !vdev_is_concrete(vd))
9220 continue;
9221
9222 svd[svdcount++] = vd;
9223 if (svdcount == SPA_SYNC_MIN_VDEVS)
9224 break;
9225 }
9226 error = vdev_config_sync(svd, svdcount, txg);
9227 } else {
9228 error = vdev_config_sync(rvd->vdev_child,
9229 rvd->vdev_children, txg);
9230 }
9231
9232 if (error == 0)
9233 spa->spa_last_synced_guid = rvd->vdev_guid;
9234
9235 spa_config_exit(spa, SCL_STATE, FTAG);
9236
9237 if (error == 0)
9238 break;
9239 zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
9240 zio_resume_wait(spa);
9241 }
9242 }
9243
9244 /*
9245 * Sync the specified transaction group. New blocks may be dirtied as
9246 * part of the process, so we iterate until it converges.
9247 */
9248 void
9249 spa_sync(spa_t *spa, uint64_t txg)
9250 {
9251 vdev_t *vd = NULL;
9252
9253 VERIFY(spa_writeable(spa));
9254
9255 /*
9256 * Wait for i/os issued in open context that need to complete
9257 * before this txg syncs.
9258 */
9259 (void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
9260 spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
9261 ZIO_FLAG_CANFAIL);
9262
9263 /*
9264 * Lock out configuration changes.
9265 */
9266 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9267
9268 spa->spa_syncing_txg = txg;
9269 spa->spa_sync_pass = 0;
9270
9271 for (int i = 0; i < spa->spa_alloc_count; i++) {
9272 mutex_enter(&spa->spa_allocs[i].spaa_lock);
9273 VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
9274 mutex_exit(&spa->spa_allocs[i].spaa_lock);
9275 }
9276
9277 /*
9278 * If there are any pending vdev state changes, convert them
9279 * into config changes that go out with this transaction group.
9280 */
9281 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9282 while (list_head(&spa->spa_state_dirty_list) != NULL) {
9283 /*
9284 * We need the write lock here because, for aux vdevs,
9285 * calling vdev_config_dirty() modifies sav_config.
9286 * This is ugly and will become unnecessary when we
9287 * eliminate the aux vdev wart by integrating all vdevs
9288 * into the root vdev tree.
9289 */
9290 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9291 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
9292 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
9293 vdev_state_clean(vd);
9294 vdev_config_dirty(vd);
9295 }
9296 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9297 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9298 }
9299 spa_config_exit(spa, SCL_STATE, FTAG);
9300
9301 dsl_pool_t *dp = spa->spa_dsl_pool;
9302 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
9303
9304 spa->spa_sync_starttime = gethrtime();
9305 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
9306 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
9307 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
9308 NSEC_TO_TICK(spa->spa_deadman_synctime));
9309
9310 /*
9311 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
9312 * set spa_deflate if we have no raid-z vdevs.
9313 */
9314 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
9315 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
9316 vdev_t *rvd = spa->spa_root_vdev;
9317
9318 int i;
9319 for (i = 0; i < rvd->vdev_children; i++) {
9320 vd = rvd->vdev_child[i];
9321 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
9322 break;
9323 }
9324 if (i == rvd->vdev_children) {
9325 spa->spa_deflate = TRUE;
9326 VERIFY0(zap_add(spa->spa_meta_objset,
9327 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
9328 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
9329 }
9330 }
9331
9332 spa_sync_adjust_vdev_max_queue_depth(spa);
9333
9334 spa_sync_condense_indirect(spa, tx);
9335
9336 spa_sync_iterate_to_convergence(spa, tx);
9337
9338 #ifdef ZFS_DEBUG
9339 if (!list_is_empty(&spa->spa_config_dirty_list)) {
9340 /*
9341 * Make sure that the number of ZAPs for all the vdevs matches
9342 * the number of ZAPs in the per-vdev ZAP list. This only gets
9343 * called if the config is dirty; otherwise there may be
9344 * outstanding AVZ operations that weren't completed in
9345 * spa_sync_config_object.
9346 */
9347 uint64_t all_vdev_zap_entry_count;
9348 ASSERT0(zap_count(spa->spa_meta_objset,
9349 spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
9350 ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
9351 all_vdev_zap_entry_count);
9352 }
9353 #endif
9354
9355 if (spa->spa_vdev_removal != NULL) {
9356 ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
9357 }
9358
9359 spa_sync_rewrite_vdev_config(spa, tx);
9360 dmu_tx_commit(tx);
9361
9362 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
9363 spa->spa_deadman_tqid = 0;
9364
9365 /*
9366 * Clear the dirty config list.
9367 */
9368 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
9369 vdev_config_clean(vd);
9370
9371 /*
9372 * Now that the new config has synced transactionally,
9373 * let it become visible to the config cache.
9374 */
9375 if (spa->spa_config_syncing != NULL) {
9376 spa_config_set(spa, spa->spa_config_syncing);
9377 spa->spa_config_txg = txg;
9378 spa->spa_config_syncing = NULL;
9379 }
9380
9381 dsl_pool_sync_done(dp, txg);
9382
9383 for (int i = 0; i < spa->spa_alloc_count; i++) {
9384 mutex_enter(&spa->spa_allocs[i].spaa_lock);
9385 VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
9386 mutex_exit(&spa->spa_allocs[i].spaa_lock);
9387 }
9388
9389 /*
9390 * Update usable space statistics.
9391 */
9392 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
9393 != NULL)
9394 vdev_sync_done(vd, txg);
9395
9396 metaslab_class_evict_old(spa->spa_normal_class, txg);
9397 metaslab_class_evict_old(spa->spa_log_class, txg);
9398
9399 spa_sync_close_syncing_log_sm(spa);
9400
9401 spa_update_dspace(spa);
9402
9403 /*
9404 * It had better be the case that we didn't dirty anything
9405 * since vdev_config_sync().
9406 */
9407 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
9408 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
9409 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
9410
9411 while (zfs_pause_spa_sync)
9412 delay(1);
9413
9414 spa->spa_sync_pass = 0;
9415
9416 /*
9417 * Update the last synced uberblock here. We want to do this at
9418 * the end of spa_sync() so that consumers of spa_last_synced_txg()
9419 * will be guaranteed that all the processing associated with
9420 * that txg has been completed.
9421 */
9422 spa->spa_ubsync = spa->spa_uberblock;
9423 spa_config_exit(spa, SCL_CONFIG, FTAG);
9424
9425 spa_handle_ignored_writes(spa);
9426
9427 /*
9428 * If any async tasks have been requested, kick them off.
9429 */
9430 spa_async_dispatch(spa);
9431 }
9432
9433 /*
9434 * Sync all pools. We don't want to hold the namespace lock across these
9435 * operations, so we take a reference on the spa_t and drop the lock during the
9436 * sync.
9437 */
9438 void
9439 spa_sync_allpools(void)
9440 {
9441 spa_t *spa = NULL;
9442 mutex_enter(&spa_namespace_lock);
9443 while ((spa = spa_next(spa)) != NULL) {
9444 if (spa_state(spa) != POOL_STATE_ACTIVE ||
9445 !spa_writeable(spa) || spa_suspended(spa))
9446 continue;
9447 spa_open_ref(spa, FTAG);
9448 mutex_exit(&spa_namespace_lock);
9449 txg_wait_synced(spa_get_dsl(spa), 0);
9450 mutex_enter(&spa_namespace_lock);
9451 spa_close(spa, FTAG);
9452 }
9453 mutex_exit(&spa_namespace_lock);
9454 }
9455
9456 /*
9457 * ==========================================================================
9458 * Miscellaneous routines
9459 * ==========================================================================
9460 */
9461
9462 /*
9463 * Remove all pools in the system.
9464 */
9465 void
9466 spa_evict_all(void)
9467 {
9468 spa_t *spa;
9469
9470 /*
9471 * Remove all cached state. All pools should be closed now,
9472 * so every spa in the AVL tree should be unreferenced.
9473 */
9474 mutex_enter(&spa_namespace_lock);
9475 while ((spa = spa_next(NULL)) != NULL) {
9476 /*
9477 * Stop async tasks. The async thread may need to detach
9478 * a device that's been replaced, which requires grabbing
9479 * spa_namespace_lock, so we must drop it here.
9480 */
9481 spa_open_ref(spa, FTAG);
9482 mutex_exit(&spa_namespace_lock);
9483 spa_async_suspend(spa);
9484 mutex_enter(&spa_namespace_lock);
9485 spa_close(spa, FTAG);
9486
9487 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
9488 spa_unload(spa);
9489 spa_deactivate(spa);
9490 }
9491 spa_remove(spa);
9492 }
9493 mutex_exit(&spa_namespace_lock);
9494 }
9495
9496 vdev_t *
9497 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
9498 {
9499 vdev_t *vd;
9500 int i;
9501
9502 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
9503 return (vd);
9504
9505 if (aux) {
9506 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
9507 vd = spa->spa_l2cache.sav_vdevs[i];
9508 if (vd->vdev_guid == guid)
9509 return (vd);
9510 }
9511
9512 for (i = 0; i < spa->spa_spares.sav_count; i++) {
9513 vd = spa->spa_spares.sav_vdevs[i];
9514 if (vd->vdev_guid == guid)
9515 return (vd);
9516 }
9517 }
9518
9519 return (NULL);
9520 }
9521
9522 void
9523 spa_upgrade(spa_t *spa, uint64_t version)
9524 {
9525 ASSERT(spa_writeable(spa));
9526
9527 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
9528
9529 /*
9530 * This should only be called for a non-faulted pool, and since a
9531 * future version would result in an unopenable pool, this shouldn't be
9532 * possible.
9533 */
9534 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
9535 ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
9536
9537 spa->spa_uberblock.ub_version = version;
9538 vdev_config_dirty(spa->spa_root_vdev);
9539
9540 spa_config_exit(spa, SCL_ALL, FTAG);
9541
9542 txg_wait_synced(spa_get_dsl(spa), 0);
9543 }
9544
9545 static boolean_t
9546 spa_has_aux_vdev(spa_t *spa, uint64_t guid, spa_aux_vdev_t *sav)
9547 {
9548 (void) spa;
9549 int i;
9550 uint64_t vdev_guid;
9551
9552 for (i = 0; i < sav->sav_count; i++)
9553 if (sav->sav_vdevs[i]->vdev_guid == guid)
9554 return (B_TRUE);
9555
9556 for (i = 0; i < sav->sav_npending; i++) {
9557 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
9558 &vdev_guid) == 0 && vdev_guid == guid)
9559 return (B_TRUE);
9560 }
9561
9562 return (B_FALSE);
9563 }
9564
9565 boolean_t
9566 spa_has_l2cache(spa_t *spa, uint64_t guid)
9567 {
9568 return (spa_has_aux_vdev(spa, guid, &spa->spa_l2cache));
9569 }
9570
9571 boolean_t
9572 spa_has_spare(spa_t *spa, uint64_t guid)
9573 {
9574 return (spa_has_aux_vdev(spa, guid, &spa->spa_spares));
9575 }
9576
9577 /*
9578 * Check if a pool has an active shared spare device.
9579 * Note: reference count of an active spare is 2, as a spare and as a replace
9580 */
9581 static boolean_t
9582 spa_has_active_shared_spare(spa_t *spa)
9583 {
9584 int i, refcnt;
9585 uint64_t pool;
9586 spa_aux_vdev_t *sav = &spa->spa_spares;
9587
9588 for (i = 0; i < sav->sav_count; i++) {
9589 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
9590 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
9591 refcnt > 2)
9592 return (B_TRUE);
9593 }
9594
9595 return (B_FALSE);
9596 }
9597
9598 uint64_t
9599 spa_total_metaslabs(spa_t *spa)
9600 {
9601 vdev_t *rvd = spa->spa_root_vdev;
9602
9603 uint64_t m = 0;
9604 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
9605 vdev_t *vd = rvd->vdev_child[c];
9606 if (!vdev_is_concrete(vd))
9607 continue;
9608 m += vd->vdev_ms_count;
9609 }
9610 return (m);
9611 }
9612
9613 /*
9614 * Notify any waiting threads that some activity has switched from being in-
9615 * progress to not-in-progress so that the thread can wake up and determine
9616 * whether it is finished waiting.
9617 */
9618 void
9619 spa_notify_waiters(spa_t *spa)
9620 {
9621 /*
9622 * Acquiring spa_activities_lock here prevents the cv_broadcast from
9623 * happening between the waiting thread's check and cv_wait.
9624 */
9625 mutex_enter(&spa->spa_activities_lock);
9626 cv_broadcast(&spa->spa_activities_cv);
9627 mutex_exit(&spa->spa_activities_lock);
9628 }
9629
9630 /*
9631 * Notify any waiting threads that the pool is exporting, and then block until
9632 * they are finished using the spa_t.
9633 */
9634 void
9635 spa_wake_waiters(spa_t *spa)
9636 {
9637 mutex_enter(&spa->spa_activities_lock);
9638 spa->spa_waiters_cancel = B_TRUE;
9639 cv_broadcast(&spa->spa_activities_cv);
9640 while (spa->spa_waiters != 0)
9641 cv_wait(&spa->spa_waiters_cv, &spa->spa_activities_lock);
9642 spa->spa_waiters_cancel = B_FALSE;
9643 mutex_exit(&spa->spa_activities_lock);
9644 }
9645
9646 /* Whether the vdev or any of its descendants are being initialized/trimmed. */
9647 static boolean_t
9648 spa_vdev_activity_in_progress_impl(vdev_t *vd, zpool_wait_activity_t activity)
9649 {
9650 spa_t *spa = vd->vdev_spa;
9651
9652 ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER));
9653 ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
9654 ASSERT(activity == ZPOOL_WAIT_INITIALIZE ||
9655 activity == ZPOOL_WAIT_TRIM);
9656
9657 kmutex_t *lock = activity == ZPOOL_WAIT_INITIALIZE ?
9658 &vd->vdev_initialize_lock : &vd->vdev_trim_lock;
9659
9660 mutex_exit(&spa->spa_activities_lock);
9661 mutex_enter(lock);
9662 mutex_enter(&spa->spa_activities_lock);
9663
9664 boolean_t in_progress = (activity == ZPOOL_WAIT_INITIALIZE) ?
9665 (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) :
9666 (vd->vdev_trim_state == VDEV_TRIM_ACTIVE);
9667 mutex_exit(lock);
9668
9669 if (in_progress)
9670 return (B_TRUE);
9671
9672 for (int i = 0; i < vd->vdev_children; i++) {
9673 if (spa_vdev_activity_in_progress_impl(vd->vdev_child[i],
9674 activity))
9675 return (B_TRUE);
9676 }
9677
9678 return (B_FALSE);
9679 }
9680
9681 /*
9682 * If use_guid is true, this checks whether the vdev specified by guid is
9683 * being initialized/trimmed. Otherwise, it checks whether any vdev in the pool
9684 * is being initialized/trimmed. The caller must hold the config lock and
9685 * spa_activities_lock.
9686 */
9687 static int
9688 spa_vdev_activity_in_progress(spa_t *spa, boolean_t use_guid, uint64_t guid,
9689 zpool_wait_activity_t activity, boolean_t *in_progress)
9690 {
9691 mutex_exit(&spa->spa_activities_lock);
9692 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9693 mutex_enter(&spa->spa_activities_lock);
9694
9695 vdev_t *vd;
9696 if (use_guid) {
9697 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
9698 if (vd == NULL || !vd->vdev_ops->vdev_op_leaf) {
9699 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9700 return (EINVAL);
9701 }
9702 } else {
9703 vd = spa->spa_root_vdev;
9704 }
9705
9706 *in_progress = spa_vdev_activity_in_progress_impl(vd, activity);
9707
9708 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9709 return (0);
9710 }
9711
9712 /*
9713 * Locking for waiting threads
9714 * ---------------------------
9715 *
9716 * Waiting threads need a way to check whether a given activity is in progress,
9717 * and then, if it is, wait for it to complete. Each activity will have some
9718 * in-memory representation of the relevant on-disk state which can be used to
9719 * determine whether or not the activity is in progress. The in-memory state and
9720 * the locking used to protect it will be different for each activity, and may
9721 * not be suitable for use with a cvar (e.g., some state is protected by the
9722 * config lock). To allow waiting threads to wait without any races, another
9723 * lock, spa_activities_lock, is used.
9724 *
9725 * When the state is checked, both the activity-specific lock (if there is one)
9726 * and spa_activities_lock are held. In some cases, the activity-specific lock
9727 * is acquired explicitly (e.g. the config lock). In others, the locking is
9728 * internal to some check (e.g. bpobj_is_empty). After checking, the waiting
9729 * thread releases the activity-specific lock and, if the activity is in
9730 * progress, then cv_waits using spa_activities_lock.
9731 *
9732 * The waiting thread is woken when another thread, one completing some
9733 * activity, updates the state of the activity and then calls
9734 * spa_notify_waiters, which will cv_broadcast. This 'completing' thread only
9735 * needs to hold its activity-specific lock when updating the state, and this
9736 * lock can (but doesn't have to) be dropped before calling spa_notify_waiters.
9737 *
9738 * Because spa_notify_waiters acquires spa_activities_lock before broadcasting,
9739 * and because it is held when the waiting thread checks the state of the
9740 * activity, it can never be the case that the completing thread both updates
9741 * the activity state and cv_broadcasts in between the waiting thread's check
9742 * and cv_wait. Thus, a waiting thread can never miss a wakeup.
9743 *
9744 * In order to prevent deadlock, when the waiting thread does its check, in some
9745 * cases it will temporarily drop spa_activities_lock in order to acquire the
9746 * activity-specific lock. The order in which spa_activities_lock and the
9747 * activity specific lock are acquired in the waiting thread is determined by
9748 * the order in which they are acquired in the completing thread; if the
9749 * completing thread calls spa_notify_waiters with the activity-specific lock
9750 * held, then the waiting thread must also acquire the activity-specific lock
9751 * first.
9752 */
9753
9754 static int
9755 spa_activity_in_progress(spa_t *spa, zpool_wait_activity_t activity,
9756 boolean_t use_tag, uint64_t tag, boolean_t *in_progress)
9757 {
9758 int error = 0;
9759
9760 ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
9761
9762 switch (activity) {
9763 case ZPOOL_WAIT_CKPT_DISCARD:
9764 *in_progress =
9765 (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT) &&
9766 zap_contains(spa_meta_objset(spa),
9767 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT) ==
9768 ENOENT);
9769 break;
9770 case ZPOOL_WAIT_FREE:
9771 *in_progress = ((spa_version(spa) >= SPA_VERSION_DEADLISTS &&
9772 !bpobj_is_empty(&spa->spa_dsl_pool->dp_free_bpobj)) ||
9773 spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY) ||
9774 spa_livelist_delete_check(spa));
9775 break;
9776 case ZPOOL_WAIT_INITIALIZE:
9777 case ZPOOL_WAIT_TRIM:
9778 error = spa_vdev_activity_in_progress(spa, use_tag, tag,
9779 activity, in_progress);
9780 break;
9781 case ZPOOL_WAIT_REPLACE:
9782 mutex_exit(&spa->spa_activities_lock);
9783 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9784 mutex_enter(&spa->spa_activities_lock);
9785
9786 *in_progress = vdev_replace_in_progress(spa->spa_root_vdev);
9787 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9788 break;
9789 case ZPOOL_WAIT_REMOVE:
9790 *in_progress = (spa->spa_removing_phys.sr_state ==
9791 DSS_SCANNING);
9792 break;
9793 case ZPOOL_WAIT_RESILVER:
9794 if ((*in_progress = vdev_rebuild_active(spa->spa_root_vdev)))
9795 break;
9796 zfs_fallthrough;
9797 case ZPOOL_WAIT_SCRUB:
9798 {
9799 boolean_t scanning, paused, is_scrub;
9800 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
9801
9802 is_scrub = (scn->scn_phys.scn_func == POOL_SCAN_SCRUB);
9803 scanning = (scn->scn_phys.scn_state == DSS_SCANNING);
9804 paused = dsl_scan_is_paused_scrub(scn);
9805 *in_progress = (scanning && !paused &&
9806 is_scrub == (activity == ZPOOL_WAIT_SCRUB));
9807 break;
9808 }
9809 default:
9810 panic("unrecognized value for activity %d", activity);
9811 }
9812
9813 return (error);
9814 }
9815
9816 static int
9817 spa_wait_common(const char *pool, zpool_wait_activity_t activity,
9818 boolean_t use_tag, uint64_t tag, boolean_t *waited)
9819 {
9820 /*
9821 * The tag is used to distinguish between instances of an activity.
9822 * 'initialize' and 'trim' are the only activities that we use this for.
9823 * The other activities can only have a single instance in progress in a
9824 * pool at one time, making the tag unnecessary.
9825 *
9826 * There can be multiple devices being replaced at once, but since they
9827 * all finish once resilvering finishes, we don't bother keeping track
9828 * of them individually, we just wait for them all to finish.
9829 */
9830 if (use_tag && activity != ZPOOL_WAIT_INITIALIZE &&
9831 activity != ZPOOL_WAIT_TRIM)
9832 return (EINVAL);
9833
9834 if (activity < 0 || activity >= ZPOOL_WAIT_NUM_ACTIVITIES)
9835 return (EINVAL);
9836
9837 spa_t *spa;
9838 int error = spa_open(pool, &spa, FTAG);
9839 if (error != 0)
9840 return (error);
9841
9842 /*
9843 * Increment the spa's waiter count so that we can call spa_close and
9844 * still ensure that the spa_t doesn't get freed before this thread is
9845 * finished with it when the pool is exported. We want to call spa_close
9846 * before we start waiting because otherwise the additional ref would
9847 * prevent the pool from being exported or destroyed throughout the
9848 * potentially long wait.
9849 */
9850 mutex_enter(&spa->spa_activities_lock);
9851 spa->spa_waiters++;
9852 spa_close(spa, FTAG);
9853
9854 *waited = B_FALSE;
9855 for (;;) {
9856 boolean_t in_progress;
9857 error = spa_activity_in_progress(spa, activity, use_tag, tag,
9858 &in_progress);
9859
9860 if (error || !in_progress || spa->spa_waiters_cancel)
9861 break;
9862
9863 *waited = B_TRUE;
9864
9865 if (cv_wait_sig(&spa->spa_activities_cv,
9866 &spa->spa_activities_lock) == 0) {
9867 error = EINTR;
9868 break;
9869 }
9870 }
9871
9872 spa->spa_waiters--;
9873 cv_signal(&spa->spa_waiters_cv);
9874 mutex_exit(&spa->spa_activities_lock);
9875
9876 return (error);
9877 }
9878
9879 /*
9880 * Wait for a particular instance of the specified activity to complete, where
9881 * the instance is identified by 'tag'
9882 */
9883 int
9884 spa_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag,
9885 boolean_t *waited)
9886 {
9887 return (spa_wait_common(pool, activity, B_TRUE, tag, waited));
9888 }
9889
9890 /*
9891 * Wait for all instances of the specified activity complete
9892 */
9893 int
9894 spa_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited)
9895 {
9896
9897 return (spa_wait_common(pool, activity, B_FALSE, 0, waited));
9898 }
9899
9900 sysevent_t *
9901 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
9902 {
9903 sysevent_t *ev = NULL;
9904 #ifdef _KERNEL
9905 nvlist_t *resource;
9906
9907 resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl);
9908 if (resource) {
9909 ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP);
9910 ev->resource = resource;
9911 }
9912 #else
9913 (void) spa, (void) vd, (void) hist_nvl, (void) name;
9914 #endif
9915 return (ev);
9916 }
9917
9918 void
9919 spa_event_post(sysevent_t *ev)
9920 {
9921 #ifdef _KERNEL
9922 if (ev) {
9923 zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb);
9924 kmem_free(ev, sizeof (*ev));
9925 }
9926 #else
9927 (void) ev;
9928 #endif
9929 }
9930
9931 /*
9932 * Post a zevent corresponding to the given sysevent. The 'name' must be one
9933 * of the event definitions in sys/sysevent/eventdefs.h. The payload will be
9934 * filled in from the spa and (optionally) the vdev. This doesn't do anything
9935 * in the userland libzpool, as we don't want consumers to misinterpret ztest
9936 * or zdb as real changes.
9937 */
9938 void
9939 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
9940 {
9941 spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
9942 }
9943
9944 /* state manipulation functions */
9945 EXPORT_SYMBOL(spa_open);
9946 EXPORT_SYMBOL(spa_open_rewind);
9947 EXPORT_SYMBOL(spa_get_stats);
9948 EXPORT_SYMBOL(spa_create);
9949 EXPORT_SYMBOL(spa_import);
9950 EXPORT_SYMBOL(spa_tryimport);
9951 EXPORT_SYMBOL(spa_destroy);
9952 EXPORT_SYMBOL(spa_export);
9953 EXPORT_SYMBOL(spa_reset);
9954 EXPORT_SYMBOL(spa_async_request);
9955 EXPORT_SYMBOL(spa_async_suspend);
9956 EXPORT_SYMBOL(spa_async_resume);
9957 EXPORT_SYMBOL(spa_inject_addref);
9958 EXPORT_SYMBOL(spa_inject_delref);
9959 EXPORT_SYMBOL(spa_scan_stat_init);
9960 EXPORT_SYMBOL(spa_scan_get_stats);
9961
9962 /* device manipulation */
9963 EXPORT_SYMBOL(spa_vdev_add);
9964 EXPORT_SYMBOL(spa_vdev_attach);
9965 EXPORT_SYMBOL(spa_vdev_detach);
9966 EXPORT_SYMBOL(spa_vdev_setpath);
9967 EXPORT_SYMBOL(spa_vdev_setfru);
9968 EXPORT_SYMBOL(spa_vdev_split_mirror);
9969
9970 /* spare statech is global across all pools) */
9971 EXPORT_SYMBOL(spa_spare_add);
9972 EXPORT_SYMBOL(spa_spare_remove);
9973 EXPORT_SYMBOL(spa_spare_exists);
9974 EXPORT_SYMBOL(spa_spare_activate);
9975
9976 /* L2ARC statech is global across all pools) */
9977 EXPORT_SYMBOL(spa_l2cache_add);
9978 EXPORT_SYMBOL(spa_l2cache_remove);
9979 EXPORT_SYMBOL(spa_l2cache_exists);
9980 EXPORT_SYMBOL(spa_l2cache_activate);
9981 EXPORT_SYMBOL(spa_l2cache_drop);
9982
9983 /* scanning */
9984 EXPORT_SYMBOL(spa_scan);
9985 EXPORT_SYMBOL(spa_scan_stop);
9986
9987 /* spa syncing */
9988 EXPORT_SYMBOL(spa_sync); /* only for DMU use */
9989 EXPORT_SYMBOL(spa_sync_allpools);
9990
9991 /* properties */
9992 EXPORT_SYMBOL(spa_prop_set);
9993 EXPORT_SYMBOL(spa_prop_get);
9994 EXPORT_SYMBOL(spa_prop_clear_bootfs);
9995
9996 /* asynchronous event notification */
9997 EXPORT_SYMBOL(spa_event_notify);
9998
9999 /* BEGIN CSTYLED */
10000 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_shift, UINT, ZMOD_RW,
10001 "log2 fraction of arc that can be used by inflight I/Os when "
10002 "verifying pool during import");
10003 /* END CSTYLED */
10004
10005 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_metadata, INT, ZMOD_RW,
10006 "Set to traverse metadata on pool import");
10007
10008 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_data, INT, ZMOD_RW,
10009 "Set to traverse data on pool import");
10010
10011 ZFS_MODULE_PARAM(zfs_spa, spa_, load_print_vdev_tree, INT, ZMOD_RW,
10012 "Print vdev tree to zfs_dbgmsg during pool import");
10013
10014 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_pct, UINT, ZMOD_RD,
10015 "Percentage of CPUs to run an IO worker thread");
10016
10017 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_tpq, UINT, ZMOD_RD,
10018 "Number of threads per IO worker taskqueue");
10019
10020 /* BEGIN CSTYLED */
10021 ZFS_MODULE_PARAM(zfs, zfs_, max_missing_tvds, U64, ZMOD_RW,
10022 "Allow importing pool with up to this number of missing top-level "
10023 "vdevs (in read-only mode)");
10024 /* END CSTYLED */
10025
10026 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_pause, INT,
10027 ZMOD_RW, "Set the livelist condense zthr to pause");
10028
10029 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_pause, INT,
10030 ZMOD_RW, "Set the livelist condense synctask to pause");
10031
10032 /* BEGIN CSTYLED */
10033 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_cancel,
10034 INT, ZMOD_RW,
10035 "Whether livelist condensing was canceled in the synctask");
10036
10037 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_cancel,
10038 INT, ZMOD_RW,
10039 "Whether livelist condensing was canceled in the zthr function");
10040
10041 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, new_alloc, INT,
10042 ZMOD_RW,
10043 "Whether extra ALLOC blkptrs were added to a livelist entry while it "
10044 "was being condensed");
10045 /* END CSTYLED */
Cache object: 5a8f7720ed483000e99cd389bf0aa085
|