The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/contrib/openzfs/module/zfs/space_map.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * CDDL HEADER START
    3  *
    4  * The contents of this file are subject to the terms of the
    5  * Common Development and Distribution License (the "License").
    6  * You may not use this file except in compliance with the License.
    7  *
    8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
    9  * or https://opensource.org/licenses/CDDL-1.0.
   10  * See the License for the specific language governing permissions
   11  * and limitations under the License.
   12  *
   13  * When distributing Covered Code, include this CDDL HEADER in each
   14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
   15  * If applicable, add the following below this CDDL HEADER, with the
   16  * fields enclosed by brackets "[]" replaced with your own identifying
   17  * information: Portions Copyright [yyyy] [name of copyright owner]
   18  *
   19  * CDDL HEADER END
   20  */
   21 /*
   22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
   23  * Use is subject to license terms.
   24  */
   25 /*
   26  * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
   27  */
   28 
   29 #include <sys/zfs_context.h>
   30 #include <sys/spa.h>
   31 #include <sys/dmu.h>
   32 #include <sys/dmu_tx.h>
   33 #include <sys/dnode.h>
   34 #include <sys/dsl_pool.h>
   35 #include <sys/zio.h>
   36 #include <sys/space_map.h>
   37 #include <sys/zfeature.h>
   38 
   39 /*
   40  * Note on space map block size:
   41  *
   42  * The data for a given space map can be kept on blocks of any size.
   43  * Larger blocks entail fewer I/O operations, but they also cause the
   44  * DMU to keep more data in-core, and also to waste more I/O bandwidth
   45  * when only a few blocks have changed since the last transaction group.
   46  */
   47 
   48 /*
   49  * Enabled whenever we want to stress test the use of double-word
   50  * space map entries.
   51  */
   52 boolean_t zfs_force_some_double_word_sm_entries = B_FALSE;
   53 
   54 /*
   55  * Override the default indirect block size of 128K, instead use 16K for
   56  * spacemaps (2^14 bytes).  This dramatically reduces write inflation since
   57  * appending to a spacemap typically has to write one data block (4KB) and one
   58  * or two indirect blocks (16K-32K, rather than 128K).
   59  */
   60 int space_map_ibs = 14;
   61 
   62 boolean_t
   63 sm_entry_is_debug(uint64_t e)
   64 {
   65         return (SM_PREFIX_DECODE(e) == SM_DEBUG_PREFIX);
   66 }
   67 
   68 boolean_t
   69 sm_entry_is_single_word(uint64_t e)
   70 {
   71         uint8_t prefix = SM_PREFIX_DECODE(e);
   72         return (prefix != SM_DEBUG_PREFIX && prefix != SM2_PREFIX);
   73 }
   74 
   75 boolean_t
   76 sm_entry_is_double_word(uint64_t e)
   77 {
   78         return (SM_PREFIX_DECODE(e) == SM2_PREFIX);
   79 }
   80 
   81 /*
   82  * Iterate through the space map, invoking the callback on each (non-debug)
   83  * space map entry. Stop after reading 'end' bytes of the space map.
   84  */
   85 int
   86 space_map_iterate(space_map_t *sm, uint64_t end, sm_cb_t callback, void *arg)
   87 {
   88         uint64_t blksz = sm->sm_blksz;
   89 
   90         ASSERT3U(blksz, !=, 0);
   91         ASSERT3U(end, <=, space_map_length(sm));
   92         ASSERT0(P2PHASE(end, sizeof (uint64_t)));
   93 
   94         dmu_prefetch(sm->sm_os, space_map_object(sm), 0, 0, end,
   95             ZIO_PRIORITY_SYNC_READ);
   96 
   97         int error = 0;
   98         uint64_t txg = 0, sync_pass = 0;
   99         for (uint64_t block_base = 0; block_base < end && error == 0;
  100             block_base += blksz) {
  101                 dmu_buf_t *db;
  102                 error = dmu_buf_hold(sm->sm_os, space_map_object(sm),
  103                     block_base, FTAG, &db, DMU_READ_PREFETCH);
  104                 if (error != 0)
  105                         return (error);
  106 
  107                 uint64_t *block_start = db->db_data;
  108                 uint64_t block_length = MIN(end - block_base, blksz);
  109                 uint64_t *block_end = block_start +
  110                     (block_length / sizeof (uint64_t));
  111 
  112                 VERIFY0(P2PHASE(block_length, sizeof (uint64_t)));
  113                 VERIFY3U(block_length, !=, 0);
  114                 ASSERT3U(blksz, ==, db->db_size);
  115 
  116                 for (uint64_t *block_cursor = block_start;
  117                     block_cursor < block_end && error == 0; block_cursor++) {
  118                         uint64_t e = *block_cursor;
  119 
  120                         if (sm_entry_is_debug(e)) {
  121                                 /*
  122                                  * Debug entries are only needed to record the
  123                                  * current TXG and sync pass if available.
  124                                  *
  125                                  * Note though that sometimes there can be
  126                                  * debug entries that are used as padding
  127                                  * at the end of space map blocks in-order
  128                                  * to not split a double-word entry in the
  129                                  * middle between two blocks. These entries
  130                                  * have their TXG field set to 0 and we
  131                                  * skip them without recording the TXG.
  132                                  * [see comment in space_map_write_seg()]
  133                                  */
  134                                 uint64_t e_txg = SM_DEBUG_TXG_DECODE(e);
  135                                 if (e_txg != 0) {
  136                                         txg = e_txg;
  137                                         sync_pass = SM_DEBUG_SYNCPASS_DECODE(e);
  138                                 } else {
  139                                         ASSERT0(SM_DEBUG_SYNCPASS_DECODE(e));
  140                                 }
  141                                 continue;
  142                         }
  143 
  144                         uint64_t raw_offset, raw_run, vdev_id;
  145                         maptype_t type;
  146                         if (sm_entry_is_single_word(e)) {
  147                                 type = SM_TYPE_DECODE(e);
  148                                 vdev_id = SM_NO_VDEVID;
  149                                 raw_offset = SM_OFFSET_DECODE(e);
  150                                 raw_run = SM_RUN_DECODE(e);
  151                         } else {
  152                                 /* it is a two-word entry */
  153                                 ASSERT(sm_entry_is_double_word(e));
  154                                 raw_run = SM2_RUN_DECODE(e);
  155                                 vdev_id = SM2_VDEV_DECODE(e);
  156 
  157                                 /* move on to the second word */
  158                                 block_cursor++;
  159                                 e = *block_cursor;
  160                                 VERIFY3P(block_cursor, <=, block_end);
  161 
  162                                 type = SM2_TYPE_DECODE(e);
  163                                 raw_offset = SM2_OFFSET_DECODE(e);
  164                         }
  165 
  166                         uint64_t entry_offset = (raw_offset << sm->sm_shift) +
  167                             sm->sm_start;
  168                         uint64_t entry_run = raw_run << sm->sm_shift;
  169 
  170                         VERIFY0(P2PHASE(entry_offset, 1ULL << sm->sm_shift));
  171                         VERIFY0(P2PHASE(entry_run, 1ULL << sm->sm_shift));
  172                         ASSERT3U(entry_offset, >=, sm->sm_start);
  173                         ASSERT3U(entry_offset, <, sm->sm_start + sm->sm_size);
  174                         ASSERT3U(entry_run, <=, sm->sm_size);
  175                         ASSERT3U(entry_offset + entry_run, <=,
  176                             sm->sm_start + sm->sm_size);
  177 
  178                         space_map_entry_t sme = {
  179                             .sme_type = type,
  180                             .sme_vdev = vdev_id,
  181                             .sme_offset = entry_offset,
  182                             .sme_run = entry_run,
  183                             .sme_txg = txg,
  184                             .sme_sync_pass = sync_pass
  185                         };
  186                         error = callback(&sme, arg);
  187                 }
  188                 dmu_buf_rele(db, FTAG);
  189         }
  190         return (error);
  191 }
  192 
  193 /*
  194  * Reads the entries from the last block of the space map into
  195  * buf in reverse order. Populates nwords with number of words
  196  * in the last block.
  197  *
  198  * Refer to block comment within space_map_incremental_destroy()
  199  * to understand why this function is needed.
  200  */
  201 static int
  202 space_map_reversed_last_block_entries(space_map_t *sm, uint64_t *buf,
  203     uint64_t bufsz, uint64_t *nwords)
  204 {
  205         int error = 0;
  206         dmu_buf_t *db;
  207 
  208         /*
  209          * Find the offset of the last word in the space map and use
  210          * that to read the last block of the space map with
  211          * dmu_buf_hold().
  212          */
  213         uint64_t last_word_offset =
  214             sm->sm_phys->smp_length - sizeof (uint64_t);
  215         error = dmu_buf_hold(sm->sm_os, space_map_object(sm), last_word_offset,
  216             FTAG, &db, DMU_READ_NO_PREFETCH);
  217         if (error != 0)
  218                 return (error);
  219 
  220         ASSERT3U(sm->sm_object, ==, db->db_object);
  221         ASSERT3U(sm->sm_blksz, ==, db->db_size);
  222         ASSERT3U(bufsz, >=, db->db_size);
  223         ASSERT(nwords != NULL);
  224 
  225         uint64_t *words = db->db_data;
  226         *nwords =
  227             (sm->sm_phys->smp_length - db->db_offset) / sizeof (uint64_t);
  228 
  229         ASSERT3U(*nwords, <=, bufsz / sizeof (uint64_t));
  230 
  231         uint64_t n = *nwords;
  232         uint64_t j = n - 1;
  233         for (uint64_t i = 0; i < n; i++) {
  234                 uint64_t entry = words[i];
  235                 if (sm_entry_is_double_word(entry)) {
  236                         /*
  237                          * Since we are populating the buffer backwards
  238                          * we have to be extra careful and add the two
  239                          * words of the double-word entry in the right
  240                          * order.
  241                          */
  242                         ASSERT3U(j, >, 0);
  243                         buf[j - 1] = entry;
  244 
  245                         i++;
  246                         ASSERT3U(i, <, n);
  247                         entry = words[i];
  248                         buf[j] = entry;
  249                         j -= 2;
  250                 } else {
  251                         ASSERT(sm_entry_is_debug(entry) ||
  252                             sm_entry_is_single_word(entry));
  253                         buf[j] = entry;
  254                         j--;
  255                 }
  256         }
  257 
  258         /*
  259          * Assert that we wrote backwards all the
  260          * way to the beginning of the buffer.
  261          */
  262         ASSERT3S(j, ==, -1);
  263 
  264         dmu_buf_rele(db, FTAG);
  265         return (error);
  266 }
  267 
  268 /*
  269  * Note: This function performs destructive actions - specifically
  270  * it deletes entries from the end of the space map. Thus, callers
  271  * should ensure that they are holding the appropriate locks for
  272  * the space map that they provide.
  273  */
  274 int
  275 space_map_incremental_destroy(space_map_t *sm, sm_cb_t callback, void *arg,
  276     dmu_tx_t *tx)
  277 {
  278         uint64_t bufsz = MAX(sm->sm_blksz, SPA_MINBLOCKSIZE);
  279         uint64_t *buf = zio_buf_alloc(bufsz);
  280 
  281         dmu_buf_will_dirty(sm->sm_dbuf, tx);
  282 
  283         /*
  284          * Ideally we would want to iterate from the beginning of the
  285          * space map to the end in incremental steps. The issue with this
  286          * approach is that we don't have any field on-disk that points
  287          * us where to start between each step. We could try zeroing out
  288          * entries that we've destroyed, but this doesn't work either as
  289          * an entry that is 0 is a valid one (ALLOC for range [0x0:0x200]).
  290          *
  291          * As a result, we destroy its entries incrementally starting from
  292          * the end after applying the callback to each of them.
  293          *
  294          * The problem with this approach is that we cannot literally
  295          * iterate through the words in the space map backwards as we
  296          * can't distinguish two-word space map entries from their second
  297          * word. Thus we do the following:
  298          *
  299          * 1] We get all the entries from the last block of the space map
  300          *    and put them into a buffer in reverse order. This way the
  301          *    last entry comes first in the buffer, the second to last is
  302          *    second, etc.
  303          * 2] We iterate through the entries in the buffer and we apply
  304          *    the callback to each one. As we move from entry to entry we
  305          *    we decrease the size of the space map, deleting effectively
  306          *    each entry.
  307          * 3] If there are no more entries in the space map or the callback
  308          *    returns a value other than 0, we stop iterating over the
  309          *    space map. If there are entries remaining and the callback
  310          *    returned 0, we go back to step [1].
  311          */
  312         int error = 0;
  313         while (space_map_length(sm) > 0 && error == 0) {
  314                 uint64_t nwords = 0;
  315                 error = space_map_reversed_last_block_entries(sm, buf, bufsz,
  316                     &nwords);
  317                 if (error != 0)
  318                         break;
  319 
  320                 ASSERT3U(nwords, <=, bufsz / sizeof (uint64_t));
  321 
  322                 for (uint64_t i = 0; i < nwords; i++) {
  323                         uint64_t e = buf[i];
  324 
  325                         if (sm_entry_is_debug(e)) {
  326                                 sm->sm_phys->smp_length -= sizeof (uint64_t);
  327                                 continue;
  328                         }
  329 
  330                         int words = 1;
  331                         uint64_t raw_offset, raw_run, vdev_id;
  332                         maptype_t type;
  333                         if (sm_entry_is_single_word(e)) {
  334                                 type = SM_TYPE_DECODE(e);
  335                                 vdev_id = SM_NO_VDEVID;
  336                                 raw_offset = SM_OFFSET_DECODE(e);
  337                                 raw_run = SM_RUN_DECODE(e);
  338                         } else {
  339                                 ASSERT(sm_entry_is_double_word(e));
  340                                 words = 2;
  341 
  342                                 raw_run = SM2_RUN_DECODE(e);
  343                                 vdev_id = SM2_VDEV_DECODE(e);
  344 
  345                                 /* move to the second word */
  346                                 i++;
  347                                 e = buf[i];
  348 
  349                                 ASSERT3P(i, <=, nwords);
  350 
  351                                 type = SM2_TYPE_DECODE(e);
  352                                 raw_offset = SM2_OFFSET_DECODE(e);
  353                         }
  354 
  355                         uint64_t entry_offset =
  356                             (raw_offset << sm->sm_shift) + sm->sm_start;
  357                         uint64_t entry_run = raw_run << sm->sm_shift;
  358 
  359                         VERIFY0(P2PHASE(entry_offset, 1ULL << sm->sm_shift));
  360                         VERIFY0(P2PHASE(entry_run, 1ULL << sm->sm_shift));
  361                         VERIFY3U(entry_offset, >=, sm->sm_start);
  362                         VERIFY3U(entry_offset, <, sm->sm_start + sm->sm_size);
  363                         VERIFY3U(entry_run, <=, sm->sm_size);
  364                         VERIFY3U(entry_offset + entry_run, <=,
  365                             sm->sm_start + sm->sm_size);
  366 
  367                         space_map_entry_t sme = {
  368                             .sme_type = type,
  369                             .sme_vdev = vdev_id,
  370                             .sme_offset = entry_offset,
  371                             .sme_run = entry_run
  372                         };
  373                         error = callback(&sme, arg);
  374                         if (error != 0)
  375                                 break;
  376 
  377                         if (type == SM_ALLOC)
  378                                 sm->sm_phys->smp_alloc -= entry_run;
  379                         else
  380                                 sm->sm_phys->smp_alloc += entry_run;
  381                         sm->sm_phys->smp_length -= words * sizeof (uint64_t);
  382                 }
  383         }
  384 
  385         if (space_map_length(sm) == 0) {
  386                 ASSERT0(error);
  387                 ASSERT0(space_map_allocated(sm));
  388         }
  389 
  390         zio_buf_free(buf, bufsz);
  391         return (error);
  392 }
  393 
  394 typedef struct space_map_load_arg {
  395         space_map_t     *smla_sm;
  396         range_tree_t    *smla_rt;
  397         maptype_t       smla_type;
  398 } space_map_load_arg_t;
  399 
  400 static int
  401 space_map_load_callback(space_map_entry_t *sme, void *arg)
  402 {
  403         space_map_load_arg_t *smla = arg;
  404         if (sme->sme_type == smla->smla_type) {
  405                 VERIFY3U(range_tree_space(smla->smla_rt) + sme->sme_run, <=,
  406                     smla->smla_sm->sm_size);
  407                 range_tree_add(smla->smla_rt, sme->sme_offset, sme->sme_run);
  408         } else {
  409                 range_tree_remove(smla->smla_rt, sme->sme_offset, sme->sme_run);
  410         }
  411 
  412         return (0);
  413 }
  414 
  415 /*
  416  * Load the spacemap into the rangetree, like space_map_load. But only
  417  * read the first 'length' bytes of the spacemap.
  418  */
  419 int
  420 space_map_load_length(space_map_t *sm, range_tree_t *rt, maptype_t maptype,
  421     uint64_t length)
  422 {
  423         space_map_load_arg_t smla;
  424 
  425         VERIFY0(range_tree_space(rt));
  426 
  427         if (maptype == SM_FREE)
  428                 range_tree_add(rt, sm->sm_start, sm->sm_size);
  429 
  430         smla.smla_rt = rt;
  431         smla.smla_sm = sm;
  432         smla.smla_type = maptype;
  433         int err = space_map_iterate(sm, length,
  434             space_map_load_callback, &smla);
  435 
  436         if (err != 0)
  437                 range_tree_vacate(rt, NULL, NULL);
  438 
  439         return (err);
  440 }
  441 
  442 /*
  443  * Load the space map disk into the specified range tree. Segments of maptype
  444  * are added to the range tree, other segment types are removed.
  445  */
  446 int
  447 space_map_load(space_map_t *sm, range_tree_t *rt, maptype_t maptype)
  448 {
  449         return (space_map_load_length(sm, rt, maptype, space_map_length(sm)));
  450 }
  451 
  452 void
  453 space_map_histogram_clear(space_map_t *sm)
  454 {
  455         if (sm->sm_dbuf->db_size != sizeof (space_map_phys_t))
  456                 return;
  457 
  458         memset(sm->sm_phys->smp_histogram, 0,
  459             sizeof (sm->sm_phys->smp_histogram));
  460 }
  461 
  462 boolean_t
  463 space_map_histogram_verify(space_map_t *sm, range_tree_t *rt)
  464 {
  465         /*
  466          * Verify that the in-core range tree does not have any
  467          * ranges smaller than our sm_shift size.
  468          */
  469         for (int i = 0; i < sm->sm_shift; i++) {
  470                 if (rt->rt_histogram[i] != 0)
  471                         return (B_FALSE);
  472         }
  473         return (B_TRUE);
  474 }
  475 
  476 void
  477 space_map_histogram_add(space_map_t *sm, range_tree_t *rt, dmu_tx_t *tx)
  478 {
  479         int idx = 0;
  480 
  481         ASSERT(dmu_tx_is_syncing(tx));
  482         VERIFY3U(space_map_object(sm), !=, 0);
  483 
  484         if (sm->sm_dbuf->db_size != sizeof (space_map_phys_t))
  485                 return;
  486 
  487         dmu_buf_will_dirty(sm->sm_dbuf, tx);
  488 
  489         ASSERT(space_map_histogram_verify(sm, rt));
  490         /*
  491          * Transfer the content of the range tree histogram to the space
  492          * map histogram. The space map histogram contains 32 buckets ranging
  493          * between 2^sm_shift to 2^(32+sm_shift-1). The range tree,
  494          * however, can represent ranges from 2^0 to 2^63. Since the space
  495          * map only cares about allocatable blocks (minimum of sm_shift) we
  496          * can safely ignore all ranges in the range tree smaller than sm_shift.
  497          */
  498         for (int i = sm->sm_shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
  499 
  500                 /*
  501                  * Since the largest histogram bucket in the space map is
  502                  * 2^(32+sm_shift-1), we need to normalize the values in
  503                  * the range tree for any bucket larger than that size. For
  504                  * example given an sm_shift of 9, ranges larger than 2^40
  505                  * would get normalized as if they were 1TB ranges. Assume
  506                  * the range tree had a count of 5 in the 2^44 (16TB) bucket,
  507                  * the calculation below would normalize this to 5 * 2^4 (16).
  508                  */
  509                 ASSERT3U(i, >=, idx + sm->sm_shift);
  510                 sm->sm_phys->smp_histogram[idx] +=
  511                     rt->rt_histogram[i] << (i - idx - sm->sm_shift);
  512 
  513                 /*
  514                  * Increment the space map's index as long as we haven't
  515                  * reached the maximum bucket size. Accumulate all ranges
  516                  * larger than the max bucket size into the last bucket.
  517                  */
  518                 if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) {
  519                         ASSERT3U(idx + sm->sm_shift, ==, i);
  520                         idx++;
  521                         ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE);
  522                 }
  523         }
  524 }
  525 
  526 static void
  527 space_map_write_intro_debug(space_map_t *sm, maptype_t maptype, dmu_tx_t *tx)
  528 {
  529         dmu_buf_will_dirty(sm->sm_dbuf, tx);
  530 
  531         uint64_t dentry = SM_PREFIX_ENCODE(SM_DEBUG_PREFIX) |
  532             SM_DEBUG_ACTION_ENCODE(maptype) |
  533             SM_DEBUG_SYNCPASS_ENCODE(spa_sync_pass(tx->tx_pool->dp_spa)) |
  534             SM_DEBUG_TXG_ENCODE(dmu_tx_get_txg(tx));
  535 
  536         dmu_write(sm->sm_os, space_map_object(sm), sm->sm_phys->smp_length,
  537             sizeof (dentry), &dentry, tx);
  538 
  539         sm->sm_phys->smp_length += sizeof (dentry);
  540 }
  541 
  542 /*
  543  * Writes one or more entries given a segment.
  544  *
  545  * Note: The function may release the dbuf from the pointer initially
  546  * passed to it, and return a different dbuf. Also, the space map's
  547  * dbuf must be dirty for the changes in sm_phys to take effect.
  548  */
  549 static void
  550 space_map_write_seg(space_map_t *sm, uint64_t rstart, uint64_t rend,
  551     maptype_t maptype, uint64_t vdev_id, uint8_t words, dmu_buf_t **dbp,
  552     const void *tag, dmu_tx_t *tx)
  553 {
  554         ASSERT3U(words, !=, 0);
  555         ASSERT3U(words, <=, 2);
  556 
  557         /* ensure the vdev_id can be represented by the space map */
  558         ASSERT3U(vdev_id, <=, SM_NO_VDEVID);
  559 
  560         /*
  561          * if this is a single word entry, ensure that no vdev was
  562          * specified.
  563          */
  564         IMPLY(words == 1, vdev_id == SM_NO_VDEVID);
  565 
  566         dmu_buf_t *db = *dbp;
  567         ASSERT3U(db->db_size, ==, sm->sm_blksz);
  568 
  569         uint64_t *block_base = db->db_data;
  570         uint64_t *block_end = block_base + (sm->sm_blksz / sizeof (uint64_t));
  571         uint64_t *block_cursor = block_base +
  572             (sm->sm_phys->smp_length - db->db_offset) / sizeof (uint64_t);
  573 
  574         ASSERT3P(block_cursor, <=, block_end);
  575 
  576         uint64_t size = (rend - rstart) >> sm->sm_shift;
  577         uint64_t start = (rstart - sm->sm_start) >> sm->sm_shift;
  578         uint64_t run_max = (words == 2) ? SM2_RUN_MAX : SM_RUN_MAX;
  579 
  580         ASSERT3U(rstart, >=, sm->sm_start);
  581         ASSERT3U(rstart, <, sm->sm_start + sm->sm_size);
  582         ASSERT3U(rend - rstart, <=, sm->sm_size);
  583         ASSERT3U(rend, <=, sm->sm_start + sm->sm_size);
  584 
  585         while (size != 0) {
  586                 ASSERT3P(block_cursor, <=, block_end);
  587 
  588                 /*
  589                  * If we are at the end of this block, flush it and start
  590                  * writing again from the beginning.
  591                  */
  592                 if (block_cursor == block_end) {
  593                         dmu_buf_rele(db, tag);
  594 
  595                         uint64_t next_word_offset = sm->sm_phys->smp_length;
  596                         VERIFY0(dmu_buf_hold(sm->sm_os,
  597                             space_map_object(sm), next_word_offset,
  598                             tag, &db, DMU_READ_PREFETCH));
  599                         dmu_buf_will_dirty(db, tx);
  600 
  601                         /* update caller's dbuf */
  602                         *dbp = db;
  603 
  604                         ASSERT3U(db->db_size, ==, sm->sm_blksz);
  605 
  606                         block_base = db->db_data;
  607                         block_cursor = block_base;
  608                         block_end = block_base +
  609                             (db->db_size / sizeof (uint64_t));
  610                 }
  611 
  612                 /*
  613                  * If we are writing a two-word entry and we only have one
  614                  * word left on this block, just pad it with an empty debug
  615                  * entry and write the two-word entry in the next block.
  616                  */
  617                 uint64_t *next_entry = block_cursor + 1;
  618                 if (next_entry == block_end && words > 1) {
  619                         ASSERT3U(words, ==, 2);
  620                         *block_cursor = SM_PREFIX_ENCODE(SM_DEBUG_PREFIX) |
  621                             SM_DEBUG_ACTION_ENCODE(0) |
  622                             SM_DEBUG_SYNCPASS_ENCODE(0) |
  623                             SM_DEBUG_TXG_ENCODE(0);
  624                         block_cursor++;
  625                         sm->sm_phys->smp_length += sizeof (uint64_t);
  626                         ASSERT3P(block_cursor, ==, block_end);
  627                         continue;
  628                 }
  629 
  630                 uint64_t run_len = MIN(size, run_max);
  631                 switch (words) {
  632                 case 1:
  633                         *block_cursor = SM_OFFSET_ENCODE(start) |
  634                             SM_TYPE_ENCODE(maptype) |
  635                             SM_RUN_ENCODE(run_len);
  636                         block_cursor++;
  637                         break;
  638                 case 2:
  639                         /* write the first word of the entry */
  640                         *block_cursor = SM_PREFIX_ENCODE(SM2_PREFIX) |
  641                             SM2_RUN_ENCODE(run_len) |
  642                             SM2_VDEV_ENCODE(vdev_id);
  643                         block_cursor++;
  644 
  645                         /* move on to the second word of the entry */
  646                         ASSERT3P(block_cursor, <, block_end);
  647                         *block_cursor = SM2_TYPE_ENCODE(maptype) |
  648                             SM2_OFFSET_ENCODE(start);
  649                         block_cursor++;
  650                         break;
  651                 default:
  652                         panic("%d-word space map entries are not supported",
  653                             words);
  654                         break;
  655                 }
  656                 sm->sm_phys->smp_length += words * sizeof (uint64_t);
  657 
  658                 start += run_len;
  659                 size -= run_len;
  660         }
  661         ASSERT0(size);
  662 
  663 }
  664 
  665 /*
  666  * Note: The space map's dbuf must be dirty for the changes in sm_phys to
  667  * take effect.
  668  */
  669 static void
  670 space_map_write_impl(space_map_t *sm, range_tree_t *rt, maptype_t maptype,
  671     uint64_t vdev_id, dmu_tx_t *tx)
  672 {
  673         spa_t *spa = tx->tx_pool->dp_spa;
  674         dmu_buf_t *db;
  675 
  676         space_map_write_intro_debug(sm, maptype, tx);
  677 
  678 #ifdef ZFS_DEBUG
  679         /*
  680          * We do this right after we write the intro debug entry
  681          * because the estimate does not take it into account.
  682          */
  683         uint64_t initial_objsize = sm->sm_phys->smp_length;
  684         uint64_t estimated_growth =
  685             space_map_estimate_optimal_size(sm, rt, SM_NO_VDEVID);
  686         uint64_t estimated_final_objsize = initial_objsize + estimated_growth;
  687 #endif
  688 
  689         /*
  690          * Find the offset right after the last word in the space map
  691          * and use that to get a hold of the last block, so we can
  692          * start appending to it.
  693          */
  694         uint64_t next_word_offset = sm->sm_phys->smp_length;
  695         VERIFY0(dmu_buf_hold(sm->sm_os, space_map_object(sm),
  696             next_word_offset, FTAG, &db, DMU_READ_PREFETCH));
  697         ASSERT3U(db->db_size, ==, sm->sm_blksz);
  698 
  699         dmu_buf_will_dirty(db, tx);
  700 
  701         zfs_btree_t *t = &rt->rt_root;
  702         zfs_btree_index_t where;
  703         for (range_seg_t *rs = zfs_btree_first(t, &where); rs != NULL;
  704             rs = zfs_btree_next(t, &where, &where)) {
  705                 uint64_t offset = (rs_get_start(rs, rt) - sm->sm_start) >>
  706                     sm->sm_shift;
  707                 uint64_t length = (rs_get_end(rs, rt) - rs_get_start(rs, rt)) >>
  708                     sm->sm_shift;
  709                 uint8_t words = 1;
  710 
  711                 /*
  712                  * We only write two-word entries when both of the following
  713                  * are true:
  714                  *
  715                  * [1] The feature is enabled.
  716                  * [2] The offset or run is too big for a single-word entry,
  717                  *      or the vdev_id is set (meaning not equal to
  718                  *      SM_NO_VDEVID).
  719                  *
  720                  * Note that for purposes of testing we've added the case that
  721                  * we write two-word entries occasionally when the feature is
  722                  * enabled and zfs_force_some_double_word_sm_entries has been
  723                  * set.
  724                  */
  725                 if (spa_feature_is_active(spa, SPA_FEATURE_SPACEMAP_V2) &&
  726                     (offset >= (1ULL << SM_OFFSET_BITS) ||
  727                     length > SM_RUN_MAX ||
  728                     vdev_id != SM_NO_VDEVID ||
  729                     (zfs_force_some_double_word_sm_entries &&
  730                     random_in_range(100) == 0)))
  731                         words = 2;
  732 
  733                 space_map_write_seg(sm, rs_get_start(rs, rt), rs_get_end(rs,
  734                     rt), maptype, vdev_id, words, &db, FTAG, tx);
  735         }
  736 
  737         dmu_buf_rele(db, FTAG);
  738 
  739 #ifdef ZFS_DEBUG
  740         /*
  741          * We expect our estimation to be based on the worst case
  742          * scenario [see comment in space_map_estimate_optimal_size()].
  743          * Therefore we expect the actual objsize to be equal or less
  744          * than whatever we estimated it to be.
  745          */
  746         ASSERT3U(estimated_final_objsize, >=, sm->sm_phys->smp_length);
  747 #endif
  748 }
  749 
  750 /*
  751  * Note: This function manipulates the state of the given space map but
  752  * does not hold any locks implicitly. Thus the caller is responsible
  753  * for synchronizing writes to the space map.
  754  */
  755 void
  756 space_map_write(space_map_t *sm, range_tree_t *rt, maptype_t maptype,
  757     uint64_t vdev_id, dmu_tx_t *tx)
  758 {
  759         ASSERT(dsl_pool_sync_context(dmu_objset_pool(sm->sm_os)));
  760         VERIFY3U(space_map_object(sm), !=, 0);
  761 
  762         dmu_buf_will_dirty(sm->sm_dbuf, tx);
  763 
  764         /*
  765          * This field is no longer necessary since the in-core space map
  766          * now contains the object number but is maintained for backwards
  767          * compatibility.
  768          */
  769         sm->sm_phys->smp_object = sm->sm_object;
  770 
  771         if (range_tree_is_empty(rt)) {
  772                 VERIFY3U(sm->sm_object, ==, sm->sm_phys->smp_object);
  773                 return;
  774         }
  775 
  776         if (maptype == SM_ALLOC)
  777                 sm->sm_phys->smp_alloc += range_tree_space(rt);
  778         else
  779                 sm->sm_phys->smp_alloc -= range_tree_space(rt);
  780 
  781         uint64_t nodes = zfs_btree_numnodes(&rt->rt_root);
  782         uint64_t rt_space = range_tree_space(rt);
  783 
  784         space_map_write_impl(sm, rt, maptype, vdev_id, tx);
  785 
  786         /*
  787          * Ensure that the space_map's accounting wasn't changed
  788          * while we were in the middle of writing it out.
  789          */
  790         VERIFY3U(nodes, ==, zfs_btree_numnodes(&rt->rt_root));
  791         VERIFY3U(range_tree_space(rt), ==, rt_space);
  792 }
  793 
  794 static int
  795 space_map_open_impl(space_map_t *sm)
  796 {
  797         int error;
  798         u_longlong_t blocks;
  799 
  800         error = dmu_bonus_hold(sm->sm_os, sm->sm_object, sm, &sm->sm_dbuf);
  801         if (error)
  802                 return (error);
  803 
  804         dmu_object_size_from_db(sm->sm_dbuf, &sm->sm_blksz, &blocks);
  805         sm->sm_phys = sm->sm_dbuf->db_data;
  806         return (0);
  807 }
  808 
  809 int
  810 space_map_open(space_map_t **smp, objset_t *os, uint64_t object,
  811     uint64_t start, uint64_t size, uint8_t shift)
  812 {
  813         space_map_t *sm;
  814         int error;
  815 
  816         ASSERT(*smp == NULL);
  817         ASSERT(os != NULL);
  818         ASSERT(object != 0);
  819 
  820         sm = kmem_alloc(sizeof (space_map_t), KM_SLEEP);
  821 
  822         sm->sm_start = start;
  823         sm->sm_size = size;
  824         sm->sm_shift = shift;
  825         sm->sm_os = os;
  826         sm->sm_object = object;
  827         sm->sm_blksz = 0;
  828         sm->sm_dbuf = NULL;
  829         sm->sm_phys = NULL;
  830 
  831         error = space_map_open_impl(sm);
  832         if (error != 0) {
  833                 space_map_close(sm);
  834                 return (error);
  835         }
  836         *smp = sm;
  837 
  838         return (0);
  839 }
  840 
  841 void
  842 space_map_close(space_map_t *sm)
  843 {
  844         if (sm == NULL)
  845                 return;
  846 
  847         if (sm->sm_dbuf != NULL)
  848                 dmu_buf_rele(sm->sm_dbuf, sm);
  849         sm->sm_dbuf = NULL;
  850         sm->sm_phys = NULL;
  851 
  852         kmem_free(sm, sizeof (*sm));
  853 }
  854 
  855 void
  856 space_map_truncate(space_map_t *sm, int blocksize, dmu_tx_t *tx)
  857 {
  858         objset_t *os = sm->sm_os;
  859         spa_t *spa = dmu_objset_spa(os);
  860         dmu_object_info_t doi;
  861 
  862         ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
  863         ASSERT(dmu_tx_is_syncing(tx));
  864         VERIFY3U(dmu_tx_get_txg(tx), <=, spa_final_dirty_txg(spa));
  865 
  866         dmu_object_info_from_db(sm->sm_dbuf, &doi);
  867 
  868         /*
  869          * If the space map has the wrong bonus size (because
  870          * SPA_FEATURE_SPACEMAP_HISTOGRAM has recently been enabled), or
  871          * the wrong block size (because space_map_blksz has changed),
  872          * free and re-allocate its object with the updated sizes.
  873          *
  874          * Otherwise, just truncate the current object.
  875          */
  876         if ((spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
  877             doi.doi_bonus_size != sizeof (space_map_phys_t)) ||
  878             doi.doi_data_block_size != blocksize ||
  879             doi.doi_metadata_block_size != 1 << space_map_ibs) {
  880                 zfs_dbgmsg("txg %llu, spa %s, sm %px, reallocating "
  881                     "object[%llu]: old bonus %llu, old blocksz %u",
  882                     (u_longlong_t)dmu_tx_get_txg(tx), spa_name(spa), sm,
  883                     (u_longlong_t)sm->sm_object,
  884                     (u_longlong_t)doi.doi_bonus_size,
  885                     doi.doi_data_block_size);
  886 
  887                 space_map_free(sm, tx);
  888                 dmu_buf_rele(sm->sm_dbuf, sm);
  889 
  890                 sm->sm_object = space_map_alloc(sm->sm_os, blocksize, tx);
  891                 VERIFY0(space_map_open_impl(sm));
  892         } else {
  893                 VERIFY0(dmu_free_range(os, space_map_object(sm), 0, -1ULL, tx));
  894 
  895                 /*
  896                  * If the spacemap is reallocated, its histogram
  897                  * will be reset.  Do the same in the common case so that
  898                  * bugs related to the uncommon case do not go unnoticed.
  899                  */
  900                 memset(sm->sm_phys->smp_histogram, 0,
  901                     sizeof (sm->sm_phys->smp_histogram));
  902         }
  903 
  904         dmu_buf_will_dirty(sm->sm_dbuf, tx);
  905         sm->sm_phys->smp_length = 0;
  906         sm->sm_phys->smp_alloc = 0;
  907 }
  908 
  909 uint64_t
  910 space_map_alloc(objset_t *os, int blocksize, dmu_tx_t *tx)
  911 {
  912         spa_t *spa = dmu_objset_spa(os);
  913         uint64_t object;
  914         int bonuslen;
  915 
  916         if (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
  917                 spa_feature_incr(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM, tx);
  918                 bonuslen = sizeof (space_map_phys_t);
  919                 ASSERT3U(bonuslen, <=, dmu_bonus_max());
  920         } else {
  921                 bonuslen = SPACE_MAP_SIZE_V0;
  922         }
  923 
  924         object = dmu_object_alloc_ibs(os, DMU_OT_SPACE_MAP, blocksize,
  925             space_map_ibs, DMU_OT_SPACE_MAP_HEADER, bonuslen, tx);
  926 
  927         return (object);
  928 }
  929 
  930 void
  931 space_map_free_obj(objset_t *os, uint64_t smobj, dmu_tx_t *tx)
  932 {
  933         spa_t *spa = dmu_objset_spa(os);
  934         if (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
  935                 dmu_object_info_t doi;
  936 
  937                 VERIFY0(dmu_object_info(os, smobj, &doi));
  938                 if (doi.doi_bonus_size != SPACE_MAP_SIZE_V0) {
  939                         spa_feature_decr(spa,
  940                             SPA_FEATURE_SPACEMAP_HISTOGRAM, tx);
  941                 }
  942         }
  943 
  944         VERIFY0(dmu_object_free(os, smobj, tx));
  945 }
  946 
  947 void
  948 space_map_free(space_map_t *sm, dmu_tx_t *tx)
  949 {
  950         if (sm == NULL)
  951                 return;
  952 
  953         space_map_free_obj(sm->sm_os, space_map_object(sm), tx);
  954         sm->sm_object = 0;
  955 }
  956 
  957 /*
  958  * Given a range tree, it makes a worst-case estimate of how much
  959  * space would the tree's segments take if they were written to
  960  * the given space map.
  961  */
  962 uint64_t
  963 space_map_estimate_optimal_size(space_map_t *sm, range_tree_t *rt,
  964     uint64_t vdev_id)
  965 {
  966         spa_t *spa = dmu_objset_spa(sm->sm_os);
  967         uint64_t shift = sm->sm_shift;
  968         uint64_t *histogram = rt->rt_histogram;
  969         uint64_t entries_for_seg = 0;
  970 
  971         /*
  972          * In order to get a quick estimate of the optimal size that this
  973          * range tree would have on-disk as a space map, we iterate through
  974          * its histogram buckets instead of iterating through its nodes.
  975          *
  976          * Note that this is a highest-bound/worst-case estimate for the
  977          * following reasons:
  978          *
  979          * 1] We assume that we always add a debug padding for each block
  980          *    we write and we also assume that we start at the last word
  981          *    of a block attempting to write a two-word entry.
  982          * 2] Rounding up errors due to the way segments are distributed
  983          *    in the buckets of the range tree's histogram.
  984          * 3] The activation of zfs_force_some_double_word_sm_entries
  985          *    (tunable) when testing.
  986          *
  987          * = Math and Rounding Errors =
  988          *
  989          * rt_histogram[i] bucket of a range tree represents the number
  990          * of entries in [2^i, (2^(i+1))-1] of that range_tree. Given
  991          * that, we want to divide the buckets into groups: Buckets that
  992          * can be represented using a single-word entry, ones that can
  993          * be represented with a double-word entry, and ones that can
  994          * only be represented with multiple two-word entries.
  995          *
  996          * [Note that if the new encoding feature is not enabled there
  997          * are only two groups: single-word entry buckets and multiple
  998          * single-word entry buckets. The information below assumes
  999          * two-word entries enabled, but it can easily applied when
 1000          * the feature is not enabled]
 1001          *
 1002          * To find the highest bucket that can be represented with a
 1003          * single-word entry we look at the maximum run that such entry
 1004          * can have, which is 2^(SM_RUN_BITS + sm_shift) [remember that
 1005          * the run of a space map entry is shifted by sm_shift, thus we
 1006          * add it to the exponent]. This way, excluding the value of the
 1007          * maximum run that can be represented by a single-word entry,
 1008          * all runs that are smaller exist in buckets 0 to
 1009          * SM_RUN_BITS + shift - 1.
 1010          *
 1011          * To find the highest bucket that can be represented with a
 1012          * double-word entry, we follow the same approach. Finally, any
 1013          * bucket higher than that are represented with multiple two-word
 1014          * entries. To be more specific, if the highest bucket whose
 1015          * segments can be represented with a single two-word entry is X,
 1016          * then bucket X+1 will need 2 two-word entries for each of its
 1017          * segments, X+2 will need 4, X+3 will need 8, ...etc.
 1018          *
 1019          * With all of the above we make our estimation based on bucket
 1020          * groups. There is a rounding error though. As we mentioned in
 1021          * the example with the one-word entry, the maximum run that can
 1022          * be represented in a one-word entry 2^(SM_RUN_BITS + shift) is
 1023          * not part of bucket SM_RUN_BITS + shift - 1. Thus, segments of
 1024          * that length fall into the next bucket (and bucket group) where
 1025          * we start counting two-word entries and this is one more reason
 1026          * why the estimated size may end up being bigger than the actual
 1027          * size written.
 1028          */
 1029         uint64_t size = 0;
 1030         uint64_t idx = 0;
 1031 
 1032         if (!spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_V2) ||
 1033             (vdev_id == SM_NO_VDEVID && sm->sm_size < SM_OFFSET_MAX)) {
 1034 
 1035                 /*
 1036                  * If we are trying to force some double word entries just
 1037                  * assume the worst-case of every single word entry being
 1038                  * written as a double word entry.
 1039                  */
 1040                 uint64_t entry_size =
 1041                     (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_V2) &&
 1042                     zfs_force_some_double_word_sm_entries) ?
 1043                     (2 * sizeof (uint64_t)) : sizeof (uint64_t);
 1044 
 1045                 uint64_t single_entry_max_bucket = SM_RUN_BITS + shift - 1;
 1046                 for (; idx <= single_entry_max_bucket; idx++)
 1047                         size += histogram[idx] * entry_size;
 1048 
 1049                 if (!spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_V2)) {
 1050                         for (; idx < RANGE_TREE_HISTOGRAM_SIZE; idx++) {
 1051                                 ASSERT3U(idx, >=, single_entry_max_bucket);
 1052                                 entries_for_seg =
 1053                                     1ULL << (idx - single_entry_max_bucket);
 1054                                 size += histogram[idx] *
 1055                                     entries_for_seg * entry_size;
 1056                         }
 1057                         return (size);
 1058                 }
 1059         }
 1060 
 1061         ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_V2));
 1062 
 1063         uint64_t double_entry_max_bucket = SM2_RUN_BITS + shift - 1;
 1064         for (; idx <= double_entry_max_bucket; idx++)
 1065                 size += histogram[idx] * 2 * sizeof (uint64_t);
 1066 
 1067         for (; idx < RANGE_TREE_HISTOGRAM_SIZE; idx++) {
 1068                 ASSERT3U(idx, >=, double_entry_max_bucket);
 1069                 entries_for_seg = 1ULL << (idx - double_entry_max_bucket);
 1070                 size += histogram[idx] *
 1071                     entries_for_seg * 2 * sizeof (uint64_t);
 1072         }
 1073 
 1074         /*
 1075          * Assume the worst case where we start with the padding at the end
 1076          * of the current block and we add an extra padding entry at the end
 1077          * of all subsequent blocks.
 1078          */
 1079         size += ((size / sm->sm_blksz) + 1) * sizeof (uint64_t);
 1080 
 1081         return (size);
 1082 }
 1083 
 1084 uint64_t
 1085 space_map_object(space_map_t *sm)
 1086 {
 1087         return (sm != NULL ? sm->sm_object : 0);
 1088 }
 1089 
 1090 int64_t
 1091 space_map_allocated(space_map_t *sm)
 1092 {
 1093         return (sm != NULL ? sm->sm_phys->smp_alloc : 0);
 1094 }
 1095 
 1096 uint64_t
 1097 space_map_length(space_map_t *sm)
 1098 {
 1099         return (sm != NULL ? sm->sm_phys->smp_length : 0);
 1100 }
 1101 
 1102 uint64_t
 1103 space_map_nblocks(space_map_t *sm)
 1104 {
 1105         if (sm == NULL)
 1106                 return (0);
 1107         return (DIV_ROUND_UP(space_map_length(sm), sm->sm_blksz));
 1108 }

Cache object: d2b3366741817cba690b6c074beb0863


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.