The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/contrib/openzfs/module/zfs/vdev.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * CDDL HEADER START
    3  *
    4  * The contents of this file are subject to the terms of the
    5  * Common Development and Distribution License (the "License").
    6  * You may not use this file except in compliance with the License.
    7  *
    8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
    9  * or https://opensource.org/licenses/CDDL-1.0.
   10  * See the License for the specific language governing permissions
   11  * and limitations under the License.
   12  *
   13  * When distributing Covered Code, include this CDDL HEADER in each
   14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
   15  * If applicable, add the following below this CDDL HEADER, with the
   16  * fields enclosed by brackets "[]" replaced with your own identifying
   17  * information: Portions Copyright [yyyy] [name of copyright owner]
   18  *
   19  * CDDL HEADER END
   20  */
   21 
   22 /*
   23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
   24  * Copyright (c) 2011, 2021 by Delphix. All rights reserved.
   25  * Copyright 2017 Nexenta Systems, Inc.
   26  * Copyright (c) 2014 Integros [integros.com]
   27  * Copyright 2016 Toomas Soome <tsoome@me.com>
   28  * Copyright 2017 Joyent, Inc.
   29  * Copyright (c) 2017, Intel Corporation.
   30  * Copyright (c) 2019, Datto Inc. All rights reserved.
   31  * Copyright (c) 2021, Klara Inc.
   32  * Copyright [2021] Hewlett Packard Enterprise Development LP
   33  */
   34 
   35 #include <sys/zfs_context.h>
   36 #include <sys/fm/fs/zfs.h>
   37 #include <sys/spa.h>
   38 #include <sys/spa_impl.h>
   39 #include <sys/bpobj.h>
   40 #include <sys/dmu.h>
   41 #include <sys/dmu_tx.h>
   42 #include <sys/dsl_dir.h>
   43 #include <sys/vdev_impl.h>
   44 #include <sys/vdev_rebuild.h>
   45 #include <sys/vdev_draid.h>
   46 #include <sys/uberblock_impl.h>
   47 #include <sys/metaslab.h>
   48 #include <sys/metaslab_impl.h>
   49 #include <sys/space_map.h>
   50 #include <sys/space_reftree.h>
   51 #include <sys/zio.h>
   52 #include <sys/zap.h>
   53 #include <sys/fs/zfs.h>
   54 #include <sys/arc.h>
   55 #include <sys/zil.h>
   56 #include <sys/dsl_scan.h>
   57 #include <sys/vdev_raidz.h>
   58 #include <sys/abd.h>
   59 #include <sys/vdev_initialize.h>
   60 #include <sys/vdev_trim.h>
   61 #include <sys/zvol.h>
   62 #include <sys/zfs_ratelimit.h>
   63 #include "zfs_prop.h"
   64 
   65 /*
   66  * One metaslab from each (normal-class) vdev is used by the ZIL.  These are
   67  * called "embedded slog metaslabs", are referenced by vdev_log_mg, and are
   68  * part of the spa_embedded_log_class.  The metaslab with the most free space
   69  * in each vdev is selected for this purpose when the pool is opened (or a
   70  * vdev is added).  See vdev_metaslab_init().
   71  *
   72  * Log blocks can be allocated from the following locations.  Each one is tried
   73  * in order until the allocation succeeds:
   74  * 1. dedicated log vdevs, aka "slog" (spa_log_class)
   75  * 2. embedded slog metaslabs (spa_embedded_log_class)
   76  * 3. other metaslabs in normal vdevs (spa_normal_class)
   77  *
   78  * zfs_embedded_slog_min_ms disables the embedded slog if there are fewer
   79  * than this number of metaslabs in the vdev.  This ensures that we don't set
   80  * aside an unreasonable amount of space for the ZIL.  If set to less than
   81  * 1 << (spa_slop_shift + 1), on small pools the usable space may be reduced
   82  * (by more than 1<<spa_slop_shift) due to the embedded slog metaslab.
   83  */
   84 static uint_t zfs_embedded_slog_min_ms = 64;
   85 
   86 /* default target for number of metaslabs per top-level vdev */
   87 static uint_t zfs_vdev_default_ms_count = 200;
   88 
   89 /* minimum number of metaslabs per top-level vdev */
   90 static uint_t zfs_vdev_min_ms_count = 16;
   91 
   92 /* practical upper limit of total metaslabs per top-level vdev */
   93 static uint_t zfs_vdev_ms_count_limit = 1ULL << 17;
   94 
   95 /* lower limit for metaslab size (512M) */
   96 static uint_t zfs_vdev_default_ms_shift = 29;
   97 
   98 /* upper limit for metaslab size (16G) */
   99 static const uint_t zfs_vdev_max_ms_shift = 34;
  100 
  101 int vdev_validate_skip = B_FALSE;
  102 
  103 /*
  104  * Since the DTL space map of a vdev is not expected to have a lot of
  105  * entries, we default its block size to 4K.
  106  */
  107 int zfs_vdev_dtl_sm_blksz = (1 << 12);
  108 
  109 /*
  110  * Rate limit slow IO (delay) events to this many per second.
  111  */
  112 static unsigned int zfs_slow_io_events_per_second = 20;
  113 
  114 /*
  115  * Rate limit checksum events after this many checksum errors per second.
  116  */
  117 static unsigned int zfs_checksum_events_per_second = 20;
  118 
  119 /*
  120  * Ignore errors during scrub/resilver.  Allows to work around resilver
  121  * upon import when there are pool errors.
  122  */
  123 static int zfs_scan_ignore_errors = 0;
  124 
  125 /*
  126  * vdev-wide space maps that have lots of entries written to them at
  127  * the end of each transaction can benefit from a higher I/O bandwidth
  128  * (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
  129  */
  130 int zfs_vdev_standard_sm_blksz = (1 << 17);
  131 
  132 /*
  133  * Tunable parameter for debugging or performance analysis. Setting this
  134  * will cause pool corruption on power loss if a volatile out-of-order
  135  * write cache is enabled.
  136  */
  137 int zfs_nocacheflush = 0;
  138 
  139 /*
  140  * Maximum and minimum ashift values that can be automatically set based on
  141  * vdev's physical ashift (disk's physical sector size).  While ASHIFT_MAX
  142  * is higher than the maximum value, it is intentionally limited here to not
  143  * excessively impact pool space efficiency.  Higher ashift values may still
  144  * be forced by vdev logical ashift or by user via ashift property, but won't
  145  * be set automatically as a performance optimization.
  146  */
  147 uint_t zfs_vdev_max_auto_ashift = 14;
  148 uint_t zfs_vdev_min_auto_ashift = ASHIFT_MIN;
  149 
  150 void
  151 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
  152 {
  153         va_list adx;
  154         char buf[256];
  155 
  156         va_start(adx, fmt);
  157         (void) vsnprintf(buf, sizeof (buf), fmt, adx);
  158         va_end(adx);
  159 
  160         if (vd->vdev_path != NULL) {
  161                 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
  162                     vd->vdev_path, buf);
  163         } else {
  164                 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
  165                     vd->vdev_ops->vdev_op_type,
  166                     (u_longlong_t)vd->vdev_id,
  167                     (u_longlong_t)vd->vdev_guid, buf);
  168         }
  169 }
  170 
  171 void
  172 vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
  173 {
  174         char state[20];
  175 
  176         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
  177                 zfs_dbgmsg("%*svdev %llu: %s", indent, "",
  178                     (u_longlong_t)vd->vdev_id,
  179                     vd->vdev_ops->vdev_op_type);
  180                 return;
  181         }
  182 
  183         switch (vd->vdev_state) {
  184         case VDEV_STATE_UNKNOWN:
  185                 (void) snprintf(state, sizeof (state), "unknown");
  186                 break;
  187         case VDEV_STATE_CLOSED:
  188                 (void) snprintf(state, sizeof (state), "closed");
  189                 break;
  190         case VDEV_STATE_OFFLINE:
  191                 (void) snprintf(state, sizeof (state), "offline");
  192                 break;
  193         case VDEV_STATE_REMOVED:
  194                 (void) snprintf(state, sizeof (state), "removed");
  195                 break;
  196         case VDEV_STATE_CANT_OPEN:
  197                 (void) snprintf(state, sizeof (state), "can't open");
  198                 break;
  199         case VDEV_STATE_FAULTED:
  200                 (void) snprintf(state, sizeof (state), "faulted");
  201                 break;
  202         case VDEV_STATE_DEGRADED:
  203                 (void) snprintf(state, sizeof (state), "degraded");
  204                 break;
  205         case VDEV_STATE_HEALTHY:
  206                 (void) snprintf(state, sizeof (state), "healthy");
  207                 break;
  208         default:
  209                 (void) snprintf(state, sizeof (state), "<state %u>",
  210                     (uint_t)vd->vdev_state);
  211         }
  212 
  213         zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
  214             "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type,
  215             vd->vdev_islog ? " (log)" : "",
  216             (u_longlong_t)vd->vdev_guid,
  217             vd->vdev_path ? vd->vdev_path : "N/A", state);
  218 
  219         for (uint64_t i = 0; i < vd->vdev_children; i++)
  220                 vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
  221 }
  222 
  223 /*
  224  * Virtual device management.
  225  */
  226 
  227 static vdev_ops_t *const vdev_ops_table[] = {
  228         &vdev_root_ops,
  229         &vdev_raidz_ops,
  230         &vdev_draid_ops,
  231         &vdev_draid_spare_ops,
  232         &vdev_mirror_ops,
  233         &vdev_replacing_ops,
  234         &vdev_spare_ops,
  235         &vdev_disk_ops,
  236         &vdev_file_ops,
  237         &vdev_missing_ops,
  238         &vdev_hole_ops,
  239         &vdev_indirect_ops,
  240         NULL
  241 };
  242 
  243 /*
  244  * Given a vdev type, return the appropriate ops vector.
  245  */
  246 static vdev_ops_t *
  247 vdev_getops(const char *type)
  248 {
  249         vdev_ops_t *ops, *const *opspp;
  250 
  251         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
  252                 if (strcmp(ops->vdev_op_type, type) == 0)
  253                         break;
  254 
  255         return (ops);
  256 }
  257 
  258 /*
  259  * Given a vdev and a metaslab class, find which metaslab group we're
  260  * interested in. All vdevs may belong to two different metaslab classes.
  261  * Dedicated slog devices use only the primary metaslab group, rather than a
  262  * separate log group. For embedded slogs, the vdev_log_mg will be non-NULL.
  263  */
  264 metaslab_group_t *
  265 vdev_get_mg(vdev_t *vd, metaslab_class_t *mc)
  266 {
  267         if (mc == spa_embedded_log_class(vd->vdev_spa) &&
  268             vd->vdev_log_mg != NULL)
  269                 return (vd->vdev_log_mg);
  270         else
  271                 return (vd->vdev_mg);
  272 }
  273 
  274 void
  275 vdev_default_xlate(vdev_t *vd, const range_seg64_t *logical_rs,
  276     range_seg64_t *physical_rs, range_seg64_t *remain_rs)
  277 {
  278         (void) vd, (void) remain_rs;
  279 
  280         physical_rs->rs_start = logical_rs->rs_start;
  281         physical_rs->rs_end = logical_rs->rs_end;
  282 }
  283 
  284 /*
  285  * Derive the enumerated allocation bias from string input.
  286  * String origin is either the per-vdev zap or zpool(8).
  287  */
  288 static vdev_alloc_bias_t
  289 vdev_derive_alloc_bias(const char *bias)
  290 {
  291         vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
  292 
  293         if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0)
  294                 alloc_bias = VDEV_BIAS_LOG;
  295         else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0)
  296                 alloc_bias = VDEV_BIAS_SPECIAL;
  297         else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0)
  298                 alloc_bias = VDEV_BIAS_DEDUP;
  299 
  300         return (alloc_bias);
  301 }
  302 
  303 /*
  304  * Default asize function: return the MAX of psize with the asize of
  305  * all children.  This is what's used by anything other than RAID-Z.
  306  */
  307 uint64_t
  308 vdev_default_asize(vdev_t *vd, uint64_t psize)
  309 {
  310         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
  311         uint64_t csize;
  312 
  313         for (int c = 0; c < vd->vdev_children; c++) {
  314                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
  315                 asize = MAX(asize, csize);
  316         }
  317 
  318         return (asize);
  319 }
  320 
  321 uint64_t
  322 vdev_default_min_asize(vdev_t *vd)
  323 {
  324         return (vd->vdev_min_asize);
  325 }
  326 
  327 /*
  328  * Get the minimum allocatable size. We define the allocatable size as
  329  * the vdev's asize rounded to the nearest metaslab. This allows us to
  330  * replace or attach devices which don't have the same physical size but
  331  * can still satisfy the same number of allocations.
  332  */
  333 uint64_t
  334 vdev_get_min_asize(vdev_t *vd)
  335 {
  336         vdev_t *pvd = vd->vdev_parent;
  337 
  338         /*
  339          * If our parent is NULL (inactive spare or cache) or is the root,
  340          * just return our own asize.
  341          */
  342         if (pvd == NULL)
  343                 return (vd->vdev_asize);
  344 
  345         /*
  346          * The top-level vdev just returns the allocatable size rounded
  347          * to the nearest metaslab.
  348          */
  349         if (vd == vd->vdev_top)
  350                 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
  351 
  352         return (pvd->vdev_ops->vdev_op_min_asize(pvd));
  353 }
  354 
  355 void
  356 vdev_set_min_asize(vdev_t *vd)
  357 {
  358         vd->vdev_min_asize = vdev_get_min_asize(vd);
  359 
  360         for (int c = 0; c < vd->vdev_children; c++)
  361                 vdev_set_min_asize(vd->vdev_child[c]);
  362 }
  363 
  364 /*
  365  * Get the minimal allocation size for the top-level vdev.
  366  */
  367 uint64_t
  368 vdev_get_min_alloc(vdev_t *vd)
  369 {
  370         uint64_t min_alloc = 1ULL << vd->vdev_ashift;
  371 
  372         if (vd->vdev_ops->vdev_op_min_alloc != NULL)
  373                 min_alloc = vd->vdev_ops->vdev_op_min_alloc(vd);
  374 
  375         return (min_alloc);
  376 }
  377 
  378 /*
  379  * Get the parity level for a top-level vdev.
  380  */
  381 uint64_t
  382 vdev_get_nparity(vdev_t *vd)
  383 {
  384         uint64_t nparity = 0;
  385 
  386         if (vd->vdev_ops->vdev_op_nparity != NULL)
  387                 nparity = vd->vdev_ops->vdev_op_nparity(vd);
  388 
  389         return (nparity);
  390 }
  391 
  392 static int
  393 vdev_prop_get_int(vdev_t *vd, vdev_prop_t prop, uint64_t *value)
  394 {
  395         spa_t *spa = vd->vdev_spa;
  396         objset_t *mos = spa->spa_meta_objset;
  397         uint64_t objid;
  398         int err;
  399 
  400         if (vd->vdev_top_zap != 0) {
  401                 objid = vd->vdev_top_zap;
  402         } else if (vd->vdev_leaf_zap != 0) {
  403                 objid = vd->vdev_leaf_zap;
  404         } else {
  405                 return (EINVAL);
  406         }
  407 
  408         err = zap_lookup(mos, objid, vdev_prop_to_name(prop),
  409             sizeof (uint64_t), 1, value);
  410 
  411         if (err == ENOENT)
  412                 *value = vdev_prop_default_numeric(prop);
  413 
  414         return (err);
  415 }
  416 
  417 /*
  418  * Get the number of data disks for a top-level vdev.
  419  */
  420 uint64_t
  421 vdev_get_ndisks(vdev_t *vd)
  422 {
  423         uint64_t ndisks = 1;
  424 
  425         if (vd->vdev_ops->vdev_op_ndisks != NULL)
  426                 ndisks = vd->vdev_ops->vdev_op_ndisks(vd);
  427 
  428         return (ndisks);
  429 }
  430 
  431 vdev_t *
  432 vdev_lookup_top(spa_t *spa, uint64_t vdev)
  433 {
  434         vdev_t *rvd = spa->spa_root_vdev;
  435 
  436         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
  437 
  438         if (vdev < rvd->vdev_children) {
  439                 ASSERT(rvd->vdev_child[vdev] != NULL);
  440                 return (rvd->vdev_child[vdev]);
  441         }
  442 
  443         return (NULL);
  444 }
  445 
  446 vdev_t *
  447 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
  448 {
  449         vdev_t *mvd;
  450 
  451         if (vd->vdev_guid == guid)
  452                 return (vd);
  453 
  454         for (int c = 0; c < vd->vdev_children; c++)
  455                 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
  456                     NULL)
  457                         return (mvd);
  458 
  459         return (NULL);
  460 }
  461 
  462 static int
  463 vdev_count_leaves_impl(vdev_t *vd)
  464 {
  465         int n = 0;
  466 
  467         if (vd->vdev_ops->vdev_op_leaf)
  468                 return (1);
  469 
  470         for (int c = 0; c < vd->vdev_children; c++)
  471                 n += vdev_count_leaves_impl(vd->vdev_child[c]);
  472 
  473         return (n);
  474 }
  475 
  476 int
  477 vdev_count_leaves(spa_t *spa)
  478 {
  479         int rc;
  480 
  481         spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
  482         rc = vdev_count_leaves_impl(spa->spa_root_vdev);
  483         spa_config_exit(spa, SCL_VDEV, FTAG);
  484 
  485         return (rc);
  486 }
  487 
  488 void
  489 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
  490 {
  491         size_t oldsize, newsize;
  492         uint64_t id = cvd->vdev_id;
  493         vdev_t **newchild;
  494 
  495         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
  496         ASSERT(cvd->vdev_parent == NULL);
  497 
  498         cvd->vdev_parent = pvd;
  499 
  500         if (pvd == NULL)
  501                 return;
  502 
  503         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
  504 
  505         oldsize = pvd->vdev_children * sizeof (vdev_t *);
  506         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
  507         newsize = pvd->vdev_children * sizeof (vdev_t *);
  508 
  509         newchild = kmem_alloc(newsize, KM_SLEEP);
  510         if (pvd->vdev_child != NULL) {
  511                 memcpy(newchild, pvd->vdev_child, oldsize);
  512                 kmem_free(pvd->vdev_child, oldsize);
  513         }
  514 
  515         pvd->vdev_child = newchild;
  516         pvd->vdev_child[id] = cvd;
  517 
  518         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
  519         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
  520 
  521         /*
  522          * Walk up all ancestors to update guid sum.
  523          */
  524         for (; pvd != NULL; pvd = pvd->vdev_parent)
  525                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
  526 
  527         if (cvd->vdev_ops->vdev_op_leaf) {
  528                 list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd);
  529                 cvd->vdev_spa->spa_leaf_list_gen++;
  530         }
  531 }
  532 
  533 void
  534 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
  535 {
  536         int c;
  537         uint_t id = cvd->vdev_id;
  538 
  539         ASSERT(cvd->vdev_parent == pvd);
  540 
  541         if (pvd == NULL)
  542                 return;
  543 
  544         ASSERT(id < pvd->vdev_children);
  545         ASSERT(pvd->vdev_child[id] == cvd);
  546 
  547         pvd->vdev_child[id] = NULL;
  548         cvd->vdev_parent = NULL;
  549 
  550         for (c = 0; c < pvd->vdev_children; c++)
  551                 if (pvd->vdev_child[c])
  552                         break;
  553 
  554         if (c == pvd->vdev_children) {
  555                 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
  556                 pvd->vdev_child = NULL;
  557                 pvd->vdev_children = 0;
  558         }
  559 
  560         if (cvd->vdev_ops->vdev_op_leaf) {
  561                 spa_t *spa = cvd->vdev_spa;
  562                 list_remove(&spa->spa_leaf_list, cvd);
  563                 spa->spa_leaf_list_gen++;
  564         }
  565 
  566         /*
  567          * Walk up all ancestors to update guid sum.
  568          */
  569         for (; pvd != NULL; pvd = pvd->vdev_parent)
  570                 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
  571 }
  572 
  573 /*
  574  * Remove any holes in the child array.
  575  */
  576 void
  577 vdev_compact_children(vdev_t *pvd)
  578 {
  579         vdev_t **newchild, *cvd;
  580         int oldc = pvd->vdev_children;
  581         int newc;
  582 
  583         ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
  584 
  585         if (oldc == 0)
  586                 return;
  587 
  588         for (int c = newc = 0; c < oldc; c++)
  589                 if (pvd->vdev_child[c])
  590                         newc++;
  591 
  592         if (newc > 0) {
  593                 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
  594 
  595                 for (int c = newc = 0; c < oldc; c++) {
  596                         if ((cvd = pvd->vdev_child[c]) != NULL) {
  597                                 newchild[newc] = cvd;
  598                                 cvd->vdev_id = newc++;
  599                         }
  600                 }
  601         } else {
  602                 newchild = NULL;
  603         }
  604 
  605         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
  606         pvd->vdev_child = newchild;
  607         pvd->vdev_children = newc;
  608 }
  609 
  610 /*
  611  * Allocate and minimally initialize a vdev_t.
  612  */
  613 vdev_t *
  614 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
  615 {
  616         vdev_t *vd;
  617         vdev_indirect_config_t *vic;
  618 
  619         vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
  620         vic = &vd->vdev_indirect_config;
  621 
  622         if (spa->spa_root_vdev == NULL) {
  623                 ASSERT(ops == &vdev_root_ops);
  624                 spa->spa_root_vdev = vd;
  625                 spa->spa_load_guid = spa_generate_guid(NULL);
  626         }
  627 
  628         if (guid == 0 && ops != &vdev_hole_ops) {
  629                 if (spa->spa_root_vdev == vd) {
  630                         /*
  631                          * The root vdev's guid will also be the pool guid,
  632                          * which must be unique among all pools.
  633                          */
  634                         guid = spa_generate_guid(NULL);
  635                 } else {
  636                         /*
  637                          * Any other vdev's guid must be unique within the pool.
  638                          */
  639                         guid = spa_generate_guid(spa);
  640                 }
  641                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
  642         }
  643 
  644         vd->vdev_spa = spa;
  645         vd->vdev_id = id;
  646         vd->vdev_guid = guid;
  647         vd->vdev_guid_sum = guid;
  648         vd->vdev_ops = ops;
  649         vd->vdev_state = VDEV_STATE_CLOSED;
  650         vd->vdev_ishole = (ops == &vdev_hole_ops);
  651         vic->vic_prev_indirect_vdev = UINT64_MAX;
  652 
  653         rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
  654         mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
  655         vd->vdev_obsolete_segments = range_tree_create(NULL, RANGE_SEG64, NULL,
  656             0, 0);
  657 
  658         /*
  659          * Initialize rate limit structs for events.  We rate limit ZIO delay
  660          * and checksum events so that we don't overwhelm ZED with thousands
  661          * of events when a disk is acting up.
  662          */
  663         zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second,
  664             1);
  665         zfs_ratelimit_init(&vd->vdev_deadman_rl, &zfs_slow_io_events_per_second,
  666             1);
  667         zfs_ratelimit_init(&vd->vdev_checksum_rl,
  668             &zfs_checksum_events_per_second, 1);
  669 
  670         /*
  671          * Default Thresholds for tuning ZED
  672          */
  673         vd->vdev_checksum_n = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_N);
  674         vd->vdev_checksum_t = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_T);
  675         vd->vdev_io_n = vdev_prop_default_numeric(VDEV_PROP_IO_N);
  676         vd->vdev_io_t = vdev_prop_default_numeric(VDEV_PROP_IO_T);
  677 
  678         list_link_init(&vd->vdev_config_dirty_node);
  679         list_link_init(&vd->vdev_state_dirty_node);
  680         list_link_init(&vd->vdev_initialize_node);
  681         list_link_init(&vd->vdev_leaf_node);
  682         list_link_init(&vd->vdev_trim_node);
  683 
  684         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
  685         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
  686         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
  687         mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL);
  688 
  689         mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL);
  690         mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL);
  691         cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL);
  692         cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL);
  693 
  694         mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL);
  695         mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL);
  696         mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL);
  697         cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL);
  698         cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL);
  699         cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL);
  700 
  701         mutex_init(&vd->vdev_rebuild_lock, NULL, MUTEX_DEFAULT, NULL);
  702         cv_init(&vd->vdev_rebuild_cv, NULL, CV_DEFAULT, NULL);
  703 
  704         for (int t = 0; t < DTL_TYPES; t++) {
  705                 vd->vdev_dtl[t] = range_tree_create(NULL, RANGE_SEG64, NULL, 0,
  706                     0);
  707         }
  708 
  709         txg_list_create(&vd->vdev_ms_list, spa,
  710             offsetof(struct metaslab, ms_txg_node));
  711         txg_list_create(&vd->vdev_dtl_list, spa,
  712             offsetof(struct vdev, vdev_dtl_node));
  713         vd->vdev_stat.vs_timestamp = gethrtime();
  714         vdev_queue_init(vd);
  715         vdev_cache_init(vd);
  716 
  717         return (vd);
  718 }
  719 
  720 /*
  721  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
  722  * creating a new vdev or loading an existing one - the behavior is slightly
  723  * different for each case.
  724  */
  725 int
  726 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
  727     int alloctype)
  728 {
  729         vdev_ops_t *ops;
  730         char *type;
  731         uint64_t guid = 0, islog;
  732         vdev_t *vd;
  733         vdev_indirect_config_t *vic;
  734         char *tmp = NULL;
  735         int rc;
  736         vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
  737         boolean_t top_level = (parent && !parent->vdev_parent);
  738 
  739         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
  740 
  741         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
  742                 return (SET_ERROR(EINVAL));
  743 
  744         if ((ops = vdev_getops(type)) == NULL)
  745                 return (SET_ERROR(EINVAL));
  746 
  747         /*
  748          * If this is a load, get the vdev guid from the nvlist.
  749          * Otherwise, vdev_alloc_common() will generate one for us.
  750          */
  751         if (alloctype == VDEV_ALLOC_LOAD) {
  752                 uint64_t label_id;
  753 
  754                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
  755                     label_id != id)
  756                         return (SET_ERROR(EINVAL));
  757 
  758                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
  759                         return (SET_ERROR(EINVAL));
  760         } else if (alloctype == VDEV_ALLOC_SPARE) {
  761                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
  762                         return (SET_ERROR(EINVAL));
  763         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
  764                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
  765                         return (SET_ERROR(EINVAL));
  766         } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
  767                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
  768                         return (SET_ERROR(EINVAL));
  769         }
  770 
  771         /*
  772          * The first allocated vdev must be of type 'root'.
  773          */
  774         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
  775                 return (SET_ERROR(EINVAL));
  776 
  777         /*
  778          * Determine whether we're a log vdev.
  779          */
  780         islog = 0;
  781         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
  782         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
  783                 return (SET_ERROR(ENOTSUP));
  784 
  785         if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
  786                 return (SET_ERROR(ENOTSUP));
  787 
  788         if (top_level && alloctype == VDEV_ALLOC_ADD) {
  789                 char *bias;
  790 
  791                 /*
  792                  * If creating a top-level vdev, check for allocation
  793                  * classes input.
  794                  */
  795                 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
  796                     &bias) == 0) {
  797                         alloc_bias = vdev_derive_alloc_bias(bias);
  798 
  799                         /* spa_vdev_add() expects feature to be enabled */
  800                         if (spa->spa_load_state != SPA_LOAD_CREATE &&
  801                             !spa_feature_is_enabled(spa,
  802                             SPA_FEATURE_ALLOCATION_CLASSES)) {
  803                                 return (SET_ERROR(ENOTSUP));
  804                         }
  805                 }
  806 
  807                 /* spa_vdev_add() expects feature to be enabled */
  808                 if (ops == &vdev_draid_ops &&
  809                     spa->spa_load_state != SPA_LOAD_CREATE &&
  810                     !spa_feature_is_enabled(spa, SPA_FEATURE_DRAID)) {
  811                         return (SET_ERROR(ENOTSUP));
  812                 }
  813         }
  814 
  815         /*
  816          * Initialize the vdev specific data.  This is done before calling
  817          * vdev_alloc_common() since it may fail and this simplifies the
  818          * error reporting and cleanup code paths.
  819          */
  820         void *tsd = NULL;
  821         if (ops->vdev_op_init != NULL) {
  822                 rc = ops->vdev_op_init(spa, nv, &tsd);
  823                 if (rc != 0) {
  824                         return (rc);
  825                 }
  826         }
  827 
  828         vd = vdev_alloc_common(spa, id, guid, ops);
  829         vd->vdev_tsd = tsd;
  830         vd->vdev_islog = islog;
  831 
  832         if (top_level && alloc_bias != VDEV_BIAS_NONE)
  833                 vd->vdev_alloc_bias = alloc_bias;
  834 
  835         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
  836                 vd->vdev_path = spa_strdup(vd->vdev_path);
  837 
  838         /*
  839          * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a
  840          * fault on a vdev and want it to persist across imports (like with
  841          * zpool offline -f).
  842          */
  843         rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp);
  844         if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) {
  845                 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
  846                 vd->vdev_faulted = 1;
  847                 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
  848         }
  849 
  850         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
  851                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
  852         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
  853             &vd->vdev_physpath) == 0)
  854                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
  855 
  856         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
  857             &vd->vdev_enc_sysfs_path) == 0)
  858                 vd->vdev_enc_sysfs_path = spa_strdup(vd->vdev_enc_sysfs_path);
  859 
  860         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
  861                 vd->vdev_fru = spa_strdup(vd->vdev_fru);
  862 
  863         /*
  864          * Set the whole_disk property.  If it's not specified, leave the value
  865          * as -1.
  866          */
  867         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
  868             &vd->vdev_wholedisk) != 0)
  869                 vd->vdev_wholedisk = -1ULL;
  870 
  871         vic = &vd->vdev_indirect_config;
  872 
  873         ASSERT0(vic->vic_mapping_object);
  874         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
  875             &vic->vic_mapping_object);
  876         ASSERT0(vic->vic_births_object);
  877         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
  878             &vic->vic_births_object);
  879         ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
  880         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
  881             &vic->vic_prev_indirect_vdev);
  882 
  883         /*
  884          * Look for the 'not present' flag.  This will only be set if the device
  885          * was not present at the time of import.
  886          */
  887         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
  888             &vd->vdev_not_present);
  889 
  890         /*
  891          * Get the alignment requirement.
  892          */
  893         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
  894 
  895         /*
  896          * Retrieve the vdev creation time.
  897          */
  898         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
  899             &vd->vdev_crtxg);
  900 
  901         /*
  902          * If we're a top-level vdev, try to load the allocation parameters.
  903          */
  904         if (top_level &&
  905             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
  906                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
  907                     &vd->vdev_ms_array);
  908                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
  909                     &vd->vdev_ms_shift);
  910                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
  911                     &vd->vdev_asize);
  912                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NONALLOCATING,
  913                     &vd->vdev_noalloc);
  914                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
  915                     &vd->vdev_removing);
  916                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
  917                     &vd->vdev_top_zap);
  918         } else {
  919                 ASSERT0(vd->vdev_top_zap);
  920         }
  921 
  922         if (top_level && alloctype != VDEV_ALLOC_ATTACH) {
  923                 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
  924                     alloctype == VDEV_ALLOC_ADD ||
  925                     alloctype == VDEV_ALLOC_SPLIT ||
  926                     alloctype == VDEV_ALLOC_ROOTPOOL);
  927                 /* Note: metaslab_group_create() is now deferred */
  928         }
  929 
  930         if (vd->vdev_ops->vdev_op_leaf &&
  931             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
  932                 (void) nvlist_lookup_uint64(nv,
  933                     ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
  934         } else {
  935                 ASSERT0(vd->vdev_leaf_zap);
  936         }
  937 
  938         /*
  939          * If we're a leaf vdev, try to load the DTL object and other state.
  940          */
  941 
  942         if (vd->vdev_ops->vdev_op_leaf &&
  943             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
  944             alloctype == VDEV_ALLOC_ROOTPOOL)) {
  945                 if (alloctype == VDEV_ALLOC_LOAD) {
  946                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
  947                             &vd->vdev_dtl_object);
  948                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
  949                             &vd->vdev_unspare);
  950                 }
  951 
  952                 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
  953                         uint64_t spare = 0;
  954 
  955                         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
  956                             &spare) == 0 && spare)
  957                                 spa_spare_add(vd);
  958                 }
  959 
  960                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
  961                     &vd->vdev_offline);
  962 
  963                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
  964                     &vd->vdev_resilver_txg);
  965 
  966                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG,
  967                     &vd->vdev_rebuild_txg);
  968 
  969                 if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER))
  970                         vdev_defer_resilver(vd);
  971 
  972                 /*
  973                  * In general, when importing a pool we want to ignore the
  974                  * persistent fault state, as the diagnosis made on another
  975                  * system may not be valid in the current context.  The only
  976                  * exception is if we forced a vdev to a persistently faulted
  977                  * state with 'zpool offline -f'.  The persistent fault will
  978                  * remain across imports until cleared.
  979                  *
  980                  * Local vdevs will remain in the faulted state.
  981                  */
  982                 if (spa_load_state(spa) == SPA_LOAD_OPEN ||
  983                     spa_load_state(spa) == SPA_LOAD_IMPORT) {
  984                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
  985                             &vd->vdev_faulted);
  986                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
  987                             &vd->vdev_degraded);
  988                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
  989                             &vd->vdev_removed);
  990 
  991                         if (vd->vdev_faulted || vd->vdev_degraded) {
  992                                 char *aux;
  993 
  994                                 vd->vdev_label_aux =
  995                                     VDEV_AUX_ERR_EXCEEDED;
  996                                 if (nvlist_lookup_string(nv,
  997                                     ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
  998                                     strcmp(aux, "external") == 0)
  999                                         vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
 1000                                 else
 1001                                         vd->vdev_faulted = 0ULL;
 1002                         }
 1003                 }
 1004         }
 1005 
 1006         /*
 1007          * Add ourselves to the parent's list of children.
 1008          */
 1009         vdev_add_child(parent, vd);
 1010 
 1011         *vdp = vd;
 1012 
 1013         return (0);
 1014 }
 1015 
 1016 void
 1017 vdev_free(vdev_t *vd)
 1018 {
 1019         spa_t *spa = vd->vdev_spa;
 1020 
 1021         ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
 1022         ASSERT3P(vd->vdev_trim_thread, ==, NULL);
 1023         ASSERT3P(vd->vdev_autotrim_thread, ==, NULL);
 1024         ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
 1025 
 1026         /*
 1027          * Scan queues are normally destroyed at the end of a scan. If the
 1028          * queue exists here, that implies the vdev is being removed while
 1029          * the scan is still running.
 1030          */
 1031         if (vd->vdev_scan_io_queue != NULL) {
 1032                 mutex_enter(&vd->vdev_scan_io_queue_lock);
 1033                 dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue);
 1034                 vd->vdev_scan_io_queue = NULL;
 1035                 mutex_exit(&vd->vdev_scan_io_queue_lock);
 1036         }
 1037 
 1038         /*
 1039          * vdev_free() implies closing the vdev first.  This is simpler than
 1040          * trying to ensure complicated semantics for all callers.
 1041          */
 1042         vdev_close(vd);
 1043 
 1044         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
 1045         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
 1046 
 1047         /*
 1048          * Free all children.
 1049          */
 1050         for (int c = 0; c < vd->vdev_children; c++)
 1051                 vdev_free(vd->vdev_child[c]);
 1052 
 1053         ASSERT(vd->vdev_child == NULL);
 1054         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
 1055 
 1056         if (vd->vdev_ops->vdev_op_fini != NULL)
 1057                 vd->vdev_ops->vdev_op_fini(vd);
 1058 
 1059         /*
 1060          * Discard allocation state.
 1061          */
 1062         if (vd->vdev_mg != NULL) {
 1063                 vdev_metaslab_fini(vd);
 1064                 metaslab_group_destroy(vd->vdev_mg);
 1065                 vd->vdev_mg = NULL;
 1066         }
 1067         if (vd->vdev_log_mg != NULL) {
 1068                 ASSERT0(vd->vdev_ms_count);
 1069                 metaslab_group_destroy(vd->vdev_log_mg);
 1070                 vd->vdev_log_mg = NULL;
 1071         }
 1072 
 1073         ASSERT0(vd->vdev_stat.vs_space);
 1074         ASSERT0(vd->vdev_stat.vs_dspace);
 1075         ASSERT0(vd->vdev_stat.vs_alloc);
 1076 
 1077         /*
 1078          * Remove this vdev from its parent's child list.
 1079          */
 1080         vdev_remove_child(vd->vdev_parent, vd);
 1081 
 1082         ASSERT(vd->vdev_parent == NULL);
 1083         ASSERT(!list_link_active(&vd->vdev_leaf_node));
 1084 
 1085         /*
 1086          * Clean up vdev structure.
 1087          */
 1088         vdev_queue_fini(vd);
 1089         vdev_cache_fini(vd);
 1090 
 1091         if (vd->vdev_path)
 1092                 spa_strfree(vd->vdev_path);
 1093         if (vd->vdev_devid)
 1094                 spa_strfree(vd->vdev_devid);
 1095         if (vd->vdev_physpath)
 1096                 spa_strfree(vd->vdev_physpath);
 1097 
 1098         if (vd->vdev_enc_sysfs_path)
 1099                 spa_strfree(vd->vdev_enc_sysfs_path);
 1100 
 1101         if (vd->vdev_fru)
 1102                 spa_strfree(vd->vdev_fru);
 1103 
 1104         if (vd->vdev_isspare)
 1105                 spa_spare_remove(vd);
 1106         if (vd->vdev_isl2cache)
 1107                 spa_l2cache_remove(vd);
 1108 
 1109         txg_list_destroy(&vd->vdev_ms_list);
 1110         txg_list_destroy(&vd->vdev_dtl_list);
 1111 
 1112         mutex_enter(&vd->vdev_dtl_lock);
 1113         space_map_close(vd->vdev_dtl_sm);
 1114         for (int t = 0; t < DTL_TYPES; t++) {
 1115                 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
 1116                 range_tree_destroy(vd->vdev_dtl[t]);
 1117         }
 1118         mutex_exit(&vd->vdev_dtl_lock);
 1119 
 1120         EQUIV(vd->vdev_indirect_births != NULL,
 1121             vd->vdev_indirect_mapping != NULL);
 1122         if (vd->vdev_indirect_births != NULL) {
 1123                 vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
 1124                 vdev_indirect_births_close(vd->vdev_indirect_births);
 1125         }
 1126 
 1127         if (vd->vdev_obsolete_sm != NULL) {
 1128                 ASSERT(vd->vdev_removing ||
 1129                     vd->vdev_ops == &vdev_indirect_ops);
 1130                 space_map_close(vd->vdev_obsolete_sm);
 1131                 vd->vdev_obsolete_sm = NULL;
 1132         }
 1133         range_tree_destroy(vd->vdev_obsolete_segments);
 1134         rw_destroy(&vd->vdev_indirect_rwlock);
 1135         mutex_destroy(&vd->vdev_obsolete_lock);
 1136 
 1137         mutex_destroy(&vd->vdev_dtl_lock);
 1138         mutex_destroy(&vd->vdev_stat_lock);
 1139         mutex_destroy(&vd->vdev_probe_lock);
 1140         mutex_destroy(&vd->vdev_scan_io_queue_lock);
 1141 
 1142         mutex_destroy(&vd->vdev_initialize_lock);
 1143         mutex_destroy(&vd->vdev_initialize_io_lock);
 1144         cv_destroy(&vd->vdev_initialize_io_cv);
 1145         cv_destroy(&vd->vdev_initialize_cv);
 1146 
 1147         mutex_destroy(&vd->vdev_trim_lock);
 1148         mutex_destroy(&vd->vdev_autotrim_lock);
 1149         mutex_destroy(&vd->vdev_trim_io_lock);
 1150         cv_destroy(&vd->vdev_trim_cv);
 1151         cv_destroy(&vd->vdev_autotrim_cv);
 1152         cv_destroy(&vd->vdev_trim_io_cv);
 1153 
 1154         mutex_destroy(&vd->vdev_rebuild_lock);
 1155         cv_destroy(&vd->vdev_rebuild_cv);
 1156 
 1157         zfs_ratelimit_fini(&vd->vdev_delay_rl);
 1158         zfs_ratelimit_fini(&vd->vdev_deadman_rl);
 1159         zfs_ratelimit_fini(&vd->vdev_checksum_rl);
 1160 
 1161         if (vd == spa->spa_root_vdev)
 1162                 spa->spa_root_vdev = NULL;
 1163 
 1164         kmem_free(vd, sizeof (vdev_t));
 1165 }
 1166 
 1167 /*
 1168  * Transfer top-level vdev state from svd to tvd.
 1169  */
 1170 static void
 1171 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
 1172 {
 1173         spa_t *spa = svd->vdev_spa;
 1174         metaslab_t *msp;
 1175         vdev_t *vd;
 1176         int t;
 1177 
 1178         ASSERT(tvd == tvd->vdev_top);
 1179 
 1180         tvd->vdev_pending_fastwrite = svd->vdev_pending_fastwrite;
 1181         tvd->vdev_ms_array = svd->vdev_ms_array;
 1182         tvd->vdev_ms_shift = svd->vdev_ms_shift;
 1183         tvd->vdev_ms_count = svd->vdev_ms_count;
 1184         tvd->vdev_top_zap = svd->vdev_top_zap;
 1185 
 1186         svd->vdev_ms_array = 0;
 1187         svd->vdev_ms_shift = 0;
 1188         svd->vdev_ms_count = 0;
 1189         svd->vdev_top_zap = 0;
 1190 
 1191         if (tvd->vdev_mg)
 1192                 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
 1193         if (tvd->vdev_log_mg)
 1194                 ASSERT3P(tvd->vdev_log_mg, ==, svd->vdev_log_mg);
 1195         tvd->vdev_mg = svd->vdev_mg;
 1196         tvd->vdev_log_mg = svd->vdev_log_mg;
 1197         tvd->vdev_ms = svd->vdev_ms;
 1198 
 1199         svd->vdev_mg = NULL;
 1200         svd->vdev_log_mg = NULL;
 1201         svd->vdev_ms = NULL;
 1202 
 1203         if (tvd->vdev_mg != NULL)
 1204                 tvd->vdev_mg->mg_vd = tvd;
 1205         if (tvd->vdev_log_mg != NULL)
 1206                 tvd->vdev_log_mg->mg_vd = tvd;
 1207 
 1208         tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm;
 1209         svd->vdev_checkpoint_sm = NULL;
 1210 
 1211         tvd->vdev_alloc_bias = svd->vdev_alloc_bias;
 1212         svd->vdev_alloc_bias = VDEV_BIAS_NONE;
 1213 
 1214         tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
 1215         tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
 1216         tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
 1217 
 1218         svd->vdev_stat.vs_alloc = 0;
 1219         svd->vdev_stat.vs_space = 0;
 1220         svd->vdev_stat.vs_dspace = 0;
 1221 
 1222         /*
 1223          * State which may be set on a top-level vdev that's in the
 1224          * process of being removed.
 1225          */
 1226         ASSERT0(tvd->vdev_indirect_config.vic_births_object);
 1227         ASSERT0(tvd->vdev_indirect_config.vic_mapping_object);
 1228         ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL);
 1229         ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL);
 1230         ASSERT3P(tvd->vdev_indirect_births, ==, NULL);
 1231         ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL);
 1232         ASSERT0(tvd->vdev_noalloc);
 1233         ASSERT0(tvd->vdev_removing);
 1234         ASSERT0(tvd->vdev_rebuilding);
 1235         tvd->vdev_noalloc = svd->vdev_noalloc;
 1236         tvd->vdev_removing = svd->vdev_removing;
 1237         tvd->vdev_rebuilding = svd->vdev_rebuilding;
 1238         tvd->vdev_rebuild_config = svd->vdev_rebuild_config;
 1239         tvd->vdev_indirect_config = svd->vdev_indirect_config;
 1240         tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping;
 1241         tvd->vdev_indirect_births = svd->vdev_indirect_births;
 1242         range_tree_swap(&svd->vdev_obsolete_segments,
 1243             &tvd->vdev_obsolete_segments);
 1244         tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm;
 1245         svd->vdev_indirect_config.vic_mapping_object = 0;
 1246         svd->vdev_indirect_config.vic_births_object = 0;
 1247         svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL;
 1248         svd->vdev_indirect_mapping = NULL;
 1249         svd->vdev_indirect_births = NULL;
 1250         svd->vdev_obsolete_sm = NULL;
 1251         svd->vdev_noalloc = 0;
 1252         svd->vdev_removing = 0;
 1253         svd->vdev_rebuilding = 0;
 1254 
 1255         for (t = 0; t < TXG_SIZE; t++) {
 1256                 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
 1257                         (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
 1258                 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
 1259                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
 1260                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
 1261                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
 1262         }
 1263 
 1264         if (list_link_active(&svd->vdev_config_dirty_node)) {
 1265                 vdev_config_clean(svd);
 1266                 vdev_config_dirty(tvd);
 1267         }
 1268 
 1269         if (list_link_active(&svd->vdev_state_dirty_node)) {
 1270                 vdev_state_clean(svd);
 1271                 vdev_state_dirty(tvd);
 1272         }
 1273 
 1274         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
 1275         svd->vdev_deflate_ratio = 0;
 1276 
 1277         tvd->vdev_islog = svd->vdev_islog;
 1278         svd->vdev_islog = 0;
 1279 
 1280         dsl_scan_io_queue_vdev_xfer(svd, tvd);
 1281 }
 1282 
 1283 static void
 1284 vdev_top_update(vdev_t *tvd, vdev_t *vd)
 1285 {
 1286         if (vd == NULL)
 1287                 return;
 1288 
 1289         vd->vdev_top = tvd;
 1290 
 1291         for (int c = 0; c < vd->vdev_children; c++)
 1292                 vdev_top_update(tvd, vd->vdev_child[c]);
 1293 }
 1294 
 1295 /*
 1296  * Add a mirror/replacing vdev above an existing vdev.  There is no need to
 1297  * call .vdev_op_init() since mirror/replacing vdevs do not have private state.
 1298  */
 1299 vdev_t *
 1300 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
 1301 {
 1302         spa_t *spa = cvd->vdev_spa;
 1303         vdev_t *pvd = cvd->vdev_parent;
 1304         vdev_t *mvd;
 1305 
 1306         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
 1307 
 1308         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
 1309 
 1310         mvd->vdev_asize = cvd->vdev_asize;
 1311         mvd->vdev_min_asize = cvd->vdev_min_asize;
 1312         mvd->vdev_max_asize = cvd->vdev_max_asize;
 1313         mvd->vdev_psize = cvd->vdev_psize;
 1314         mvd->vdev_ashift = cvd->vdev_ashift;
 1315         mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
 1316         mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
 1317         mvd->vdev_state = cvd->vdev_state;
 1318         mvd->vdev_crtxg = cvd->vdev_crtxg;
 1319 
 1320         vdev_remove_child(pvd, cvd);
 1321         vdev_add_child(pvd, mvd);
 1322         cvd->vdev_id = mvd->vdev_children;
 1323         vdev_add_child(mvd, cvd);
 1324         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
 1325 
 1326         if (mvd == mvd->vdev_top)
 1327                 vdev_top_transfer(cvd, mvd);
 1328 
 1329         return (mvd);
 1330 }
 1331 
 1332 /*
 1333  * Remove a 1-way mirror/replacing vdev from the tree.
 1334  */
 1335 void
 1336 vdev_remove_parent(vdev_t *cvd)
 1337 {
 1338         vdev_t *mvd = cvd->vdev_parent;
 1339         vdev_t *pvd = mvd->vdev_parent;
 1340 
 1341         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
 1342 
 1343         ASSERT(mvd->vdev_children == 1);
 1344         ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
 1345             mvd->vdev_ops == &vdev_replacing_ops ||
 1346             mvd->vdev_ops == &vdev_spare_ops);
 1347         cvd->vdev_ashift = mvd->vdev_ashift;
 1348         cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
 1349         cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
 1350         vdev_remove_child(mvd, cvd);
 1351         vdev_remove_child(pvd, mvd);
 1352 
 1353         /*
 1354          * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
 1355          * Otherwise, we could have detached an offline device, and when we
 1356          * go to import the pool we'll think we have two top-level vdevs,
 1357          * instead of a different version of the same top-level vdev.
 1358          */
 1359         if (mvd->vdev_top == mvd) {
 1360                 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
 1361                 cvd->vdev_orig_guid = cvd->vdev_guid;
 1362                 cvd->vdev_guid += guid_delta;
 1363                 cvd->vdev_guid_sum += guid_delta;
 1364 
 1365                 /*
 1366                  * If pool not set for autoexpand, we need to also preserve
 1367                  * mvd's asize to prevent automatic expansion of cvd.
 1368                  * Otherwise if we are adjusting the mirror by attaching and
 1369                  * detaching children of non-uniform sizes, the mirror could
 1370                  * autoexpand, unexpectedly requiring larger devices to
 1371                  * re-establish the mirror.
 1372                  */
 1373                 if (!cvd->vdev_spa->spa_autoexpand)
 1374                         cvd->vdev_asize = mvd->vdev_asize;
 1375         }
 1376         cvd->vdev_id = mvd->vdev_id;
 1377         vdev_add_child(pvd, cvd);
 1378         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
 1379 
 1380         if (cvd == cvd->vdev_top)
 1381                 vdev_top_transfer(mvd, cvd);
 1382 
 1383         ASSERT(mvd->vdev_children == 0);
 1384         vdev_free(mvd);
 1385 }
 1386 
 1387 void
 1388 vdev_metaslab_group_create(vdev_t *vd)
 1389 {
 1390         spa_t *spa = vd->vdev_spa;
 1391 
 1392         /*
 1393          * metaslab_group_create was delayed until allocation bias was available
 1394          */
 1395         if (vd->vdev_mg == NULL) {
 1396                 metaslab_class_t *mc;
 1397 
 1398                 if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE)
 1399                         vd->vdev_alloc_bias = VDEV_BIAS_LOG;
 1400 
 1401                 ASSERT3U(vd->vdev_islog, ==,
 1402                     (vd->vdev_alloc_bias == VDEV_BIAS_LOG));
 1403 
 1404                 switch (vd->vdev_alloc_bias) {
 1405                 case VDEV_BIAS_LOG:
 1406                         mc = spa_log_class(spa);
 1407                         break;
 1408                 case VDEV_BIAS_SPECIAL:
 1409                         mc = spa_special_class(spa);
 1410                         break;
 1411                 case VDEV_BIAS_DEDUP:
 1412                         mc = spa_dedup_class(spa);
 1413                         break;
 1414                 default:
 1415                         mc = spa_normal_class(spa);
 1416                 }
 1417 
 1418                 vd->vdev_mg = metaslab_group_create(mc, vd,
 1419                     spa->spa_alloc_count);
 1420 
 1421                 if (!vd->vdev_islog) {
 1422                         vd->vdev_log_mg = metaslab_group_create(
 1423                             spa_embedded_log_class(spa), vd, 1);
 1424                 }
 1425 
 1426                 /*
 1427                  * The spa ashift min/max only apply for the normal metaslab
 1428                  * class. Class destination is late binding so ashift boundary
 1429                  * setting had to wait until now.
 1430                  */
 1431                 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
 1432                     mc == spa_normal_class(spa) && vd->vdev_aux == NULL) {
 1433                         if (vd->vdev_ashift > spa->spa_max_ashift)
 1434                                 spa->spa_max_ashift = vd->vdev_ashift;
 1435                         if (vd->vdev_ashift < spa->spa_min_ashift)
 1436                                 spa->spa_min_ashift = vd->vdev_ashift;
 1437 
 1438                         uint64_t min_alloc = vdev_get_min_alloc(vd);
 1439                         if (min_alloc < spa->spa_min_alloc)
 1440                                 spa->spa_min_alloc = min_alloc;
 1441                 }
 1442         }
 1443 }
 1444 
 1445 int
 1446 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
 1447 {
 1448         spa_t *spa = vd->vdev_spa;
 1449         uint64_t oldc = vd->vdev_ms_count;
 1450         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
 1451         metaslab_t **mspp;
 1452         int error;
 1453         boolean_t expanding = (oldc != 0);
 1454 
 1455         ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
 1456 
 1457         /*
 1458          * This vdev is not being allocated from yet or is a hole.
 1459          */
 1460         if (vd->vdev_ms_shift == 0)
 1461                 return (0);
 1462 
 1463         ASSERT(!vd->vdev_ishole);
 1464 
 1465         ASSERT(oldc <= newc);
 1466 
 1467         mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
 1468 
 1469         if (expanding) {
 1470                 memcpy(mspp, vd->vdev_ms, oldc * sizeof (*mspp));
 1471                 vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
 1472         }
 1473 
 1474         vd->vdev_ms = mspp;
 1475         vd->vdev_ms_count = newc;
 1476 
 1477         for (uint64_t m = oldc; m < newc; m++) {
 1478                 uint64_t object = 0;
 1479                 /*
 1480                  * vdev_ms_array may be 0 if we are creating the "fake"
 1481                  * metaslabs for an indirect vdev for zdb's leak detection.
 1482                  * See zdb_leak_init().
 1483                  */
 1484                 if (txg == 0 && vd->vdev_ms_array != 0) {
 1485                         error = dmu_read(spa->spa_meta_objset,
 1486                             vd->vdev_ms_array,
 1487                             m * sizeof (uint64_t), sizeof (uint64_t), &object,
 1488                             DMU_READ_PREFETCH);
 1489                         if (error != 0) {
 1490                                 vdev_dbgmsg(vd, "unable to read the metaslab "
 1491                                     "array [error=%d]", error);
 1492                                 return (error);
 1493                         }
 1494                 }
 1495 
 1496                 error = metaslab_init(vd->vdev_mg, m, object, txg,
 1497                     &(vd->vdev_ms[m]));
 1498                 if (error != 0) {
 1499                         vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
 1500                             error);
 1501                         return (error);
 1502                 }
 1503         }
 1504 
 1505         /*
 1506          * Find the emptiest metaslab on the vdev and mark it for use for
 1507          * embedded slog by moving it from the regular to the log metaslab
 1508          * group.
 1509          */
 1510         if (vd->vdev_mg->mg_class == spa_normal_class(spa) &&
 1511             vd->vdev_ms_count > zfs_embedded_slog_min_ms &&
 1512             avl_is_empty(&vd->vdev_log_mg->mg_metaslab_tree)) {
 1513                 uint64_t slog_msid = 0;
 1514                 uint64_t smallest = UINT64_MAX;
 1515 
 1516                 /*
 1517                  * Note, we only search the new metaslabs, because the old
 1518                  * (pre-existing) ones may be active (e.g. have non-empty
 1519                  * range_tree's), and we don't move them to the new
 1520                  * metaslab_t.
 1521                  */
 1522                 for (uint64_t m = oldc; m < newc; m++) {
 1523                         uint64_t alloc =
 1524                             space_map_allocated(vd->vdev_ms[m]->ms_sm);
 1525                         if (alloc < smallest) {
 1526                                 slog_msid = m;
 1527                                 smallest = alloc;
 1528                         }
 1529                 }
 1530                 metaslab_t *slog_ms = vd->vdev_ms[slog_msid];
 1531                 /*
 1532                  * The metaslab was marked as dirty at the end of
 1533                  * metaslab_init(). Remove it from the dirty list so that we
 1534                  * can uninitialize and reinitialize it to the new class.
 1535                  */
 1536                 if (txg != 0) {
 1537                         (void) txg_list_remove_this(&vd->vdev_ms_list,
 1538                             slog_ms, txg);
 1539                 }
 1540                 uint64_t sm_obj = space_map_object(slog_ms->ms_sm);
 1541                 metaslab_fini(slog_ms);
 1542                 VERIFY0(metaslab_init(vd->vdev_log_mg, slog_msid, sm_obj, txg,
 1543                     &vd->vdev_ms[slog_msid]));
 1544         }
 1545 
 1546         if (txg == 0)
 1547                 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
 1548 
 1549         /*
 1550          * If the vdev is marked as non-allocating then don't
 1551          * activate the metaslabs since we want to ensure that
 1552          * no allocations are performed on this device.
 1553          */
 1554         if (vd->vdev_noalloc) {
 1555                 /* track non-allocating vdev space */
 1556                 spa->spa_nonallocating_dspace += spa_deflate(spa) ?
 1557                     vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
 1558         } else if (!expanding) {
 1559                 metaslab_group_activate(vd->vdev_mg);
 1560                 if (vd->vdev_log_mg != NULL)
 1561                         metaslab_group_activate(vd->vdev_log_mg);
 1562         }
 1563 
 1564         if (txg == 0)
 1565                 spa_config_exit(spa, SCL_ALLOC, FTAG);
 1566 
 1567         return (0);
 1568 }
 1569 
 1570 void
 1571 vdev_metaslab_fini(vdev_t *vd)
 1572 {
 1573         if (vd->vdev_checkpoint_sm != NULL) {
 1574                 ASSERT(spa_feature_is_active(vd->vdev_spa,
 1575                     SPA_FEATURE_POOL_CHECKPOINT));
 1576                 space_map_close(vd->vdev_checkpoint_sm);
 1577                 /*
 1578                  * Even though we close the space map, we need to set its
 1579                  * pointer to NULL. The reason is that vdev_metaslab_fini()
 1580                  * may be called multiple times for certain operations
 1581                  * (i.e. when destroying a pool) so we need to ensure that
 1582                  * this clause never executes twice. This logic is similar
 1583                  * to the one used for the vdev_ms clause below.
 1584                  */
 1585                 vd->vdev_checkpoint_sm = NULL;
 1586         }
 1587 
 1588         if (vd->vdev_ms != NULL) {
 1589                 metaslab_group_t *mg = vd->vdev_mg;
 1590 
 1591                 metaslab_group_passivate(mg);
 1592                 if (vd->vdev_log_mg != NULL) {
 1593                         ASSERT(!vd->vdev_islog);
 1594                         metaslab_group_passivate(vd->vdev_log_mg);
 1595                 }
 1596 
 1597                 uint64_t count = vd->vdev_ms_count;
 1598                 for (uint64_t m = 0; m < count; m++) {
 1599                         metaslab_t *msp = vd->vdev_ms[m];
 1600                         if (msp != NULL)
 1601                                 metaslab_fini(msp);
 1602                 }
 1603                 vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
 1604                 vd->vdev_ms = NULL;
 1605                 vd->vdev_ms_count = 0;
 1606 
 1607                 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
 1608                         ASSERT0(mg->mg_histogram[i]);
 1609                         if (vd->vdev_log_mg != NULL)
 1610                                 ASSERT0(vd->vdev_log_mg->mg_histogram[i]);
 1611                 }
 1612         }
 1613         ASSERT0(vd->vdev_ms_count);
 1614         ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
 1615 }
 1616 
 1617 typedef struct vdev_probe_stats {
 1618         boolean_t       vps_readable;
 1619         boolean_t       vps_writeable;
 1620         int             vps_flags;
 1621 } vdev_probe_stats_t;
 1622 
 1623 static void
 1624 vdev_probe_done(zio_t *zio)
 1625 {
 1626         spa_t *spa = zio->io_spa;
 1627         vdev_t *vd = zio->io_vd;
 1628         vdev_probe_stats_t *vps = zio->io_private;
 1629 
 1630         ASSERT(vd->vdev_probe_zio != NULL);
 1631 
 1632         if (zio->io_type == ZIO_TYPE_READ) {
 1633                 if (zio->io_error == 0)
 1634                         vps->vps_readable = 1;
 1635                 if (zio->io_error == 0 && spa_writeable(spa)) {
 1636                         zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
 1637                             zio->io_offset, zio->io_size, zio->io_abd,
 1638                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
 1639                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
 1640                 } else {
 1641                         abd_free(zio->io_abd);
 1642                 }
 1643         } else if (zio->io_type == ZIO_TYPE_WRITE) {
 1644                 if (zio->io_error == 0)
 1645                         vps->vps_writeable = 1;
 1646                 abd_free(zio->io_abd);
 1647         } else if (zio->io_type == ZIO_TYPE_NULL) {
 1648                 zio_t *pio;
 1649                 zio_link_t *zl;
 1650 
 1651                 vd->vdev_cant_read |= !vps->vps_readable;
 1652                 vd->vdev_cant_write |= !vps->vps_writeable;
 1653 
 1654                 if (vdev_readable(vd) &&
 1655                     (vdev_writeable(vd) || !spa_writeable(spa))) {
 1656                         zio->io_error = 0;
 1657                 } else {
 1658                         ASSERT(zio->io_error != 0);
 1659                         vdev_dbgmsg(vd, "failed probe");
 1660                         (void) zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
 1661                             spa, vd, NULL, NULL, 0);
 1662                         zio->io_error = SET_ERROR(ENXIO);
 1663                 }
 1664 
 1665                 mutex_enter(&vd->vdev_probe_lock);
 1666                 ASSERT(vd->vdev_probe_zio == zio);
 1667                 vd->vdev_probe_zio = NULL;
 1668                 mutex_exit(&vd->vdev_probe_lock);
 1669 
 1670                 zl = NULL;
 1671                 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
 1672                         if (!vdev_accessible(vd, pio))
 1673                                 pio->io_error = SET_ERROR(ENXIO);
 1674 
 1675                 kmem_free(vps, sizeof (*vps));
 1676         }
 1677 }
 1678 
 1679 /*
 1680  * Determine whether this device is accessible.
 1681  *
 1682  * Read and write to several known locations: the pad regions of each
 1683  * vdev label but the first, which we leave alone in case it contains
 1684  * a VTOC.
 1685  */
 1686 zio_t *
 1687 vdev_probe(vdev_t *vd, zio_t *zio)
 1688 {
 1689         spa_t *spa = vd->vdev_spa;
 1690         vdev_probe_stats_t *vps = NULL;
 1691         zio_t *pio;
 1692 
 1693         ASSERT(vd->vdev_ops->vdev_op_leaf);
 1694 
 1695         /*
 1696          * Don't probe the probe.
 1697          */
 1698         if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
 1699                 return (NULL);
 1700 
 1701         /*
 1702          * To prevent 'probe storms' when a device fails, we create
 1703          * just one probe i/o at a time.  All zios that want to probe
 1704          * this vdev will become parents of the probe io.
 1705          */
 1706         mutex_enter(&vd->vdev_probe_lock);
 1707 
 1708         if ((pio = vd->vdev_probe_zio) == NULL) {
 1709                 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
 1710 
 1711                 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
 1712                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
 1713                     ZIO_FLAG_TRYHARD;
 1714 
 1715                 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
 1716                         /*
 1717                          * vdev_cant_read and vdev_cant_write can only
 1718                          * transition from TRUE to FALSE when we have the
 1719                          * SCL_ZIO lock as writer; otherwise they can only
 1720                          * transition from FALSE to TRUE.  This ensures that
 1721                          * any zio looking at these values can assume that
 1722                          * failures persist for the life of the I/O.  That's
 1723                          * important because when a device has intermittent
 1724                          * connectivity problems, we want to ensure that
 1725                          * they're ascribed to the device (ENXIO) and not
 1726                          * the zio (EIO).
 1727                          *
 1728                          * Since we hold SCL_ZIO as writer here, clear both
 1729                          * values so the probe can reevaluate from first
 1730                          * principles.
 1731                          */
 1732                         vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
 1733                         vd->vdev_cant_read = B_FALSE;
 1734                         vd->vdev_cant_write = B_FALSE;
 1735                 }
 1736 
 1737                 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
 1738                     vdev_probe_done, vps,
 1739                     vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
 1740 
 1741                 /*
 1742                  * We can't change the vdev state in this context, so we
 1743                  * kick off an async task to do it on our behalf.
 1744                  */
 1745                 if (zio != NULL) {
 1746                         vd->vdev_probe_wanted = B_TRUE;
 1747                         spa_async_request(spa, SPA_ASYNC_PROBE);
 1748                 }
 1749         }
 1750 
 1751         if (zio != NULL)
 1752                 zio_add_child(zio, pio);
 1753 
 1754         mutex_exit(&vd->vdev_probe_lock);
 1755 
 1756         if (vps == NULL) {
 1757                 ASSERT(zio != NULL);
 1758                 return (NULL);
 1759         }
 1760 
 1761         for (int l = 1; l < VDEV_LABELS; l++) {
 1762                 zio_nowait(zio_read_phys(pio, vd,
 1763                     vdev_label_offset(vd->vdev_psize, l,
 1764                     offsetof(vdev_label_t, vl_be)), VDEV_PAD_SIZE,
 1765                     abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
 1766                     ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
 1767                     ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
 1768         }
 1769 
 1770         if (zio == NULL)
 1771                 return (pio);
 1772 
 1773         zio_nowait(pio);
 1774         return (NULL);
 1775 }
 1776 
 1777 static void
 1778 vdev_load_child(void *arg)
 1779 {
 1780         vdev_t *vd = arg;
 1781 
 1782         vd->vdev_load_error = vdev_load(vd);
 1783 }
 1784 
 1785 static void
 1786 vdev_open_child(void *arg)
 1787 {
 1788         vdev_t *vd = arg;
 1789 
 1790         vd->vdev_open_thread = curthread;
 1791         vd->vdev_open_error = vdev_open(vd);
 1792         vd->vdev_open_thread = NULL;
 1793 }
 1794 
 1795 static boolean_t
 1796 vdev_uses_zvols(vdev_t *vd)
 1797 {
 1798 #ifdef _KERNEL
 1799         if (zvol_is_zvol(vd->vdev_path))
 1800                 return (B_TRUE);
 1801 #endif
 1802 
 1803         for (int c = 0; c < vd->vdev_children; c++)
 1804                 if (vdev_uses_zvols(vd->vdev_child[c]))
 1805                         return (B_TRUE);
 1806 
 1807         return (B_FALSE);
 1808 }
 1809 
 1810 /*
 1811  * Returns B_TRUE if the passed child should be opened.
 1812  */
 1813 static boolean_t
 1814 vdev_default_open_children_func(vdev_t *vd)
 1815 {
 1816         (void) vd;
 1817         return (B_TRUE);
 1818 }
 1819 
 1820 /*
 1821  * Open the requested child vdevs.  If any of the leaf vdevs are using
 1822  * a ZFS volume then do the opens in a single thread.  This avoids a
 1823  * deadlock when the current thread is holding the spa_namespace_lock.
 1824  */
 1825 static void
 1826 vdev_open_children_impl(vdev_t *vd, vdev_open_children_func_t *open_func)
 1827 {
 1828         int children = vd->vdev_children;
 1829 
 1830         taskq_t *tq = taskq_create("vdev_open", children, minclsyspri,
 1831             children, children, TASKQ_PREPOPULATE);
 1832         vd->vdev_nonrot = B_TRUE;
 1833 
 1834         for (int c = 0; c < children; c++) {
 1835                 vdev_t *cvd = vd->vdev_child[c];
 1836 
 1837                 if (open_func(cvd) == B_FALSE)
 1838                         continue;
 1839 
 1840                 if (tq == NULL || vdev_uses_zvols(vd)) {
 1841                         cvd->vdev_open_error = vdev_open(cvd);
 1842                 } else {
 1843                         VERIFY(taskq_dispatch(tq, vdev_open_child,
 1844                             cvd, TQ_SLEEP) != TASKQID_INVALID);
 1845                 }
 1846 
 1847                 vd->vdev_nonrot &= cvd->vdev_nonrot;
 1848         }
 1849 
 1850         if (tq != NULL) {
 1851                 taskq_wait(tq);
 1852                 taskq_destroy(tq);
 1853         }
 1854 }
 1855 
 1856 /*
 1857  * Open all child vdevs.
 1858  */
 1859 void
 1860 vdev_open_children(vdev_t *vd)
 1861 {
 1862         vdev_open_children_impl(vd, vdev_default_open_children_func);
 1863 }
 1864 
 1865 /*
 1866  * Conditionally open a subset of child vdevs.
 1867  */
 1868 void
 1869 vdev_open_children_subset(vdev_t *vd, vdev_open_children_func_t *open_func)
 1870 {
 1871         vdev_open_children_impl(vd, open_func);
 1872 }
 1873 
 1874 /*
 1875  * Compute the raidz-deflation ratio.  Note, we hard-code
 1876  * in 128k (1 << 17) because it is the "typical" blocksize.
 1877  * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
 1878  * otherwise it would inconsistently account for existing bp's.
 1879  */
 1880 static void
 1881 vdev_set_deflate_ratio(vdev_t *vd)
 1882 {
 1883         if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
 1884                 vd->vdev_deflate_ratio = (1 << 17) /
 1885                     (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
 1886         }
 1887 }
 1888 
 1889 /*
 1890  * Choose the best of two ashifts, preferring one between logical ashift
 1891  * (absolute minimum) and administrator defined maximum, otherwise take
 1892  * the biggest of the two.
 1893  */
 1894 uint64_t
 1895 vdev_best_ashift(uint64_t logical, uint64_t a, uint64_t b)
 1896 {
 1897         if (a > logical && a <= zfs_vdev_max_auto_ashift) {
 1898                 if (b <= logical || b > zfs_vdev_max_auto_ashift)
 1899                         return (a);
 1900                 else
 1901                         return (MAX(a, b));
 1902         } else if (b <= logical || b > zfs_vdev_max_auto_ashift)
 1903                 return (MAX(a, b));
 1904         return (b);
 1905 }
 1906 
 1907 /*
 1908  * Maximize performance by inflating the configured ashift for top level
 1909  * vdevs to be as close to the physical ashift as possible while maintaining
 1910  * administrator defined limits and ensuring it doesn't go below the
 1911  * logical ashift.
 1912  */
 1913 static void
 1914 vdev_ashift_optimize(vdev_t *vd)
 1915 {
 1916         ASSERT(vd == vd->vdev_top);
 1917 
 1918         if (vd->vdev_ashift < vd->vdev_physical_ashift &&
 1919             vd->vdev_physical_ashift <= zfs_vdev_max_auto_ashift) {
 1920                 vd->vdev_ashift = MIN(
 1921                     MAX(zfs_vdev_max_auto_ashift, vd->vdev_ashift),
 1922                     MAX(zfs_vdev_min_auto_ashift,
 1923                     vd->vdev_physical_ashift));
 1924         } else {
 1925                 /*
 1926                  * If the logical and physical ashifts are the same, then
 1927                  * we ensure that the top-level vdev's ashift is not smaller
 1928                  * than our minimum ashift value. For the unusual case
 1929                  * where logical ashift > physical ashift, we can't cap
 1930                  * the calculated ashift based on max ashift as that
 1931                  * would cause failures.
 1932                  * We still check if we need to increase it to match
 1933                  * the min ashift.
 1934                  */
 1935                 vd->vdev_ashift = MAX(zfs_vdev_min_auto_ashift,
 1936                     vd->vdev_ashift);
 1937         }
 1938 }
 1939 
 1940 /*
 1941  * Prepare a virtual device for access.
 1942  */
 1943 int
 1944 vdev_open(vdev_t *vd)
 1945 {
 1946         spa_t *spa = vd->vdev_spa;
 1947         int error;
 1948         uint64_t osize = 0;
 1949         uint64_t max_osize = 0;
 1950         uint64_t asize, max_asize, psize;
 1951         uint64_t logical_ashift = 0;
 1952         uint64_t physical_ashift = 0;
 1953 
 1954         ASSERT(vd->vdev_open_thread == curthread ||
 1955             spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
 1956         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
 1957             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
 1958             vd->vdev_state == VDEV_STATE_OFFLINE);
 1959 
 1960         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
 1961         vd->vdev_cant_read = B_FALSE;
 1962         vd->vdev_cant_write = B_FALSE;
 1963         vd->vdev_min_asize = vdev_get_min_asize(vd);
 1964 
 1965         /*
 1966          * If this vdev is not removed, check its fault status.  If it's
 1967          * faulted, bail out of the open.
 1968          */
 1969         if (!vd->vdev_removed && vd->vdev_faulted) {
 1970                 ASSERT(vd->vdev_children == 0);
 1971                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
 1972                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
 1973                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
 1974                     vd->vdev_label_aux);
 1975                 return (SET_ERROR(ENXIO));
 1976         } else if (vd->vdev_offline) {
 1977                 ASSERT(vd->vdev_children == 0);
 1978                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
 1979                 return (SET_ERROR(ENXIO));
 1980         }
 1981 
 1982         error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
 1983             &logical_ashift, &physical_ashift);
 1984 
 1985         /* Keep the device in removed state if unplugged */
 1986         if (error == ENOENT && vd->vdev_removed) {
 1987                 vdev_set_state(vd, B_TRUE, VDEV_STATE_REMOVED,
 1988                     VDEV_AUX_NONE);
 1989                 return (error);
 1990         }
 1991 
 1992         /*
 1993          * Physical volume size should never be larger than its max size, unless
 1994          * the disk has shrunk while we were reading it or the device is buggy
 1995          * or damaged: either way it's not safe for use, bail out of the open.
 1996          */
 1997         if (osize > max_osize) {
 1998                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
 1999                     VDEV_AUX_OPEN_FAILED);
 2000                 return (SET_ERROR(ENXIO));
 2001         }
 2002 
 2003         /*
 2004          * Reset the vdev_reopening flag so that we actually close
 2005          * the vdev on error.
 2006          */
 2007         vd->vdev_reopening = B_FALSE;
 2008         if (zio_injection_enabled && error == 0)
 2009                 error = zio_handle_device_injection(vd, NULL, SET_ERROR(ENXIO));
 2010 
 2011         if (error) {
 2012                 if (vd->vdev_removed &&
 2013                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
 2014                         vd->vdev_removed = B_FALSE;
 2015 
 2016                 if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
 2017                         vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
 2018                             vd->vdev_stat.vs_aux);
 2019                 } else {
 2020                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
 2021                             vd->vdev_stat.vs_aux);
 2022                 }
 2023                 return (error);
 2024         }
 2025 
 2026         vd->vdev_removed = B_FALSE;
 2027 
 2028         /*
 2029          * Recheck the faulted flag now that we have confirmed that
 2030          * the vdev is accessible.  If we're faulted, bail.
 2031          */
 2032         if (vd->vdev_faulted) {
 2033                 ASSERT(vd->vdev_children == 0);
 2034                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
 2035                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
 2036                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
 2037                     vd->vdev_label_aux);
 2038                 return (SET_ERROR(ENXIO));
 2039         }
 2040 
 2041         if (vd->vdev_degraded) {
 2042                 ASSERT(vd->vdev_children == 0);
 2043                 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
 2044                     VDEV_AUX_ERR_EXCEEDED);
 2045         } else {
 2046                 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
 2047         }
 2048 
 2049         /*
 2050          * For hole or missing vdevs we just return success.
 2051          */
 2052         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
 2053                 return (0);
 2054 
 2055         for (int c = 0; c < vd->vdev_children; c++) {
 2056                 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
 2057                         vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
 2058                             VDEV_AUX_NONE);
 2059                         break;
 2060                 }
 2061         }
 2062 
 2063         osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
 2064         max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
 2065 
 2066         if (vd->vdev_children == 0) {
 2067                 if (osize < SPA_MINDEVSIZE) {
 2068                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
 2069                             VDEV_AUX_TOO_SMALL);
 2070                         return (SET_ERROR(EOVERFLOW));
 2071                 }
 2072                 psize = osize;
 2073                 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
 2074                 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
 2075                     VDEV_LABEL_END_SIZE);
 2076         } else {
 2077                 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
 2078                     (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
 2079                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
 2080                             VDEV_AUX_TOO_SMALL);
 2081                         return (SET_ERROR(EOVERFLOW));
 2082                 }
 2083                 psize = 0;
 2084                 asize = osize;
 2085                 max_asize = max_osize;
 2086         }
 2087 
 2088         /*
 2089          * If the vdev was expanded, record this so that we can re-create the
 2090          * uberblock rings in labels {2,3}, during the next sync.
 2091          */
 2092         if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0))
 2093                 vd->vdev_copy_uberblocks = B_TRUE;
 2094 
 2095         vd->vdev_psize = psize;
 2096 
 2097         /*
 2098          * Make sure the allocatable size hasn't shrunk too much.
 2099          */
 2100         if (asize < vd->vdev_min_asize) {
 2101                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
 2102                     VDEV_AUX_BAD_LABEL);
 2103                 return (SET_ERROR(EINVAL));
 2104         }
 2105 
 2106         /*
 2107          * We can always set the logical/physical ashift members since
 2108          * their values are only used to calculate the vdev_ashift when
 2109          * the device is first added to the config. These values should
 2110          * not be used for anything else since they may change whenever
 2111          * the device is reopened and we don't store them in the label.
 2112          */
 2113         vd->vdev_physical_ashift =
 2114             MAX(physical_ashift, vd->vdev_physical_ashift);
 2115         vd->vdev_logical_ashift = MAX(logical_ashift,
 2116             vd->vdev_logical_ashift);
 2117 
 2118         if (vd->vdev_asize == 0) {
 2119                 /*
 2120                  * This is the first-ever open, so use the computed values.
 2121                  * For compatibility, a different ashift can be requested.
 2122                  */
 2123                 vd->vdev_asize = asize;
 2124                 vd->vdev_max_asize = max_asize;
 2125 
 2126                 /*
 2127                  * If the vdev_ashift was not overridden at creation time,
 2128                  * then set it the logical ashift and optimize the ashift.
 2129                  */
 2130                 if (vd->vdev_ashift == 0) {
 2131                         vd->vdev_ashift = vd->vdev_logical_ashift;
 2132 
 2133                         if (vd->vdev_logical_ashift > ASHIFT_MAX) {
 2134                                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
 2135                                     VDEV_AUX_ASHIFT_TOO_BIG);
 2136                                 return (SET_ERROR(EDOM));
 2137                         }
 2138 
 2139                         if (vd->vdev_top == vd) {
 2140                                 vdev_ashift_optimize(vd);
 2141                         }
 2142                 }
 2143                 if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN ||
 2144                     vd->vdev_ashift > ASHIFT_MAX)) {
 2145                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
 2146                             VDEV_AUX_BAD_ASHIFT);
 2147                         return (SET_ERROR(EDOM));
 2148                 }
 2149         } else {
 2150                 /*
 2151                  * Make sure the alignment required hasn't increased.
 2152                  */
 2153                 if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
 2154                     vd->vdev_ops->vdev_op_leaf) {
 2155                         (void) zfs_ereport_post(
 2156                             FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
 2157                             spa, vd, NULL, NULL, 0);
 2158                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
 2159                             VDEV_AUX_BAD_LABEL);
 2160                         return (SET_ERROR(EDOM));
 2161                 }
 2162                 vd->vdev_max_asize = max_asize;
 2163         }
 2164 
 2165         /*
 2166          * If all children are healthy we update asize if either:
 2167          * The asize has increased, due to a device expansion caused by dynamic
 2168          * LUN growth or vdev replacement, and automatic expansion is enabled;
 2169          * making the additional space available.
 2170          *
 2171          * The asize has decreased, due to a device shrink usually caused by a
 2172          * vdev replace with a smaller device. This ensures that calculations
 2173          * based of max_asize and asize e.g. esize are always valid. It's safe
 2174          * to do this as we've already validated that asize is greater than
 2175          * vdev_min_asize.
 2176          */
 2177         if (vd->vdev_state == VDEV_STATE_HEALTHY &&
 2178             ((asize > vd->vdev_asize &&
 2179             (vd->vdev_expanding || spa->spa_autoexpand)) ||
 2180             (asize < vd->vdev_asize)))
 2181                 vd->vdev_asize = asize;
 2182 
 2183         vdev_set_min_asize(vd);
 2184 
 2185         /*
 2186          * Ensure we can issue some IO before declaring the
 2187          * vdev open for business.
 2188          */
 2189         if (vd->vdev_ops->vdev_op_leaf &&
 2190             (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
 2191                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
 2192                     VDEV_AUX_ERR_EXCEEDED);
 2193                 return (error);
 2194         }
 2195 
 2196         /*
 2197          * Track the minimum allocation size.
 2198          */
 2199         if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
 2200             vd->vdev_islog == 0 && vd->vdev_aux == NULL) {
 2201                 uint64_t min_alloc = vdev_get_min_alloc(vd);
 2202                 if (min_alloc < spa->spa_min_alloc)
 2203                         spa->spa_min_alloc = min_alloc;
 2204         }
 2205 
 2206         /*
 2207          * If this is a leaf vdev, assess whether a resilver is needed.
 2208          * But don't do this if we are doing a reopen for a scrub, since
 2209          * this would just restart the scrub we are already doing.
 2210          */
 2211         if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen)
 2212                 dsl_scan_assess_vdev(spa->spa_dsl_pool, vd);
 2213 
 2214         return (0);
 2215 }
 2216 
 2217 static void
 2218 vdev_validate_child(void *arg)
 2219 {
 2220         vdev_t *vd = arg;
 2221 
 2222         vd->vdev_validate_thread = curthread;
 2223         vd->vdev_validate_error = vdev_validate(vd);
 2224         vd->vdev_validate_thread = NULL;
 2225 }
 2226 
 2227 /*
 2228  * Called once the vdevs are all opened, this routine validates the label
 2229  * contents. This needs to be done before vdev_load() so that we don't
 2230  * inadvertently do repair I/Os to the wrong device.
 2231  *
 2232  * This function will only return failure if one of the vdevs indicates that it
 2233  * has since been destroyed or exported.  This is only possible if
 2234  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
 2235  * will be updated but the function will return 0.
 2236  */
 2237 int
 2238 vdev_validate(vdev_t *vd)
 2239 {
 2240         spa_t *spa = vd->vdev_spa;
 2241         taskq_t *tq = NULL;
 2242         nvlist_t *label;
 2243         uint64_t guid = 0, aux_guid = 0, top_guid;
 2244         uint64_t state;
 2245         nvlist_t *nvl;
 2246         uint64_t txg;
 2247         int children = vd->vdev_children;
 2248 
 2249         if (vdev_validate_skip)
 2250                 return (0);
 2251 
 2252         if (children > 0) {
 2253                 tq = taskq_create("vdev_validate", children, minclsyspri,
 2254                     children, children, TASKQ_PREPOPULATE);
 2255         }
 2256 
 2257         for (uint64_t c = 0; c < children; c++) {
 2258                 vdev_t *cvd = vd->vdev_child[c];
 2259 
 2260                 if (tq == NULL || vdev_uses_zvols(cvd)) {
 2261                         vdev_validate_child(cvd);
 2262                 } else {
 2263                         VERIFY(taskq_dispatch(tq, vdev_validate_child, cvd,
 2264                             TQ_SLEEP) != TASKQID_INVALID);
 2265                 }
 2266         }
 2267         if (tq != NULL) {
 2268                 taskq_wait(tq);
 2269                 taskq_destroy(tq);
 2270         }
 2271         for (int c = 0; c < children; c++) {
 2272                 int error = vd->vdev_child[c]->vdev_validate_error;
 2273 
 2274                 if (error != 0)
 2275                         return (SET_ERROR(EBADF));
 2276         }
 2277 
 2278 
 2279         /*
 2280          * If the device has already failed, or was marked offline, don't do
 2281          * any further validation.  Otherwise, label I/O will fail and we will
 2282          * overwrite the previous state.
 2283          */
 2284         if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
 2285                 return (0);
 2286 
 2287         /*
 2288          * If we are performing an extreme rewind, we allow for a label that
 2289          * was modified at a point after the current txg.
 2290          * If config lock is not held do not check for the txg. spa_sync could
 2291          * be updating the vdev's label before updating spa_last_synced_txg.
 2292          */
 2293         if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 ||
 2294             spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG)
 2295                 txg = UINT64_MAX;
 2296         else
 2297                 txg = spa_last_synced_txg(spa);
 2298 
 2299         if ((label = vdev_label_read_config(vd, txg)) == NULL) {
 2300                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
 2301                     VDEV_AUX_BAD_LABEL);
 2302                 vdev_dbgmsg(vd, "vdev_validate: failed reading config for "
 2303                     "txg %llu", (u_longlong_t)txg);
 2304                 return (0);
 2305         }
 2306 
 2307         /*
 2308          * Determine if this vdev has been split off into another
 2309          * pool.  If so, then refuse to open it.
 2310          */
 2311         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
 2312             &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
 2313                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
 2314                     VDEV_AUX_SPLIT_POOL);
 2315                 nvlist_free(label);
 2316                 vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
 2317                 return (0);
 2318         }
 2319 
 2320         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
 2321                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
 2322                     VDEV_AUX_CORRUPT_DATA);
 2323                 nvlist_free(label);
 2324                 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
 2325                     ZPOOL_CONFIG_POOL_GUID);
 2326                 return (0);
 2327         }
 2328 
 2329         /*
 2330          * If config is not trusted then ignore the spa guid check. This is
 2331          * necessary because if the machine crashed during a re-guid the new
 2332          * guid might have been written to all of the vdev labels, but not the
 2333          * cached config. The check will be performed again once we have the
 2334          * trusted config from the MOS.
 2335          */
 2336         if (spa->spa_trust_config && guid != spa_guid(spa)) {
 2337                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
 2338                     VDEV_AUX_CORRUPT_DATA);
 2339                 nvlist_free(label);
 2340                 vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
 2341                     "match config (%llu != %llu)", (u_longlong_t)guid,
 2342                     (u_longlong_t)spa_guid(spa));
 2343                 return (0);
 2344         }
 2345 
 2346         if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
 2347             != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
 2348             &aux_guid) != 0)
 2349                 aux_guid = 0;
 2350 
 2351         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
 2352                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
 2353                     VDEV_AUX_CORRUPT_DATA);
 2354                 nvlist_free(label);
 2355                 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
 2356                     ZPOOL_CONFIG_GUID);
 2357                 return (0);
 2358         }
 2359 
 2360         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
 2361             != 0) {
 2362                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
 2363                     VDEV_AUX_CORRUPT_DATA);
 2364                 nvlist_free(label);
 2365                 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
 2366                     ZPOOL_CONFIG_TOP_GUID);
 2367                 return (0);
 2368         }
 2369 
 2370         /*
 2371          * If this vdev just became a top-level vdev because its sibling was
 2372          * detached, it will have adopted the parent's vdev guid -- but the
 2373          * label may or may not be on disk yet. Fortunately, either version
 2374          * of the label will have the same top guid, so if we're a top-level
 2375          * vdev, we can safely compare to that instead.
 2376          * However, if the config comes from a cachefile that failed to update
 2377          * after the detach, a top-level vdev will appear as a non top-level
 2378          * vdev in the config. Also relax the constraints if we perform an
 2379          * extreme rewind.
 2380          *
 2381          * If we split this vdev off instead, then we also check the
 2382          * original pool's guid. We don't want to consider the vdev
 2383          * corrupt if it is partway through a split operation.
 2384          */
 2385         if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
 2386                 boolean_t mismatch = B_FALSE;
 2387                 if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
 2388                         if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
 2389                                 mismatch = B_TRUE;
 2390                 } else {
 2391                         if (vd->vdev_guid != top_guid &&
 2392                             vd->vdev_top->vdev_guid != guid)
 2393                                 mismatch = B_TRUE;
 2394                 }
 2395 
 2396                 if (mismatch) {
 2397                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
 2398                             VDEV_AUX_CORRUPT_DATA);
 2399                         nvlist_free(label);
 2400                         vdev_dbgmsg(vd, "vdev_validate: config guid "
 2401                             "doesn't match label guid");
 2402                         vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
 2403                             (u_longlong_t)vd->vdev_guid,
 2404                             (u_longlong_t)vd->vdev_top->vdev_guid);
 2405                         vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
 2406                             "aux_guid %llu", (u_longlong_t)guid,
 2407                             (u_longlong_t)top_guid, (u_longlong_t)aux_guid);
 2408                         return (0);
 2409                 }
 2410         }
 2411 
 2412         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
 2413             &state) != 0) {
 2414                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
 2415                     VDEV_AUX_CORRUPT_DATA);
 2416                 nvlist_free(label);
 2417                 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
 2418                     ZPOOL_CONFIG_POOL_STATE);
 2419                 return (0);
 2420         }
 2421 
 2422         nvlist_free(label);
 2423 
 2424         /*
 2425          * If this is a verbatim import, no need to check the
 2426          * state of the pool.
 2427          */
 2428         if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
 2429             spa_load_state(spa) == SPA_LOAD_OPEN &&
 2430             state != POOL_STATE_ACTIVE) {
 2431                 vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
 2432                     "for spa %s", (u_longlong_t)state, spa->spa_name);
 2433                 return (SET_ERROR(EBADF));
 2434         }
 2435 
 2436         /*
 2437          * If we were able to open and validate a vdev that was
 2438          * previously marked permanently unavailable, clear that state
 2439          * now.
 2440          */
 2441         if (vd->vdev_not_present)
 2442                 vd->vdev_not_present = 0;
 2443 
 2444         return (0);
 2445 }
 2446 
 2447 static void
 2448 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
 2449 {
 2450         char *old, *new;
 2451         if (svd->vdev_path != NULL && dvd->vdev_path != NULL) {
 2452                 if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) {
 2453                         zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed "
 2454                             "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
 2455                             dvd->vdev_path, svd->vdev_path);
 2456                         spa_strfree(dvd->vdev_path);
 2457                         dvd->vdev_path = spa_strdup(svd->vdev_path);
 2458                 }
 2459         } else if (svd->vdev_path != NULL) {
 2460                 dvd->vdev_path = spa_strdup(svd->vdev_path);
 2461                 zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
 2462                     (u_longlong_t)dvd->vdev_guid, dvd->vdev_path);
 2463         }
 2464 
 2465         /*
 2466          * Our enclosure sysfs path may have changed between imports
 2467          */
 2468         old = dvd->vdev_enc_sysfs_path;
 2469         new = svd->vdev_enc_sysfs_path;
 2470         if ((old != NULL && new == NULL) ||
 2471             (old == NULL && new != NULL) ||
 2472             ((old != NULL && new != NULL) && strcmp(new, old) != 0)) {
 2473                 zfs_dbgmsg("vdev_copy_path: vdev %llu: vdev_enc_sysfs_path "
 2474                     "changed from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
 2475                     old, new);
 2476 
 2477                 if (dvd->vdev_enc_sysfs_path)
 2478                         spa_strfree(dvd->vdev_enc_sysfs_path);
 2479 
 2480                 if (svd->vdev_enc_sysfs_path) {
 2481                         dvd->vdev_enc_sysfs_path = spa_strdup(
 2482                             svd->vdev_enc_sysfs_path);
 2483                 } else {
 2484                         dvd->vdev_enc_sysfs_path = NULL;
 2485                 }
 2486         }
 2487 }
 2488 
 2489 /*
 2490  * Recursively copy vdev paths from one vdev to another. Source and destination
 2491  * vdev trees must have same geometry otherwise return error. Intended to copy
 2492  * paths from userland config into MOS config.
 2493  */
 2494 int
 2495 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
 2496 {
 2497         if ((svd->vdev_ops == &vdev_missing_ops) ||
 2498             (svd->vdev_ishole && dvd->vdev_ishole) ||
 2499             (dvd->vdev_ops == &vdev_indirect_ops))
 2500                 return (0);
 2501 
 2502         if (svd->vdev_ops != dvd->vdev_ops) {
 2503                 vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
 2504                     svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
 2505                 return (SET_ERROR(EINVAL));
 2506         }
 2507 
 2508         if (svd->vdev_guid != dvd->vdev_guid) {
 2509                 vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
 2510                     "%llu)", (u_longlong_t)svd->vdev_guid,
 2511                     (u_longlong_t)dvd->vdev_guid);
 2512                 return (SET_ERROR(EINVAL));
 2513         }
 2514 
 2515         if (svd->vdev_children != dvd->vdev_children) {
 2516                 vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
 2517                     "%llu != %llu", (u_longlong_t)svd->vdev_children,
 2518                     (u_longlong_t)dvd->vdev_children);
 2519                 return (SET_ERROR(EINVAL));
 2520         }
 2521 
 2522         for (uint64_t i = 0; i < svd->vdev_children; i++) {
 2523                 int error = vdev_copy_path_strict(svd->vdev_child[i],
 2524                     dvd->vdev_child[i]);
 2525                 if (error != 0)
 2526                         return (error);
 2527         }
 2528 
 2529         if (svd->vdev_ops->vdev_op_leaf)
 2530                 vdev_copy_path_impl(svd, dvd);
 2531 
 2532         return (0);
 2533 }
 2534 
 2535 static void
 2536 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
 2537 {
 2538         ASSERT(stvd->vdev_top == stvd);
 2539         ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
 2540 
 2541         for (uint64_t i = 0; i < dvd->vdev_children; i++) {
 2542                 vdev_copy_path_search(stvd, dvd->vdev_child[i]);
 2543         }
 2544 
 2545         if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
 2546                 return;
 2547 
 2548         /*
 2549          * The idea here is that while a vdev can shift positions within
 2550          * a top vdev (when replacing, attaching mirror, etc.) it cannot
 2551          * step outside of it.
 2552          */
 2553         vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
 2554 
 2555         if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
 2556                 return;
 2557 
 2558         ASSERT(vd->vdev_ops->vdev_op_leaf);
 2559 
 2560         vdev_copy_path_impl(vd, dvd);
 2561 }
 2562 
 2563 /*
 2564  * Recursively copy vdev paths from one root vdev to another. Source and
 2565  * destination vdev trees may differ in geometry. For each destination leaf
 2566  * vdev, search a vdev with the same guid and top vdev id in the source.
 2567  * Intended to copy paths from userland config into MOS config.
 2568  */
 2569 void
 2570 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
 2571 {
 2572         uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
 2573         ASSERT(srvd->vdev_ops == &vdev_root_ops);
 2574         ASSERT(drvd->vdev_ops == &vdev_root_ops);
 2575 
 2576         for (uint64_t i = 0; i < children; i++) {
 2577                 vdev_copy_path_search(srvd->vdev_child[i],
 2578                     drvd->vdev_child[i]);
 2579         }
 2580 }
 2581 
 2582 /*
 2583  * Close a virtual device.
 2584  */
 2585 void
 2586 vdev_close(vdev_t *vd)
 2587 {
 2588         vdev_t *pvd = vd->vdev_parent;
 2589         spa_t *spa __maybe_unused = vd->vdev_spa;
 2590 
 2591         ASSERT(vd != NULL);
 2592         ASSERT(vd->vdev_open_thread == curthread ||
 2593             spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
 2594 
 2595         /*
 2596          * If our parent is reopening, then we are as well, unless we are
 2597          * going offline.
 2598          */
 2599         if (pvd != NULL && pvd->vdev_reopening)
 2600                 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
 2601 
 2602         vd->vdev_ops->vdev_op_close(vd);
 2603 
 2604         vdev_cache_purge(vd);
 2605 
 2606         /*
 2607          * We record the previous state before we close it, so that if we are
 2608          * doing a reopen(), we don't generate FMA ereports if we notice that
 2609          * it's still faulted.
 2610          */
 2611         vd->vdev_prevstate = vd->vdev_state;
 2612 
 2613         if (vd->vdev_offline)
 2614                 vd->vdev_state = VDEV_STATE_OFFLINE;
 2615         else
 2616                 vd->vdev_state = VDEV_STATE_CLOSED;
 2617         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
 2618 }
 2619 
 2620 void
 2621 vdev_hold(vdev_t *vd)
 2622 {
 2623         spa_t *spa = vd->vdev_spa;
 2624 
 2625         ASSERT(spa_is_root(spa));
 2626         if (spa->spa_state == POOL_STATE_UNINITIALIZED)
 2627                 return;
 2628 
 2629         for (int c = 0; c < vd->vdev_children; c++)
 2630                 vdev_hold(vd->vdev_child[c]);
 2631 
 2632         if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_hold != NULL)
 2633                 vd->vdev_ops->vdev_op_hold(vd);
 2634 }
 2635 
 2636 void
 2637 vdev_rele(vdev_t *vd)
 2638 {
 2639         ASSERT(spa_is_root(vd->vdev_spa));
 2640         for (int c = 0; c < vd->vdev_children; c++)
 2641                 vdev_rele(vd->vdev_child[c]);
 2642 
 2643         if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_rele != NULL)
 2644                 vd->vdev_ops->vdev_op_rele(vd);
 2645 }
 2646 
 2647 /*
 2648  * Reopen all interior vdevs and any unopened leaves.  We don't actually
 2649  * reopen leaf vdevs which had previously been opened as they might deadlock
 2650  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
 2651  * If the leaf has never been opened then open it, as usual.
 2652  */
 2653 void
 2654 vdev_reopen(vdev_t *vd)
 2655 {
 2656         spa_t *spa = vd->vdev_spa;
 2657 
 2658         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
 2659 
 2660         /* set the reopening flag unless we're taking the vdev offline */
 2661         vd->vdev_reopening = !vd->vdev_offline;
 2662         vdev_close(vd);
 2663         (void) vdev_open(vd);
 2664 
 2665         /*
 2666          * Call vdev_validate() here to make sure we have the same device.
 2667          * Otherwise, a device with an invalid label could be successfully
 2668          * opened in response to vdev_reopen().
 2669          */
 2670         if (vd->vdev_aux) {
 2671                 (void) vdev_validate_aux(vd);
 2672                 if (vdev_readable(vd) && vdev_writeable(vd) &&
 2673                     vd->vdev_aux == &spa->spa_l2cache) {
 2674                         /*
 2675                          * In case the vdev is present we should evict all ARC
 2676                          * buffers and pointers to log blocks and reclaim their
 2677                          * space before restoring its contents to L2ARC.
 2678                          */
 2679                         if (l2arc_vdev_present(vd)) {
 2680                                 l2arc_rebuild_vdev(vd, B_TRUE);
 2681                         } else {
 2682                                 l2arc_add_vdev(spa, vd);
 2683                         }
 2684                         spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
 2685                         spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
 2686                 }
 2687         } else {
 2688                 (void) vdev_validate(vd);
 2689         }
 2690 
 2691         /*
 2692          * Reassess parent vdev's health.
 2693          */
 2694         vdev_propagate_state(vd);
 2695 }
 2696 
 2697 int
 2698 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
 2699 {
 2700         int error;
 2701 
 2702         /*
 2703          * Normally, partial opens (e.g. of a mirror) are allowed.
 2704          * For a create, however, we want to fail the request if
 2705          * there are any components we can't open.
 2706          */
 2707         error = vdev_open(vd);
 2708 
 2709         if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
 2710                 vdev_close(vd);
 2711                 return (error ? error : SET_ERROR(ENXIO));
 2712         }
 2713 
 2714         /*
 2715          * Recursively load DTLs and initialize all labels.
 2716          */
 2717         if ((error = vdev_dtl_load(vd)) != 0 ||
 2718             (error = vdev_label_init(vd, txg, isreplacing ?
 2719             VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
 2720                 vdev_close(vd);
 2721                 return (error);
 2722         }
 2723 
 2724         return (0);
 2725 }
 2726 
 2727 void
 2728 vdev_metaslab_set_size(vdev_t *vd)
 2729 {
 2730         uint64_t asize = vd->vdev_asize;
 2731         uint64_t ms_count = asize >> zfs_vdev_default_ms_shift;
 2732         uint64_t ms_shift;
 2733 
 2734         /*
 2735          * There are two dimensions to the metaslab sizing calculation:
 2736          * the size of the metaslab and the count of metaslabs per vdev.
 2737          *
 2738          * The default values used below are a good balance between memory
 2739          * usage (larger metaslab size means more memory needed for loaded
 2740          * metaslabs; more metaslabs means more memory needed for the
 2741          * metaslab_t structs), metaslab load time (larger metaslabs take
 2742          * longer to load), and metaslab sync time (more metaslabs means
 2743          * more time spent syncing all of them).
 2744          *
 2745          * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs.
 2746          * The range of the dimensions are as follows:
 2747          *
 2748          *      2^29 <= ms_size  <= 2^34
 2749          *        16 <= ms_count <= 131,072
 2750          *
 2751          * On the lower end of vdev sizes, we aim for metaslabs sizes of
 2752          * at least 512MB (2^29) to minimize fragmentation effects when
 2753          * testing with smaller devices.  However, the count constraint
 2754          * of at least 16 metaslabs will override this minimum size goal.
 2755          *
 2756          * On the upper end of vdev sizes, we aim for a maximum metaslab
 2757          * size of 16GB.  However, we will cap the total count to 2^17
 2758          * metaslabs to keep our memory footprint in check and let the
 2759          * metaslab size grow from there if that limit is hit.
 2760          *
 2761          * The net effect of applying above constrains is summarized below.
 2762          *
 2763          *   vdev size       metaslab count
 2764          *  --------------|-----------------
 2765          *      < 8GB        ~16
 2766          *  8GB   - 100GB   one per 512MB
 2767          *  100GB - 3TB     ~200
 2768          *  3TB   - 2PB     one per 16GB
 2769          *      > 2PB       ~131,072
 2770          *  --------------------------------
 2771          *
 2772          *  Finally, note that all of the above calculate the initial
 2773          *  number of metaslabs. Expanding a top-level vdev will result
 2774          *  in additional metaslabs being allocated making it possible
 2775          *  to exceed the zfs_vdev_ms_count_limit.
 2776          */
 2777 
 2778         if (ms_count < zfs_vdev_min_ms_count)
 2779                 ms_shift = highbit64(asize / zfs_vdev_min_ms_count);
 2780         else if (ms_count > zfs_vdev_default_ms_count)
 2781                 ms_shift = highbit64(asize / zfs_vdev_default_ms_count);
 2782         else
 2783                 ms_shift = zfs_vdev_default_ms_shift;
 2784 
 2785         if (ms_shift < SPA_MAXBLOCKSHIFT) {
 2786                 ms_shift = SPA_MAXBLOCKSHIFT;
 2787         } else if (ms_shift > zfs_vdev_max_ms_shift) {
 2788                 ms_shift = zfs_vdev_max_ms_shift;
 2789                 /* cap the total count to constrain memory footprint */
 2790                 if ((asize >> ms_shift) > zfs_vdev_ms_count_limit)
 2791                         ms_shift = highbit64(asize / zfs_vdev_ms_count_limit);
 2792         }
 2793 
 2794         vd->vdev_ms_shift = ms_shift;
 2795         ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT);
 2796 }
 2797 
 2798 void
 2799 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
 2800 {
 2801         ASSERT(vd == vd->vdev_top);
 2802         /* indirect vdevs don't have metaslabs or dtls */
 2803         ASSERT(vdev_is_concrete(vd) || flags == 0);
 2804         ASSERT(ISP2(flags));
 2805         ASSERT(spa_writeable(vd->vdev_spa));
 2806 
 2807         if (flags & VDD_METASLAB)
 2808                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
 2809 
 2810         if (flags & VDD_DTL)
 2811                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
 2812 
 2813         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
 2814 }
 2815 
 2816 void
 2817 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
 2818 {
 2819         for (int c = 0; c < vd->vdev_children; c++)
 2820                 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
 2821 
 2822         if (vd->vdev_ops->vdev_op_leaf)
 2823                 vdev_dirty(vd->vdev_top, flags, vd, txg);
 2824 }
 2825 
 2826 /*
 2827  * DTLs.
 2828  *
 2829  * A vdev's DTL (dirty time log) is the set of transaction groups for which
 2830  * the vdev has less than perfect replication.  There are four kinds of DTL:
 2831  *
 2832  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
 2833  *
 2834  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
 2835  *
 2836  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
 2837  *      scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
 2838  *      txgs that was scrubbed.
 2839  *
 2840  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
 2841  *      persistent errors or just some device being offline.
 2842  *      Unlike the other three, the DTL_OUTAGE map is not generally
 2843  *      maintained; it's only computed when needed, typically to
 2844  *      determine whether a device can be detached.
 2845  *
 2846  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
 2847  * either has the data or it doesn't.
 2848  *
 2849  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
 2850  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
 2851  * if any child is less than fully replicated, then so is its parent.
 2852  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
 2853  * comprising only those txgs which appear in 'maxfaults' or more children;
 2854  * those are the txgs we don't have enough replication to read.  For example,
 2855  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
 2856  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
 2857  * two child DTL_MISSING maps.
 2858  *
 2859  * It should be clear from the above that to compute the DTLs and outage maps
 2860  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
 2861  * Therefore, that is all we keep on disk.  When loading the pool, or after
 2862  * a configuration change, we generate all other DTLs from first principles.
 2863  */
 2864 void
 2865 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
 2866 {
 2867         range_tree_t *rt = vd->vdev_dtl[t];
 2868 
 2869         ASSERT(t < DTL_TYPES);
 2870         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
 2871         ASSERT(spa_writeable(vd->vdev_spa));
 2872 
 2873         mutex_enter(&vd->vdev_dtl_lock);
 2874         if (!range_tree_contains(rt, txg, size))
 2875                 range_tree_add(rt, txg, size);
 2876         mutex_exit(&vd->vdev_dtl_lock);
 2877 }
 2878 
 2879 boolean_t
 2880 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
 2881 {
 2882         range_tree_t *rt = vd->vdev_dtl[t];
 2883         boolean_t dirty = B_FALSE;
 2884 
 2885         ASSERT(t < DTL_TYPES);
 2886         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
 2887 
 2888         /*
 2889          * While we are loading the pool, the DTLs have not been loaded yet.
 2890          * This isn't a problem but it can result in devices being tried
 2891          * which are known to not have the data.  In which case, the import
 2892          * is relying on the checksum to ensure that we get the right data.
 2893          * Note that while importing we are only reading the MOS, which is
 2894          * always checksummed.
 2895          */
 2896         mutex_enter(&vd->vdev_dtl_lock);
 2897         if (!range_tree_is_empty(rt))
 2898                 dirty = range_tree_contains(rt, txg, size);
 2899         mutex_exit(&vd->vdev_dtl_lock);
 2900 
 2901         return (dirty);
 2902 }
 2903 
 2904 boolean_t
 2905 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
 2906 {
 2907         range_tree_t *rt = vd->vdev_dtl[t];
 2908         boolean_t empty;
 2909 
 2910         mutex_enter(&vd->vdev_dtl_lock);
 2911         empty = range_tree_is_empty(rt);
 2912         mutex_exit(&vd->vdev_dtl_lock);
 2913 
 2914         return (empty);
 2915 }
 2916 
 2917 /*
 2918  * Check if the txg falls within the range which must be
 2919  * resilvered.  DVAs outside this range can always be skipped.
 2920  */
 2921 boolean_t
 2922 vdev_default_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
 2923     uint64_t phys_birth)
 2924 {
 2925         (void) dva, (void) psize;
 2926 
 2927         /* Set by sequential resilver. */
 2928         if (phys_birth == TXG_UNKNOWN)
 2929                 return (B_TRUE);
 2930 
 2931         return (vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1));
 2932 }
 2933 
 2934 /*
 2935  * Returns B_TRUE if the vdev determines the DVA needs to be resilvered.
 2936  */
 2937 boolean_t
 2938 vdev_dtl_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
 2939     uint64_t phys_birth)
 2940 {
 2941         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
 2942 
 2943         if (vd->vdev_ops->vdev_op_need_resilver == NULL ||
 2944             vd->vdev_ops->vdev_op_leaf)
 2945                 return (B_TRUE);
 2946 
 2947         return (vd->vdev_ops->vdev_op_need_resilver(vd, dva, psize,
 2948             phys_birth));
 2949 }
 2950 
 2951 /*
 2952  * Returns the lowest txg in the DTL range.
 2953  */
 2954 static uint64_t
 2955 vdev_dtl_min(vdev_t *vd)
 2956 {
 2957         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
 2958         ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
 2959         ASSERT0(vd->vdev_children);
 2960 
 2961         return (range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1);
 2962 }
 2963 
 2964 /*
 2965  * Returns the highest txg in the DTL.
 2966  */
 2967 static uint64_t
 2968 vdev_dtl_max(vdev_t *vd)
 2969 {
 2970         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
 2971         ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
 2972         ASSERT0(vd->vdev_children);
 2973 
 2974         return (range_tree_max(vd->vdev_dtl[DTL_MISSING]));
 2975 }
 2976 
 2977 /*
 2978  * Determine if a resilvering vdev should remove any DTL entries from
 2979  * its range. If the vdev was resilvering for the entire duration of the
 2980  * scan then it should excise that range from its DTLs. Otherwise, this
 2981  * vdev is considered partially resilvered and should leave its DTL
 2982  * entries intact. The comment in vdev_dtl_reassess() describes how we
 2983  * excise the DTLs.
 2984  */
 2985 static boolean_t
 2986 vdev_dtl_should_excise(vdev_t *vd, boolean_t rebuild_done)
 2987 {
 2988         ASSERT0(vd->vdev_children);
 2989 
 2990         if (vd->vdev_state < VDEV_STATE_DEGRADED)
 2991                 return (B_FALSE);
 2992 
 2993         if (vd->vdev_resilver_deferred)
 2994                 return (B_FALSE);
 2995 
 2996         if (range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]))
 2997                 return (B_TRUE);
 2998 
 2999         if (rebuild_done) {
 3000                 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
 3001                 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
 3002 
 3003                 /* Rebuild not initiated by attach */
 3004                 if (vd->vdev_rebuild_txg == 0)
 3005                         return (B_TRUE);
 3006 
 3007                 /*
 3008                  * When a rebuild completes without error then all missing data
 3009                  * up to the rebuild max txg has been reconstructed and the DTL
 3010                  * is eligible for excision.
 3011                  */
 3012                 if (vrp->vrp_rebuild_state == VDEV_REBUILD_COMPLETE &&
 3013                     vdev_dtl_max(vd) <= vrp->vrp_max_txg) {
 3014                         ASSERT3U(vrp->vrp_min_txg, <=, vdev_dtl_min(vd));
 3015                         ASSERT3U(vrp->vrp_min_txg, <, vd->vdev_rebuild_txg);
 3016                         ASSERT3U(vd->vdev_rebuild_txg, <=, vrp->vrp_max_txg);
 3017                         return (B_TRUE);
 3018                 }
 3019         } else {
 3020                 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
 3021                 dsl_scan_phys_t *scnp __maybe_unused = &scn->scn_phys;
 3022 
 3023                 /* Resilver not initiated by attach */
 3024                 if (vd->vdev_resilver_txg == 0)
 3025                         return (B_TRUE);
 3026 
 3027                 /*
 3028                  * When a resilver is initiated the scan will assign the
 3029                  * scn_max_txg value to the highest txg value that exists
 3030                  * in all DTLs. If this device's max DTL is not part of this
 3031                  * scan (i.e. it is not in the range (scn_min_txg, scn_max_txg]
 3032                  * then it is not eligible for excision.
 3033                  */
 3034                 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
 3035                         ASSERT3U(scnp->scn_min_txg, <=, vdev_dtl_min(vd));
 3036                         ASSERT3U(scnp->scn_min_txg, <, vd->vdev_resilver_txg);
 3037                         ASSERT3U(vd->vdev_resilver_txg, <=, scnp->scn_max_txg);
 3038                         return (B_TRUE);
 3039                 }
 3040         }
 3041 
 3042         return (B_FALSE);
 3043 }
 3044 
 3045 /*
 3046  * Reassess DTLs after a config change or scrub completion. If txg == 0 no
 3047  * write operations will be issued to the pool.
 3048  */
 3049 void
 3050 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg,
 3051     boolean_t scrub_done, boolean_t rebuild_done)
 3052 {
 3053         spa_t *spa = vd->vdev_spa;
 3054         avl_tree_t reftree;
 3055         int minref;
 3056 
 3057         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
 3058 
 3059         for (int c = 0; c < vd->vdev_children; c++)
 3060                 vdev_dtl_reassess(vd->vdev_child[c], txg,
 3061                     scrub_txg, scrub_done, rebuild_done);
 3062 
 3063         if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
 3064                 return;
 3065 
 3066         if (vd->vdev_ops->vdev_op_leaf) {
 3067                 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
 3068                 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
 3069                 boolean_t check_excise = B_FALSE;
 3070                 boolean_t wasempty = B_TRUE;
 3071 
 3072                 mutex_enter(&vd->vdev_dtl_lock);
 3073 
 3074                 /*
 3075                  * If requested, pretend the scan or rebuild completed cleanly.
 3076                  */
 3077                 if (zfs_scan_ignore_errors) {
 3078                         if (scn != NULL)
 3079                                 scn->scn_phys.scn_errors = 0;
 3080                         if (vr != NULL)
 3081                                 vr->vr_rebuild_phys.vrp_errors = 0;
 3082                 }
 3083 
 3084                 if (scrub_txg != 0 &&
 3085                     !range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
 3086                         wasempty = B_FALSE;
 3087                         zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d "
 3088                             "dtl:%llu/%llu errors:%llu",
 3089                             (u_longlong_t)vd->vdev_guid, (u_longlong_t)txg,
 3090                             (u_longlong_t)scrub_txg, spa->spa_scrub_started,
 3091                             (u_longlong_t)vdev_dtl_min(vd),
 3092                             (u_longlong_t)vdev_dtl_max(vd),
 3093                             (u_longlong_t)(scn ? scn->scn_phys.scn_errors : 0));
 3094                 }
 3095 
 3096                 /*
 3097                  * If we've completed a scrub/resilver or a rebuild cleanly
 3098                  * then determine if this vdev should remove any DTLs. We
 3099                  * only want to excise regions on vdevs that were available
 3100                  * during the entire duration of this scan.
 3101                  */
 3102                 if (rebuild_done &&
 3103                     vr != NULL && vr->vr_rebuild_phys.vrp_errors == 0) {
 3104                         check_excise = B_TRUE;
 3105                 } else {
 3106                         if (spa->spa_scrub_started ||
 3107                             (scn != NULL && scn->scn_phys.scn_errors == 0)) {
 3108                                 check_excise = B_TRUE;
 3109                         }
 3110                 }
 3111 
 3112                 if (scrub_txg && check_excise &&
 3113                     vdev_dtl_should_excise(vd, rebuild_done)) {
 3114                         /*
 3115                          * We completed a scrub, resilver or rebuild up to
 3116                          * scrub_txg.  If we did it without rebooting, then
 3117                          * the scrub dtl will be valid, so excise the old
 3118                          * region and fold in the scrub dtl.  Otherwise,
 3119                          * leave the dtl as-is if there was an error.
 3120                          *
 3121                          * There's little trick here: to excise the beginning
 3122                          * of the DTL_MISSING map, we put it into a reference
 3123                          * tree and then add a segment with refcnt -1 that
 3124                          * covers the range [0, scrub_txg).  This means
 3125                          * that each txg in that range has refcnt -1 or 0.
 3126                          * We then add DTL_SCRUB with a refcnt of 2, so that
 3127                          * entries in the range [0, scrub_txg) will have a
 3128                          * positive refcnt -- either 1 or 2.  We then convert
 3129                          * the reference tree into the new DTL_MISSING map.
 3130                          */
 3131                         space_reftree_create(&reftree);
 3132                         space_reftree_add_map(&reftree,
 3133                             vd->vdev_dtl[DTL_MISSING], 1);
 3134                         space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
 3135                         space_reftree_add_map(&reftree,
 3136                             vd->vdev_dtl[DTL_SCRUB], 2);
 3137                         space_reftree_generate_map(&reftree,
 3138                             vd->vdev_dtl[DTL_MISSING], 1);
 3139                         space_reftree_destroy(&reftree);
 3140 
 3141                         if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
 3142                                 zfs_dbgmsg("update DTL_MISSING:%llu/%llu",
 3143                                     (u_longlong_t)vdev_dtl_min(vd),
 3144                                     (u_longlong_t)vdev_dtl_max(vd));
 3145                         } else if (!wasempty) {
 3146                                 zfs_dbgmsg("DTL_MISSING is now empty");
 3147                         }
 3148                 }
 3149                 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
 3150                 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
 3151                     range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
 3152                 if (scrub_done)
 3153                         range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
 3154                 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
 3155                 if (!vdev_readable(vd))
 3156                         range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
 3157                 else
 3158                         range_tree_walk(vd->vdev_dtl[DTL_MISSING],
 3159                             range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
 3160 
 3161                 /*
 3162                  * If the vdev was resilvering or rebuilding and no longer
 3163                  * has any DTLs then reset the appropriate flag and dirty
 3164                  * the top level so that we persist the change.
 3165                  */
 3166                 if (txg != 0 &&
 3167                     range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
 3168                     range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) {
 3169                         if (vd->vdev_rebuild_txg != 0) {
 3170                                 vd->vdev_rebuild_txg = 0;
 3171                                 vdev_config_dirty(vd->vdev_top);
 3172                         } else if (vd->vdev_resilver_txg != 0) {
 3173                                 vd->vdev_resilver_txg = 0;
 3174                                 vdev_config_dirty(vd->vdev_top);
 3175                         }
 3176                 }
 3177 
 3178                 mutex_exit(&vd->vdev_dtl_lock);
 3179 
 3180                 if (txg != 0)
 3181                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
 3182                 return;
 3183         }
 3184 
 3185         mutex_enter(&vd->vdev_dtl_lock);
 3186         for (int t = 0; t < DTL_TYPES; t++) {
 3187                 /* account for child's outage in parent's missing map */
 3188                 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
 3189                 if (t == DTL_SCRUB)
 3190                         continue;                       /* leaf vdevs only */
 3191                 if (t == DTL_PARTIAL)
 3192                         minref = 1;                     /* i.e. non-zero */
 3193                 else if (vdev_get_nparity(vd) != 0)
 3194                         minref = vdev_get_nparity(vd) + 1; /* RAID-Z, dRAID */
 3195                 else
 3196                         minref = vd->vdev_children;     /* any kind of mirror */
 3197                 space_reftree_create(&reftree);
 3198                 for (int c = 0; c < vd->vdev_children; c++) {
 3199                         vdev_t *cvd = vd->vdev_child[c];
 3200                         mutex_enter(&cvd->vdev_dtl_lock);
 3201                         space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
 3202                         mutex_exit(&cvd->vdev_dtl_lock);
 3203                 }
 3204                 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
 3205                 space_reftree_destroy(&reftree);
 3206         }
 3207         mutex_exit(&vd->vdev_dtl_lock);
 3208 }
 3209 
 3210 /*
 3211  * Iterate over all the vdevs except spare, and post kobj events
 3212  */
 3213 void
 3214 vdev_post_kobj_evt(vdev_t *vd)
 3215 {
 3216         if (vd->vdev_ops->vdev_op_kobj_evt_post &&
 3217             vd->vdev_kobj_flag == B_FALSE) {
 3218                 vd->vdev_kobj_flag = B_TRUE;
 3219                 vd->vdev_ops->vdev_op_kobj_evt_post(vd);
 3220         }
 3221 
 3222         for (int c = 0; c < vd->vdev_children; c++)
 3223                 vdev_post_kobj_evt(vd->vdev_child[c]);
 3224 }
 3225 
 3226 /*
 3227  * Iterate over all the vdevs except spare, and clear kobj events
 3228  */
 3229 void
 3230 vdev_clear_kobj_evt(vdev_t *vd)
 3231 {
 3232         vd->vdev_kobj_flag = B_FALSE;
 3233 
 3234         for (int c = 0; c < vd->vdev_children; c++)
 3235                 vdev_clear_kobj_evt(vd->vdev_child[c]);
 3236 }
 3237 
 3238 int
 3239 vdev_dtl_load(vdev_t *vd)
 3240 {
 3241         spa_t *spa = vd->vdev_spa;
 3242         objset_t *mos = spa->spa_meta_objset;
 3243         range_tree_t *rt;
 3244         int error = 0;
 3245 
 3246         if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
 3247                 ASSERT(vdev_is_concrete(vd));
 3248 
 3249                 /*
 3250                  * If the dtl cannot be sync'd there is no need to open it.
 3251                  */
 3252                 if (spa->spa_mode == SPA_MODE_READ && !spa->spa_read_spacemaps)
 3253                         return (0);
 3254 
 3255                 error = space_map_open(&vd->vdev_dtl_sm, mos,
 3256                     vd->vdev_dtl_object, 0, -1ULL, 0);
 3257                 if (error)
 3258                         return (error);
 3259                 ASSERT(vd->vdev_dtl_sm != NULL);
 3260 
 3261                 rt = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
 3262                 error = space_map_load(vd->vdev_dtl_sm, rt, SM_ALLOC);
 3263                 if (error == 0) {
 3264                         mutex_enter(&vd->vdev_dtl_lock);
 3265                         range_tree_walk(rt, range_tree_add,
 3266                             vd->vdev_dtl[DTL_MISSING]);
 3267                         mutex_exit(&vd->vdev_dtl_lock);
 3268                 }
 3269 
 3270                 range_tree_vacate(rt, NULL, NULL);
 3271                 range_tree_destroy(rt);
 3272 
 3273                 return (error);
 3274         }
 3275 
 3276         for (int c = 0; c < vd->vdev_children; c++) {
 3277                 error = vdev_dtl_load(vd->vdev_child[c]);
 3278                 if (error != 0)
 3279                         break;
 3280         }
 3281 
 3282         return (error);
 3283 }
 3284 
 3285 static void
 3286 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx)
 3287 {
 3288         spa_t *spa = vd->vdev_spa;
 3289         objset_t *mos = spa->spa_meta_objset;
 3290         vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
 3291         const char *string;
 3292 
 3293         ASSERT(alloc_bias != VDEV_BIAS_NONE);
 3294 
 3295         string =
 3296             (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG :
 3297             (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL :
 3298             (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL;
 3299 
 3300         ASSERT(string != NULL);
 3301         VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS,
 3302             1, strlen(string) + 1, string, tx));
 3303 
 3304         if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) {
 3305                 spa_activate_allocation_classes(spa, tx);
 3306         }
 3307 }
 3308 
 3309 void
 3310 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
 3311 {
 3312         spa_t *spa = vd->vdev_spa;
 3313 
 3314         VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
 3315         VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
 3316             zapobj, tx));
 3317 }
 3318 
 3319 uint64_t
 3320 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
 3321 {
 3322         spa_t *spa = vd->vdev_spa;
 3323         uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
 3324             DMU_OT_NONE, 0, tx);
 3325 
 3326         ASSERT(zap != 0);
 3327         VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
 3328             zap, tx));
 3329 
 3330         return (zap);
 3331 }
 3332 
 3333 void
 3334 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
 3335 {
 3336         if (vd->vdev_ops != &vdev_hole_ops &&
 3337             vd->vdev_ops != &vdev_missing_ops &&
 3338             vd->vdev_ops != &vdev_root_ops &&
 3339             !vd->vdev_top->vdev_removing) {
 3340                 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
 3341                         vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
 3342                 }
 3343                 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
 3344                         vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
 3345                         if (vd->vdev_alloc_bias != VDEV_BIAS_NONE)
 3346                                 vdev_zap_allocation_data(vd, tx);
 3347                 }
 3348         }
 3349 
 3350         for (uint64_t i = 0; i < vd->vdev_children; i++) {
 3351                 vdev_construct_zaps(vd->vdev_child[i], tx);
 3352         }
 3353 }
 3354 
 3355 static void
 3356 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
 3357 {
 3358         spa_t *spa = vd->vdev_spa;
 3359         range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
 3360         objset_t *mos = spa->spa_meta_objset;
 3361         range_tree_t *rtsync;
 3362         dmu_tx_t *tx;
 3363         uint64_t object = space_map_object(vd->vdev_dtl_sm);
 3364 
 3365         ASSERT(vdev_is_concrete(vd));
 3366         ASSERT(vd->vdev_ops->vdev_op_leaf);
 3367 
 3368         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
 3369 
 3370         if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
 3371                 mutex_enter(&vd->vdev_dtl_lock);
 3372                 space_map_free(vd->vdev_dtl_sm, tx);
 3373                 space_map_close(vd->vdev_dtl_sm);
 3374                 vd->vdev_dtl_sm = NULL;
 3375                 mutex_exit(&vd->vdev_dtl_lock);
 3376 
 3377                 /*
 3378                  * We only destroy the leaf ZAP for detached leaves or for
 3379                  * removed log devices. Removed data devices handle leaf ZAP
 3380                  * cleanup later, once cancellation is no longer possible.
 3381                  */
 3382                 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
 3383                     vd->vdev_top->vdev_islog)) {
 3384                         vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
 3385                         vd->vdev_leaf_zap = 0;
 3386                 }
 3387 
 3388                 dmu_tx_commit(tx);
 3389                 return;
 3390         }
 3391 
 3392         if (vd->vdev_dtl_sm == NULL) {
 3393                 uint64_t new_object;
 3394 
 3395                 new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx);
 3396                 VERIFY3U(new_object, !=, 0);
 3397 
 3398                 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
 3399                     0, -1ULL, 0));
 3400                 ASSERT(vd->vdev_dtl_sm != NULL);
 3401         }
 3402 
 3403         rtsync = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
 3404 
 3405         mutex_enter(&vd->vdev_dtl_lock);
 3406         range_tree_walk(rt, range_tree_add, rtsync);
 3407         mutex_exit(&vd->vdev_dtl_lock);
 3408 
 3409         space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx);
 3410         space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx);
 3411         range_tree_vacate(rtsync, NULL, NULL);
 3412 
 3413         range_tree_destroy(rtsync);
 3414 
 3415         /*
 3416          * If the object for the space map has changed then dirty
 3417          * the top level so that we update the config.
 3418          */
 3419         if (object != space_map_object(vd->vdev_dtl_sm)) {
 3420                 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
 3421                     "new object %llu", (u_longlong_t)txg, spa_name(spa),
 3422                     (u_longlong_t)object,
 3423                     (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
 3424                 vdev_config_dirty(vd->vdev_top);
 3425         }
 3426 
 3427         dmu_tx_commit(tx);
 3428 }
 3429 
 3430 /*
 3431  * Determine whether the specified vdev can be offlined/detached/removed
 3432  * without losing data.
 3433  */
 3434 boolean_t
 3435 vdev_dtl_required(vdev_t *vd)
 3436 {
 3437         spa_t *spa = vd->vdev_spa;
 3438         vdev_t *tvd = vd->vdev_top;
 3439         uint8_t cant_read = vd->vdev_cant_read;
 3440         boolean_t required;
 3441 
 3442         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
 3443 
 3444         if (vd == spa->spa_root_vdev || vd == tvd)
 3445                 return (B_TRUE);
 3446 
 3447         /*
 3448          * Temporarily mark the device as unreadable, and then determine
 3449          * whether this results in any DTL outages in the top-level vdev.
 3450          * If not, we can safely offline/detach/remove the device.
 3451          */
 3452         vd->vdev_cant_read = B_TRUE;
 3453         vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE);
 3454         required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
 3455         vd->vdev_cant_read = cant_read;
 3456         vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE);
 3457 
 3458         if (!required && zio_injection_enabled) {
 3459                 required = !!zio_handle_device_injection(vd, NULL,
 3460                     SET_ERROR(ECHILD));
 3461         }
 3462 
 3463         return (required);
 3464 }
 3465 
 3466 /*
 3467  * Determine if resilver is needed, and if so the txg range.
 3468  */
 3469 boolean_t
 3470 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
 3471 {
 3472         boolean_t needed = B_FALSE;
 3473         uint64_t thismin = UINT64_MAX;
 3474         uint64_t thismax = 0;
 3475 
 3476         if (vd->vdev_children == 0) {
 3477                 mutex_enter(&vd->vdev_dtl_lock);
 3478                 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
 3479                     vdev_writeable(vd)) {
 3480 
 3481                         thismin = vdev_dtl_min(vd);
 3482                         thismax = vdev_dtl_max(vd);
 3483                         needed = B_TRUE;
 3484                 }
 3485                 mutex_exit(&vd->vdev_dtl_lock);
 3486         } else {
 3487                 for (int c = 0; c < vd->vdev_children; c++) {
 3488                         vdev_t *cvd = vd->vdev_child[c];
 3489                         uint64_t cmin, cmax;
 3490 
 3491                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
 3492                                 thismin = MIN(thismin, cmin);
 3493                                 thismax = MAX(thismax, cmax);
 3494                                 needed = B_TRUE;
 3495                         }
 3496                 }
 3497         }
 3498 
 3499         if (needed && minp) {
 3500                 *minp = thismin;
 3501                 *maxp = thismax;
 3502         }
 3503         return (needed);
 3504 }
 3505 
 3506 /*
 3507  * Gets the checkpoint space map object from the vdev's ZAP.  On success sm_obj
 3508  * will contain either the checkpoint spacemap object or zero if none exists.
 3509  * All other errors are returned to the caller.
 3510  */
 3511 int
 3512 vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj)
 3513 {
 3514         ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
 3515 
 3516         if (vd->vdev_top_zap == 0) {
 3517                 *sm_obj = 0;
 3518                 return (0);
 3519         }
 3520 
 3521         int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap,
 3522             VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj);
 3523         if (error == ENOENT) {
 3524                 *sm_obj = 0;
 3525                 error = 0;
 3526         }
 3527 
 3528         return (error);
 3529 }
 3530 
 3531 int
 3532 vdev_load(vdev_t *vd)
 3533 {
 3534         int children = vd->vdev_children;
 3535         int error = 0;
 3536         taskq_t *tq = NULL;
 3537 
 3538         /*
 3539          * It's only worthwhile to use the taskq for the root vdev, because the
 3540          * slow part is metaslab_init, and that only happens for top-level
 3541          * vdevs.
 3542          */
 3543         if (vd->vdev_ops == &vdev_root_ops && vd->vdev_children > 0) {
 3544                 tq = taskq_create("vdev_load", children, minclsyspri,
 3545                     children, children, TASKQ_PREPOPULATE);
 3546         }
 3547 
 3548         /*
 3549          * Recursively load all children.
 3550          */
 3551         for (int c = 0; c < vd->vdev_children; c++) {
 3552                 vdev_t *cvd = vd->vdev_child[c];
 3553 
 3554                 if (tq == NULL || vdev_uses_zvols(cvd)) {
 3555                         cvd->vdev_load_error = vdev_load(cvd);
 3556                 } else {
 3557                         VERIFY(taskq_dispatch(tq, vdev_load_child,
 3558                             cvd, TQ_SLEEP) != TASKQID_INVALID);
 3559                 }
 3560         }
 3561 
 3562         if (tq != NULL) {
 3563                 taskq_wait(tq);
 3564                 taskq_destroy(tq);
 3565         }
 3566 
 3567         for (int c = 0; c < vd->vdev_children; c++) {
 3568                 int error = vd->vdev_child[c]->vdev_load_error;
 3569 
 3570                 if (error != 0)
 3571                         return (error);
 3572         }
 3573 
 3574         vdev_set_deflate_ratio(vd);
 3575 
 3576         /*
 3577          * On spa_load path, grab the allocation bias from our zap
 3578          */
 3579         if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
 3580                 spa_t *spa = vd->vdev_spa;
 3581                 char bias_str[64];
 3582 
 3583                 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
 3584                     VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str),
 3585                     bias_str);
 3586                 if (error == 0) {
 3587                         ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE);
 3588                         vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str);
 3589                 } else if (error != ENOENT) {
 3590                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
 3591                             VDEV_AUX_CORRUPT_DATA);
 3592                         vdev_dbgmsg(vd, "vdev_load: zap_lookup(top_zap=%llu) "
 3593                             "failed [error=%d]",
 3594                             (u_longlong_t)vd->vdev_top_zap, error);
 3595                         return (error);
 3596                 }
 3597         }
 3598 
 3599         if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
 3600                 spa_t *spa = vd->vdev_spa;
 3601                 uint64_t failfast;
 3602 
 3603                 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
 3604                     vdev_prop_to_name(VDEV_PROP_FAILFAST), sizeof (failfast),
 3605                     1, &failfast);
 3606                 if (error == 0) {
 3607                         vd->vdev_failfast = failfast & 1;
 3608                 } else if (error == ENOENT) {
 3609                         vd->vdev_failfast = vdev_prop_default_numeric(
 3610                             VDEV_PROP_FAILFAST);
 3611                 } else {
 3612                         vdev_dbgmsg(vd,
 3613                             "vdev_load: zap_lookup(top_zap=%llu) "
 3614                             "failed [error=%d]",
 3615                             (u_longlong_t)vd->vdev_top_zap, error);
 3616                 }
 3617         }
 3618 
 3619         /*
 3620          * Load any rebuild state from the top-level vdev zap.
 3621          */
 3622         if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
 3623                 error = vdev_rebuild_load(vd);
 3624                 if (error && error != ENOTSUP) {
 3625                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
 3626                             VDEV_AUX_CORRUPT_DATA);
 3627                         vdev_dbgmsg(vd, "vdev_load: vdev_rebuild_load "
 3628                             "failed [error=%d]", error);
 3629                         return (error);
 3630                 }
 3631         }
 3632 
 3633         if (vd->vdev_top_zap != 0 || vd->vdev_leaf_zap != 0) {
 3634                 uint64_t zapobj;
 3635 
 3636                 if (vd->vdev_top_zap != 0)
 3637                         zapobj = vd->vdev_top_zap;
 3638                 else
 3639                         zapobj = vd->vdev_leaf_zap;
 3640 
 3641                 error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_N,
 3642                     &vd->vdev_checksum_n);
 3643                 if (error && error != ENOENT)
 3644                         vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
 3645                             "failed [error=%d]", (u_longlong_t)zapobj, error);
 3646 
 3647                 error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_T,
 3648                     &vd->vdev_checksum_t);
 3649                 if (error && error != ENOENT)
 3650                         vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
 3651                             "failed [error=%d]", (u_longlong_t)zapobj, error);
 3652 
 3653                 error = vdev_prop_get_int(vd, VDEV_PROP_IO_N,
 3654                     &vd->vdev_io_n);
 3655                 if (error && error != ENOENT)
 3656                         vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
 3657                             "failed [error=%d]", (u_longlong_t)zapobj, error);
 3658 
 3659                 error = vdev_prop_get_int(vd, VDEV_PROP_IO_T,
 3660                     &vd->vdev_io_t);
 3661                 if (error && error != ENOENT)
 3662                         vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
 3663                             "failed [error=%d]", (u_longlong_t)zapobj, error);
 3664         }
 3665 
 3666         /*
 3667          * If this is a top-level vdev, initialize its metaslabs.
 3668          */
 3669         if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
 3670                 vdev_metaslab_group_create(vd);
 3671 
 3672                 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
 3673                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
 3674                             VDEV_AUX_CORRUPT_DATA);
 3675                         vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
 3676                             "asize=%llu", (u_longlong_t)vd->vdev_ashift,
 3677                             (u_longlong_t)vd->vdev_asize);
 3678                         return (SET_ERROR(ENXIO));
 3679                 }
 3680 
 3681                 error = vdev_metaslab_init(vd, 0);
 3682                 if (error != 0) {
 3683                         vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
 3684                             "[error=%d]", error);
 3685                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
 3686                             VDEV_AUX_CORRUPT_DATA);
 3687                         return (error);
 3688                 }
 3689 
 3690                 uint64_t checkpoint_sm_obj;
 3691                 error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj);
 3692                 if (error == 0 && checkpoint_sm_obj != 0) {
 3693                         objset_t *mos = spa_meta_objset(vd->vdev_spa);
 3694                         ASSERT(vd->vdev_asize != 0);
 3695                         ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL);
 3696 
 3697                         error = space_map_open(&vd->vdev_checkpoint_sm,
 3698                             mos, checkpoint_sm_obj, 0, vd->vdev_asize,
 3699                             vd->vdev_ashift);
 3700                         if (error != 0) {
 3701                                 vdev_dbgmsg(vd, "vdev_load: space_map_open "
 3702                                     "failed for checkpoint spacemap (obj %llu) "
 3703                                     "[error=%d]",
 3704                                     (u_longlong_t)checkpoint_sm_obj, error);
 3705                                 return (error);
 3706                         }
 3707                         ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
 3708 
 3709                         /*
 3710                          * Since the checkpoint_sm contains free entries
 3711                          * exclusively we can use space_map_allocated() to
 3712                          * indicate the cumulative checkpointed space that
 3713                          * has been freed.
 3714                          */
 3715                         vd->vdev_stat.vs_checkpoint_space =
 3716                             -space_map_allocated(vd->vdev_checkpoint_sm);
 3717                         vd->vdev_spa->spa_checkpoint_info.sci_dspace +=
 3718                             vd->vdev_stat.vs_checkpoint_space;
 3719                 } else if (error != 0) {
 3720                         vdev_dbgmsg(vd, "vdev_load: failed to retrieve "
 3721                             "checkpoint space map object from vdev ZAP "
 3722                             "[error=%d]", error);
 3723                         return (error);
 3724                 }
 3725         }
 3726 
 3727         /*
 3728          * If this is a leaf vdev, load its DTL.
 3729          */
 3730         if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
 3731                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
 3732                     VDEV_AUX_CORRUPT_DATA);
 3733                 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
 3734                     "[error=%d]", error);
 3735                 return (error);
 3736         }
 3737 
 3738         uint64_t obsolete_sm_object;
 3739         error = vdev_obsolete_sm_object(vd, &obsolete_sm_object);
 3740         if (error == 0 && obsolete_sm_object != 0) {
 3741                 objset_t *mos = vd->vdev_spa->spa_meta_objset;
 3742                 ASSERT(vd->vdev_asize != 0);
 3743                 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
 3744 
 3745                 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
 3746                     obsolete_sm_object, 0, vd->vdev_asize, 0))) {
 3747                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
 3748                             VDEV_AUX_CORRUPT_DATA);
 3749                         vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
 3750                             "obsolete spacemap (obj %llu) [error=%d]",
 3751                             (u_longlong_t)obsolete_sm_object, error);
 3752                         return (error);
 3753                 }
 3754         } else if (error != 0) {
 3755                 vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete "
 3756                     "space map object from vdev ZAP [error=%d]", error);
 3757                 return (error);
 3758         }
 3759 
 3760         return (0);
 3761 }
 3762 
 3763 /*
 3764  * The special vdev case is used for hot spares and l2cache devices.  Its
 3765  * sole purpose it to set the vdev state for the associated vdev.  To do this,
 3766  * we make sure that we can open the underlying device, then try to read the
 3767  * label, and make sure that the label is sane and that it hasn't been
 3768  * repurposed to another pool.
 3769  */
 3770 int
 3771 vdev_validate_aux(vdev_t *vd)
 3772 {
 3773         nvlist_t *label;
 3774         uint64_t guid, version;
 3775         uint64_t state;
 3776 
 3777         if (!vdev_readable(vd))
 3778                 return (0);
 3779 
 3780         if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
 3781                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
 3782                     VDEV_AUX_CORRUPT_DATA);
 3783                 return (-1);
 3784         }
 3785 
 3786         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
 3787             !SPA_VERSION_IS_SUPPORTED(version) ||
 3788             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
 3789             guid != vd->vdev_guid ||
 3790             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
 3791                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
 3792                     VDEV_AUX_CORRUPT_DATA);
 3793                 nvlist_free(label);
 3794                 return (-1);
 3795         }
 3796 
 3797         /*
 3798          * We don't actually check the pool state here.  If it's in fact in
 3799          * use by another pool, we update this fact on the fly when requested.
 3800          */
 3801         nvlist_free(label);
 3802         return (0);
 3803 }
 3804 
 3805 static void
 3806 vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx)
 3807 {
 3808         objset_t *mos = spa_meta_objset(vd->vdev_spa);
 3809 
 3810         if (vd->vdev_top_zap == 0)
 3811                 return;
 3812 
 3813         uint64_t object = 0;
 3814         int err = zap_lookup(mos, vd->vdev_top_zap,
 3815             VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object);
 3816         if (err == ENOENT)
 3817                 return;
 3818         VERIFY0(err);
 3819 
 3820         VERIFY0(dmu_object_free(mos, object, tx));
 3821         VERIFY0(zap_remove(mos, vd->vdev_top_zap,
 3822             VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx));
 3823 }
 3824 
 3825 /*
 3826  * Free the objects used to store this vdev's spacemaps, and the array
 3827  * that points to them.
 3828  */
 3829 void
 3830 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
 3831 {
 3832         if (vd->vdev_ms_array == 0)
 3833                 return;
 3834 
 3835         objset_t *mos = vd->vdev_spa->spa_meta_objset;
 3836         uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
 3837         size_t array_bytes = array_count * sizeof (uint64_t);
 3838         uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
 3839         VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
 3840             array_bytes, smobj_array, 0));
 3841 
 3842         for (uint64_t i = 0; i < array_count; i++) {
 3843                 uint64_t smobj = smobj_array[i];
 3844                 if (smobj == 0)
 3845                         continue;
 3846 
 3847                 space_map_free_obj(mos, smobj, tx);
 3848         }
 3849 
 3850         kmem_free(smobj_array, array_bytes);
 3851         VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
 3852         vdev_destroy_ms_flush_data(vd, tx);
 3853         vd->vdev_ms_array = 0;
 3854 }
 3855 
 3856 static void
 3857 vdev_remove_empty_log(vdev_t *vd, uint64_t txg)
 3858 {
 3859         spa_t *spa = vd->vdev_spa;
 3860 
 3861         ASSERT(vd->vdev_islog);
 3862         ASSERT(vd == vd->vdev_top);
 3863         ASSERT3U(txg, ==, spa_syncing_txg(spa));
 3864 
 3865         dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
 3866 
 3867         vdev_destroy_spacemaps(vd, tx);
 3868         if (vd->vdev_top_zap != 0) {
 3869                 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
 3870                 vd->vdev_top_zap = 0;
 3871         }
 3872 
 3873         dmu_tx_commit(tx);
 3874 }
 3875 
 3876 void
 3877 vdev_sync_done(vdev_t *vd, uint64_t txg)
 3878 {
 3879         metaslab_t *msp;
 3880         boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
 3881 
 3882         ASSERT(vdev_is_concrete(vd));
 3883 
 3884         while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
 3885             != NULL)
 3886                 metaslab_sync_done(msp, txg);
 3887 
 3888         if (reassess) {
 3889                 metaslab_sync_reassess(vd->vdev_mg);
 3890                 if (vd->vdev_log_mg != NULL)
 3891                         metaslab_sync_reassess(vd->vdev_log_mg);
 3892         }
 3893 }
 3894 
 3895 void
 3896 vdev_sync(vdev_t *vd, uint64_t txg)
 3897 {
 3898         spa_t *spa = vd->vdev_spa;
 3899         vdev_t *lvd;
 3900         metaslab_t *msp;
 3901 
 3902         ASSERT3U(txg, ==, spa->spa_syncing_txg);
 3903         dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
 3904         if (range_tree_space(vd->vdev_obsolete_segments) > 0) {
 3905                 ASSERT(vd->vdev_removing ||
 3906                     vd->vdev_ops == &vdev_indirect_ops);
 3907 
 3908                 vdev_indirect_sync_obsolete(vd, tx);
 3909 
 3910                 /*
 3911                  * If the vdev is indirect, it can't have dirty
 3912                  * metaslabs or DTLs.
 3913                  */
 3914                 if (vd->vdev_ops == &vdev_indirect_ops) {
 3915                         ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
 3916                         ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
 3917                         dmu_tx_commit(tx);
 3918                         return;
 3919                 }
 3920         }
 3921 
 3922         ASSERT(vdev_is_concrete(vd));
 3923 
 3924         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
 3925             !vd->vdev_removing) {
 3926                 ASSERT(vd == vd->vdev_top);
 3927                 ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
 3928                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
 3929                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
 3930                 ASSERT(vd->vdev_ms_array != 0);
 3931                 vdev_config_dirty(vd);
 3932         }
 3933 
 3934         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
 3935                 metaslab_sync(msp, txg);
 3936                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
 3937         }
 3938 
 3939         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
 3940                 vdev_dtl_sync(lvd, txg);
 3941 
 3942         /*
 3943          * If this is an empty log device being removed, destroy the
 3944          * metadata associated with it.
 3945          */
 3946         if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
 3947                 vdev_remove_empty_log(vd, txg);
 3948 
 3949         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
 3950         dmu_tx_commit(tx);
 3951 }
 3952 
 3953 uint64_t
 3954 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
 3955 {
 3956         return (vd->vdev_ops->vdev_op_asize(vd, psize));
 3957 }
 3958 
 3959 /*
 3960  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
 3961  * not be opened, and no I/O is attempted.
 3962  */
 3963 int
 3964 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
 3965 {
 3966         vdev_t *vd, *tvd;
 3967 
 3968         spa_vdev_state_enter(spa, SCL_NONE);
 3969 
 3970         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
 3971                 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
 3972 
 3973         if (!vd->vdev_ops->vdev_op_leaf)
 3974                 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
 3975 
 3976         tvd = vd->vdev_top;
 3977 
 3978         /*
 3979          * If user did a 'zpool offline -f' then make the fault persist across
 3980          * reboots.
 3981          */
 3982         if (aux == VDEV_AUX_EXTERNAL_PERSIST) {
 3983                 /*
 3984                  * There are two kinds of forced faults: temporary and
 3985                  * persistent.  Temporary faults go away at pool import, while
 3986                  * persistent faults stay set.  Both types of faults can be
 3987                  * cleared with a zpool clear.
 3988                  *
 3989                  * We tell if a vdev is persistently faulted by looking at the
 3990                  * ZPOOL_CONFIG_AUX_STATE nvpair.  If it's set to "external" at
 3991                  * import then it's a persistent fault.  Otherwise, it's
 3992                  * temporary.  We get ZPOOL_CONFIG_AUX_STATE set to "external"
 3993                  * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL.  This
 3994                  * tells vdev_config_generate() (which gets run later) to set
 3995                  * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist.
 3996                  */
 3997                 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
 3998                 vd->vdev_tmpoffline = B_FALSE;
 3999                 aux = VDEV_AUX_EXTERNAL;
 4000         } else {
 4001                 vd->vdev_tmpoffline = B_TRUE;
 4002         }
 4003 
 4004         /*
 4005          * We don't directly use the aux state here, but if we do a
 4006          * vdev_reopen(), we need this value to be present to remember why we
 4007          * were faulted.
 4008          */
 4009         vd->vdev_label_aux = aux;
 4010 
 4011         /*
 4012          * Faulted state takes precedence over degraded.
 4013          */
 4014         vd->vdev_delayed_close = B_FALSE;
 4015         vd->vdev_faulted = 1ULL;
 4016         vd->vdev_degraded = 0ULL;
 4017         vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
 4018 
 4019         /*
 4020          * If this device has the only valid copy of the data, then
 4021          * back off and simply mark the vdev as degraded instead.
 4022          */
 4023         if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
 4024                 vd->vdev_degraded = 1ULL;
 4025                 vd->vdev_faulted = 0ULL;
 4026 
 4027                 /*
 4028                  * If we reopen the device and it's not dead, only then do we
 4029                  * mark it degraded.
 4030                  */
 4031                 vdev_reopen(tvd);
 4032 
 4033                 if (vdev_readable(vd))
 4034                         vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
 4035         }
 4036 
 4037         return (spa_vdev_state_exit(spa, vd, 0));
 4038 }
 4039 
 4040 /*
 4041  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
 4042  * user that something is wrong.  The vdev continues to operate as normal as far
 4043  * as I/O is concerned.
 4044  */
 4045 int
 4046 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
 4047 {
 4048         vdev_t *vd;
 4049 
 4050         spa_vdev_state_enter(spa, SCL_NONE);
 4051 
 4052         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
 4053                 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
 4054 
 4055         if (!vd->vdev_ops->vdev_op_leaf)
 4056                 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
 4057 
 4058         /*
 4059          * If the vdev is already faulted, then don't do anything.
 4060          */
 4061         if (vd->vdev_faulted || vd->vdev_degraded)
 4062                 return (spa_vdev_state_exit(spa, NULL, 0));
 4063 
 4064         vd->vdev_degraded = 1ULL;
 4065         if (!vdev_is_dead(vd))
 4066                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
 4067                     aux);
 4068 
 4069         return (spa_vdev_state_exit(spa, vd, 0));
 4070 }
 4071 
 4072 int
 4073 vdev_remove_wanted(spa_t *spa, uint64_t guid)
 4074 {
 4075         vdev_t *vd;
 4076 
 4077         spa_vdev_state_enter(spa, SCL_NONE);
 4078 
 4079         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
 4080                 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
 4081 
 4082         /*
 4083          * If the vdev is already removed, then don't do anything.
 4084          */
 4085         if (vd->vdev_removed)
 4086                 return (spa_vdev_state_exit(spa, NULL, 0));
 4087 
 4088         vd->vdev_remove_wanted = B_TRUE;
 4089         spa_async_request(spa, SPA_ASYNC_REMOVE);
 4090 
 4091         return (spa_vdev_state_exit(spa, vd, 0));
 4092 }
 4093 
 4094 
 4095 /*
 4096  * Online the given vdev.
 4097  *
 4098  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
 4099  * spare device should be detached when the device finishes resilvering.
 4100  * Second, the online should be treated like a 'test' online case, so no FMA
 4101  * events are generated if the device fails to open.
 4102  */
 4103 int
 4104 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
 4105 {
 4106         vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
 4107         boolean_t wasoffline;
 4108         vdev_state_t oldstate;
 4109 
 4110         spa_vdev_state_enter(spa, SCL_NONE);
 4111 
 4112         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
 4113                 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
 4114 
 4115         if (!vd->vdev_ops->vdev_op_leaf)
 4116                 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
 4117 
 4118         wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
 4119         oldstate = vd->vdev_state;
 4120 
 4121         tvd = vd->vdev_top;
 4122         vd->vdev_offline = B_FALSE;
 4123         vd->vdev_tmpoffline = B_FALSE;
 4124         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
 4125         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
 4126 
 4127         /* XXX - L2ARC 1.0 does not support expansion */
 4128         if (!vd->vdev_aux) {
 4129                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
 4130                         pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) ||
 4131                             spa->spa_autoexpand);
 4132                 vd->vdev_expansion_time = gethrestime_sec();
 4133         }
 4134 
 4135         vdev_reopen(tvd);
 4136         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
 4137 
 4138         if (!vd->vdev_aux) {
 4139                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
 4140                         pvd->vdev_expanding = B_FALSE;
 4141         }
 4142 
 4143         if (newstate)
 4144                 *newstate = vd->vdev_state;
 4145         if ((flags & ZFS_ONLINE_UNSPARE) &&
 4146             !vdev_is_dead(vd) && vd->vdev_parent &&
 4147             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
 4148             vd->vdev_parent->vdev_child[0] == vd)
 4149                 vd->vdev_unspare = B_TRUE;
 4150 
 4151         if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
 4152 
 4153                 /* XXX - L2ARC 1.0 does not support expansion */
 4154                 if (vd->vdev_aux)
 4155                         return (spa_vdev_state_exit(spa, vd, ENOTSUP));
 4156                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
 4157         }
 4158 
 4159         /* Restart initializing if necessary */
 4160         mutex_enter(&vd->vdev_initialize_lock);
 4161         if (vdev_writeable(vd) &&
 4162             vd->vdev_initialize_thread == NULL &&
 4163             vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) {
 4164                 (void) vdev_initialize(vd);
 4165         }
 4166         mutex_exit(&vd->vdev_initialize_lock);
 4167 
 4168         /*
 4169          * Restart trimming if necessary. We do not restart trimming for cache
 4170          * devices here. This is triggered by l2arc_rebuild_vdev()
 4171          * asynchronously for the whole device or in l2arc_evict() as it evicts
 4172          * space for upcoming writes.
 4173          */
 4174         mutex_enter(&vd->vdev_trim_lock);
 4175         if (vdev_writeable(vd) && !vd->vdev_isl2cache &&
 4176             vd->vdev_trim_thread == NULL &&
 4177             vd->vdev_trim_state == VDEV_TRIM_ACTIVE) {
 4178                 (void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial,
 4179                     vd->vdev_trim_secure);
 4180         }
 4181         mutex_exit(&vd->vdev_trim_lock);
 4182 
 4183         if (wasoffline ||
 4184             (oldstate < VDEV_STATE_DEGRADED &&
 4185             vd->vdev_state >= VDEV_STATE_DEGRADED))
 4186                 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
 4187 
 4188         return (spa_vdev_state_exit(spa, vd, 0));
 4189 }
 4190 
 4191 static int
 4192 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
 4193 {
 4194         vdev_t *vd, *tvd;
 4195         int error = 0;
 4196         uint64_t generation;
 4197         metaslab_group_t *mg;
 4198 
 4199 top:
 4200         spa_vdev_state_enter(spa, SCL_ALLOC);
 4201 
 4202         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
 4203                 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
 4204 
 4205         if (!vd->vdev_ops->vdev_op_leaf)
 4206                 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
 4207 
 4208         if (vd->vdev_ops == &vdev_draid_spare_ops)
 4209                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
 4210 
 4211         tvd = vd->vdev_top;
 4212         mg = tvd->vdev_mg;
 4213         generation = spa->spa_config_generation + 1;
 4214 
 4215         /*
 4216          * If the device isn't already offline, try to offline it.
 4217          */
 4218         if (!vd->vdev_offline) {
 4219                 /*
 4220                  * If this device has the only valid copy of some data,
 4221                  * don't allow it to be offlined. Log devices are always
 4222                  * expendable.
 4223                  */
 4224                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
 4225                     vdev_dtl_required(vd))
 4226                         return (spa_vdev_state_exit(spa, NULL,
 4227                             SET_ERROR(EBUSY)));
 4228 
 4229                 /*
 4230                  * If the top-level is a slog and it has had allocations
 4231                  * then proceed.  We check that the vdev's metaslab group
 4232                  * is not NULL since it's possible that we may have just
 4233                  * added this vdev but not yet initialized its metaslabs.
 4234                  */
 4235                 if (tvd->vdev_islog && mg != NULL) {
 4236                         /*
 4237                          * Prevent any future allocations.
 4238                          */
 4239                         ASSERT3P(tvd->vdev_log_mg, ==, NULL);
 4240                         metaslab_group_passivate(mg);
 4241                         (void) spa_vdev_state_exit(spa, vd, 0);
 4242 
 4243                         error = spa_reset_logs(spa);
 4244 
 4245                         /*
 4246                          * If the log device was successfully reset but has
 4247                          * checkpointed data, do not offline it.
 4248                          */
 4249                         if (error == 0 &&
 4250                             tvd->vdev_checkpoint_sm != NULL) {
 4251                                 ASSERT3U(space_map_allocated(
 4252                                     tvd->vdev_checkpoint_sm), !=, 0);
 4253                                 error = ZFS_ERR_CHECKPOINT_EXISTS;
 4254                         }
 4255 
 4256                         spa_vdev_state_enter(spa, SCL_ALLOC);
 4257 
 4258                         /*
 4259                          * Check to see if the config has changed.
 4260                          */
 4261                         if (error || generation != spa->spa_config_generation) {
 4262                                 metaslab_group_activate(mg);
 4263                                 if (error)
 4264                                         return (spa_vdev_state_exit(spa,
 4265                                             vd, error));
 4266                                 (void) spa_vdev_state_exit(spa, vd, 0);
 4267                                 goto top;
 4268                         }
 4269                         ASSERT0(tvd->vdev_stat.vs_alloc);
 4270                 }
 4271 
 4272                 /*
 4273                  * Offline this device and reopen its top-level vdev.
 4274                  * If the top-level vdev is a log device then just offline
 4275                  * it. Otherwise, if this action results in the top-level
 4276                  * vdev becoming unusable, undo it and fail the request.
 4277                  */
 4278                 vd->vdev_offline = B_TRUE;
 4279                 vdev_reopen(tvd);
 4280 
 4281                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
 4282                     vdev_is_dead(tvd)) {
 4283                         vd->vdev_offline = B_FALSE;
 4284                         vdev_reopen(tvd);
 4285                         return (spa_vdev_state_exit(spa, NULL,
 4286                             SET_ERROR(EBUSY)));
 4287                 }
 4288 
 4289                 /*
 4290                  * Add the device back into the metaslab rotor so that
 4291                  * once we online the device it's open for business.
 4292                  */
 4293                 if (tvd->vdev_islog && mg != NULL)
 4294                         metaslab_group_activate(mg);
 4295         }
 4296 
 4297         vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
 4298 
 4299         return (spa_vdev_state_exit(spa, vd, 0));
 4300 }
 4301 
 4302 int
 4303 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
 4304 {
 4305         int error;
 4306 
 4307         mutex_enter(&spa->spa_vdev_top_lock);
 4308         error = vdev_offline_locked(spa, guid, flags);
 4309         mutex_exit(&spa->spa_vdev_top_lock);
 4310 
 4311         return (error);
 4312 }
 4313 
 4314 /*
 4315  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
 4316  * vdev_offline(), we assume the spa config is locked.  We also clear all
 4317  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
 4318  */
 4319 void
 4320 vdev_clear(spa_t *spa, vdev_t *vd)
 4321 {
 4322         vdev_t *rvd = spa->spa_root_vdev;
 4323 
 4324         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
 4325 
 4326         if (vd == NULL)
 4327                 vd = rvd;
 4328 
 4329         vd->vdev_stat.vs_read_errors = 0;
 4330         vd->vdev_stat.vs_write_errors = 0;
 4331         vd->vdev_stat.vs_checksum_errors = 0;
 4332         vd->vdev_stat.vs_slow_ios = 0;
 4333 
 4334         for (int c = 0; c < vd->vdev_children; c++)
 4335                 vdev_clear(spa, vd->vdev_child[c]);
 4336 
 4337         /*
 4338          * It makes no sense to "clear" an indirect  or removed vdev.
 4339          */
 4340         if (!vdev_is_concrete(vd) || vd->vdev_removed)
 4341                 return;
 4342 
 4343         /*
 4344          * If we're in the FAULTED state or have experienced failed I/O, then
 4345          * clear the persistent state and attempt to reopen the device.  We
 4346          * also mark the vdev config dirty, so that the new faulted state is
 4347          * written out to disk.
 4348          */
 4349         if (vd->vdev_faulted || vd->vdev_degraded ||
 4350             !vdev_readable(vd) || !vdev_writeable(vd)) {
 4351                 /*
 4352                  * When reopening in response to a clear event, it may be due to
 4353                  * a fmadm repair request.  In this case, if the device is
 4354                  * still broken, we want to still post the ereport again.
 4355                  */
 4356                 vd->vdev_forcefault = B_TRUE;
 4357 
 4358                 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
 4359                 vd->vdev_cant_read = B_FALSE;
 4360                 vd->vdev_cant_write = B_FALSE;
 4361                 vd->vdev_stat.vs_aux = 0;
 4362 
 4363                 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
 4364 
 4365                 vd->vdev_forcefault = B_FALSE;
 4366 
 4367                 if (vd != rvd && vdev_writeable(vd->vdev_top))
 4368                         vdev_state_dirty(vd->vdev_top);
 4369 
 4370                 /* If a resilver isn't required, check if vdevs can be culled */
 4371                 if (vd->vdev_aux == NULL && !vdev_is_dead(vd) &&
 4372                     !dsl_scan_resilvering(spa->spa_dsl_pool) &&
 4373                     !dsl_scan_resilver_scheduled(spa->spa_dsl_pool))
 4374                         spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
 4375 
 4376                 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
 4377         }
 4378 
 4379         /*
 4380          * When clearing a FMA-diagnosed fault, we always want to
 4381          * unspare the device, as we assume that the original spare was
 4382          * done in response to the FMA fault.
 4383          */
 4384         if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
 4385             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
 4386             vd->vdev_parent->vdev_child[0] == vd)
 4387                 vd->vdev_unspare = B_TRUE;
 4388 
 4389         /* Clear recent error events cache (i.e. duplicate events tracking) */
 4390         zfs_ereport_clear(spa, vd);
 4391 }
 4392 
 4393 boolean_t
 4394 vdev_is_dead(vdev_t *vd)
 4395 {
 4396         /*
 4397          * Holes and missing devices are always considered "dead".
 4398          * This simplifies the code since we don't have to check for
 4399          * these types of devices in the various code paths.
 4400          * Instead we rely on the fact that we skip over dead devices
 4401          * before issuing I/O to them.
 4402          */
 4403         return (vd->vdev_state < VDEV_STATE_DEGRADED ||
 4404             vd->vdev_ops == &vdev_hole_ops ||
 4405             vd->vdev_ops == &vdev_missing_ops);
 4406 }
 4407 
 4408 boolean_t
 4409 vdev_readable(vdev_t *vd)
 4410 {
 4411         return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
 4412 }
 4413 
 4414 boolean_t
 4415 vdev_writeable(vdev_t *vd)
 4416 {
 4417         return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
 4418             vdev_is_concrete(vd));
 4419 }
 4420 
 4421 boolean_t
 4422 vdev_allocatable(vdev_t *vd)
 4423 {
 4424         uint64_t state = vd->vdev_state;
 4425 
 4426         /*
 4427          * We currently allow allocations from vdevs which may be in the
 4428          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
 4429          * fails to reopen then we'll catch it later when we're holding
 4430          * the proper locks.  Note that we have to get the vdev state
 4431          * in a local variable because although it changes atomically,
 4432          * we're asking two separate questions about it.
 4433          */
 4434         return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
 4435             !vd->vdev_cant_write && vdev_is_concrete(vd) &&
 4436             vd->vdev_mg->mg_initialized);
 4437 }
 4438 
 4439 boolean_t
 4440 vdev_accessible(vdev_t *vd, zio_t *zio)
 4441 {
 4442         ASSERT(zio->io_vd == vd);
 4443 
 4444         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
 4445                 return (B_FALSE);
 4446 
 4447         if (zio->io_type == ZIO_TYPE_READ)
 4448                 return (!vd->vdev_cant_read);
 4449 
 4450         if (zio->io_type == ZIO_TYPE_WRITE)
 4451                 return (!vd->vdev_cant_write);
 4452 
 4453         return (B_TRUE);
 4454 }
 4455 
 4456 static void
 4457 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
 4458 {
 4459         /*
 4460          * Exclude the dRAID spare when aggregating to avoid double counting
 4461          * the ops and bytes.  These IOs are counted by the physical leaves.
 4462          */
 4463         if (cvd->vdev_ops == &vdev_draid_spare_ops)
 4464                 return;
 4465 
 4466         for (int t = 0; t < VS_ZIO_TYPES; t++) {
 4467                 vs->vs_ops[t] += cvs->vs_ops[t];
 4468                 vs->vs_bytes[t] += cvs->vs_bytes[t];
 4469         }
 4470 
 4471         cvs->vs_scan_removing = cvd->vdev_removing;
 4472 }
 4473 
 4474 /*
 4475  * Get extended stats
 4476  */
 4477 static void
 4478 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
 4479 {
 4480         (void) cvd;
 4481 
 4482         int t, b;
 4483         for (t = 0; t < ZIO_TYPES; t++) {
 4484                 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
 4485                         vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
 4486 
 4487                 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
 4488                         vsx->vsx_total_histo[t][b] +=
 4489                             cvsx->vsx_total_histo[t][b];
 4490                 }
 4491         }
 4492 
 4493         for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
 4494                 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
 4495                         vsx->vsx_queue_histo[t][b] +=
 4496                             cvsx->vsx_queue_histo[t][b];
 4497                 }
 4498                 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
 4499                 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
 4500 
 4501                 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
 4502                         vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
 4503 
 4504                 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
 4505                         vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
 4506         }
 4507 
 4508 }
 4509 
 4510 boolean_t
 4511 vdev_is_spacemap_addressable(vdev_t *vd)
 4512 {
 4513         if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2))
 4514                 return (B_TRUE);
 4515 
 4516         /*
 4517          * If double-word space map entries are not enabled we assume
 4518          * 47 bits of the space map entry are dedicated to the entry's
 4519          * offset (see SM_OFFSET_BITS in space_map.h). We then use that
 4520          * to calculate the maximum address that can be described by a
 4521          * space map entry for the given device.
 4522          */
 4523         uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS;
 4524 
 4525         if (shift >= 63) /* detect potential overflow */
 4526                 return (B_TRUE);
 4527 
 4528         return (vd->vdev_asize < (1ULL << shift));
 4529 }
 4530 
 4531 /*
 4532  * Get statistics for the given vdev.
 4533  */
 4534 static void
 4535 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
 4536 {
 4537         int t;
 4538         /*
 4539          * If we're getting stats on the root vdev, aggregate the I/O counts
 4540          * over all top-level vdevs (i.e. the direct children of the root).
 4541          */
 4542         if (!vd->vdev_ops->vdev_op_leaf) {
 4543                 if (vs) {
 4544                         memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
 4545                         memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
 4546                 }
 4547                 if (vsx)
 4548                         memset(vsx, 0, sizeof (*vsx));
 4549 
 4550                 for (int c = 0; c < vd->vdev_children; c++) {
 4551                         vdev_t *cvd = vd->vdev_child[c];
 4552                         vdev_stat_t *cvs = &cvd->vdev_stat;
 4553                         vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
 4554 
 4555                         vdev_get_stats_ex_impl(cvd, cvs, cvsx);
 4556                         if (vs)
 4557                                 vdev_get_child_stat(cvd, vs, cvs);
 4558                         if (vsx)
 4559                                 vdev_get_child_stat_ex(cvd, vsx, cvsx);
 4560                 }
 4561         } else {
 4562                 /*
 4563                  * We're a leaf.  Just copy our ZIO active queue stats in.  The
 4564                  * other leaf stats are updated in vdev_stat_update().
 4565                  */
 4566                 if (!vsx)
 4567                         return;
 4568 
 4569                 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
 4570 
 4571                 for (t = 0; t < ARRAY_SIZE(vd->vdev_queue.vq_class); t++) {
 4572                         vsx->vsx_active_queue[t] =
 4573                             vd->vdev_queue.vq_class[t].vqc_active;
 4574                         vsx->vsx_pend_queue[t] = avl_numnodes(
 4575                             &vd->vdev_queue.vq_class[t].vqc_queued_tree);
 4576                 }
 4577         }
 4578 }
 4579 
 4580 void
 4581 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
 4582 {
 4583         vdev_t *tvd = vd->vdev_top;
 4584         mutex_enter(&vd->vdev_stat_lock);
 4585         if (vs) {
 4586                 memcpy(vs, &vd->vdev_stat, sizeof (*vs));
 4587                 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
 4588                 vs->vs_state = vd->vdev_state;
 4589                 vs->vs_rsize = vdev_get_min_asize(vd);
 4590 
 4591                 if (vd->vdev_ops->vdev_op_leaf) {
 4592                         vs->vs_pspace = vd->vdev_psize;
 4593                         vs->vs_rsize += VDEV_LABEL_START_SIZE +
 4594                             VDEV_LABEL_END_SIZE;
 4595                         /*
 4596                          * Report initializing progress. Since we don't
 4597                          * have the initializing locks held, this is only
 4598                          * an estimate (although a fairly accurate one).
 4599                          */
 4600                         vs->vs_initialize_bytes_done =
 4601                             vd->vdev_initialize_bytes_done;
 4602                         vs->vs_initialize_bytes_est =
 4603                             vd->vdev_initialize_bytes_est;
 4604                         vs->vs_initialize_state = vd->vdev_initialize_state;
 4605                         vs->vs_initialize_action_time =
 4606                             vd->vdev_initialize_action_time;
 4607 
 4608                         /*
 4609                          * Report manual TRIM progress. Since we don't have
 4610                          * the manual TRIM locks held, this is only an
 4611                          * estimate (although fairly accurate one).
 4612                          */
 4613                         vs->vs_trim_notsup = !vd->vdev_has_trim;
 4614                         vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done;
 4615                         vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est;
 4616                         vs->vs_trim_state = vd->vdev_trim_state;
 4617                         vs->vs_trim_action_time = vd->vdev_trim_action_time;
 4618 
 4619                         /* Set when there is a deferred resilver. */
 4620                         vs->vs_resilver_deferred = vd->vdev_resilver_deferred;
 4621                 }
 4622 
 4623                 /*
 4624                  * Report expandable space on top-level, non-auxiliary devices
 4625                  * only. The expandable space is reported in terms of metaslab
 4626                  * sized units since that determines how much space the pool
 4627                  * can expand.
 4628                  */
 4629                 if (vd->vdev_aux == NULL && tvd != NULL) {
 4630                         vs->vs_esize = P2ALIGN(
 4631                             vd->vdev_max_asize - vd->vdev_asize,
 4632                             1ULL << tvd->vdev_ms_shift);
 4633                 }
 4634 
 4635                 vs->vs_configured_ashift = vd->vdev_top != NULL
 4636                     ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
 4637                 vs->vs_logical_ashift = vd->vdev_logical_ashift;
 4638                 if (vd->vdev_physical_ashift <= ASHIFT_MAX)
 4639                         vs->vs_physical_ashift = vd->vdev_physical_ashift;
 4640                 else
 4641                         vs->vs_physical_ashift = 0;
 4642 
 4643                 /*
 4644                  * Report fragmentation and rebuild progress for top-level,
 4645                  * non-auxiliary, concrete devices.
 4646                  */
 4647                 if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
 4648                     vdev_is_concrete(vd)) {
 4649                         /*
 4650                          * The vdev fragmentation rating doesn't take into
 4651                          * account the embedded slog metaslab (vdev_log_mg).
 4652                          * Since it's only one metaslab, it would have a tiny
 4653                          * impact on the overall fragmentation.
 4654                          */
 4655                         vs->vs_fragmentation = (vd->vdev_mg != NULL) ?
 4656                             vd->vdev_mg->mg_fragmentation : 0;
 4657                 }
 4658                 vs->vs_noalloc = MAX(vd->vdev_noalloc,
 4659                     tvd ? tvd->vdev_noalloc : 0);
 4660         }
 4661 
 4662         vdev_get_stats_ex_impl(vd, vs, vsx);
 4663         mutex_exit(&vd->vdev_stat_lock);
 4664 }
 4665 
 4666 void
 4667 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
 4668 {
 4669         return (vdev_get_stats_ex(vd, vs, NULL));
 4670 }
 4671 
 4672 void
 4673 vdev_clear_stats(vdev_t *vd)
 4674 {
 4675         mutex_enter(&vd->vdev_stat_lock);
 4676         vd->vdev_stat.vs_space = 0;
 4677         vd->vdev_stat.vs_dspace = 0;
 4678         vd->vdev_stat.vs_alloc = 0;
 4679         mutex_exit(&vd->vdev_stat_lock);
 4680 }
 4681 
 4682 void
 4683 vdev_scan_stat_init(vdev_t *vd)
 4684 {
 4685         vdev_stat_t *vs = &vd->vdev_stat;
 4686 
 4687         for (int c = 0; c < vd->vdev_children; c++)
 4688                 vdev_scan_stat_init(vd->vdev_child[c]);
 4689 
 4690         mutex_enter(&vd->vdev_stat_lock);
 4691         vs->vs_scan_processed = 0;
 4692         mutex_exit(&vd->vdev_stat_lock);
 4693 }
 4694 
 4695 void
 4696 vdev_stat_update(zio_t *zio, uint64_t psize)
 4697 {
 4698         spa_t *spa = zio->io_spa;
 4699         vdev_t *rvd = spa->spa_root_vdev;
 4700         vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
 4701         vdev_t *pvd;
 4702         uint64_t txg = zio->io_txg;
 4703         vdev_stat_t *vs = vd ? &vd->vdev_stat : NULL;
 4704         vdev_stat_ex_t *vsx = vd ? &vd->vdev_stat_ex : NULL;
 4705         zio_type_t type = zio->io_type;
 4706         int flags = zio->io_flags;
 4707 
 4708         /*
 4709          * If this i/o is a gang leader, it didn't do any actual work.
 4710          */
 4711         if (zio->io_gang_tree)
 4712                 return;
 4713 
 4714         if (zio->io_error == 0) {
 4715                 /*
 4716                  * If this is a root i/o, don't count it -- we've already
 4717                  * counted the top-level vdevs, and vdev_get_stats() will
 4718                  * aggregate them when asked.  This reduces contention on
 4719                  * the root vdev_stat_lock and implicitly handles blocks
 4720                  * that compress away to holes, for which there is no i/o.
 4721                  * (Holes never create vdev children, so all the counters
 4722                  * remain zero, which is what we want.)
 4723                  *
 4724                  * Note: this only applies to successful i/o (io_error == 0)
 4725                  * because unlike i/o counts, errors are not additive.
 4726                  * When reading a ditto block, for example, failure of
 4727                  * one top-level vdev does not imply a root-level error.
 4728                  */
 4729                 if (vd == rvd)
 4730                         return;
 4731 
 4732                 ASSERT(vd == zio->io_vd);
 4733 
 4734                 if (flags & ZIO_FLAG_IO_BYPASS)
 4735                         return;
 4736 
 4737                 mutex_enter(&vd->vdev_stat_lock);
 4738 
 4739                 if (flags & ZIO_FLAG_IO_REPAIR) {
 4740                         /*
 4741                          * Repair is the result of a resilver issued by the
 4742                          * scan thread (spa_sync).
 4743                          */
 4744                         if (flags & ZIO_FLAG_SCAN_THREAD) {
 4745                                 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
 4746                                 dsl_scan_phys_t *scn_phys = &scn->scn_phys;
 4747                                 uint64_t *processed = &scn_phys->scn_processed;
 4748 
 4749                                 if (vd->vdev_ops->vdev_op_leaf)
 4750                                         atomic_add_64(processed, psize);
 4751                                 vs->vs_scan_processed += psize;
 4752                         }
 4753 
 4754                         /*
 4755                          * Repair is the result of a rebuild issued by the
 4756                          * rebuild thread (vdev_rebuild_thread).  To avoid
 4757                          * double counting repaired bytes the virtual dRAID
 4758                          * spare vdev is excluded from the processed bytes.
 4759                          */
 4760                         if (zio->io_priority == ZIO_PRIORITY_REBUILD) {
 4761                                 vdev_t *tvd = vd->vdev_top;
 4762                                 vdev_rebuild_t *vr = &tvd->vdev_rebuild_config;
 4763                                 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
 4764                                 uint64_t *rebuilt = &vrp->vrp_bytes_rebuilt;
 4765 
 4766                                 if (vd->vdev_ops->vdev_op_leaf &&
 4767                                     vd->vdev_ops != &vdev_draid_spare_ops) {
 4768                                         atomic_add_64(rebuilt, psize);
 4769                                 }
 4770                                 vs->vs_rebuild_processed += psize;
 4771                         }
 4772 
 4773                         if (flags & ZIO_FLAG_SELF_HEAL)
 4774                                 vs->vs_self_healed += psize;
 4775                 }
 4776 
 4777                 /*
 4778                  * The bytes/ops/histograms are recorded at the leaf level and
 4779                  * aggregated into the higher level vdevs in vdev_get_stats().
 4780                  */
 4781                 if (vd->vdev_ops->vdev_op_leaf &&
 4782                     (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) {
 4783                         zio_type_t vs_type = type;
 4784                         zio_priority_t priority = zio->io_priority;
 4785 
 4786                         /*
 4787                          * TRIM ops and bytes are reported to user space as
 4788                          * ZIO_TYPE_IOCTL.  This is done to preserve the
 4789                          * vdev_stat_t structure layout for user space.
 4790                          */
 4791                         if (type == ZIO_TYPE_TRIM)
 4792                                 vs_type = ZIO_TYPE_IOCTL;
 4793 
 4794                         /*
 4795                          * Solely for the purposes of 'zpool iostat -lqrw'
 4796                          * reporting use the priority to categorize the IO.
 4797                          * Only the following are reported to user space:
 4798                          *
 4799                          *   ZIO_PRIORITY_SYNC_READ,
 4800                          *   ZIO_PRIORITY_SYNC_WRITE,
 4801                          *   ZIO_PRIORITY_ASYNC_READ,
 4802                          *   ZIO_PRIORITY_ASYNC_WRITE,
 4803                          *   ZIO_PRIORITY_SCRUB,
 4804                          *   ZIO_PRIORITY_TRIM,
 4805                          *   ZIO_PRIORITY_REBUILD.
 4806                          */
 4807                         if (priority == ZIO_PRIORITY_INITIALIZING) {
 4808                                 ASSERT3U(type, ==, ZIO_TYPE_WRITE);
 4809                                 priority = ZIO_PRIORITY_ASYNC_WRITE;
 4810                         } else if (priority == ZIO_PRIORITY_REMOVAL) {
 4811                                 priority = ((type == ZIO_TYPE_WRITE) ?
 4812                                     ZIO_PRIORITY_ASYNC_WRITE :
 4813                                     ZIO_PRIORITY_ASYNC_READ);
 4814                         }
 4815 
 4816                         vs->vs_ops[vs_type]++;
 4817                         vs->vs_bytes[vs_type] += psize;
 4818 
 4819                         if (flags & ZIO_FLAG_DELEGATED) {
 4820                                 vsx->vsx_agg_histo[priority]
 4821                                     [RQ_HISTO(zio->io_size)]++;
 4822                         } else {
 4823                                 vsx->vsx_ind_histo[priority]
 4824                                     [RQ_HISTO(zio->io_size)]++;
 4825                         }
 4826 
 4827                         if (zio->io_delta && zio->io_delay) {
 4828                                 vsx->vsx_queue_histo[priority]
 4829                                     [L_HISTO(zio->io_delta - zio->io_delay)]++;
 4830                                 vsx->vsx_disk_histo[type]
 4831                                     [L_HISTO(zio->io_delay)]++;
 4832                                 vsx->vsx_total_histo[type]
 4833                                     [L_HISTO(zio->io_delta)]++;
 4834                         }
 4835                 }
 4836 
 4837                 mutex_exit(&vd->vdev_stat_lock);
 4838                 return;
 4839         }
 4840 
 4841         if (flags & ZIO_FLAG_SPECULATIVE)
 4842                 return;
 4843 
 4844         /*
 4845          * If this is an I/O error that is going to be retried, then ignore the
 4846          * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
 4847          * hard errors, when in reality they can happen for any number of
 4848          * innocuous reasons (bus resets, MPxIO link failure, etc).
 4849          */
 4850         if (zio->io_error == EIO &&
 4851             !(zio->io_flags & ZIO_FLAG_IO_RETRY))
 4852                 return;
 4853 
 4854         /*
 4855          * Intent logs writes won't propagate their error to the root
 4856          * I/O so don't mark these types of failures as pool-level
 4857          * errors.
 4858          */
 4859         if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
 4860                 return;
 4861 
 4862         if (type == ZIO_TYPE_WRITE && txg != 0 &&
 4863             (!(flags & ZIO_FLAG_IO_REPAIR) ||
 4864             (flags & ZIO_FLAG_SCAN_THREAD) ||
 4865             spa->spa_claiming)) {
 4866                 /*
 4867                  * This is either a normal write (not a repair), or it's
 4868                  * a repair induced by the scrub thread, or it's a repair
 4869                  * made by zil_claim() during spa_load() in the first txg.
 4870                  * In the normal case, we commit the DTL change in the same
 4871                  * txg as the block was born.  In the scrub-induced repair
 4872                  * case, we know that scrubs run in first-pass syncing context,
 4873                  * so we commit the DTL change in spa_syncing_txg(spa).
 4874                  * In the zil_claim() case, we commit in spa_first_txg(spa).
 4875                  *
 4876                  * We currently do not make DTL entries for failed spontaneous
 4877                  * self-healing writes triggered by normal (non-scrubbing)
 4878                  * reads, because we have no transactional context in which to
 4879                  * do so -- and it's not clear that it'd be desirable anyway.
 4880                  */
 4881                 if (vd->vdev_ops->vdev_op_leaf) {
 4882                         uint64_t commit_txg = txg;
 4883                         if (flags & ZIO_FLAG_SCAN_THREAD) {
 4884                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
 4885                                 ASSERT(spa_sync_pass(spa) == 1);
 4886                                 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
 4887                                 commit_txg = spa_syncing_txg(spa);
 4888                         } else if (spa->spa_claiming) {
 4889                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
 4890                                 commit_txg = spa_first_txg(spa);
 4891                         }
 4892                         ASSERT(commit_txg >= spa_syncing_txg(spa));
 4893                         if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
 4894                                 return;
 4895                         for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
 4896                                 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
 4897                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
 4898                 }
 4899                 if (vd != rvd)
 4900                         vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
 4901         }
 4902 }
 4903 
 4904 int64_t
 4905 vdev_deflated_space(vdev_t *vd, int64_t space)
 4906 {
 4907         ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0);
 4908         ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
 4909 
 4910         return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio);
 4911 }
 4912 
 4913 /*
 4914  * Update the in-core space usage stats for this vdev, its metaslab class,
 4915  * and the root vdev.
 4916  */
 4917 void
 4918 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
 4919     int64_t space_delta)
 4920 {
 4921         (void) defer_delta;
 4922         int64_t dspace_delta;
 4923         spa_t *spa = vd->vdev_spa;
 4924         vdev_t *rvd = spa->spa_root_vdev;
 4925 
 4926         ASSERT(vd == vd->vdev_top);
 4927 
 4928         /*
 4929          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
 4930          * factor.  We must calculate this here and not at the root vdev
 4931          * because the root vdev's psize-to-asize is simply the max of its
 4932          * children's, thus not accurate enough for us.
 4933          */
 4934         dspace_delta = vdev_deflated_space(vd, space_delta);
 4935 
 4936         mutex_enter(&vd->vdev_stat_lock);
 4937         /* ensure we won't underflow */
 4938         if (alloc_delta < 0) {
 4939                 ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta);
 4940         }
 4941 
 4942         vd->vdev_stat.vs_alloc += alloc_delta;
 4943         vd->vdev_stat.vs_space += space_delta;
 4944         vd->vdev_stat.vs_dspace += dspace_delta;
 4945         mutex_exit(&vd->vdev_stat_lock);
 4946 
 4947         /* every class but log contributes to root space stats */
 4948         if (vd->vdev_mg != NULL && !vd->vdev_islog) {
 4949                 ASSERT(!vd->vdev_isl2cache);
 4950                 mutex_enter(&rvd->vdev_stat_lock);
 4951                 rvd->vdev_stat.vs_alloc += alloc_delta;
 4952                 rvd->vdev_stat.vs_space += space_delta;
 4953                 rvd->vdev_stat.vs_dspace += dspace_delta;
 4954                 mutex_exit(&rvd->vdev_stat_lock);
 4955         }
 4956         /* Note: metaslab_class_space_update moved to metaslab_space_update */
 4957 }
 4958 
 4959 /*
 4960  * Mark a top-level vdev's config as dirty, placing it on the dirty list
 4961  * so that it will be written out next time the vdev configuration is synced.
 4962  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
 4963  */
 4964 void
 4965 vdev_config_dirty(vdev_t *vd)
 4966 {
 4967         spa_t *spa = vd->vdev_spa;
 4968         vdev_t *rvd = spa->spa_root_vdev;
 4969         int c;
 4970 
 4971         ASSERT(spa_writeable(spa));
 4972 
 4973         /*
 4974          * If this is an aux vdev (as with l2cache and spare devices), then we
 4975          * update the vdev config manually and set the sync flag.
 4976          */
 4977         if (vd->vdev_aux != NULL) {
 4978                 spa_aux_vdev_t *sav = vd->vdev_aux;
 4979                 nvlist_t **aux;
 4980                 uint_t naux;
 4981 
 4982                 for (c = 0; c < sav->sav_count; c++) {
 4983                         if (sav->sav_vdevs[c] == vd)
 4984                                 break;
 4985                 }
 4986 
 4987                 if (c == sav->sav_count) {
 4988                         /*
 4989                          * We're being removed.  There's nothing more to do.
 4990                          */
 4991                         ASSERT(sav->sav_sync == B_TRUE);
 4992                         return;
 4993                 }
 4994 
 4995                 sav->sav_sync = B_TRUE;
 4996 
 4997                 if (nvlist_lookup_nvlist_array(sav->sav_config,
 4998                     ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
 4999                         VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
 5000                             ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
 5001                 }
 5002 
 5003                 ASSERT(c < naux);
 5004 
 5005                 /*
 5006                  * Setting the nvlist in the middle if the array is a little
 5007                  * sketchy, but it will work.
 5008                  */
 5009                 nvlist_free(aux[c]);
 5010                 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
 5011 
 5012                 return;
 5013         }
 5014 
 5015         /*
 5016          * The dirty list is protected by the SCL_CONFIG lock.  The caller
 5017          * must either hold SCL_CONFIG as writer, or must be the sync thread
 5018          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
 5019          * so this is sufficient to ensure mutual exclusion.
 5020          */
 5021         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
 5022             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
 5023             spa_config_held(spa, SCL_CONFIG, RW_READER)));
 5024 
 5025         if (vd == rvd) {
 5026                 for (c = 0; c < rvd->vdev_children; c++)
 5027                         vdev_config_dirty(rvd->vdev_child[c]);
 5028         } else {
 5029                 ASSERT(vd == vd->vdev_top);
 5030 
 5031                 if (!list_link_active(&vd->vdev_config_dirty_node) &&
 5032                     vdev_is_concrete(vd)) {
 5033                         list_insert_head(&spa->spa_config_dirty_list, vd);
 5034                 }
 5035         }
 5036 }
 5037 
 5038 void
 5039 vdev_config_clean(vdev_t *vd)
 5040 {
 5041         spa_t *spa = vd->vdev_spa;
 5042 
 5043         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
 5044             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
 5045             spa_config_held(spa, SCL_CONFIG, RW_READER)));
 5046 
 5047         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
 5048         list_remove(&spa->spa_config_dirty_list, vd);
 5049 }
 5050 
 5051 /*
 5052  * Mark a top-level vdev's state as dirty, so that the next pass of
 5053  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
 5054  * the state changes from larger config changes because they require
 5055  * much less locking, and are often needed for administrative actions.
 5056  */
 5057 void
 5058 vdev_state_dirty(vdev_t *vd)
 5059 {
 5060         spa_t *spa = vd->vdev_spa;
 5061 
 5062         ASSERT(spa_writeable(spa));
 5063         ASSERT(vd == vd->vdev_top);
 5064 
 5065         /*
 5066          * The state list is protected by the SCL_STATE lock.  The caller
 5067          * must either hold SCL_STATE as writer, or must be the sync thread
 5068          * (which holds SCL_STATE as reader).  There's only one sync thread,
 5069          * so this is sufficient to ensure mutual exclusion.
 5070          */
 5071         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
 5072             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
 5073             spa_config_held(spa, SCL_STATE, RW_READER)));
 5074 
 5075         if (!list_link_active(&vd->vdev_state_dirty_node) &&
 5076             vdev_is_concrete(vd))
 5077                 list_insert_head(&spa->spa_state_dirty_list, vd);
 5078 }
 5079 
 5080 void
 5081 vdev_state_clean(vdev_t *vd)
 5082 {
 5083         spa_t *spa = vd->vdev_spa;
 5084 
 5085         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
 5086             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
 5087             spa_config_held(spa, SCL_STATE, RW_READER)));
 5088 
 5089         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
 5090         list_remove(&spa->spa_state_dirty_list, vd);
 5091 }
 5092 
 5093 /*
 5094  * Propagate vdev state up from children to parent.
 5095  */
 5096 void
 5097 vdev_propagate_state(vdev_t *vd)
 5098 {
 5099         spa_t *spa = vd->vdev_spa;
 5100         vdev_t *rvd = spa->spa_root_vdev;
 5101         int degraded = 0, faulted = 0;
 5102         int corrupted = 0;
 5103         vdev_t *child;
 5104 
 5105         if (vd->vdev_children > 0) {
 5106                 for (int c = 0; c < vd->vdev_children; c++) {
 5107                         child = vd->vdev_child[c];
 5108 
 5109                         /*
 5110                          * Don't factor holes or indirect vdevs into the
 5111                          * decision.
 5112                          */
 5113                         if (!vdev_is_concrete(child))
 5114                                 continue;
 5115 
 5116                         if (!vdev_readable(child) ||
 5117                             (!vdev_writeable(child) && spa_writeable(spa))) {
 5118                                 /*
 5119                                  * Root special: if there is a top-level log
 5120                                  * device, treat the root vdev as if it were
 5121                                  * degraded.
 5122                                  */
 5123                                 if (child->vdev_islog && vd == rvd)
 5124                                         degraded++;
 5125                                 else
 5126                                         faulted++;
 5127                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
 5128                                 degraded++;
 5129                         }
 5130 
 5131                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
 5132                                 corrupted++;
 5133                 }
 5134 
 5135                 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
 5136 
 5137                 /*
 5138                  * Root special: if there is a top-level vdev that cannot be
 5139                  * opened due to corrupted metadata, then propagate the root
 5140                  * vdev's aux state as 'corrupt' rather than 'insufficient
 5141                  * replicas'.
 5142                  */
 5143                 if (corrupted && vd == rvd &&
 5144                     rvd->vdev_state == VDEV_STATE_CANT_OPEN)
 5145                         vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
 5146                             VDEV_AUX_CORRUPT_DATA);
 5147         }
 5148 
 5149         if (vd->vdev_parent)
 5150                 vdev_propagate_state(vd->vdev_parent);
 5151 }
 5152 
 5153 /*
 5154  * Set a vdev's state.  If this is during an open, we don't update the parent
 5155  * state, because we're in the process of opening children depth-first.
 5156  * Otherwise, we propagate the change to the parent.
 5157  *
 5158  * If this routine places a device in a faulted state, an appropriate ereport is
 5159  * generated.
 5160  */
 5161 void
 5162 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
 5163 {
 5164         uint64_t save_state;
 5165         spa_t *spa = vd->vdev_spa;
 5166 
 5167         if (state == vd->vdev_state) {
 5168                 /*
 5169                  * Since vdev_offline() code path is already in an offline
 5170                  * state we can miss a statechange event to OFFLINE. Check
 5171                  * the previous state to catch this condition.
 5172                  */
 5173                 if (vd->vdev_ops->vdev_op_leaf &&
 5174                     (state == VDEV_STATE_OFFLINE) &&
 5175                     (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) {
 5176                         /* post an offline state change */
 5177                         zfs_post_state_change(spa, vd, vd->vdev_prevstate);
 5178                 }
 5179                 vd->vdev_stat.vs_aux = aux;
 5180                 return;
 5181         }
 5182 
 5183         save_state = vd->vdev_state;
 5184 
 5185         vd->vdev_state = state;
 5186         vd->vdev_stat.vs_aux = aux;
 5187 
 5188         /*
 5189          * If we are setting the vdev state to anything but an open state, then
 5190          * always close the underlying device unless the device has requested
 5191          * a delayed close (i.e. we're about to remove or fault the device).
 5192          * Otherwise, we keep accessible but invalid devices open forever.
 5193          * We don't call vdev_close() itself, because that implies some extra
 5194          * checks (offline, etc) that we don't want here.  This is limited to
 5195          * leaf devices, because otherwise closing the device will affect other
 5196          * children.
 5197          */
 5198         if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
 5199             vd->vdev_ops->vdev_op_leaf)
 5200                 vd->vdev_ops->vdev_op_close(vd);
 5201 
 5202         if (vd->vdev_removed &&
 5203             state == VDEV_STATE_CANT_OPEN &&
 5204             (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
 5205                 /*
 5206                  * If the previous state is set to VDEV_STATE_REMOVED, then this
 5207                  * device was previously marked removed and someone attempted to
 5208                  * reopen it.  If this failed due to a nonexistent device, then
 5209                  * keep the device in the REMOVED state.  We also let this be if
 5210                  * it is one of our special test online cases, which is only
 5211                  * attempting to online the device and shouldn't generate an FMA
 5212                  * fault.
 5213                  */
 5214                 vd->vdev_state = VDEV_STATE_REMOVED;
 5215                 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
 5216         } else if (state == VDEV_STATE_REMOVED) {
 5217                 vd->vdev_removed = B_TRUE;
 5218         } else if (state == VDEV_STATE_CANT_OPEN) {
 5219                 /*
 5220                  * If we fail to open a vdev during an import or recovery, we
 5221                  * mark it as "not available", which signifies that it was
 5222                  * never there to begin with.  Failure to open such a device
 5223                  * is not considered an error.
 5224                  */
 5225                 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
 5226                     spa_load_state(spa) == SPA_LOAD_RECOVER) &&
 5227                     vd->vdev_ops->vdev_op_leaf)
 5228                         vd->vdev_not_present = 1;
 5229 
 5230                 /*
 5231                  * Post the appropriate ereport.  If the 'prevstate' field is
 5232                  * set to something other than VDEV_STATE_UNKNOWN, it indicates
 5233                  * that this is part of a vdev_reopen().  In this case, we don't
 5234                  * want to post the ereport if the device was already in the
 5235                  * CANT_OPEN state beforehand.
 5236                  *
 5237                  * If the 'checkremove' flag is set, then this is an attempt to
 5238                  * online the device in response to an insertion event.  If we
 5239                  * hit this case, then we have detected an insertion event for a
 5240                  * faulted or offline device that wasn't in the removed state.
 5241                  * In this scenario, we don't post an ereport because we are
 5242                  * about to replace the device, or attempt an online with
 5243                  * vdev_forcefault, which will generate the fault for us.
 5244                  */
 5245                 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
 5246                     !vd->vdev_not_present && !vd->vdev_checkremove &&
 5247                     vd != spa->spa_root_vdev) {
 5248                         const char *class;
 5249 
 5250                         switch (aux) {
 5251                         case VDEV_AUX_OPEN_FAILED:
 5252                                 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
 5253                                 break;
 5254                         case VDEV_AUX_CORRUPT_DATA:
 5255                                 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
 5256                                 break;
 5257                         case VDEV_AUX_NO_REPLICAS:
 5258                                 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
 5259                                 break;
 5260                         case VDEV_AUX_BAD_GUID_SUM:
 5261                                 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
 5262                                 break;
 5263                         case VDEV_AUX_TOO_SMALL:
 5264                                 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
 5265                                 break;
 5266                         case VDEV_AUX_BAD_LABEL:
 5267                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
 5268                                 break;
 5269                         case VDEV_AUX_BAD_ASHIFT:
 5270                                 class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT;
 5271                                 break;
 5272                         default:
 5273                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
 5274                         }
 5275 
 5276                         (void) zfs_ereport_post(class, spa, vd, NULL, NULL,
 5277                             save_state);
 5278                 }
 5279 
 5280                 /* Erase any notion of persistent removed state */
 5281                 vd->vdev_removed = B_FALSE;
 5282         } else {
 5283                 vd->vdev_removed = B_FALSE;
 5284         }
 5285 
 5286         /*
 5287          * Notify ZED of any significant state-change on a leaf vdev.
 5288          *
 5289          */
 5290         if (vd->vdev_ops->vdev_op_leaf) {
 5291                 /* preserve original state from a vdev_reopen() */
 5292                 if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) &&
 5293                     (vd->vdev_prevstate != vd->vdev_state) &&
 5294                     (save_state <= VDEV_STATE_CLOSED))
 5295                         save_state = vd->vdev_prevstate;
 5296 
 5297                 /* filter out state change due to initial vdev_open */
 5298                 if (save_state > VDEV_STATE_CLOSED)
 5299                         zfs_post_state_change(spa, vd, save_state);
 5300         }
 5301 
 5302         if (!isopen && vd->vdev_parent)
 5303                 vdev_propagate_state(vd->vdev_parent);
 5304 }
 5305 
 5306 boolean_t
 5307 vdev_children_are_offline(vdev_t *vd)
 5308 {
 5309         ASSERT(!vd->vdev_ops->vdev_op_leaf);
 5310 
 5311         for (uint64_t i = 0; i < vd->vdev_children; i++) {
 5312                 if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
 5313                         return (B_FALSE);
 5314         }
 5315 
 5316         return (B_TRUE);
 5317 }
 5318 
 5319 /*
 5320  * Check the vdev configuration to ensure that it's capable of supporting
 5321  * a root pool. We do not support partial configuration.
 5322  */
 5323 boolean_t
 5324 vdev_is_bootable(vdev_t *vd)
 5325 {
 5326         if (!vd->vdev_ops->vdev_op_leaf) {
 5327                 const char *vdev_type = vd->vdev_ops->vdev_op_type;
 5328 
 5329                 if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0)
 5330                         return (B_FALSE);
 5331         }
 5332 
 5333         for (int c = 0; c < vd->vdev_children; c++) {
 5334                 if (!vdev_is_bootable(vd->vdev_child[c]))
 5335                         return (B_FALSE);
 5336         }
 5337         return (B_TRUE);
 5338 }
 5339 
 5340 boolean_t
 5341 vdev_is_concrete(vdev_t *vd)
 5342 {
 5343         vdev_ops_t *ops = vd->vdev_ops;
 5344         if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
 5345             ops == &vdev_missing_ops || ops == &vdev_root_ops) {
 5346                 return (B_FALSE);
 5347         } else {
 5348                 return (B_TRUE);
 5349         }
 5350 }
 5351 
 5352 /*
 5353  * Determine if a log device has valid content.  If the vdev was
 5354  * removed or faulted in the MOS config then we know that
 5355  * the content on the log device has already been written to the pool.
 5356  */
 5357 boolean_t
 5358 vdev_log_state_valid(vdev_t *vd)
 5359 {
 5360         if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
 5361             !vd->vdev_removed)
 5362                 return (B_TRUE);
 5363 
 5364         for (int c = 0; c < vd->vdev_children; c++)
 5365                 if (vdev_log_state_valid(vd->vdev_child[c]))
 5366                         return (B_TRUE);
 5367 
 5368         return (B_FALSE);
 5369 }
 5370 
 5371 /*
 5372  * Expand a vdev if possible.
 5373  */
 5374 void
 5375 vdev_expand(vdev_t *vd, uint64_t txg)
 5376 {
 5377         ASSERT(vd->vdev_top == vd);
 5378         ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
 5379         ASSERT(vdev_is_concrete(vd));
 5380 
 5381         vdev_set_deflate_ratio(vd);
 5382 
 5383         if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
 5384             vdev_is_concrete(vd)) {
 5385                 vdev_metaslab_group_create(vd);
 5386                 VERIFY(vdev_metaslab_init(vd, txg) == 0);
 5387                 vdev_config_dirty(vd);
 5388         }
 5389 }
 5390 
 5391 /*
 5392  * Split a vdev.
 5393  */
 5394 void
 5395 vdev_split(vdev_t *vd)
 5396 {
 5397         vdev_t *cvd, *pvd = vd->vdev_parent;
 5398 
 5399         vdev_remove_child(pvd, vd);
 5400         vdev_compact_children(pvd);
 5401 
 5402         cvd = pvd->vdev_child[0];
 5403         if (pvd->vdev_children == 1) {
 5404                 vdev_remove_parent(cvd);
 5405                 cvd->vdev_splitting = B_TRUE;
 5406         }
 5407         vdev_propagate_state(cvd);
 5408 }
 5409 
 5410 void
 5411 vdev_deadman(vdev_t *vd, const char *tag)
 5412 {
 5413         for (int c = 0; c < vd->vdev_children; c++) {
 5414                 vdev_t *cvd = vd->vdev_child[c];
 5415 
 5416                 vdev_deadman(cvd, tag);
 5417         }
 5418 
 5419         if (vd->vdev_ops->vdev_op_leaf) {
 5420                 vdev_queue_t *vq = &vd->vdev_queue;
 5421 
 5422                 mutex_enter(&vq->vq_lock);
 5423                 if (avl_numnodes(&vq->vq_active_tree) > 0) {
 5424                         spa_t *spa = vd->vdev_spa;
 5425                         zio_t *fio;
 5426                         uint64_t delta;
 5427 
 5428                         zfs_dbgmsg("slow vdev: %s has %lu active IOs",
 5429                             vd->vdev_path, avl_numnodes(&vq->vq_active_tree));
 5430 
 5431                         /*
 5432                          * Look at the head of all the pending queues,
 5433                          * if any I/O has been outstanding for longer than
 5434                          * the spa_deadman_synctime invoke the deadman logic.
 5435                          */
 5436                         fio = avl_first(&vq->vq_active_tree);
 5437                         delta = gethrtime() - fio->io_timestamp;
 5438                         if (delta > spa_deadman_synctime(spa))
 5439                                 zio_deadman(fio, tag);
 5440                 }
 5441                 mutex_exit(&vq->vq_lock);
 5442         }
 5443 }
 5444 
 5445 void
 5446 vdev_defer_resilver(vdev_t *vd)
 5447 {
 5448         ASSERT(vd->vdev_ops->vdev_op_leaf);
 5449 
 5450         vd->vdev_resilver_deferred = B_TRUE;
 5451         vd->vdev_spa->spa_resilver_deferred = B_TRUE;
 5452 }
 5453 
 5454 /*
 5455  * Clears the resilver deferred flag on all leaf devs under vd. Returns
 5456  * B_TRUE if we have devices that need to be resilvered and are available to
 5457  * accept resilver I/Os.
 5458  */
 5459 boolean_t
 5460 vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx)
 5461 {
 5462         boolean_t resilver_needed = B_FALSE;
 5463         spa_t *spa = vd->vdev_spa;
 5464 
 5465         for (int c = 0; c < vd->vdev_children; c++) {
 5466                 vdev_t *cvd = vd->vdev_child[c];
 5467                 resilver_needed |= vdev_clear_resilver_deferred(cvd, tx);
 5468         }
 5469 
 5470         if (vd == spa->spa_root_vdev &&
 5471             spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) {
 5472                 spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
 5473                 vdev_config_dirty(vd);
 5474                 spa->spa_resilver_deferred = B_FALSE;
 5475                 return (resilver_needed);
 5476         }
 5477 
 5478         if (!vdev_is_concrete(vd) || vd->vdev_aux ||
 5479             !vd->vdev_ops->vdev_op_leaf)
 5480                 return (resilver_needed);
 5481 
 5482         vd->vdev_resilver_deferred = B_FALSE;
 5483 
 5484         return (!vdev_is_dead(vd) && !vd->vdev_offline &&
 5485             vdev_resilver_needed(vd, NULL, NULL));
 5486 }
 5487 
 5488 boolean_t
 5489 vdev_xlate_is_empty(range_seg64_t *rs)
 5490 {
 5491         return (rs->rs_start == rs->rs_end);
 5492 }
 5493 
 5494 /*
 5495  * Translate a logical range to the first contiguous physical range for the
 5496  * specified vdev_t.  This function is initially called with a leaf vdev and
 5497  * will walk each parent vdev until it reaches a top-level vdev. Once the
 5498  * top-level is reached the physical range is initialized and the recursive
 5499  * function begins to unwind. As it unwinds it calls the parent's vdev
 5500  * specific translation function to do the real conversion.
 5501  */
 5502 void
 5503 vdev_xlate(vdev_t *vd, const range_seg64_t *logical_rs,
 5504     range_seg64_t *physical_rs, range_seg64_t *remain_rs)
 5505 {
 5506         /*
 5507          * Walk up the vdev tree
 5508          */
 5509         if (vd != vd->vdev_top) {
 5510                 vdev_xlate(vd->vdev_parent, logical_rs, physical_rs,
 5511                     remain_rs);
 5512         } else {
 5513                 /*
 5514                  * We've reached the top-level vdev, initialize the physical
 5515                  * range to the logical range and set an empty remaining
 5516                  * range then start to unwind.
 5517                  */
 5518                 physical_rs->rs_start = logical_rs->rs_start;
 5519                 physical_rs->rs_end = logical_rs->rs_end;
 5520 
 5521                 remain_rs->rs_start = logical_rs->rs_start;
 5522                 remain_rs->rs_end = logical_rs->rs_start;
 5523 
 5524                 return;
 5525         }
 5526 
 5527         vdev_t *pvd = vd->vdev_parent;
 5528         ASSERT3P(pvd, !=, NULL);
 5529         ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL);
 5530 
 5531         /*
 5532          * As this recursive function unwinds, translate the logical
 5533          * range into its physical and any remaining components by calling
 5534          * the vdev specific translate function.
 5535          */
 5536         range_seg64_t intermediate = { 0 };
 5537         pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate, remain_rs);
 5538 
 5539         physical_rs->rs_start = intermediate.rs_start;
 5540         physical_rs->rs_end = intermediate.rs_end;
 5541 }
 5542 
 5543 void
 5544 vdev_xlate_walk(vdev_t *vd, const range_seg64_t *logical_rs,
 5545     vdev_xlate_func_t *func, void *arg)
 5546 {
 5547         range_seg64_t iter_rs = *logical_rs;
 5548         range_seg64_t physical_rs;
 5549         range_seg64_t remain_rs;
 5550 
 5551         while (!vdev_xlate_is_empty(&iter_rs)) {
 5552 
 5553                 vdev_xlate(vd, &iter_rs, &physical_rs, &remain_rs);
 5554 
 5555                 /*
 5556                  * With raidz and dRAID, it's possible that the logical range
 5557                  * does not live on this leaf vdev. Only when there is a non-
 5558                  * zero physical size call the provided function.
 5559                  */
 5560                 if (!vdev_xlate_is_empty(&physical_rs))
 5561                         func(arg, &physical_rs);
 5562 
 5563                 iter_rs = remain_rs;
 5564         }
 5565 }
 5566 
 5567 static char *
 5568 vdev_name(vdev_t *vd, char *buf, int buflen)
 5569 {
 5570         if (vd->vdev_path == NULL) {
 5571                 if (strcmp(vd->vdev_ops->vdev_op_type, "root") == 0) {
 5572                         strlcpy(buf, vd->vdev_spa->spa_name, buflen);
 5573                 } else if (!vd->vdev_ops->vdev_op_leaf) {
 5574                         snprintf(buf, buflen, "%s-%llu",
 5575                             vd->vdev_ops->vdev_op_type,
 5576                             (u_longlong_t)vd->vdev_id);
 5577                 }
 5578         } else {
 5579                 strlcpy(buf, vd->vdev_path, buflen);
 5580         }
 5581         return (buf);
 5582 }
 5583 
 5584 /*
 5585  * Look at the vdev tree and determine whether any devices are currently being
 5586  * replaced.
 5587  */
 5588 boolean_t
 5589 vdev_replace_in_progress(vdev_t *vdev)
 5590 {
 5591         ASSERT(spa_config_held(vdev->vdev_spa, SCL_ALL, RW_READER) != 0);
 5592 
 5593         if (vdev->vdev_ops == &vdev_replacing_ops)
 5594                 return (B_TRUE);
 5595 
 5596         /*
 5597          * A 'spare' vdev indicates that we have a replace in progress, unless
 5598          * it has exactly two children, and the second, the hot spare, has
 5599          * finished being resilvered.
 5600          */
 5601         if (vdev->vdev_ops == &vdev_spare_ops && (vdev->vdev_children > 2 ||
 5602             !vdev_dtl_empty(vdev->vdev_child[1], DTL_MISSING)))
 5603                 return (B_TRUE);
 5604 
 5605         for (int i = 0; i < vdev->vdev_children; i++) {
 5606                 if (vdev_replace_in_progress(vdev->vdev_child[i]))
 5607                         return (B_TRUE);
 5608         }
 5609 
 5610         return (B_FALSE);
 5611 }
 5612 
 5613 /*
 5614  * Add a (source=src, propname=propval) list to an nvlist.
 5615  */
 5616 static void
 5617 vdev_prop_add_list(nvlist_t *nvl, const char *propname, char *strval,
 5618     uint64_t intval, zprop_source_t src)
 5619 {
 5620         nvlist_t *propval;
 5621 
 5622         propval = fnvlist_alloc();
 5623         fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
 5624 
 5625         if (strval != NULL)
 5626                 fnvlist_add_string(propval, ZPROP_VALUE, strval);
 5627         else
 5628                 fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
 5629 
 5630         fnvlist_add_nvlist(nvl, propname, propval);
 5631         nvlist_free(propval);
 5632 }
 5633 
 5634 static void
 5635 vdev_props_set_sync(void *arg, dmu_tx_t *tx)
 5636 {
 5637         vdev_t *vd;
 5638         nvlist_t *nvp = arg;
 5639         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
 5640         objset_t *mos = spa->spa_meta_objset;
 5641         nvpair_t *elem = NULL;
 5642         uint64_t vdev_guid;
 5643         nvlist_t *nvprops;
 5644 
 5645         vdev_guid = fnvlist_lookup_uint64(nvp, ZPOOL_VDEV_PROPS_SET_VDEV);
 5646         nvprops = fnvlist_lookup_nvlist(nvp, ZPOOL_VDEV_PROPS_SET_PROPS);
 5647         vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE);
 5648 
 5649         /* this vdev could get removed while waiting for this sync task */
 5650         if (vd == NULL)
 5651                 return;
 5652 
 5653         mutex_enter(&spa->spa_props_lock);
 5654 
 5655         while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
 5656                 uint64_t intval, objid = 0;
 5657                 char *strval;
 5658                 vdev_prop_t prop;
 5659                 const char *propname = nvpair_name(elem);
 5660                 zprop_type_t proptype;
 5661 
 5662                 /*
 5663                  * Set vdev property values in the vdev props mos object.
 5664                  */
 5665                 if (vd->vdev_top_zap != 0) {
 5666                         objid = vd->vdev_top_zap;
 5667                 } else if (vd->vdev_leaf_zap != 0) {
 5668                         objid = vd->vdev_leaf_zap;
 5669                 } else {
 5670                         panic("vdev not top or leaf");
 5671                 }
 5672 
 5673                 switch (prop = vdev_name_to_prop(propname)) {
 5674                 case VDEV_PROP_USERPROP:
 5675                         if (vdev_prop_user(propname)) {
 5676                                 strval = fnvpair_value_string(elem);
 5677                                 if (strlen(strval) == 0) {
 5678                                         /* remove the property if value == "" */
 5679                                         (void) zap_remove(mos, objid, propname,
 5680                                             tx);
 5681                                 } else {
 5682                                         VERIFY0(zap_update(mos, objid, propname,
 5683                                             1, strlen(strval) + 1, strval, tx));
 5684                                 }
 5685                                 spa_history_log_internal(spa, "vdev set", tx,
 5686                                     "vdev_guid=%llu: %s=%s",
 5687                                     (u_longlong_t)vdev_guid, nvpair_name(elem),
 5688                                     strval);
 5689                         }
 5690                         break;
 5691                 default:
 5692                         /* normalize the property name */
 5693                         propname = vdev_prop_to_name(prop);
 5694                         proptype = vdev_prop_get_type(prop);
 5695 
 5696                         if (nvpair_type(elem) == DATA_TYPE_STRING) {
 5697                                 ASSERT(proptype == PROP_TYPE_STRING);
 5698                                 strval = fnvpair_value_string(elem);
 5699                                 VERIFY0(zap_update(mos, objid, propname,
 5700                                     1, strlen(strval) + 1, strval, tx));
 5701                                 spa_history_log_internal(spa, "vdev set", tx,
 5702                                     "vdev_guid=%llu: %s=%s",
 5703                                     (u_longlong_t)vdev_guid, nvpair_name(elem),
 5704                                     strval);
 5705                         } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
 5706                                 intval = fnvpair_value_uint64(elem);
 5707 
 5708                                 if (proptype == PROP_TYPE_INDEX) {
 5709                                         const char *unused;
 5710                                         VERIFY0(vdev_prop_index_to_string(
 5711                                             prop, intval, &unused));
 5712                                 }
 5713                                 VERIFY0(zap_update(mos, objid, propname,
 5714                                     sizeof (uint64_t), 1, &intval, tx));
 5715                                 spa_history_log_internal(spa, "vdev set", tx,
 5716                                     "vdev_guid=%llu: %s=%lld",
 5717                                     (u_longlong_t)vdev_guid,
 5718                                     nvpair_name(elem), (longlong_t)intval);
 5719                         } else {
 5720                                 panic("invalid vdev property type %u",
 5721                                     nvpair_type(elem));
 5722                         }
 5723                 }
 5724 
 5725         }
 5726 
 5727         mutex_exit(&spa->spa_props_lock);
 5728 }
 5729 
 5730 int
 5731 vdev_prop_set(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl)
 5732 {
 5733         spa_t *spa = vd->vdev_spa;
 5734         nvpair_t *elem = NULL;
 5735         uint64_t vdev_guid;
 5736         nvlist_t *nvprops;
 5737         int error = 0;
 5738 
 5739         ASSERT(vd != NULL);
 5740 
 5741         if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_SET_VDEV,
 5742             &vdev_guid) != 0)
 5743                 return (SET_ERROR(EINVAL));
 5744 
 5745         if (nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_SET_PROPS,
 5746             &nvprops) != 0)
 5747                 return (SET_ERROR(EINVAL));
 5748 
 5749         if ((vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE)) == NULL)
 5750                 return (SET_ERROR(EINVAL));
 5751 
 5752         while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
 5753                 char *propname = nvpair_name(elem);
 5754                 vdev_prop_t prop = vdev_name_to_prop(propname);
 5755                 uint64_t intval = 0;
 5756                 char *strval = NULL;
 5757 
 5758                 if (prop == VDEV_PROP_USERPROP && !vdev_prop_user(propname)) {
 5759                         error = EINVAL;
 5760                         goto end;
 5761                 }
 5762 
 5763                 if (vdev_prop_readonly(prop)) {
 5764                         error = EROFS;
 5765                         goto end;
 5766                 }
 5767 
 5768                 /* Special Processing */
 5769                 switch (prop) {
 5770                 case VDEV_PROP_PATH:
 5771                         if (vd->vdev_path == NULL) {
 5772                                 error = EROFS;
 5773                                 break;
 5774                         }
 5775                         if (nvpair_value_string(elem, &strval) != 0) {
 5776                                 error = EINVAL;
 5777                                 break;
 5778                         }
 5779                         /* New path must start with /dev/ */
 5780                         if (strncmp(strval, "/dev/", 5)) {
 5781                                 error = EINVAL;
 5782                                 break;
 5783                         }
 5784                         error = spa_vdev_setpath(spa, vdev_guid, strval);
 5785                         break;
 5786                 case VDEV_PROP_ALLOCATING:
 5787                         if (nvpair_value_uint64(elem, &intval) != 0) {
 5788                                 error = EINVAL;
 5789                                 break;
 5790                         }
 5791                         if (intval != vd->vdev_noalloc)
 5792                                 break;
 5793                         if (intval == 0)
 5794                                 error = spa_vdev_noalloc(spa, vdev_guid);
 5795                         else
 5796                                 error = spa_vdev_alloc(spa, vdev_guid);
 5797                         break;
 5798                 case VDEV_PROP_FAILFAST:
 5799                         if (nvpair_value_uint64(elem, &intval) != 0) {
 5800                                 error = EINVAL;
 5801                                 break;
 5802                         }
 5803                         vd->vdev_failfast = intval & 1;
 5804                         break;
 5805                 case VDEV_PROP_CHECKSUM_N:
 5806                         if (nvpair_value_uint64(elem, &intval) != 0) {
 5807                                 error = EINVAL;
 5808                                 break;
 5809                         }
 5810                         vd->vdev_checksum_n = intval;
 5811                         break;
 5812                 case VDEV_PROP_CHECKSUM_T:
 5813                         if (nvpair_value_uint64(elem, &intval) != 0) {
 5814                                 error = EINVAL;
 5815                                 break;
 5816                         }
 5817                         vd->vdev_checksum_t = intval;
 5818                         break;
 5819                 case VDEV_PROP_IO_N:
 5820                         if (nvpair_value_uint64(elem, &intval) != 0) {
 5821                                 error = EINVAL;
 5822                                 break;
 5823                         }
 5824                         vd->vdev_io_n = intval;
 5825                         break;
 5826                 case VDEV_PROP_IO_T:
 5827                         if (nvpair_value_uint64(elem, &intval) != 0) {
 5828                                 error = EINVAL;
 5829                                 break;
 5830                         }
 5831                         vd->vdev_io_t = intval;
 5832                         break;
 5833                 default:
 5834                         /* Most processing is done in vdev_props_set_sync */
 5835                         break;
 5836                 }
 5837 end:
 5838                 if (error != 0) {
 5839                         intval = error;
 5840                         vdev_prop_add_list(outnvl, propname, strval, intval, 0);
 5841                         return (error);
 5842                 }
 5843         }
 5844 
 5845         return (dsl_sync_task(spa->spa_name, NULL, vdev_props_set_sync,
 5846             innvl, 6, ZFS_SPACE_CHECK_EXTRA_RESERVED));
 5847 }
 5848 
 5849 int
 5850 vdev_prop_get(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl)
 5851 {
 5852         spa_t *spa = vd->vdev_spa;
 5853         objset_t *mos = spa->spa_meta_objset;
 5854         int err = 0;
 5855         uint64_t objid;
 5856         uint64_t vdev_guid;
 5857         nvpair_t *elem = NULL;
 5858         nvlist_t *nvprops = NULL;
 5859         uint64_t intval = 0;
 5860         char *strval = NULL;
 5861         const char *propname = NULL;
 5862         vdev_prop_t prop;
 5863 
 5864         ASSERT(vd != NULL);
 5865         ASSERT(mos != NULL);
 5866 
 5867         if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_GET_VDEV,
 5868             &vdev_guid) != 0)
 5869                 return (SET_ERROR(EINVAL));
 5870 
 5871         nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_GET_PROPS, &nvprops);
 5872 
 5873         if (vd->vdev_top_zap != 0) {
 5874                 objid = vd->vdev_top_zap;
 5875         } else if (vd->vdev_leaf_zap != 0) {
 5876                 objid = vd->vdev_leaf_zap;
 5877         } else {
 5878                 return (SET_ERROR(EINVAL));
 5879         }
 5880         ASSERT(objid != 0);
 5881 
 5882         mutex_enter(&spa->spa_props_lock);
 5883 
 5884         if (nvprops != NULL) {
 5885                 char namebuf[64] = { 0 };
 5886 
 5887                 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
 5888                         intval = 0;
 5889                         strval = NULL;
 5890                         propname = nvpair_name(elem);
 5891                         prop = vdev_name_to_prop(propname);
 5892                         zprop_source_t src = ZPROP_SRC_DEFAULT;
 5893                         uint64_t integer_size, num_integers;
 5894 
 5895                         switch (prop) {
 5896                         /* Special Read-only Properties */
 5897                         case VDEV_PROP_NAME:
 5898                                 strval = vdev_name(vd, namebuf,
 5899                                     sizeof (namebuf));
 5900                                 if (strval == NULL)
 5901                                         continue;
 5902                                 vdev_prop_add_list(outnvl, propname, strval, 0,
 5903                                     ZPROP_SRC_NONE);
 5904                                 continue;
 5905                         case VDEV_PROP_CAPACITY:
 5906                                 /* percent used */
 5907                                 intval = (vd->vdev_stat.vs_dspace == 0) ? 0 :
 5908                                     (vd->vdev_stat.vs_alloc * 100 /
 5909                                     vd->vdev_stat.vs_dspace);
 5910                                 vdev_prop_add_list(outnvl, propname, NULL,
 5911                                     intval, ZPROP_SRC_NONE);
 5912                                 continue;
 5913                         case VDEV_PROP_STATE:
 5914                                 vdev_prop_add_list(outnvl, propname, NULL,
 5915                                     vd->vdev_state, ZPROP_SRC_NONE);
 5916                                 continue;
 5917                         case VDEV_PROP_GUID:
 5918                                 vdev_prop_add_list(outnvl, propname, NULL,
 5919                                     vd->vdev_guid, ZPROP_SRC_NONE);
 5920                                 continue;
 5921                         case VDEV_PROP_ASIZE:
 5922                                 vdev_prop_add_list(outnvl, propname, NULL,
 5923                                     vd->vdev_asize, ZPROP_SRC_NONE);
 5924                                 continue;
 5925                         case VDEV_PROP_PSIZE:
 5926                                 vdev_prop_add_list(outnvl, propname, NULL,
 5927                                     vd->vdev_psize, ZPROP_SRC_NONE);
 5928                                 continue;
 5929                         case VDEV_PROP_ASHIFT:
 5930                                 vdev_prop_add_list(outnvl, propname, NULL,
 5931                                     vd->vdev_ashift, ZPROP_SRC_NONE);
 5932                                 continue;
 5933                         case VDEV_PROP_SIZE:
 5934                                 vdev_prop_add_list(outnvl, propname, NULL,
 5935                                     vd->vdev_stat.vs_dspace, ZPROP_SRC_NONE);
 5936                                 continue;
 5937                         case VDEV_PROP_FREE:
 5938                                 vdev_prop_add_list(outnvl, propname, NULL,
 5939                                     vd->vdev_stat.vs_dspace -
 5940                                     vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE);
 5941                                 continue;
 5942                         case VDEV_PROP_ALLOCATED:
 5943                                 vdev_prop_add_list(outnvl, propname, NULL,
 5944                                     vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE);
 5945                                 continue;
 5946                         case VDEV_PROP_EXPANDSZ:
 5947                                 vdev_prop_add_list(outnvl, propname, NULL,
 5948                                     vd->vdev_stat.vs_esize, ZPROP_SRC_NONE);
 5949                                 continue;
 5950                         case VDEV_PROP_FRAGMENTATION:
 5951                                 vdev_prop_add_list(outnvl, propname, NULL,
 5952                                     vd->vdev_stat.vs_fragmentation,
 5953                                     ZPROP_SRC_NONE);
 5954                                 continue;
 5955                         case VDEV_PROP_PARITY:
 5956                                 vdev_prop_add_list(outnvl, propname, NULL,
 5957                                     vdev_get_nparity(vd), ZPROP_SRC_NONE);
 5958                                 continue;
 5959                         case VDEV_PROP_PATH:
 5960                                 if (vd->vdev_path == NULL)
 5961                                         continue;
 5962                                 vdev_prop_add_list(outnvl, propname,
 5963                                     vd->vdev_path, 0, ZPROP_SRC_NONE);
 5964                                 continue;
 5965                         case VDEV_PROP_DEVID:
 5966                                 if (vd->vdev_devid == NULL)
 5967                                         continue;
 5968                                 vdev_prop_add_list(outnvl, propname,
 5969                                     vd->vdev_devid, 0, ZPROP_SRC_NONE);
 5970                                 continue;
 5971                         case VDEV_PROP_PHYS_PATH:
 5972                                 if (vd->vdev_physpath == NULL)
 5973                                         continue;
 5974                                 vdev_prop_add_list(outnvl, propname,
 5975                                     vd->vdev_physpath, 0, ZPROP_SRC_NONE);
 5976                                 continue;
 5977                         case VDEV_PROP_ENC_PATH:
 5978                                 if (vd->vdev_enc_sysfs_path == NULL)
 5979                                         continue;
 5980                                 vdev_prop_add_list(outnvl, propname,
 5981                                     vd->vdev_enc_sysfs_path, 0, ZPROP_SRC_NONE);
 5982                                 continue;
 5983                         case VDEV_PROP_FRU:
 5984                                 if (vd->vdev_fru == NULL)
 5985                                         continue;
 5986                                 vdev_prop_add_list(outnvl, propname,
 5987                                     vd->vdev_fru, 0, ZPROP_SRC_NONE);
 5988                                 continue;
 5989                         case VDEV_PROP_PARENT:
 5990                                 if (vd->vdev_parent != NULL) {
 5991                                         strval = vdev_name(vd->vdev_parent,
 5992                                             namebuf, sizeof (namebuf));
 5993                                         vdev_prop_add_list(outnvl, propname,
 5994                                             strval, 0, ZPROP_SRC_NONE);
 5995                                 }
 5996                                 continue;
 5997                         case VDEV_PROP_CHILDREN:
 5998                                 if (vd->vdev_children > 0)
 5999                                         strval = kmem_zalloc(ZAP_MAXVALUELEN,
 6000                                             KM_SLEEP);
 6001                                 for (uint64_t i = 0; i < vd->vdev_children;
 6002                                     i++) {
 6003                                         const char *vname;
 6004 
 6005                                         vname = vdev_name(vd->vdev_child[i],
 6006                                             namebuf, sizeof (namebuf));
 6007                                         if (vname == NULL)
 6008                                                 vname = "(unknown)";
 6009                                         if (strlen(strval) > 0)
 6010                                                 strlcat(strval, ",",
 6011                                                     ZAP_MAXVALUELEN);
 6012                                         strlcat(strval, vname, ZAP_MAXVALUELEN);
 6013                                 }
 6014                                 if (strval != NULL) {
 6015                                         vdev_prop_add_list(outnvl, propname,
 6016                                             strval, 0, ZPROP_SRC_NONE);
 6017                                         kmem_free(strval, ZAP_MAXVALUELEN);
 6018                                 }
 6019                                 continue;
 6020                         case VDEV_PROP_NUMCHILDREN:
 6021                                 vdev_prop_add_list(outnvl, propname, NULL,
 6022                                     vd->vdev_children, ZPROP_SRC_NONE);
 6023                                 continue;
 6024                         case VDEV_PROP_READ_ERRORS:
 6025                                 vdev_prop_add_list(outnvl, propname, NULL,
 6026                                     vd->vdev_stat.vs_read_errors,
 6027                                     ZPROP_SRC_NONE);
 6028                                 continue;
 6029                         case VDEV_PROP_WRITE_ERRORS:
 6030                                 vdev_prop_add_list(outnvl, propname, NULL,
 6031                                     vd->vdev_stat.vs_write_errors,
 6032                                     ZPROP_SRC_NONE);
 6033                                 continue;
 6034                         case VDEV_PROP_CHECKSUM_ERRORS:
 6035                                 vdev_prop_add_list(outnvl, propname, NULL,
 6036                                     vd->vdev_stat.vs_checksum_errors,
 6037                                     ZPROP_SRC_NONE);
 6038                                 continue;
 6039                         case VDEV_PROP_INITIALIZE_ERRORS:
 6040                                 vdev_prop_add_list(outnvl, propname, NULL,
 6041                                     vd->vdev_stat.vs_initialize_errors,
 6042                                     ZPROP_SRC_NONE);
 6043                                 continue;
 6044                         case VDEV_PROP_OPS_NULL:
 6045                                 vdev_prop_add_list(outnvl, propname, NULL,
 6046                                     vd->vdev_stat.vs_ops[ZIO_TYPE_NULL],
 6047                                     ZPROP_SRC_NONE);
 6048                                 continue;
 6049                         case VDEV_PROP_OPS_READ:
 6050                                 vdev_prop_add_list(outnvl, propname, NULL,
 6051                                     vd->vdev_stat.vs_ops[ZIO_TYPE_READ],
 6052                                     ZPROP_SRC_NONE);
 6053                                 continue;
 6054                         case VDEV_PROP_OPS_WRITE:
 6055                                 vdev_prop_add_list(outnvl, propname, NULL,
 6056                                     vd->vdev_stat.vs_ops[ZIO_TYPE_WRITE],
 6057                                     ZPROP_SRC_NONE);
 6058                                 continue;
 6059                         case VDEV_PROP_OPS_FREE:
 6060                                 vdev_prop_add_list(outnvl, propname, NULL,
 6061                                     vd->vdev_stat.vs_ops[ZIO_TYPE_FREE],
 6062                                     ZPROP_SRC_NONE);
 6063                                 continue;
 6064                         case VDEV_PROP_OPS_CLAIM:
 6065                                 vdev_prop_add_list(outnvl, propname, NULL,
 6066                                     vd->vdev_stat.vs_ops[ZIO_TYPE_CLAIM],
 6067                                     ZPROP_SRC_NONE);
 6068                                 continue;
 6069                         case VDEV_PROP_OPS_TRIM:
 6070                                 /*
 6071                                  * TRIM ops and bytes are reported to user
 6072                                  * space as ZIO_TYPE_IOCTL.  This is done to
 6073                                  * preserve the vdev_stat_t structure layout
 6074                                  * for user space.
 6075                                  */
 6076                                 vdev_prop_add_list(outnvl, propname, NULL,
 6077                                     vd->vdev_stat.vs_ops[ZIO_TYPE_IOCTL],
 6078                                     ZPROP_SRC_NONE);
 6079                                 continue;
 6080                         case VDEV_PROP_BYTES_NULL:
 6081                                 vdev_prop_add_list(outnvl, propname, NULL,
 6082                                     vd->vdev_stat.vs_bytes[ZIO_TYPE_NULL],
 6083                                     ZPROP_SRC_NONE);
 6084                                 continue;
 6085                         case VDEV_PROP_BYTES_READ:
 6086                                 vdev_prop_add_list(outnvl, propname, NULL,
 6087                                     vd->vdev_stat.vs_bytes[ZIO_TYPE_READ],
 6088                                     ZPROP_SRC_NONE);
 6089                                 continue;
 6090                         case VDEV_PROP_BYTES_WRITE:
 6091                                 vdev_prop_add_list(outnvl, propname, NULL,
 6092                                     vd->vdev_stat.vs_bytes[ZIO_TYPE_WRITE],
 6093                                     ZPROP_SRC_NONE);
 6094                                 continue;
 6095                         case VDEV_PROP_BYTES_FREE:
 6096                                 vdev_prop_add_list(outnvl, propname, NULL,
 6097                                     vd->vdev_stat.vs_bytes[ZIO_TYPE_FREE],
 6098                                     ZPROP_SRC_NONE);
 6099                                 continue;
 6100                         case VDEV_PROP_BYTES_CLAIM:
 6101                                 vdev_prop_add_list(outnvl, propname, NULL,
 6102                                     vd->vdev_stat.vs_bytes[ZIO_TYPE_CLAIM],
 6103                                     ZPROP_SRC_NONE);
 6104                                 continue;
 6105                         case VDEV_PROP_BYTES_TRIM:
 6106                                 /*
 6107                                  * TRIM ops and bytes are reported to user
 6108                                  * space as ZIO_TYPE_IOCTL.  This is done to
 6109                                  * preserve the vdev_stat_t structure layout
 6110                                  * for user space.
 6111                                  */
 6112                                 vdev_prop_add_list(outnvl, propname, NULL,
 6113                                     vd->vdev_stat.vs_bytes[ZIO_TYPE_IOCTL],
 6114                                     ZPROP_SRC_NONE);
 6115                                 continue;
 6116                         case VDEV_PROP_REMOVING:
 6117                                 vdev_prop_add_list(outnvl, propname, NULL,
 6118                                     vd->vdev_removing, ZPROP_SRC_NONE);
 6119                                 continue;
 6120                         /* Numeric Properites */
 6121                         case VDEV_PROP_ALLOCATING:
 6122                                 /* Leaf vdevs cannot have this property */
 6123                                 if (vd->vdev_mg == NULL &&
 6124                                     vd->vdev_top != NULL) {
 6125                                         src = ZPROP_SRC_NONE;
 6126                                         intval = ZPROP_BOOLEAN_NA;
 6127                                 } else {
 6128                                         err = vdev_prop_get_int(vd, prop,
 6129                                             &intval);
 6130                                         if (err && err != ENOENT)
 6131                                                 break;
 6132 
 6133                                         if (intval ==
 6134                                             vdev_prop_default_numeric(prop))
 6135                                                 src = ZPROP_SRC_DEFAULT;
 6136                                         else
 6137                                                 src = ZPROP_SRC_LOCAL;
 6138                                 }
 6139 
 6140                                 vdev_prop_add_list(outnvl, propname, NULL,
 6141                                     intval, src);
 6142                                 break;
 6143                         case VDEV_PROP_FAILFAST:
 6144                                 src = ZPROP_SRC_LOCAL;
 6145                                 strval = NULL;
 6146 
 6147                                 err = zap_lookup(mos, objid, nvpair_name(elem),
 6148                                     sizeof (uint64_t), 1, &intval);
 6149                                 if (err == ENOENT) {
 6150                                         intval = vdev_prop_default_numeric(
 6151                                             prop);
 6152                                         err = 0;
 6153                                 } else if (err) {
 6154                                         break;
 6155                                 }
 6156                                 if (intval == vdev_prop_default_numeric(prop))
 6157                                         src = ZPROP_SRC_DEFAULT;
 6158 
 6159                                 vdev_prop_add_list(outnvl, propname, strval,
 6160                                     intval, src);
 6161                                 break;
 6162                         case VDEV_PROP_CHECKSUM_N:
 6163                         case VDEV_PROP_CHECKSUM_T:
 6164                         case VDEV_PROP_IO_N:
 6165                         case VDEV_PROP_IO_T:
 6166                                 err = vdev_prop_get_int(vd, prop, &intval);
 6167                                 if (err && err != ENOENT)
 6168                                         break;
 6169 
 6170                                 if (intval == vdev_prop_default_numeric(prop))
 6171                                         src = ZPROP_SRC_DEFAULT;
 6172                                 else
 6173                                         src = ZPROP_SRC_LOCAL;
 6174 
 6175                                 vdev_prop_add_list(outnvl, propname, NULL,
 6176                                     intval, src);
 6177                                 break;
 6178                         /* Text Properties */
 6179                         case VDEV_PROP_COMMENT:
 6180                                 /* Exists in the ZAP below */
 6181                                 /* FALLTHRU */
 6182                         case VDEV_PROP_USERPROP:
 6183                                 /* User Properites */
 6184                                 src = ZPROP_SRC_LOCAL;
 6185 
 6186                                 err = zap_length(mos, objid, nvpair_name(elem),
 6187                                     &integer_size, &num_integers);
 6188                                 if (err)
 6189                                         break;
 6190 
 6191                                 switch (integer_size) {
 6192                                 case 8:
 6193                                         /* User properties cannot be integers */
 6194                                         err = EINVAL;
 6195                                         break;
 6196                                 case 1:
 6197                                         /* string property */
 6198                                         strval = kmem_alloc(num_integers,
 6199                                             KM_SLEEP);
 6200                                         err = zap_lookup(mos, objid,
 6201                                             nvpair_name(elem), 1,
 6202                                             num_integers, strval);
 6203                                         if (err) {
 6204                                                 kmem_free(strval,
 6205                                                     num_integers);
 6206                                                 break;
 6207                                         }
 6208                                         vdev_prop_add_list(outnvl, propname,
 6209                                             strval, 0, src);
 6210                                         kmem_free(strval, num_integers);
 6211                                         break;
 6212                                 }
 6213                                 break;
 6214                         default:
 6215                                 err = ENOENT;
 6216                                 break;
 6217                         }
 6218                         if (err)
 6219                                 break;
 6220                 }
 6221         } else {
 6222                 /*
 6223                  * Get all properties from the MOS vdev property object.
 6224                  */
 6225                 zap_cursor_t zc;
 6226                 zap_attribute_t za;
 6227                 for (zap_cursor_init(&zc, mos, objid);
 6228                     (err = zap_cursor_retrieve(&zc, &za)) == 0;
 6229                     zap_cursor_advance(&zc)) {
 6230                         intval = 0;
 6231                         strval = NULL;
 6232                         zprop_source_t src = ZPROP_SRC_DEFAULT;
 6233                         propname = za.za_name;
 6234 
 6235                         switch (za.za_integer_length) {
 6236                         case 8:
 6237                                 /* We do not allow integer user properties */
 6238                                 /* This is likely an internal value */
 6239                                 break;
 6240                         case 1:
 6241                                 /* string property */
 6242                                 strval = kmem_alloc(za.za_num_integers,
 6243                                     KM_SLEEP);
 6244                                 err = zap_lookup(mos, objid, za.za_name, 1,
 6245                                     za.za_num_integers, strval);
 6246                                 if (err) {
 6247                                         kmem_free(strval, za.za_num_integers);
 6248                                         break;
 6249                                 }
 6250                                 vdev_prop_add_list(outnvl, propname, strval, 0,
 6251                                     src);
 6252                                 kmem_free(strval, za.za_num_integers);
 6253                                 break;
 6254 
 6255                         default:
 6256                                 break;
 6257                         }
 6258                 }
 6259                 zap_cursor_fini(&zc);
 6260         }
 6261 
 6262         mutex_exit(&spa->spa_props_lock);
 6263         if (err && err != ENOENT) {
 6264                 return (err);
 6265         }
 6266 
 6267         return (0);
 6268 }
 6269 
 6270 EXPORT_SYMBOL(vdev_fault);
 6271 EXPORT_SYMBOL(vdev_degrade);
 6272 EXPORT_SYMBOL(vdev_online);
 6273 EXPORT_SYMBOL(vdev_offline);
 6274 EXPORT_SYMBOL(vdev_clear);
 6275 
 6276 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_count, UINT, ZMOD_RW,
 6277         "Target number of metaslabs per top-level vdev");
 6278 
 6279 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_shift, UINT, ZMOD_RW,
 6280         "Default limit for metaslab size");
 6281 
 6282 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, min_ms_count, UINT, ZMOD_RW,
 6283         "Minimum number of metaslabs per top-level vdev");
 6284 
 6285 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, ms_count_limit, UINT, ZMOD_RW,
 6286         "Practical upper limit of total metaslabs per top-level vdev");
 6287 
 6288 ZFS_MODULE_PARAM(zfs, zfs_, slow_io_events_per_second, UINT, ZMOD_RW,
 6289         "Rate limit slow IO (delay) events to this many per second");
 6290 
 6291 /* BEGIN CSTYLED */
 6292 ZFS_MODULE_PARAM(zfs, zfs_, checksum_events_per_second, UINT, ZMOD_RW,
 6293         "Rate limit checksum events to this many checksum errors per second "
 6294         "(do not set below ZED threshold).");
 6295 /* END CSTYLED */
 6296 
 6297 ZFS_MODULE_PARAM(zfs, zfs_, scan_ignore_errors, INT, ZMOD_RW,
 6298         "Ignore errors during resilver/scrub");
 6299 
 6300 ZFS_MODULE_PARAM(zfs_vdev, vdev_, validate_skip, INT, ZMOD_RW,
 6301         "Bypass vdev_validate()");
 6302 
 6303 ZFS_MODULE_PARAM(zfs, zfs_, nocacheflush, INT, ZMOD_RW,
 6304         "Disable cache flushes");
 6305 
 6306 ZFS_MODULE_PARAM(zfs, zfs_, embedded_slog_min_ms, UINT, ZMOD_RW,
 6307         "Minimum number of metaslabs required to dedicate one for log blocks");
 6308 
 6309 /* BEGIN CSTYLED */
 6310 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, min_auto_ashift,
 6311         param_set_min_auto_ashift, param_get_uint, ZMOD_RW,
 6312         "Minimum ashift used when creating new top-level vdevs");
 6313 
 6314 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, max_auto_ashift,
 6315         param_set_max_auto_ashift, param_get_uint, ZMOD_RW,
 6316         "Maximum ashift used when optimizing for logical -> physical sector "
 6317         "size on new top-level vdevs");
 6318 /* END CSTYLED */

Cache object: 1e54b254734da64ca6adce9cf5bf5be1


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.