1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25 /*
26 * Copyright (c) 2013, 2016 by Delphix. All rights reserved.
27 */
28
29 #include <sys/zfs_context.h>
30 #include <sys/spa.h>
31 #include <sys/vdev_impl.h>
32 #include <sys/zio.h>
33 #include <sys/kstat.h>
34 #include <sys/abd.h>
35
36 /*
37 * Virtual device read-ahead caching.
38 *
39 * This file implements a simple LRU read-ahead cache. When the DMU reads
40 * a given block, it will often want other, nearby blocks soon thereafter.
41 * We take advantage of this by reading a larger disk region and caching
42 * the result. In the best case, this can turn 128 back-to-back 512-byte
43 * reads into a single 64k read followed by 127 cache hits; this reduces
44 * latency dramatically. In the worst case, it can turn an isolated 512-byte
45 * read into a 64k read, which doesn't affect latency all that much but is
46 * terribly wasteful of bandwidth. A more intelligent version of the cache
47 * could keep track of access patterns and not do read-ahead unless it sees
48 * at least two temporally close I/Os to the same region. Currently, only
49 * metadata I/O is inflated. A further enhancement could take advantage of
50 * more semantic information about the I/O. And it could use something
51 * faster than an AVL tree; that was chosen solely for convenience.
52 *
53 * There are five cache operations: allocate, fill, read, write, evict.
54 *
55 * (1) Allocate. This reserves a cache entry for the specified region.
56 * We separate the allocate and fill operations so that multiple threads
57 * don't generate I/O for the same cache miss.
58 *
59 * (2) Fill. When the I/O for a cache miss completes, the fill routine
60 * places the data in the previously allocated cache entry.
61 *
62 * (3) Read. Read data from the cache.
63 *
64 * (4) Write. Update cache contents after write completion.
65 *
66 * (5) Evict. When allocating a new entry, we evict the oldest (LRU) entry
67 * if the total cache size exceeds zfs_vdev_cache_size.
68 */
69
70 /*
71 * These tunables are for performance analysis.
72 */
73 /*
74 * All i/os smaller than zfs_vdev_cache_max will be turned into
75 * 1<<zfs_vdev_cache_bshift byte reads by the vdev_cache (aka software
76 * track buffer). At most zfs_vdev_cache_size bytes will be kept in each
77 * vdev's vdev_cache.
78 *
79 * TODO: Note that with the current ZFS code, it turns out that the
80 * vdev cache is not helpful, and in some cases actually harmful. It
81 * is better if we disable this. Once some time has passed, we should
82 * actually remove this to simplify the code. For now we just disable
83 * it by setting the zfs_vdev_cache_size to zero. Note that Solaris 11
84 * has made these same changes.
85 */
86 static uint_t zfs_vdev_cache_max = 1 << 14; /* 16KB */
87 static uint_t zfs_vdev_cache_size = 0;
88 static uint_t zfs_vdev_cache_bshift = 16;
89
90 #define VCBS (1 << zfs_vdev_cache_bshift) /* 64KB */
91
92 static kstat_t *vdc_ksp = NULL;
93
94 typedef struct vdc_stats {
95 kstat_named_t vdc_stat_delegations;
96 kstat_named_t vdc_stat_hits;
97 kstat_named_t vdc_stat_misses;
98 } vdc_stats_t;
99
100 static vdc_stats_t vdc_stats = {
101 { "delegations", KSTAT_DATA_UINT64 },
102 { "hits", KSTAT_DATA_UINT64 },
103 { "misses", KSTAT_DATA_UINT64 }
104 };
105
106 #define VDCSTAT_BUMP(stat) atomic_inc_64(&vdc_stats.stat.value.ui64);
107
108 static inline int
109 vdev_cache_offset_compare(const void *a1, const void *a2)
110 {
111 const vdev_cache_entry_t *ve1 = (const vdev_cache_entry_t *)a1;
112 const vdev_cache_entry_t *ve2 = (const vdev_cache_entry_t *)a2;
113
114 return (TREE_CMP(ve1->ve_offset, ve2->ve_offset));
115 }
116
117 static int
118 vdev_cache_lastused_compare(const void *a1, const void *a2)
119 {
120 const vdev_cache_entry_t *ve1 = (const vdev_cache_entry_t *)a1;
121 const vdev_cache_entry_t *ve2 = (const vdev_cache_entry_t *)a2;
122
123 int cmp = TREE_CMP(ve1->ve_lastused, ve2->ve_lastused);
124 if (likely(cmp))
125 return (cmp);
126
127 /*
128 * Among equally old entries, sort by offset to ensure uniqueness.
129 */
130 return (vdev_cache_offset_compare(a1, a2));
131 }
132
133 /*
134 * Evict the specified entry from the cache.
135 */
136 static void
137 vdev_cache_evict(vdev_cache_t *vc, vdev_cache_entry_t *ve)
138 {
139 ASSERT(MUTEX_HELD(&vc->vc_lock));
140 ASSERT3P(ve->ve_fill_io, ==, NULL);
141 ASSERT3P(ve->ve_abd, !=, NULL);
142
143 avl_remove(&vc->vc_lastused_tree, ve);
144 avl_remove(&vc->vc_offset_tree, ve);
145 abd_free(ve->ve_abd);
146 kmem_free(ve, sizeof (vdev_cache_entry_t));
147 }
148
149 /*
150 * Allocate an entry in the cache. At the point we don't have the data,
151 * we're just creating a placeholder so that multiple threads don't all
152 * go off and read the same blocks.
153 */
154 static vdev_cache_entry_t *
155 vdev_cache_allocate(zio_t *zio)
156 {
157 vdev_cache_t *vc = &zio->io_vd->vdev_cache;
158 uint64_t offset = P2ALIGN(zio->io_offset, VCBS);
159 vdev_cache_entry_t *ve;
160
161 ASSERT(MUTEX_HELD(&vc->vc_lock));
162
163 if (zfs_vdev_cache_size == 0)
164 return (NULL);
165
166 /*
167 * If adding a new entry would exceed the cache size,
168 * evict the oldest entry (LRU).
169 */
170 if ((avl_numnodes(&vc->vc_lastused_tree) << zfs_vdev_cache_bshift) >
171 zfs_vdev_cache_size) {
172 ve = avl_first(&vc->vc_lastused_tree);
173 if (ve->ve_fill_io != NULL)
174 return (NULL);
175 ASSERT3U(ve->ve_hits, !=, 0);
176 vdev_cache_evict(vc, ve);
177 }
178
179 ve = kmem_zalloc(sizeof (vdev_cache_entry_t), KM_SLEEP);
180 ve->ve_offset = offset;
181 ve->ve_lastused = ddi_get_lbolt();
182 ve->ve_abd = abd_alloc_for_io(VCBS, B_TRUE);
183
184 avl_add(&vc->vc_offset_tree, ve);
185 avl_add(&vc->vc_lastused_tree, ve);
186
187 return (ve);
188 }
189
190 static void
191 vdev_cache_hit(vdev_cache_t *vc, vdev_cache_entry_t *ve, zio_t *zio)
192 {
193 uint64_t cache_phase = P2PHASE(zio->io_offset, VCBS);
194
195 ASSERT(MUTEX_HELD(&vc->vc_lock));
196 ASSERT3P(ve->ve_fill_io, ==, NULL);
197
198 if (ve->ve_lastused != ddi_get_lbolt()) {
199 avl_remove(&vc->vc_lastused_tree, ve);
200 ve->ve_lastused = ddi_get_lbolt();
201 avl_add(&vc->vc_lastused_tree, ve);
202 }
203
204 ve->ve_hits++;
205 abd_copy_off(zio->io_abd, ve->ve_abd, 0, cache_phase, zio->io_size);
206 }
207
208 /*
209 * Fill a previously allocated cache entry with data.
210 */
211 static void
212 vdev_cache_fill(zio_t *fio)
213 {
214 vdev_t *vd = fio->io_vd;
215 vdev_cache_t *vc = &vd->vdev_cache;
216 vdev_cache_entry_t *ve = fio->io_private;
217 zio_t *pio;
218
219 ASSERT3U(fio->io_size, ==, VCBS);
220
221 /*
222 * Add data to the cache.
223 */
224 mutex_enter(&vc->vc_lock);
225
226 ASSERT3P(ve->ve_fill_io, ==, fio);
227 ASSERT3U(ve->ve_offset, ==, fio->io_offset);
228 ASSERT3P(ve->ve_abd, ==, fio->io_abd);
229
230 ve->ve_fill_io = NULL;
231
232 /*
233 * Even if this cache line was invalidated by a missed write update,
234 * any reads that were queued up before the missed update are still
235 * valid, so we can satisfy them from this line before we evict it.
236 */
237 zio_link_t *zl = NULL;
238 while ((pio = zio_walk_parents(fio, &zl)) != NULL)
239 vdev_cache_hit(vc, ve, pio);
240
241 if (fio->io_error || ve->ve_missed_update)
242 vdev_cache_evict(vc, ve);
243
244 mutex_exit(&vc->vc_lock);
245 }
246
247 /*
248 * Read data from the cache. Returns B_TRUE cache hit, B_FALSE on miss.
249 */
250 boolean_t
251 vdev_cache_read(zio_t *zio)
252 {
253 vdev_cache_t *vc = &zio->io_vd->vdev_cache;
254 vdev_cache_entry_t *ve, ve_search;
255 uint64_t cache_offset = P2ALIGN(zio->io_offset, VCBS);
256 zio_t *fio;
257 uint64_t cache_phase __maybe_unused = P2PHASE(zio->io_offset, VCBS);
258
259 ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
260
261 if (zfs_vdev_cache_size == 0)
262 return (B_FALSE);
263
264 if (zio->io_flags & ZIO_FLAG_DONT_CACHE)
265 return (B_FALSE);
266
267 if (zio->io_size > zfs_vdev_cache_max)
268 return (B_FALSE);
269
270 /*
271 * If the I/O straddles two or more cache blocks, don't cache it.
272 */
273 if (P2BOUNDARY(zio->io_offset, zio->io_size, VCBS))
274 return (B_FALSE);
275
276 ASSERT3U(cache_phase + zio->io_size, <=, VCBS);
277
278 mutex_enter(&vc->vc_lock);
279
280 ve_search.ve_offset = cache_offset;
281 ve = avl_find(&vc->vc_offset_tree, &ve_search, NULL);
282
283 if (ve != NULL) {
284 if (ve->ve_missed_update) {
285 mutex_exit(&vc->vc_lock);
286 return (B_FALSE);
287 }
288
289 if ((fio = ve->ve_fill_io) != NULL) {
290 zio_vdev_io_bypass(zio);
291 zio_add_child(zio, fio);
292 mutex_exit(&vc->vc_lock);
293 VDCSTAT_BUMP(vdc_stat_delegations);
294 return (B_TRUE);
295 }
296
297 vdev_cache_hit(vc, ve, zio);
298 zio_vdev_io_bypass(zio);
299
300 mutex_exit(&vc->vc_lock);
301 VDCSTAT_BUMP(vdc_stat_hits);
302 return (B_TRUE);
303 }
304
305 ve = vdev_cache_allocate(zio);
306
307 if (ve == NULL) {
308 mutex_exit(&vc->vc_lock);
309 return (B_FALSE);
310 }
311
312 fio = zio_vdev_delegated_io(zio->io_vd, cache_offset,
313 ve->ve_abd, VCBS, ZIO_TYPE_READ, ZIO_PRIORITY_NOW,
314 ZIO_FLAG_DONT_CACHE, vdev_cache_fill, ve);
315
316 ve->ve_fill_io = fio;
317 zio_vdev_io_bypass(zio);
318 zio_add_child(zio, fio);
319
320 mutex_exit(&vc->vc_lock);
321 zio_nowait(fio);
322 VDCSTAT_BUMP(vdc_stat_misses);
323
324 return (B_TRUE);
325 }
326
327 /*
328 * Update cache contents upon write completion.
329 */
330 void
331 vdev_cache_write(zio_t *zio)
332 {
333 vdev_cache_t *vc = &zio->io_vd->vdev_cache;
334 vdev_cache_entry_t *ve, ve_search;
335 uint64_t io_start = zio->io_offset;
336 uint64_t io_end = io_start + zio->io_size;
337 uint64_t min_offset = P2ALIGN(io_start, VCBS);
338 uint64_t max_offset = P2ROUNDUP(io_end, VCBS);
339 avl_index_t where;
340
341 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
342
343 mutex_enter(&vc->vc_lock);
344
345 ve_search.ve_offset = min_offset;
346 ve = avl_find(&vc->vc_offset_tree, &ve_search, &where);
347
348 if (ve == NULL)
349 ve = avl_nearest(&vc->vc_offset_tree, where, AVL_AFTER);
350
351 while (ve != NULL && ve->ve_offset < max_offset) {
352 uint64_t start = MAX(ve->ve_offset, io_start);
353 uint64_t end = MIN(ve->ve_offset + VCBS, io_end);
354
355 if (ve->ve_fill_io != NULL) {
356 ve->ve_missed_update = 1;
357 } else {
358 abd_copy_off(ve->ve_abd, zio->io_abd,
359 start - ve->ve_offset, start - io_start,
360 end - start);
361 }
362 ve = AVL_NEXT(&vc->vc_offset_tree, ve);
363 }
364 mutex_exit(&vc->vc_lock);
365 }
366
367 void
368 vdev_cache_purge(vdev_t *vd)
369 {
370 vdev_cache_t *vc = &vd->vdev_cache;
371 vdev_cache_entry_t *ve;
372
373 mutex_enter(&vc->vc_lock);
374 while ((ve = avl_first(&vc->vc_offset_tree)) != NULL)
375 vdev_cache_evict(vc, ve);
376 mutex_exit(&vc->vc_lock);
377 }
378
379 void
380 vdev_cache_init(vdev_t *vd)
381 {
382 vdev_cache_t *vc = &vd->vdev_cache;
383
384 mutex_init(&vc->vc_lock, NULL, MUTEX_DEFAULT, NULL);
385
386 avl_create(&vc->vc_offset_tree, vdev_cache_offset_compare,
387 sizeof (vdev_cache_entry_t),
388 offsetof(struct vdev_cache_entry, ve_offset_node));
389
390 avl_create(&vc->vc_lastused_tree, vdev_cache_lastused_compare,
391 sizeof (vdev_cache_entry_t),
392 offsetof(struct vdev_cache_entry, ve_lastused_node));
393 }
394
395 void
396 vdev_cache_fini(vdev_t *vd)
397 {
398 vdev_cache_t *vc = &vd->vdev_cache;
399
400 vdev_cache_purge(vd);
401
402 avl_destroy(&vc->vc_offset_tree);
403 avl_destroy(&vc->vc_lastused_tree);
404
405 mutex_destroy(&vc->vc_lock);
406 }
407
408 void
409 vdev_cache_stat_init(void)
410 {
411 vdc_ksp = kstat_create("zfs", 0, "vdev_cache_stats", "misc",
412 KSTAT_TYPE_NAMED, sizeof (vdc_stats) / sizeof (kstat_named_t),
413 KSTAT_FLAG_VIRTUAL);
414 if (vdc_ksp != NULL) {
415 vdc_ksp->ks_data = &vdc_stats;
416 kstat_install(vdc_ksp);
417 }
418 }
419
420 void
421 vdev_cache_stat_fini(void)
422 {
423 if (vdc_ksp != NULL) {
424 kstat_delete(vdc_ksp);
425 vdc_ksp = NULL;
426 }
427 }
428
429 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, cache_max, UINT, ZMOD_RW,
430 "Inflate reads small than max");
431
432 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, cache_size, UINT, ZMOD_RD,
433 "Total size of the per-disk cache");
434
435 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, cache_bshift, UINT, ZMOD_RW,
436 "Shift size to inflate reads too");
Cache object: 178833c3eb2c39a2855c5af4a3cffdd8
|