The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/contrib/openzfs/module/zfs/vdev_cache.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * CDDL HEADER START
    3  *
    4  * The contents of this file are subject to the terms of the
    5  * Common Development and Distribution License (the "License").
    6  * You may not use this file except in compliance with the License.
    7  *
    8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
    9  * or https://opensource.org/licenses/CDDL-1.0.
   10  * See the License for the specific language governing permissions
   11  * and limitations under the License.
   12  *
   13  * When distributing Covered Code, include this CDDL HEADER in each
   14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
   15  * If applicable, add the following below this CDDL HEADER, with the
   16  * fields enclosed by brackets "[]" replaced with your own identifying
   17  * information: Portions Copyright [yyyy] [name of copyright owner]
   18  *
   19  * CDDL HEADER END
   20  */
   21 /*
   22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
   23  * Use is subject to license terms.
   24  */
   25 /*
   26  * Copyright (c) 2013, 2016 by Delphix. All rights reserved.
   27  */
   28 
   29 #include <sys/zfs_context.h>
   30 #include <sys/spa.h>
   31 #include <sys/vdev_impl.h>
   32 #include <sys/zio.h>
   33 #include <sys/kstat.h>
   34 #include <sys/abd.h>
   35 
   36 /*
   37  * Virtual device read-ahead caching.
   38  *
   39  * This file implements a simple LRU read-ahead cache.  When the DMU reads
   40  * a given block, it will often want other, nearby blocks soon thereafter.
   41  * We take advantage of this by reading a larger disk region and caching
   42  * the result.  In the best case, this can turn 128 back-to-back 512-byte
   43  * reads into a single 64k read followed by 127 cache hits; this reduces
   44  * latency dramatically.  In the worst case, it can turn an isolated 512-byte
   45  * read into a 64k read, which doesn't affect latency all that much but is
   46  * terribly wasteful of bandwidth.  A more intelligent version of the cache
   47  * could keep track of access patterns and not do read-ahead unless it sees
   48  * at least two temporally close I/Os to the same region.  Currently, only
   49  * metadata I/O is inflated.  A further enhancement could take advantage of
   50  * more semantic information about the I/O.  And it could use something
   51  * faster than an AVL tree; that was chosen solely for convenience.
   52  *
   53  * There are five cache operations: allocate, fill, read, write, evict.
   54  *
   55  * (1) Allocate.  This reserves a cache entry for the specified region.
   56  *     We separate the allocate and fill operations so that multiple threads
   57  *     don't generate I/O for the same cache miss.
   58  *
   59  * (2) Fill.  When the I/O for a cache miss completes, the fill routine
   60  *     places the data in the previously allocated cache entry.
   61  *
   62  * (3) Read.  Read data from the cache.
   63  *
   64  * (4) Write.  Update cache contents after write completion.
   65  *
   66  * (5) Evict.  When allocating a new entry, we evict the oldest (LRU) entry
   67  *     if the total cache size exceeds zfs_vdev_cache_size.
   68  */
   69 
   70 /*
   71  * These tunables are for performance analysis.
   72  */
   73 /*
   74  * All i/os smaller than zfs_vdev_cache_max will be turned into
   75  * 1<<zfs_vdev_cache_bshift byte reads by the vdev_cache (aka software
   76  * track buffer).  At most zfs_vdev_cache_size bytes will be kept in each
   77  * vdev's vdev_cache.
   78  *
   79  * TODO: Note that with the current ZFS code, it turns out that the
   80  * vdev cache is not helpful, and in some cases actually harmful.  It
   81  * is better if we disable this.  Once some time has passed, we should
   82  * actually remove this to simplify the code.  For now we just disable
   83  * it by setting the zfs_vdev_cache_size to zero.  Note that Solaris 11
   84  * has made these same changes.
   85  */
   86 static uint_t zfs_vdev_cache_max = 1 << 14;                     /* 16KB */
   87 static uint_t zfs_vdev_cache_size = 0;
   88 static uint_t zfs_vdev_cache_bshift = 16;
   89 
   90 #define VCBS (1 << zfs_vdev_cache_bshift)       /* 64KB */
   91 
   92 static kstat_t *vdc_ksp = NULL;
   93 
   94 typedef struct vdc_stats {
   95         kstat_named_t vdc_stat_delegations;
   96         kstat_named_t vdc_stat_hits;
   97         kstat_named_t vdc_stat_misses;
   98 } vdc_stats_t;
   99 
  100 static vdc_stats_t vdc_stats = {
  101         { "delegations",        KSTAT_DATA_UINT64 },
  102         { "hits",               KSTAT_DATA_UINT64 },
  103         { "misses",             KSTAT_DATA_UINT64 }
  104 };
  105 
  106 #define VDCSTAT_BUMP(stat)      atomic_inc_64(&vdc_stats.stat.value.ui64);
  107 
  108 static inline int
  109 vdev_cache_offset_compare(const void *a1, const void *a2)
  110 {
  111         const vdev_cache_entry_t *ve1 = (const vdev_cache_entry_t *)a1;
  112         const vdev_cache_entry_t *ve2 = (const vdev_cache_entry_t *)a2;
  113 
  114         return (TREE_CMP(ve1->ve_offset, ve2->ve_offset));
  115 }
  116 
  117 static int
  118 vdev_cache_lastused_compare(const void *a1, const void *a2)
  119 {
  120         const vdev_cache_entry_t *ve1 = (const vdev_cache_entry_t *)a1;
  121         const vdev_cache_entry_t *ve2 = (const vdev_cache_entry_t *)a2;
  122 
  123         int cmp = TREE_CMP(ve1->ve_lastused, ve2->ve_lastused);
  124         if (likely(cmp))
  125                 return (cmp);
  126 
  127         /*
  128          * Among equally old entries, sort by offset to ensure uniqueness.
  129          */
  130         return (vdev_cache_offset_compare(a1, a2));
  131 }
  132 
  133 /*
  134  * Evict the specified entry from the cache.
  135  */
  136 static void
  137 vdev_cache_evict(vdev_cache_t *vc, vdev_cache_entry_t *ve)
  138 {
  139         ASSERT(MUTEX_HELD(&vc->vc_lock));
  140         ASSERT3P(ve->ve_fill_io, ==, NULL);
  141         ASSERT3P(ve->ve_abd, !=, NULL);
  142 
  143         avl_remove(&vc->vc_lastused_tree, ve);
  144         avl_remove(&vc->vc_offset_tree, ve);
  145         abd_free(ve->ve_abd);
  146         kmem_free(ve, sizeof (vdev_cache_entry_t));
  147 }
  148 
  149 /*
  150  * Allocate an entry in the cache.  At the point we don't have the data,
  151  * we're just creating a placeholder so that multiple threads don't all
  152  * go off and read the same blocks.
  153  */
  154 static vdev_cache_entry_t *
  155 vdev_cache_allocate(zio_t *zio)
  156 {
  157         vdev_cache_t *vc = &zio->io_vd->vdev_cache;
  158         uint64_t offset = P2ALIGN(zio->io_offset, VCBS);
  159         vdev_cache_entry_t *ve;
  160 
  161         ASSERT(MUTEX_HELD(&vc->vc_lock));
  162 
  163         if (zfs_vdev_cache_size == 0)
  164                 return (NULL);
  165 
  166         /*
  167          * If adding a new entry would exceed the cache size,
  168          * evict the oldest entry (LRU).
  169          */
  170         if ((avl_numnodes(&vc->vc_lastused_tree) << zfs_vdev_cache_bshift) >
  171             zfs_vdev_cache_size) {
  172                 ve = avl_first(&vc->vc_lastused_tree);
  173                 if (ve->ve_fill_io != NULL)
  174                         return (NULL);
  175                 ASSERT3U(ve->ve_hits, !=, 0);
  176                 vdev_cache_evict(vc, ve);
  177         }
  178 
  179         ve = kmem_zalloc(sizeof (vdev_cache_entry_t), KM_SLEEP);
  180         ve->ve_offset = offset;
  181         ve->ve_lastused = ddi_get_lbolt();
  182         ve->ve_abd = abd_alloc_for_io(VCBS, B_TRUE);
  183 
  184         avl_add(&vc->vc_offset_tree, ve);
  185         avl_add(&vc->vc_lastused_tree, ve);
  186 
  187         return (ve);
  188 }
  189 
  190 static void
  191 vdev_cache_hit(vdev_cache_t *vc, vdev_cache_entry_t *ve, zio_t *zio)
  192 {
  193         uint64_t cache_phase = P2PHASE(zio->io_offset, VCBS);
  194 
  195         ASSERT(MUTEX_HELD(&vc->vc_lock));
  196         ASSERT3P(ve->ve_fill_io, ==, NULL);
  197 
  198         if (ve->ve_lastused != ddi_get_lbolt()) {
  199                 avl_remove(&vc->vc_lastused_tree, ve);
  200                 ve->ve_lastused = ddi_get_lbolt();
  201                 avl_add(&vc->vc_lastused_tree, ve);
  202         }
  203 
  204         ve->ve_hits++;
  205         abd_copy_off(zio->io_abd, ve->ve_abd, 0, cache_phase, zio->io_size);
  206 }
  207 
  208 /*
  209  * Fill a previously allocated cache entry with data.
  210  */
  211 static void
  212 vdev_cache_fill(zio_t *fio)
  213 {
  214         vdev_t *vd = fio->io_vd;
  215         vdev_cache_t *vc = &vd->vdev_cache;
  216         vdev_cache_entry_t *ve = fio->io_private;
  217         zio_t *pio;
  218 
  219         ASSERT3U(fio->io_size, ==, VCBS);
  220 
  221         /*
  222          * Add data to the cache.
  223          */
  224         mutex_enter(&vc->vc_lock);
  225 
  226         ASSERT3P(ve->ve_fill_io, ==, fio);
  227         ASSERT3U(ve->ve_offset, ==, fio->io_offset);
  228         ASSERT3P(ve->ve_abd, ==, fio->io_abd);
  229 
  230         ve->ve_fill_io = NULL;
  231 
  232         /*
  233          * Even if this cache line was invalidated by a missed write update,
  234          * any reads that were queued up before the missed update are still
  235          * valid, so we can satisfy them from this line before we evict it.
  236          */
  237         zio_link_t *zl = NULL;
  238         while ((pio = zio_walk_parents(fio, &zl)) != NULL)
  239                 vdev_cache_hit(vc, ve, pio);
  240 
  241         if (fio->io_error || ve->ve_missed_update)
  242                 vdev_cache_evict(vc, ve);
  243 
  244         mutex_exit(&vc->vc_lock);
  245 }
  246 
  247 /*
  248  * Read data from the cache.  Returns B_TRUE cache hit, B_FALSE on miss.
  249  */
  250 boolean_t
  251 vdev_cache_read(zio_t *zio)
  252 {
  253         vdev_cache_t *vc = &zio->io_vd->vdev_cache;
  254         vdev_cache_entry_t *ve, ve_search;
  255         uint64_t cache_offset = P2ALIGN(zio->io_offset, VCBS);
  256         zio_t *fio;
  257         uint64_t cache_phase __maybe_unused = P2PHASE(zio->io_offset, VCBS);
  258 
  259         ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
  260 
  261         if (zfs_vdev_cache_size == 0)
  262                 return (B_FALSE);
  263 
  264         if (zio->io_flags & ZIO_FLAG_DONT_CACHE)
  265                 return (B_FALSE);
  266 
  267         if (zio->io_size > zfs_vdev_cache_max)
  268                 return (B_FALSE);
  269 
  270         /*
  271          * If the I/O straddles two or more cache blocks, don't cache it.
  272          */
  273         if (P2BOUNDARY(zio->io_offset, zio->io_size, VCBS))
  274                 return (B_FALSE);
  275 
  276         ASSERT3U(cache_phase + zio->io_size, <=, VCBS);
  277 
  278         mutex_enter(&vc->vc_lock);
  279 
  280         ve_search.ve_offset = cache_offset;
  281         ve = avl_find(&vc->vc_offset_tree, &ve_search, NULL);
  282 
  283         if (ve != NULL) {
  284                 if (ve->ve_missed_update) {
  285                         mutex_exit(&vc->vc_lock);
  286                         return (B_FALSE);
  287                 }
  288 
  289                 if ((fio = ve->ve_fill_io) != NULL) {
  290                         zio_vdev_io_bypass(zio);
  291                         zio_add_child(zio, fio);
  292                         mutex_exit(&vc->vc_lock);
  293                         VDCSTAT_BUMP(vdc_stat_delegations);
  294                         return (B_TRUE);
  295                 }
  296 
  297                 vdev_cache_hit(vc, ve, zio);
  298                 zio_vdev_io_bypass(zio);
  299 
  300                 mutex_exit(&vc->vc_lock);
  301                 VDCSTAT_BUMP(vdc_stat_hits);
  302                 return (B_TRUE);
  303         }
  304 
  305         ve = vdev_cache_allocate(zio);
  306 
  307         if (ve == NULL) {
  308                 mutex_exit(&vc->vc_lock);
  309                 return (B_FALSE);
  310         }
  311 
  312         fio = zio_vdev_delegated_io(zio->io_vd, cache_offset,
  313             ve->ve_abd, VCBS, ZIO_TYPE_READ, ZIO_PRIORITY_NOW,
  314             ZIO_FLAG_DONT_CACHE, vdev_cache_fill, ve);
  315 
  316         ve->ve_fill_io = fio;
  317         zio_vdev_io_bypass(zio);
  318         zio_add_child(zio, fio);
  319 
  320         mutex_exit(&vc->vc_lock);
  321         zio_nowait(fio);
  322         VDCSTAT_BUMP(vdc_stat_misses);
  323 
  324         return (B_TRUE);
  325 }
  326 
  327 /*
  328  * Update cache contents upon write completion.
  329  */
  330 void
  331 vdev_cache_write(zio_t *zio)
  332 {
  333         vdev_cache_t *vc = &zio->io_vd->vdev_cache;
  334         vdev_cache_entry_t *ve, ve_search;
  335         uint64_t io_start = zio->io_offset;
  336         uint64_t io_end = io_start + zio->io_size;
  337         uint64_t min_offset = P2ALIGN(io_start, VCBS);
  338         uint64_t max_offset = P2ROUNDUP(io_end, VCBS);
  339         avl_index_t where;
  340 
  341         ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
  342 
  343         mutex_enter(&vc->vc_lock);
  344 
  345         ve_search.ve_offset = min_offset;
  346         ve = avl_find(&vc->vc_offset_tree, &ve_search, &where);
  347 
  348         if (ve == NULL)
  349                 ve = avl_nearest(&vc->vc_offset_tree, where, AVL_AFTER);
  350 
  351         while (ve != NULL && ve->ve_offset < max_offset) {
  352                 uint64_t start = MAX(ve->ve_offset, io_start);
  353                 uint64_t end = MIN(ve->ve_offset + VCBS, io_end);
  354 
  355                 if (ve->ve_fill_io != NULL) {
  356                         ve->ve_missed_update = 1;
  357                 } else {
  358                         abd_copy_off(ve->ve_abd, zio->io_abd,
  359                             start - ve->ve_offset, start - io_start,
  360                             end - start);
  361                 }
  362                 ve = AVL_NEXT(&vc->vc_offset_tree, ve);
  363         }
  364         mutex_exit(&vc->vc_lock);
  365 }
  366 
  367 void
  368 vdev_cache_purge(vdev_t *vd)
  369 {
  370         vdev_cache_t *vc = &vd->vdev_cache;
  371         vdev_cache_entry_t *ve;
  372 
  373         mutex_enter(&vc->vc_lock);
  374         while ((ve = avl_first(&vc->vc_offset_tree)) != NULL)
  375                 vdev_cache_evict(vc, ve);
  376         mutex_exit(&vc->vc_lock);
  377 }
  378 
  379 void
  380 vdev_cache_init(vdev_t *vd)
  381 {
  382         vdev_cache_t *vc = &vd->vdev_cache;
  383 
  384         mutex_init(&vc->vc_lock, NULL, MUTEX_DEFAULT, NULL);
  385 
  386         avl_create(&vc->vc_offset_tree, vdev_cache_offset_compare,
  387             sizeof (vdev_cache_entry_t),
  388             offsetof(struct vdev_cache_entry, ve_offset_node));
  389 
  390         avl_create(&vc->vc_lastused_tree, vdev_cache_lastused_compare,
  391             sizeof (vdev_cache_entry_t),
  392             offsetof(struct vdev_cache_entry, ve_lastused_node));
  393 }
  394 
  395 void
  396 vdev_cache_fini(vdev_t *vd)
  397 {
  398         vdev_cache_t *vc = &vd->vdev_cache;
  399 
  400         vdev_cache_purge(vd);
  401 
  402         avl_destroy(&vc->vc_offset_tree);
  403         avl_destroy(&vc->vc_lastused_tree);
  404 
  405         mutex_destroy(&vc->vc_lock);
  406 }
  407 
  408 void
  409 vdev_cache_stat_init(void)
  410 {
  411         vdc_ksp = kstat_create("zfs", 0, "vdev_cache_stats", "misc",
  412             KSTAT_TYPE_NAMED, sizeof (vdc_stats) / sizeof (kstat_named_t),
  413             KSTAT_FLAG_VIRTUAL);
  414         if (vdc_ksp != NULL) {
  415                 vdc_ksp->ks_data = &vdc_stats;
  416                 kstat_install(vdc_ksp);
  417         }
  418 }
  419 
  420 void
  421 vdev_cache_stat_fini(void)
  422 {
  423         if (vdc_ksp != NULL) {
  424                 kstat_delete(vdc_ksp);
  425                 vdc_ksp = NULL;
  426         }
  427 }
  428 
  429 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, cache_max, UINT, ZMOD_RW,
  430         "Inflate reads small than max");
  431 
  432 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, cache_size, UINT, ZMOD_RD,
  433         "Total size of the per-disk cache");
  434 
  435 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, cache_bshift, UINT, ZMOD_RW,
  436         "Shift size to inflate reads too");

Cache object: 178833c3eb2c39a2855c5af4a3cffdd8


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.