The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/contrib/openzfs/module/zfs/vdev_draid.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * CDDL HEADER START
    3  *
    4  * The contents of this file are subject to the terms of the
    5  * Common Development and Distribution License (the "License").
    6  * You may not use this file except in compliance with the License.
    7  *
    8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
    9  * or https://opensource.org/licenses/CDDL-1.0.
   10  * See the License for the specific language governing permissions
   11  * and limitations under the License.
   12  *
   13  * When distributing Covered Code, include this CDDL HEADER in each
   14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
   15  * If applicable, add the following below this CDDL HEADER, with the
   16  * fields enclosed by brackets "[]" replaced with your own identifying
   17  * information: Portions Copyright [yyyy] [name of copyright owner]
   18  *
   19  * CDDL HEADER END
   20  */
   21 /*
   22  * Copyright (c) 2018 Intel Corporation.
   23  * Copyright (c) 2020 by Lawrence Livermore National Security, LLC.
   24  */
   25 
   26 #include <sys/zfs_context.h>
   27 #include <sys/spa.h>
   28 #include <sys/spa_impl.h>
   29 #include <sys/vdev_impl.h>
   30 #include <sys/vdev_draid.h>
   31 #include <sys/vdev_raidz.h>
   32 #include <sys/vdev_rebuild.h>
   33 #include <sys/abd.h>
   34 #include <sys/zio.h>
   35 #include <sys/nvpair.h>
   36 #include <sys/zio_checksum.h>
   37 #include <sys/fs/zfs.h>
   38 #include <sys/fm/fs/zfs.h>
   39 #include <zfs_fletcher.h>
   40 
   41 #ifdef ZFS_DEBUG
   42 #include <sys/vdev.h>   /* For vdev_xlate() in vdev_draid_io_verify() */
   43 #endif
   44 
   45 /*
   46  * dRAID is a distributed spare implementation for ZFS. A dRAID vdev is
   47  * comprised of multiple raidz redundancy groups which are spread over the
   48  * dRAID children. To ensure an even distribution, and avoid hot spots, a
   49  * permutation mapping is applied to the order of the dRAID children.
   50  * This mixing effectively distributes the parity columns evenly over all
   51  * of the disks in the dRAID.
   52  *
   53  * This is beneficial because it means when resilvering all of the disks
   54  * can participate thereby increasing the available IOPs and bandwidth.
   55  * Furthermore, by reserving a small fraction of each child's total capacity
   56  * virtual distributed spare disks can be created. These spares similarly
   57  * benefit from the performance gains of spanning all of the children. The
   58  * consequence of which is that resilvering to a distributed spare can
   59  * substantially reduce the time required to restore full parity to pool
   60  * with a failed disks.
   61  *
   62  * === dRAID group layout ===
   63  *
   64  * First, let's define a "row" in the configuration to be a 16M chunk from
   65  * each physical drive at the same offset. This is the minimum allowable
   66  * size since it must be possible to store a full 16M block when there is
   67  * only a single data column. Next, we define a "group" to be a set of
   68  * sequential disks containing both the parity and data columns. We allow
   69  * groups to span multiple rows in order to align any group size to any
   70  * number of physical drives. Finally, a "slice" is comprised of the rows
   71  * which contain the target number of groups. The permutation mappings
   72  * are applied in a round robin fashion to each slice.
   73  *
   74  * Given D+P drives in a group (including parity drives) and C-S physical
   75  * drives (not including the spare drives), we can distribute the groups
   76  * across R rows without remainder by selecting the least common multiple
   77  * of D+P and C-S as the number of groups; i.e. ngroups = LCM(D+P, C-S).
   78  *
   79  * In the example below, there are C=14 physical drives in the configuration
   80  * with S=2 drives worth of spare capacity. Each group has a width of 9
   81  * which includes D=8 data and P=1 parity drive. There are 4 groups and
   82  * 3 rows per slice.  Each group has a size of 144M (16M * 9) and a slice
   83  * size is 576M (144M * 4). When allocating from a dRAID each group is
   84  * filled before moving on to the next as show in slice0 below.
   85  *
   86  *             data disks (8 data + 1 parity)          spares (2)
   87  *     +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
   88  *  ^  | 2 | 6 | 1 | 11| 4 | 0 | 7 | 10| 8 | 9 | 13| 5 | 12| 3 | device map 0
   89  *  |  +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
   90  *  |  |              group 0              |  group 1..|       |
   91  *  |  +-----------------------------------+-----------+-------|
   92  *  |  | 0   1   2   3   4   5   6   7   8 | 36  37  38|       |  r
   93  *  |  | 9   10  11  12  13  14  15  16  17| 45  46  47|       |  o
   94  *  |  | 18  19  20  21  22  23  24  25  26| 54  55  56|       |  w
   95  *     | 27  28  29  30  31  32  33  34  35| 63  64  65|       |  0
   96  *  s  +-----------------------+-----------------------+-------+
   97  *  l  |       ..group 1       |        group 2..      |       |
   98  *  i  +-----------------------+-----------------------+-------+
   99  *  c  | 39  40  41  42  43  44| 72  73  74  75  76  77|       |  r
  100  *  e  | 48  49  50  51  52  53| 81  82  83  84  85  86|       |  o
  101  *  0  | 57  58  59  60  61  62| 90  91  92  93  94  95|       |  w
  102  *     | 66  67  68  69  70  71| 99 100 101 102 103 104|       |  1
  103  *  |  +-----------+-----------+-----------------------+-------+
  104  *  |  |..group 2  |            group 3                |       |
  105  *  |  +-----------+-----------+-----------------------+-------+
  106  *  |  | 78  79  80|108 109 110 111 112 113 114 115 116|       |  r
  107  *  |  | 87  88  89|117 118 119 120 121 122 123 124 125|       |  o
  108  *  |  | 96  97  98|126 127 128 129 130 131 132 133 134|       |  w
  109  *  v  |105 106 107|135 136 137 138 139 140 141 142 143|       |  2
  110  *     +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
  111  *     | 9 | 11| 12| 2 | 4 | 1 | 3 | 0 | 10| 13| 8 | 5 | 6 | 7 | device map 1
  112  *  s  +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
  113  *  l  |              group 4              |  group 5..|       | row 3
  114  *  i  +-----------------------+-----------+-----------+-------|
  115  *  c  |       ..group 5       |        group 6..      |       | row 4
  116  *  e  +-----------+-----------+-----------------------+-------+
  117  *  1  |..group 6  |            group 7                |       | row 5
  118  *     +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
  119  *     | 3 | 5 | 10| 8 | 6 | 11| 12| 0 | 2 | 4 | 7 | 1 | 9 | 13| device map 2
  120  *  s  +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
  121  *  l  |              group 8              |  group 9..|       | row 6
  122  *  i  +-----------------------------------------------+-------|
  123  *  c  |       ..group 9       |        group 10..     |       | row 7
  124  *  e  +-----------------------+-----------------------+-------+
  125  *  2  |..group 10 |            group 11               |       | row 8
  126  *     +-----------+-----------------------------------+-------+
  127  *
  128  * This layout has several advantages over requiring that each row contain
  129  * a whole number of groups.
  130  *
  131  * 1. The group count is not a relevant parameter when defining a dRAID
  132  *    layout. Only the group width is needed, and *all* groups will have
  133  *    the desired size.
  134  *
  135  * 2. All possible group widths (<= physical disk count) can be supported.
  136  *
  137  * 3. The logic within vdev_draid.c is simplified when the group width is
  138  *    the same for all groups (although some of the logic around computing
  139  *    permutation numbers and drive offsets is more complicated).
  140  *
  141  * N.B. The following array describes all valid dRAID permutation maps.
  142  * Each row is used to generate a permutation map for a different number
  143  * of children from a unique seed. The seeds were generated and carefully
  144  * evaluated by the 'draid' utility in order to provide balanced mappings.
  145  * In addition to the seed a checksum of the in-memory mapping is stored
  146  * for verification.
  147  *
  148  * The imbalance ratio of a given failure (e.g. 5 disks wide, child 3 failed,
  149  * with a given permutation map) is the ratio of the amounts of I/O that will
  150  * be sent to the least and most busy disks when resilvering. The average
  151  * imbalance ratio (of a given number of disks and permutation map) is the
  152  * average of the ratios of all possible single and double disk failures.
  153  *
  154  * In order to achieve a low imbalance ratio the number of permutations in
  155  * the mapping must be significantly larger than the number of children.
  156  * For dRAID the number of permutations has been limited to 512 to minimize
  157  * the map size. This does result in a gradually increasing imbalance ratio
  158  * as seen in the table below. Increasing the number of permutations for
  159  * larger child counts would reduce the imbalance ratio. However, in practice
  160  * when there are a large number of children each child is responsible for
  161  * fewer total IOs so it's less of a concern.
  162  *
  163  * Note these values are hard coded and must never be changed.  Existing
  164  * pools depend on the same mapping always being generated in order to
  165  * read and write from the correct locations.  Any change would make
  166  * existing pools completely inaccessible.
  167  */
  168 static const draid_map_t draid_maps[VDEV_DRAID_MAX_MAPS] = {
  169         {   2, 256, 0x89ef3dabbcc7de37, 0x00000000433d433d },   /* 1.000 */
  170         {   3, 256, 0x89a57f3de98121b4, 0x00000000bcd8b7b5 },   /* 1.000 */
  171         {   4, 256, 0xc9ea9ec82340c885, 0x00000001819d7c69 },   /* 1.000 */
  172         {   5, 256, 0xf46733b7f4d47dfd, 0x00000002a1648d74 },   /* 1.010 */
  173         {   6, 256, 0x88c3c62d8585b362, 0x00000003d3b0c2c4 },   /* 1.031 */
  174         {   7, 256, 0x3a65d809b4d1b9d5, 0x000000055c4183ee },   /* 1.043 */
  175         {   8, 256, 0xe98930e3c5d2e90a, 0x00000006edfb0329 },   /* 1.059 */
  176         {   9, 256, 0x5a5430036b982ccb, 0x00000008ceaf6934 },   /* 1.056 */
  177         {  10, 256, 0x92bf389e9eadac74, 0x0000000b26668c09 },   /* 1.072 */
  178         {  11, 256, 0x74ccebf1dcf3ae80, 0x0000000dd691358c },   /* 1.083 */
  179         {  12, 256, 0x8847e41a1a9f5671, 0x00000010a0c63c8e },   /* 1.097 */
  180         {  13, 256, 0x7481b56debf0e637, 0x0000001424121fe4 },   /* 1.100 */
  181         {  14, 256, 0x559b8c44065f8967, 0x00000016ab2ff079 },   /* 1.121 */
  182         {  15, 256, 0x34c49545a2ee7f01, 0x0000001a6028efd6 },   /* 1.103 */
  183         {  16, 256, 0xb85f4fa81a7698f7, 0x0000001e95ff5e66 },   /* 1.111 */
  184         {  17, 256, 0x6353e47b7e47aba0, 0x00000021a81fa0fe },   /* 1.133 */
  185         {  18, 256, 0xaa549746b1cbb81c, 0x00000026f02494c9 },   /* 1.131 */
  186         {  19, 256, 0x892e343f2f31d690, 0x00000029eb392835 },   /* 1.130 */
  187         {  20, 256, 0x76914824db98cc3f, 0x0000003004f31a7c },   /* 1.141 */
  188         {  21, 256, 0x4b3cbabf9cfb1d0f, 0x00000036363a2408 },   /* 1.139 */
  189         {  22, 256, 0xf45c77abb4f035d4, 0x00000038dd0f3e84 },   /* 1.150 */
  190         {  23, 256, 0x5e18bd7f3fd4baf4, 0x0000003f0660391f },   /* 1.174 */
  191         {  24, 256, 0xa7b3a4d285d6503b, 0x000000443dfc9ff6 },   /* 1.168 */
  192         {  25, 256, 0x56ac7dd967521f5a, 0x0000004b03a87eb7 },   /* 1.180 */
  193         {  26, 256, 0x3a42dfda4eb880f7, 0x000000522c719bba },   /* 1.226 */
  194         {  27, 256, 0xd200d2fc6b54bf60, 0x0000005760b4fdf5 },   /* 1.228 */
  195         {  28, 256, 0xc52605bbd486c546, 0x0000005e00d8f74c },   /* 1.217 */
  196         {  29, 256, 0xc761779e63cd762f, 0x00000067be3cd85c },   /* 1.239 */
  197         {  30, 256, 0xca577b1e07f85ca5, 0x0000006f5517f3e4 },   /* 1.238 */
  198         {  31, 256, 0xfd50a593c518b3d4, 0x0000007370e7778f },   /* 1.273 */
  199         {  32, 512, 0xc6c87ba5b042650b, 0x000000f7eb08a156 },   /* 1.191 */
  200         {  33, 512, 0xc3880d0c9d458304, 0x0000010734b5d160 },   /* 1.199 */
  201         {  34, 512, 0xe920927e4d8b2c97, 0x00000118c1edbce0 },   /* 1.195 */
  202         {  35, 512, 0x8da7fcda87bde316, 0x0000012a3e9f9110 },   /* 1.201 */
  203         {  36, 512, 0xcf09937491514a29, 0x0000013bd6a24bef },   /* 1.194 */
  204         {  37, 512, 0x9b5abbf345cbd7cc, 0x0000014b9d90fac3 },   /* 1.237 */
  205         {  38, 512, 0x506312a44668d6a9, 0x0000015e1b5f6148 },   /* 1.242 */
  206         {  39, 512, 0x71659ede62b4755f, 0x00000173ef029bcd },   /* 1.231 */
  207         {  40, 512, 0xa7fde73fb74cf2d7, 0x000001866fb72748 },   /* 1.233 */
  208         {  41, 512, 0x19e8b461a1dea1d3, 0x000001a046f76b23 },   /* 1.271 */
  209         {  42, 512, 0x031c9b868cc3e976, 0x000001afa64c49d3 },   /* 1.263 */
  210         {  43, 512, 0xbaa5125faa781854, 0x000001c76789e278 },   /* 1.270 */
  211         {  44, 512, 0x4ed55052550d721b, 0x000001d800ccd8eb },   /* 1.281 */
  212         {  45, 512, 0x0fd63ddbdff90677, 0x000001f08ad59ed2 },   /* 1.282 */
  213         {  46, 512, 0x36d66546de7fdd6f, 0x000002016f09574b },   /* 1.286 */
  214         {  47, 512, 0x99f997e7eafb69d7, 0x0000021e42e47cb6 },   /* 1.329 */
  215         {  48, 512, 0xbecd9c2571312c5d, 0x000002320fe2872b },   /* 1.286 */
  216         {  49, 512, 0xd97371329e488a32, 0x0000024cd73f2ca7 },   /* 1.322 */
  217         {  50, 512, 0x30e9b136670749ee, 0x000002681c83b0e0 },   /* 1.335 */
  218         {  51, 512, 0x11ad6bc8f47aaeb4, 0x0000027e9261b5d5 },   /* 1.305 */
  219         {  52, 512, 0x68e445300af432c1, 0x0000029aa0eb7dbf },   /* 1.330 */
  220         {  53, 512, 0x910fb561657ea98c, 0x000002b3dca04853 },   /* 1.365 */
  221         {  54, 512, 0xd619693d8ce5e7a5, 0x000002cc280e9c97 },   /* 1.334 */
  222         {  55, 512, 0x24e281f564dbb60a, 0x000002e9fa842713 },   /* 1.364 */
  223         {  56, 512, 0x947a7d3bdaab44c5, 0x000003046680f72e },   /* 1.374 */
  224         {  57, 512, 0x2d44fec9c093e0de, 0x00000324198ba810 },   /* 1.363 */
  225         {  58, 512, 0x87743c272d29bb4c, 0x0000033ec48c9ac9 },   /* 1.401 */
  226         {  59, 512, 0x96aa3b6f67f5d923, 0x0000034faead902c },   /* 1.392 */
  227         {  60, 512, 0x94a4f1faf520b0d3, 0x0000037d713ab005 },   /* 1.360 */
  228         {  61, 512, 0xb13ed3a272f711a2, 0x00000397368f3cbd },   /* 1.396 */
  229         {  62, 512, 0x3b1b11805fa4a64a, 0x000003b8a5e2840c },   /* 1.453 */
  230         {  63, 512, 0x4c74caad9172ba71, 0x000003d4be280290 },   /* 1.437 */
  231         {  64, 512, 0x035ff643923dd29e, 0x000003fad6c355e1 },   /* 1.402 */
  232         {  65, 512, 0x768e9171b11abd3c, 0x0000040eb07fed20 },   /* 1.459 */
  233         {  66, 512, 0x75880e6f78a13ddd, 0x000004433d6acf14 },   /* 1.423 */
  234         {  67, 512, 0x910b9714f698a877, 0x00000451ea65d5db },   /* 1.447 */
  235         {  68, 512, 0x87f5db6f9fdcf5c7, 0x000004732169e3f7 },   /* 1.450 */
  236         {  69, 512, 0x836d4968fbaa3706, 0x000004954068a380 },   /* 1.455 */
  237         {  70, 512, 0xc567d73a036421ab, 0x000004bd7cb7bd3d },   /* 1.463 */
  238         {  71, 512, 0x619df40f240b8fed, 0x000004e376c2e972 },   /* 1.463 */
  239         {  72, 512, 0x42763a680d5bed8e, 0x000005084275c680 },   /* 1.452 */
  240         {  73, 512, 0x5866f064b3230431, 0x0000052906f2c9ab },   /* 1.498 */
  241         {  74, 512, 0x9fa08548b1621a44, 0x0000054708019247 },   /* 1.526 */
  242         {  75, 512, 0xb6053078ce0fc303, 0x00000572cc5c72b0 },   /* 1.491 */
  243         {  76, 512, 0x4a7aad7bf3890923, 0x0000058e987bc8e9 },   /* 1.470 */
  244         {  77, 512, 0xe165613fd75b5a53, 0x000005c20473a211 },   /* 1.527 */
  245         {  78, 512, 0x3ff154ac878163a6, 0x000005d659194bf3 },   /* 1.509 */
  246         {  79, 512, 0x24b93ade0aa8a532, 0x0000060a201c4f8e },   /* 1.569 */
  247         {  80, 512, 0xc18e2d14cd9bb554, 0x0000062c55cfe48c },   /* 1.555 */
  248         {  81, 512, 0x98cc78302feb58b6, 0x0000066656a07194 },   /* 1.509 */
  249         {  82, 512, 0xc6c5fd5a2abc0543, 0x0000067cff94fbf8 },   /* 1.596 */
  250         {  83, 512, 0xa7962f514acbba21, 0x000006ab7b5afa2e },   /* 1.568 */
  251         {  84, 512, 0xba02545069ddc6dc, 0x000006d19861364f },   /* 1.541 */
  252         {  85, 512, 0x447c73192c35073e, 0x000006fce315ce35 },   /* 1.623 */
  253         {  86, 512, 0x48beef9e2d42b0c2, 0x00000720a8e38b6b },   /* 1.620 */
  254         {  87, 512, 0x4874cf98541a35e0, 0x00000758382a2273 },   /* 1.597 */
  255         {  88, 512, 0xad4cf8333a31127a, 0x00000781e1651b1b },   /* 1.575 */
  256         {  89, 512, 0x47ae4859d57888c1, 0x000007b27edbe5bc },   /* 1.627 */
  257         {  90, 512, 0x06f7723cfe5d1891, 0x000007dc2a96d8eb },   /* 1.596 */
  258         {  91, 512, 0xd4e44218d660576d, 0x0000080ac46f02d5 },   /* 1.622 */
  259         {  92, 512, 0x7066702b0d5be1f2, 0x00000832c96d154e },   /* 1.695 */
  260         {  93, 512, 0x011209b4f9e11fb9, 0x0000085eefda104c },   /* 1.605 */
  261         {  94, 512, 0x47ffba30a0b35708, 0x00000899badc32dc },   /* 1.625 */
  262         {  95, 512, 0x1a95a6ac4538aaa8, 0x000008b6b69a42b2 },   /* 1.687 */
  263         {  96, 512, 0xbda2b239bb2008eb, 0x000008f22d2de38a },   /* 1.621 */
  264         {  97, 512, 0x7ffa0bea90355c6c, 0x0000092e5b23b816 },   /* 1.699 */
  265         {  98, 512, 0x1d56ba34be426795, 0x0000094f482e5d1b },   /* 1.688 */
  266         {  99, 512, 0x0aa89d45c502e93d, 0x00000977d94a98ce },   /* 1.642 */
  267         { 100, 512, 0x54369449f6857774, 0x000009c06c9b34cc },   /* 1.683 */
  268         { 101, 512, 0xf7d4dd8445b46765, 0x000009e5dc542259 },   /* 1.755 */
  269         { 102, 512, 0xfa8866312f169469, 0x00000a16b54eae93 },   /* 1.692 */
  270         { 103, 512, 0xd8a5aea08aef3ff9, 0x00000a381d2cbfe7 },   /* 1.747 */
  271         { 104, 512, 0x66bcd2c3d5f9ef0e, 0x00000a8191817be7 },   /* 1.751 */
  272         { 105, 512, 0x3fb13a47a012ec81, 0x00000ab562b9a254 },   /* 1.751 */
  273         { 106, 512, 0x43100f01c9e5e3ca, 0x00000aeee84c185f },   /* 1.726 */
  274         { 107, 512, 0xca09c50ccee2d054, 0x00000b1c359c047d },   /* 1.788 */
  275         { 108, 512, 0xd7176732ac503f9b, 0x00000b578bc52a73 },   /* 1.740 */
  276         { 109, 512, 0xed206e51f8d9422d, 0x00000b8083e0d960 },   /* 1.780 */
  277         { 110, 512, 0x17ead5dc6ba0dcd6, 0x00000bcfb1a32ca8 },   /* 1.836 */
  278         { 111, 512, 0x5f1dc21e38a969eb, 0x00000c0171becdd6 },   /* 1.778 */
  279         { 112, 512, 0xddaa973de33ec528, 0x00000c3edaba4b95 },   /* 1.831 */
  280         { 113, 512, 0x2a5eccd7735a3630, 0x00000c630664e7df },   /* 1.825 */
  281         { 114, 512, 0xafcccee5c0b71446, 0x00000cb65392f6e4 },   /* 1.826 */
  282         { 115, 512, 0x8fa30c5e7b147e27, 0x00000cd4db391e55 },   /* 1.843 */
  283         { 116, 512, 0x5afe0711fdfafd82, 0x00000d08cb4ec35d },   /* 1.826 */
  284         { 117, 512, 0x533a6090238afd4c, 0x00000d336f115d1b },   /* 1.803 */
  285         { 118, 512, 0x90cf11b595e39a84, 0x00000d8e041c2048 },   /* 1.857 */
  286         { 119, 512, 0x0d61a3b809444009, 0x00000dcb798afe35 },   /* 1.877 */
  287         { 120, 512, 0x7f34da0f54b0d114, 0x00000df3922664e1 },   /* 1.849 */
  288         { 121, 512, 0xa52258d5b72f6551, 0x00000e4d37a9872d },   /* 1.867 */
  289         { 122, 512, 0xc1de54d7672878db, 0x00000e6583a94cf6 },   /* 1.978 */
  290         { 123, 512, 0x1d03354316a414ab, 0x00000ebffc50308d },   /* 1.947 */
  291         { 124, 512, 0xcebdcc377665412c, 0x00000edee1997cea },   /* 1.865 */
  292         { 125, 512, 0x4ddd4c04b1a12344, 0x00000f21d64b373f },   /* 1.881 */
  293         { 126, 512, 0x64fc8f94e3973658, 0x00000f8f87a8896b },   /* 1.882 */
  294         { 127, 512, 0x68765f78034a334e, 0x00000fb8fe62197e },   /* 1.867 */
  295         { 128, 512, 0xaf36b871a303e816, 0x00000fec6f3afb1e },   /* 1.972 */
  296         { 129, 512, 0x2a4cbf73866c3a28, 0x00001027febfe4e5 },   /* 1.896 */
  297         { 130, 512, 0x9cb128aacdcd3b2f, 0x0000106aa8ac569d },   /* 1.965 */
  298         { 131, 512, 0x5511d41c55869124, 0x000010bbd755ddf1 },   /* 1.963 */
  299         { 132, 512, 0x42f92461937f284a, 0x000010fb8bceb3b5 },   /* 1.925 */
  300         { 133, 512, 0xe2d89a1cf6f1f287, 0x0000114cf5331e34 },   /* 1.862 */
  301         { 134, 512, 0xdc631a038956200e, 0x0000116428d2adc5 },   /* 2.042 */
  302         { 135, 512, 0xb2e5ac222cd236be, 0x000011ca88e4d4d2 },   /* 1.935 */
  303         { 136, 512, 0xbc7d8236655d88e7, 0x000011e39cb94e66 },   /* 2.005 */
  304         { 137, 512, 0x073e02d88d2d8e75, 0x0000123136c7933c },   /* 2.041 */
  305         { 138, 512, 0x3ddb9c3873166be0, 0x00001280e4ec6d52 },   /* 1.997 */
  306         { 139, 512, 0x7d3b1a845420e1b5, 0x000012c2e7cd6a44 },   /* 1.996 */
  307         { 140, 512, 0x60102308aa7b2a6c, 0x000012fc490e6c7d },   /* 2.053 */
  308         { 141, 512, 0xdb22bb2f9eb894aa, 0x00001343f5a85a1a },   /* 1.971 */
  309         { 142, 512, 0xd853f879a13b1606, 0x000013bb7d5f9048 },   /* 2.018 */
  310         { 143, 512, 0x001620a03f804b1d, 0x000013e74cc794fd },   /* 1.961 */
  311         { 144, 512, 0xfdb52dda76fbf667, 0x00001442d2f22480 },   /* 2.046 */
  312         { 145, 512, 0xa9160110f66e24ff, 0x0000144b899f9dbb },   /* 1.968 */
  313         { 146, 512, 0x77306a30379ae03b, 0x000014cb98eb1f81 },   /* 2.143 */
  314         { 147, 512, 0x14f5985d2752319d, 0x000014feab821fc9 },   /* 2.064 */
  315         { 148, 512, 0xa4b8ff11de7863f8, 0x0000154a0e60b9c9 },   /* 2.023 */
  316         { 149, 512, 0x44b345426455c1b3, 0x000015999c3c569c },   /* 2.136 */
  317         { 150, 512, 0x272677826049b46c, 0x000015c9697f4b92 },   /* 2.063 */
  318         { 151, 512, 0x2f9216e2cd74fe40, 0x0000162b1f7bbd39 },   /* 1.974 */
  319         { 152, 512, 0x706ae3e763ad8771, 0x00001661371c55e1 },   /* 2.210 */
  320         { 153, 512, 0xf7fd345307c2480e, 0x000016e251f28b6a },   /* 2.006 */
  321         { 154, 512, 0x6e94e3d26b3139eb, 0x000016f2429bb8c6 },   /* 2.193 */
  322         { 155, 512, 0x5458bbfbb781fcba, 0x0000173efdeca1b9 },   /* 2.163 */
  323         { 156, 512, 0xa80e2afeccd93b33, 0x000017bfdcb78adc },   /* 2.046 */
  324         { 157, 512, 0x1e4ccbb22796cf9d, 0x00001826fdcc39c9 },   /* 2.084 */
  325         { 158, 512, 0x8fba4b676aaa3663, 0x00001841a1379480 },   /* 2.264 */
  326         { 159, 512, 0xf82b843814b315fa, 0x000018886e19b8a3 },   /* 2.074 */
  327         { 160, 512, 0x7f21e920ecf753a3, 0x0000191812ca0ea7 },   /* 2.282 */
  328         { 161, 512, 0x48bb8ea2c4caa620, 0x0000192f310faccf },   /* 2.148 */
  329         { 162, 512, 0x5cdb652b4952c91b, 0x0000199e1d7437c7 },   /* 2.355 */
  330         { 163, 512, 0x6ac1ba6f78c06cd4, 0x000019cd11f82c70 },   /* 2.164 */
  331         { 164, 512, 0x9faf5f9ca2669a56, 0x00001a18d5431f6a },   /* 2.393 */
  332         { 165, 512, 0xaa57e9383eb01194, 0x00001a9e7d253d85 },   /* 2.178 */
  333         { 166, 512, 0x896967bf495c34d2, 0x00001afb8319b9fc },   /* 2.334 */
  334         { 167, 512, 0xdfad5f05de225f1b, 0x00001b3a59c3093b },   /* 2.266 */
  335         { 168, 512, 0xfd299a99f9f2abdd, 0x00001bb6f1a10799 },   /* 2.304 */
  336         { 169, 512, 0xdda239e798fe9fd4, 0x00001bfae0c9692d },   /* 2.218 */
  337         { 170, 512, 0x5fca670414a32c3e, 0x00001c22129dbcff },   /* 2.377 */
  338         { 171, 512, 0x1bb8934314b087de, 0x00001c955db36cd0 },   /* 2.155 */
  339         { 172, 512, 0xd96394b4b082200d, 0x00001cfc8619b7e6 },   /* 2.404 */
  340         { 173, 512, 0xb612a7735b1c8cbc, 0x00001d303acdd585 },   /* 2.205 */
  341         { 174, 512, 0x28e7430fe5875fe1, 0x00001d7ed5b3697d },   /* 2.359 */
  342         { 175, 512, 0x5038e89efdd981b9, 0x00001dc40ec35c59 },   /* 2.158 */
  343         { 176, 512, 0x075fd78f1d14db7c, 0x00001e31c83b4a2b },   /* 2.614 */
  344         { 177, 512, 0xc50fafdb5021be15, 0x00001e7cdac82fbc },   /* 2.239 */
  345         { 178, 512, 0xe6dc7572ce7b91c7, 0x00001edd8bb454fc },   /* 2.493 */
  346         { 179, 512, 0x21f7843e7beda537, 0x00001f3a8e019d6c },   /* 2.327 */
  347         { 180, 512, 0xc83385e20b43ec82, 0x00001f70735ec137 },   /* 2.231 */
  348         { 181, 512, 0xca818217dddb21fd, 0x0000201ca44c5a3c },   /* 2.237 */
  349         { 182, 512, 0xe6035defea48f933, 0x00002038e3346658 },   /* 2.691 */
  350         { 183, 512, 0x47262a4f953dac5a, 0x000020c2e554314e },   /* 2.170 */
  351         { 184, 512, 0xe24c7246260873ea, 0x000021197e618d64 },   /* 2.600 */
  352         { 185, 512, 0xeef6b57c9b58e9e1, 0x0000217ea48ecddc },   /* 2.391 */
  353         { 186, 512, 0x2becd3346e386142, 0x000021c496d4a5f9 },   /* 2.677 */
  354         { 187, 512, 0x63c6207bdf3b40a3, 0x0000220e0f2eec0c },   /* 2.410 */
  355         { 188, 512, 0x3056ce8989767d4b, 0x0000228eb76cd137 },   /* 2.776 */
  356         { 189, 512, 0x91af61c307cee780, 0x000022e17e2ea501 },   /* 2.266 */
  357         { 190, 512, 0xda359da225f6d54f, 0x00002358a2debc19 },   /* 2.717 */
  358         { 191, 512, 0x0a5f7a2a55607ba0, 0x0000238a79dac18c },   /* 2.474 */
  359         { 192, 512, 0x27bb75bf5224638a, 0x00002403a58e2351 },   /* 2.673 */
  360         { 193, 512, 0x1ebfdb94630f5d0f, 0x00002492a10cb339 },   /* 2.420 */
  361         { 194, 512, 0x6eae5e51d9c5f6fb, 0x000024ce4bf98715 },   /* 2.898 */
  362         { 195, 512, 0x08d903b4daedc2e0, 0x0000250d1e15886c },   /* 2.363 */
  363         { 196, 512, 0xc722a2f7fa7cd686, 0x0000258a99ed0c9e },   /* 2.747 */
  364         { 197, 512, 0x8f71faf0e54e361d, 0x000025dee11976f5 },   /* 2.531 */
  365         { 198, 512, 0x87f64695c91a54e7, 0x0000264e00a43da0 },   /* 2.707 */
  366         { 199, 512, 0xc719cbac2c336b92, 0x000026d327277ac1 },   /* 2.315 */
  367         { 200, 512, 0xe7e647afaf771ade, 0x000027523a5c44bf },   /* 3.012 */
  368         { 201, 512, 0x12d4b5c38ce8c946, 0x0000273898432545 },   /* 2.378 */
  369         { 202, 512, 0xf2e0cd4067bdc94a, 0x000027e47bb2c935 },   /* 2.969 */
  370         { 203, 512, 0x21b79f14d6d947d3, 0x0000281e64977f0d },   /* 2.594 */
  371         { 204, 512, 0x515093f952f18cd6, 0x0000289691a473fd },   /* 2.763 */
  372         { 205, 512, 0xd47b160a1b1022c8, 0x00002903e8b52411 },   /* 2.457 */
  373         { 206, 512, 0xc02fc96684715a16, 0x0000297515608601 },   /* 3.057 */
  374         { 207, 512, 0xef51e68efba72ed0, 0x000029ef73604804 },   /* 2.590 */
  375         { 208, 512, 0x9e3be6e5448b4f33, 0x00002a2846ed074b },   /* 3.047 */
  376         { 209, 512, 0x81d446c6d5fec063, 0x00002a92ca693455 },   /* 2.676 */
  377         { 210, 512, 0xff215de8224e57d5, 0x00002b2271fe3729 },   /* 2.993 */
  378         { 211, 512, 0xe2524d9ba8f69796, 0x00002b64b99c3ba2 },   /* 2.457 */
  379         { 212, 512, 0xf6b28e26097b7e4b, 0x00002bd768b6e068 },   /* 3.182 */
  380         { 213, 512, 0x893a487f30ce1644, 0x00002c67f722b4b2 },   /* 2.563 */
  381         { 214, 512, 0x386566c3fc9871df, 0x00002cc1cf8b4037 },   /* 3.025 */
  382         { 215, 512, 0x1e0ed78edf1f558a, 0x00002d3948d36c7f },   /* 2.730 */
  383         { 216, 512, 0xe3bc20c31e61f113, 0x00002d6d6b12e025 },   /* 3.036 */
  384         { 217, 512, 0xd6c3ad2e23021882, 0x00002deff7572241 },   /* 2.722 */
  385         { 218, 512, 0xb4a9f95cf0f69c5a, 0x00002e67d537aa36 },   /* 3.356 */
  386         { 219, 512, 0x6e98ed6f6c38e82f, 0x00002e9720626789 },   /* 2.697 */
  387         { 220, 512, 0x2e01edba33fddac7, 0x00002f407c6b0198 },   /* 2.979 */
  388         { 221, 512, 0x559d02e1f5f57ccc, 0x00002fb6a5ab4f24 },   /* 2.858 */
  389         { 222, 512, 0xac18f5a916adcd8e, 0x0000304ae1c5c57e },   /* 3.258 */
  390         { 223, 512, 0x15789fbaddb86f4b, 0x0000306f6e019c78 },   /* 2.693 */
  391         { 224, 512, 0xf4a9c36d5bc4c408, 0x000030da40434213 },   /* 3.259 */
  392         { 225, 512, 0xf640f90fd2727f44, 0x00003189ed37b90c },   /* 2.733 */
  393         { 226, 512, 0xb5313d390d61884a, 0x000031e152616b37 },   /* 3.235 */
  394         { 227, 512, 0x4bae6b3ce9160939, 0x0000321f40aeac42 },   /* 2.983 */
  395         { 228, 512, 0x838c34480f1a66a1, 0x000032f389c0f78e },   /* 3.308 */
  396         { 229, 512, 0xb1c4a52c8e3d6060, 0x0000330062a40284 },   /* 2.715 */
  397         { 230, 512, 0xe0f1110c6d0ed822, 0x0000338be435644f },   /* 3.540 */
  398         { 231, 512, 0x9f1a8ccdcea68d4b, 0x000034045a4e97e1 },   /* 2.779 */
  399         { 232, 512, 0x3261ed62223f3099, 0x000034702cfc401c },   /* 3.084 */
  400         { 233, 512, 0xf2191e2311022d65, 0x00003509dd19c9fc },   /* 2.987 */
  401         { 234, 512, 0xf102a395c2033abc, 0x000035654dc96fae },   /* 3.341 */
  402         { 235, 512, 0x11fe378f027906b6, 0x000035b5193b0264 },   /* 2.793 */
  403         { 236, 512, 0xf777f2c026b337aa, 0x000036704f5d9297 },   /* 3.518 */
  404         { 237, 512, 0x1b04e9c2ee143f32, 0x000036dfbb7af218 },   /* 2.962 */
  405         { 238, 512, 0x2fcec95266f9352c, 0x00003785c8df24a9 },   /* 3.196 */
  406         { 239, 512, 0xfe2b0e47e427dd85, 0x000037cbdf5da729 },   /* 2.914 */
  407         { 240, 512, 0x72b49bf2225f6c6d, 0x0000382227c15855 },   /* 3.408 */
  408         { 241, 512, 0x50486b43df7df9c7, 0x0000389b88be6453 },   /* 2.903 */
  409         { 242, 512, 0x5192a3e53181c8ab, 0x000038ddf3d67263 },   /* 3.778 */
  410         { 243, 512, 0xe9f5d8365296fd5e, 0x0000399f1c6c9e9c },   /* 3.026 */
  411         { 244, 512, 0xc740263f0301efa8, 0x00003a147146512d },   /* 3.347 */
  412         { 245, 512, 0x23cd0f2b5671e67d, 0x00003ab10bcc0d9d },   /* 3.212 */
  413         { 246, 512, 0x002ccc7e5cd41390, 0x00003ad6cd14a6c0 },   /* 3.482 */
  414         { 247, 512, 0x9aafb3c02544b31b, 0x00003b8cb8779fb0 },   /* 3.146 */
  415         { 248, 512, 0x72ba07a78b121999, 0x00003c24142a5a3f },   /* 3.626 */
  416         { 249, 512, 0x3d784aa58edfc7b4, 0x00003cd084817d99 },   /* 2.952 */
  417         { 250, 512, 0xaab750424d8004af, 0x00003d506a8e098e },   /* 3.463 */
  418         { 251, 512, 0x84403fcf8e6b5ca2, 0x00003d4c54c2aec4 },   /* 3.131 */
  419         { 252, 512, 0x71eb7455ec98e207, 0x00003e655715cf2c },   /* 3.538 */
  420         { 253, 512, 0xd752b4f19301595b, 0x00003ecd7b2ca5ac },   /* 2.974 */
  421         { 254, 512, 0xc4674129750499de, 0x00003e99e86d3e95 },   /* 3.843 */
  422         { 255, 512, 0x9772baff5cd12ef5, 0x00003f895c019841 },   /* 3.088 */
  423 };
  424 
  425 /*
  426  * Verify the map is valid. Each device index must appear exactly
  427  * once in every row, and the permutation array checksum must match.
  428  */
  429 static int
  430 verify_perms(uint8_t *perms, uint64_t children, uint64_t nperms,
  431     uint64_t checksum)
  432 {
  433         int countssz = sizeof (uint16_t) * children;
  434         uint16_t *counts = kmem_zalloc(countssz, KM_SLEEP);
  435 
  436         for (int i = 0; i < nperms; i++) {
  437                 for (int j = 0; j < children; j++) {
  438                         uint8_t val = perms[(i * children) + j];
  439 
  440                         if (val >= children || counts[val] != i) {
  441                                 kmem_free(counts, countssz);
  442                                 return (EINVAL);
  443                         }
  444 
  445                         counts[val]++;
  446                 }
  447         }
  448 
  449         if (checksum != 0) {
  450                 int permssz = sizeof (uint8_t) * children * nperms;
  451                 zio_cksum_t cksum;
  452 
  453                 fletcher_4_native_varsize(perms, permssz, &cksum);
  454 
  455                 if (checksum != cksum.zc_word[0]) {
  456                         kmem_free(counts, countssz);
  457                         return (ECKSUM);
  458                 }
  459         }
  460 
  461         kmem_free(counts, countssz);
  462 
  463         return (0);
  464 }
  465 
  466 /*
  467  * Generate the permutation array for the draid_map_t.  These maps control
  468  * the placement of all data in a dRAID.  Therefore it's critical that the
  469  * seed always generates the same mapping.  We provide our own pseudo-random
  470  * number generator for this purpose.
  471  */
  472 int
  473 vdev_draid_generate_perms(const draid_map_t *map, uint8_t **permsp)
  474 {
  475         VERIFY3U(map->dm_children, >=, VDEV_DRAID_MIN_CHILDREN);
  476         VERIFY3U(map->dm_children, <=, VDEV_DRAID_MAX_CHILDREN);
  477         VERIFY3U(map->dm_seed, !=, 0);
  478         VERIFY3U(map->dm_nperms, !=, 0);
  479         VERIFY3P(map->dm_perms, ==, NULL);
  480 
  481 #ifdef _KERNEL
  482         /*
  483          * The kernel code always provides both a map_seed and checksum.
  484          * Only the tests/zfs-tests/cmd/draid/draid.c utility will provide
  485          * a zero checksum when generating new candidate maps.
  486          */
  487         VERIFY3U(map->dm_checksum, !=, 0);
  488 #endif
  489         uint64_t children = map->dm_children;
  490         uint64_t nperms = map->dm_nperms;
  491         int rowsz = sizeof (uint8_t) * children;
  492         int permssz = rowsz * nperms;
  493         uint8_t *perms;
  494 
  495         /* Allocate the permutation array */
  496         perms = vmem_alloc(permssz, KM_SLEEP);
  497 
  498         /* Setup an initial row with a known pattern */
  499         uint8_t *initial_row = kmem_alloc(rowsz, KM_SLEEP);
  500         for (int i = 0; i < children; i++)
  501                 initial_row[i] = i;
  502 
  503         uint64_t draid_seed[2] = { VDEV_DRAID_SEED, map->dm_seed };
  504         uint8_t *current_row, *previous_row = initial_row;
  505 
  506         /*
  507          * Perform a Fisher-Yates shuffle of each row using the previous
  508          * row as the starting point.  An initial_row with known pattern
  509          * is used as the input for the first row.
  510          */
  511         for (int i = 0; i < nperms; i++) {
  512                 current_row = &perms[i * children];
  513                 memcpy(current_row, previous_row, rowsz);
  514 
  515                 for (int j = children - 1; j > 0; j--) {
  516                         uint64_t k = vdev_draid_rand(draid_seed) % (j + 1);
  517                         uint8_t val = current_row[j];
  518                         current_row[j] = current_row[k];
  519                         current_row[k] = val;
  520                 }
  521 
  522                 previous_row = current_row;
  523         }
  524 
  525         kmem_free(initial_row, rowsz);
  526 
  527         int error = verify_perms(perms, children, nperms, map->dm_checksum);
  528         if (error) {
  529                 vmem_free(perms, permssz);
  530                 return (error);
  531         }
  532 
  533         *permsp = perms;
  534 
  535         return (0);
  536 }
  537 
  538 /*
  539  * Lookup the fixed draid_map_t for the requested number of children.
  540  */
  541 int
  542 vdev_draid_lookup_map(uint64_t children, const draid_map_t **mapp)
  543 {
  544         for (int i = 0; i < VDEV_DRAID_MAX_MAPS; i++) {
  545                 if (draid_maps[i].dm_children == children) {
  546                         *mapp = &draid_maps[i];
  547                         return (0);
  548                 }
  549         }
  550 
  551         return (ENOENT);
  552 }
  553 
  554 /*
  555  * Lookup the permutation array and iteration id for the provided offset.
  556  */
  557 static void
  558 vdev_draid_get_perm(vdev_draid_config_t *vdc, uint64_t pindex,
  559     uint8_t **base, uint64_t *iter)
  560 {
  561         uint64_t ncols = vdc->vdc_children;
  562         uint64_t poff = pindex % (vdc->vdc_nperms * ncols);
  563 
  564         *base = vdc->vdc_perms + (poff / ncols) * ncols;
  565         *iter = poff % ncols;
  566 }
  567 
  568 static inline uint64_t
  569 vdev_draid_permute_id(vdev_draid_config_t *vdc,
  570     uint8_t *base, uint64_t iter, uint64_t index)
  571 {
  572         return ((base[index] + iter) % vdc->vdc_children);
  573 }
  574 
  575 /*
  576  * Return the asize which is the psize rounded up to a full group width.
  577  * i.e. vdev_draid_psize_to_asize().
  578  */
  579 static uint64_t
  580 vdev_draid_asize(vdev_t *vd, uint64_t psize)
  581 {
  582         vdev_draid_config_t *vdc = vd->vdev_tsd;
  583         uint64_t ashift = vd->vdev_ashift;
  584 
  585         ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
  586 
  587         uint64_t rows = ((psize - 1) / (vdc->vdc_ndata << ashift)) + 1;
  588         uint64_t asize = (rows * vdc->vdc_groupwidth) << ashift;
  589 
  590         ASSERT3U(asize, !=, 0);
  591         ASSERT3U(asize % (vdc->vdc_groupwidth), ==, 0);
  592 
  593         return (asize);
  594 }
  595 
  596 /*
  597  * Deflate the asize to the psize, this includes stripping parity.
  598  */
  599 uint64_t
  600 vdev_draid_asize_to_psize(vdev_t *vd, uint64_t asize)
  601 {
  602         vdev_draid_config_t *vdc = vd->vdev_tsd;
  603 
  604         ASSERT0(asize % vdc->vdc_groupwidth);
  605 
  606         return ((asize / vdc->vdc_groupwidth) * vdc->vdc_ndata);
  607 }
  608 
  609 /*
  610  * Convert a logical offset to the corresponding group number.
  611  */
  612 static uint64_t
  613 vdev_draid_offset_to_group(vdev_t *vd, uint64_t offset)
  614 {
  615         vdev_draid_config_t *vdc = vd->vdev_tsd;
  616 
  617         ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
  618 
  619         return (offset / vdc->vdc_groupsz);
  620 }
  621 
  622 /*
  623  * Convert a group number to the logical starting offset for that group.
  624  */
  625 static uint64_t
  626 vdev_draid_group_to_offset(vdev_t *vd, uint64_t group)
  627 {
  628         vdev_draid_config_t *vdc = vd->vdev_tsd;
  629 
  630         ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
  631 
  632         return (group * vdc->vdc_groupsz);
  633 }
  634 
  635 /*
  636  * Full stripe writes.  When writing, all columns (D+P) are required.  Parity
  637  * is calculated over all the columns, including empty zero filled sectors,
  638  * and each is written to disk.  While only the data columns are needed for
  639  * a normal read, all of the columns are required for reconstruction when
  640  * performing a sequential resilver.
  641  *
  642  * For "big columns" it's sufficient to map the correct range of the zio ABD.
  643  * Partial columns require allocating a gang ABD in order to zero fill the
  644  * empty sectors.  When the column is empty a zero filled sector must be
  645  * mapped.  In all cases the data ABDs must be the same size as the parity
  646  * ABDs (e.g. rc->rc_size == parity_size).
  647  */
  648 static void
  649 vdev_draid_map_alloc_write(zio_t *zio, uint64_t abd_offset, raidz_row_t *rr)
  650 {
  651         uint64_t skip_size = 1ULL << zio->io_vd->vdev_top->vdev_ashift;
  652         uint64_t parity_size = rr->rr_col[0].rc_size;
  653         uint64_t abd_off = abd_offset;
  654 
  655         ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
  656         ASSERT3U(parity_size, ==, abd_get_size(rr->rr_col[0].rc_abd));
  657 
  658         for (uint64_t c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
  659                 raidz_col_t *rc = &rr->rr_col[c];
  660 
  661                 if (rc->rc_size == 0) {
  662                         /* empty data column (small write), add a skip sector */
  663                         ASSERT3U(skip_size, ==, parity_size);
  664                         rc->rc_abd = abd_get_zeros(skip_size);
  665                 } else if (rc->rc_size == parity_size) {
  666                         /* this is a "big column" */
  667                         rc->rc_abd = abd_get_offset_struct(&rc->rc_abdstruct,
  668                             zio->io_abd, abd_off, rc->rc_size);
  669                 } else {
  670                         /* short data column, add a skip sector */
  671                         ASSERT3U(rc->rc_size + skip_size, ==, parity_size);
  672                         rc->rc_abd = abd_alloc_gang();
  673                         abd_gang_add(rc->rc_abd, abd_get_offset_size(
  674                             zio->io_abd, abd_off, rc->rc_size), B_TRUE);
  675                         abd_gang_add(rc->rc_abd, abd_get_zeros(skip_size),
  676                             B_TRUE);
  677                 }
  678 
  679                 ASSERT3U(abd_get_size(rc->rc_abd), ==, parity_size);
  680 
  681                 abd_off += rc->rc_size;
  682                 rc->rc_size = parity_size;
  683         }
  684 
  685         IMPLY(abd_offset != 0, abd_off == zio->io_size);
  686 }
  687 
  688 /*
  689  * Scrub/resilver reads.  In order to store the contents of the skip sectors
  690  * an additional ABD is allocated.  The columns are handled in the same way
  691  * as a full stripe write except instead of using the zero ABD the newly
  692  * allocated skip ABD is used to back the skip sectors.  In all cases the
  693  * data ABD must be the same size as the parity ABDs.
  694  */
  695 static void
  696 vdev_draid_map_alloc_scrub(zio_t *zio, uint64_t abd_offset, raidz_row_t *rr)
  697 {
  698         uint64_t skip_size = 1ULL << zio->io_vd->vdev_top->vdev_ashift;
  699         uint64_t parity_size = rr->rr_col[0].rc_size;
  700         uint64_t abd_off = abd_offset;
  701         uint64_t skip_off = 0;
  702 
  703         ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
  704         ASSERT3P(rr->rr_abd_empty, ==, NULL);
  705 
  706         if (rr->rr_nempty > 0) {
  707                 rr->rr_abd_empty = abd_alloc_linear(rr->rr_nempty * skip_size,
  708                     B_FALSE);
  709         }
  710 
  711         for (uint64_t c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
  712                 raidz_col_t *rc = &rr->rr_col[c];
  713 
  714                 if (rc->rc_size == 0) {
  715                         /* empty data column (small read), add a skip sector */
  716                         ASSERT3U(skip_size, ==, parity_size);
  717                         ASSERT3U(rr->rr_nempty, !=, 0);
  718                         rc->rc_abd = abd_get_offset_size(rr->rr_abd_empty,
  719                             skip_off, skip_size);
  720                         skip_off += skip_size;
  721                 } else if (rc->rc_size == parity_size) {
  722                         /* this is a "big column" */
  723                         rc->rc_abd = abd_get_offset_struct(&rc->rc_abdstruct,
  724                             zio->io_abd, abd_off, rc->rc_size);
  725                 } else {
  726                         /* short data column, add a skip sector */
  727                         ASSERT3U(rc->rc_size + skip_size, ==, parity_size);
  728                         ASSERT3U(rr->rr_nempty, !=, 0);
  729                         rc->rc_abd = abd_alloc_gang();
  730                         abd_gang_add(rc->rc_abd, abd_get_offset_size(
  731                             zio->io_abd, abd_off, rc->rc_size), B_TRUE);
  732                         abd_gang_add(rc->rc_abd, abd_get_offset_size(
  733                             rr->rr_abd_empty, skip_off, skip_size), B_TRUE);
  734                         skip_off += skip_size;
  735                 }
  736 
  737                 uint64_t abd_size = abd_get_size(rc->rc_abd);
  738                 ASSERT3U(abd_size, ==, abd_get_size(rr->rr_col[0].rc_abd));
  739 
  740                 /*
  741                  * Increase rc_size so the skip ABD is included in subsequent
  742                  * parity calculations.
  743                  */
  744                 abd_off += rc->rc_size;
  745                 rc->rc_size = abd_size;
  746         }
  747 
  748         IMPLY(abd_offset != 0, abd_off == zio->io_size);
  749         ASSERT3U(skip_off, ==, rr->rr_nempty * skip_size);
  750 }
  751 
  752 /*
  753  * Normal reads.  In this common case only the columns containing data
  754  * are read in to the zio ABDs.  Neither the parity columns or empty skip
  755  * sectors are read unless the checksum fails verification.  In which case
  756  * vdev_raidz_read_all() will call vdev_draid_map_alloc_empty() to expand
  757  * the raid map in order to allow reconstruction using the parity data and
  758  * skip sectors.
  759  */
  760 static void
  761 vdev_draid_map_alloc_read(zio_t *zio, uint64_t abd_offset, raidz_row_t *rr)
  762 {
  763         uint64_t abd_off = abd_offset;
  764 
  765         ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
  766 
  767         for (uint64_t c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
  768                 raidz_col_t *rc = &rr->rr_col[c];
  769 
  770                 if (rc->rc_size > 0) {
  771                         rc->rc_abd = abd_get_offset_struct(&rc->rc_abdstruct,
  772                             zio->io_abd, abd_off, rc->rc_size);
  773                         abd_off += rc->rc_size;
  774                 }
  775         }
  776 
  777         IMPLY(abd_offset != 0, abd_off == zio->io_size);
  778 }
  779 
  780 /*
  781  * Converts a normal "read" raidz_row_t to a "scrub" raidz_row_t. The key
  782  * difference is that an ABD is allocated to back skip sectors so they may
  783  * be read in to memory, verified, and repaired if needed.
  784  */
  785 void
  786 vdev_draid_map_alloc_empty(zio_t *zio, raidz_row_t *rr)
  787 {
  788         uint64_t skip_size = 1ULL << zio->io_vd->vdev_top->vdev_ashift;
  789         uint64_t parity_size = rr->rr_col[0].rc_size;
  790         uint64_t skip_off = 0;
  791 
  792         ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
  793         ASSERT3P(rr->rr_abd_empty, ==, NULL);
  794 
  795         if (rr->rr_nempty > 0) {
  796                 rr->rr_abd_empty = abd_alloc_linear(rr->rr_nempty * skip_size,
  797                     B_FALSE);
  798         }
  799 
  800         for (uint64_t c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
  801                 raidz_col_t *rc = &rr->rr_col[c];
  802 
  803                 if (rc->rc_size == 0) {
  804                         /* empty data column (small read), add a skip sector */
  805                         ASSERT3U(skip_size, ==, parity_size);
  806                         ASSERT3U(rr->rr_nempty, !=, 0);
  807                         ASSERT3P(rc->rc_abd, ==, NULL);
  808                         rc->rc_abd = abd_get_offset_size(rr->rr_abd_empty,
  809                             skip_off, skip_size);
  810                         skip_off += skip_size;
  811                 } else if (rc->rc_size == parity_size) {
  812                         /* this is a "big column", nothing to add */
  813                         ASSERT3P(rc->rc_abd, !=, NULL);
  814                 } else {
  815                         /*
  816                          * short data column, add a skip sector and clear
  817                          * rc_tried to force the entire column to be re-read
  818                          * thereby including the missing skip sector data
  819                          * which is needed for reconstruction.
  820                          */
  821                         ASSERT3U(rc->rc_size + skip_size, ==, parity_size);
  822                         ASSERT3U(rr->rr_nempty, !=, 0);
  823                         ASSERT3P(rc->rc_abd, !=, NULL);
  824                         ASSERT(!abd_is_gang(rc->rc_abd));
  825                         abd_t *read_abd = rc->rc_abd;
  826                         rc->rc_abd = abd_alloc_gang();
  827                         abd_gang_add(rc->rc_abd, read_abd, B_TRUE);
  828                         abd_gang_add(rc->rc_abd, abd_get_offset_size(
  829                             rr->rr_abd_empty, skip_off, skip_size), B_TRUE);
  830                         skip_off += skip_size;
  831                         rc->rc_tried = 0;
  832                 }
  833 
  834                 /*
  835                  * Increase rc_size so the empty ABD is included in subsequent
  836                  * parity calculations.
  837                  */
  838                 rc->rc_size = parity_size;
  839         }
  840 
  841         ASSERT3U(skip_off, ==, rr->rr_nempty * skip_size);
  842 }
  843 
  844 /*
  845  * Verify that all empty sectors are zero filled before using them to
  846  * calculate parity.  Otherwise, silent corruption in an empty sector will
  847  * result in bad parity being generated.  That bad parity will then be
  848  * considered authoritative and overwrite the good parity on disk.  This
  849  * is possible because the checksum is only calculated over the data,
  850  * thus it cannot be used to detect damage in empty sectors.
  851  */
  852 int
  853 vdev_draid_map_verify_empty(zio_t *zio, raidz_row_t *rr)
  854 {
  855         uint64_t skip_size = 1ULL << zio->io_vd->vdev_top->vdev_ashift;
  856         uint64_t parity_size = rr->rr_col[0].rc_size;
  857         uint64_t skip_off = parity_size - skip_size;
  858         uint64_t empty_off = 0;
  859         int ret = 0;
  860 
  861         ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
  862         ASSERT3P(rr->rr_abd_empty, !=, NULL);
  863         ASSERT3U(rr->rr_bigcols, >, 0);
  864 
  865         void *zero_buf = kmem_zalloc(skip_size, KM_SLEEP);
  866 
  867         for (int c = rr->rr_bigcols; c < rr->rr_cols; c++) {
  868                 raidz_col_t *rc = &rr->rr_col[c];
  869 
  870                 ASSERT3P(rc->rc_abd, !=, NULL);
  871                 ASSERT3U(rc->rc_size, ==, parity_size);
  872 
  873                 if (abd_cmp_buf_off(rc->rc_abd, zero_buf, skip_off,
  874                     skip_size) != 0) {
  875                         vdev_raidz_checksum_error(zio, rc, rc->rc_abd);
  876                         abd_zero_off(rc->rc_abd, skip_off, skip_size);
  877                         rc->rc_error = SET_ERROR(ECKSUM);
  878                         ret++;
  879                 }
  880 
  881                 empty_off += skip_size;
  882         }
  883 
  884         ASSERT3U(empty_off, ==, abd_get_size(rr->rr_abd_empty));
  885 
  886         kmem_free(zero_buf, skip_size);
  887 
  888         return (ret);
  889 }
  890 
  891 /*
  892  * Given a logical address within a dRAID configuration, return the physical
  893  * address on the first drive in the group that this address maps to
  894  * (at position 'start' in permutation number 'perm').
  895  */
  896 static uint64_t
  897 vdev_draid_logical_to_physical(vdev_t *vd, uint64_t logical_offset,
  898     uint64_t *perm, uint64_t *start)
  899 {
  900         vdev_draid_config_t *vdc = vd->vdev_tsd;
  901 
  902         /* b is the dRAID (parent) sector offset. */
  903         uint64_t ashift = vd->vdev_top->vdev_ashift;
  904         uint64_t b_offset = logical_offset >> ashift;
  905 
  906         /*
  907          * The height of a row in units of the vdev's minimum sector size.
  908          * This is the amount of data written to each disk of each group
  909          * in a given permutation.
  910          */
  911         uint64_t rowheight_sectors = VDEV_DRAID_ROWHEIGHT >> ashift;
  912 
  913         /*
  914          * We cycle through a disk permutation every groupsz * ngroups chunk
  915          * of address space. Note that ngroups * groupsz must be a multiple
  916          * of the number of data drives (ndisks) in order to guarantee
  917          * alignment. So, for example, if our row height is 16MB, our group
  918          * size is 10, and there are 13 data drives in the draid, then ngroups
  919          * will be 13, we will change permutation every 2.08GB and each
  920          * disk will have 160MB of data per chunk.
  921          */
  922         uint64_t groupwidth = vdc->vdc_groupwidth;
  923         uint64_t ngroups = vdc->vdc_ngroups;
  924         uint64_t ndisks = vdc->vdc_ndisks;
  925 
  926         /*
  927          * groupstart is where the group this IO will land in "starts" in
  928          * the permutation array.
  929          */
  930         uint64_t group = logical_offset / vdc->vdc_groupsz;
  931         uint64_t groupstart = (group * groupwidth) % ndisks;
  932         ASSERT3U(groupstart + groupwidth, <=, ndisks + groupstart);
  933         *start = groupstart;
  934 
  935         /* b_offset is the sector offset within a group chunk */
  936         b_offset = b_offset % (rowheight_sectors * groupwidth);
  937         ASSERT0(b_offset % groupwidth);
  938 
  939         /*
  940          * Find the starting byte offset on each child vdev:
  941          * - within a permutation there are ngroups groups spread over the
  942          *   rows, where each row covers a slice portion of the disk
  943          * - each permutation has (groupwidth * ngroups) / ndisks rows
  944          * - so each permutation covers rows * slice portion of the disk
  945          * - so we need to find the row where this IO group target begins
  946          */
  947         *perm = group / ngroups;
  948         uint64_t row = (*perm * ((groupwidth * ngroups) / ndisks)) +
  949             (((group % ngroups) * groupwidth) / ndisks);
  950 
  951         return (((rowheight_sectors * row) +
  952             (b_offset / groupwidth)) << ashift);
  953 }
  954 
  955 static uint64_t
  956 vdev_draid_map_alloc_row(zio_t *zio, raidz_row_t **rrp, uint64_t io_offset,
  957     uint64_t abd_offset, uint64_t abd_size)
  958 {
  959         vdev_t *vd = zio->io_vd;
  960         vdev_draid_config_t *vdc = vd->vdev_tsd;
  961         uint64_t ashift = vd->vdev_top->vdev_ashift;
  962         uint64_t io_size = abd_size;
  963         uint64_t io_asize = vdev_draid_asize(vd, io_size);
  964         uint64_t group = vdev_draid_offset_to_group(vd, io_offset);
  965         uint64_t start_offset = vdev_draid_group_to_offset(vd, group + 1);
  966 
  967         /*
  968          * Limit the io_size to the space remaining in the group.  A second
  969          * row in the raidz_map_t is created for the remainder.
  970          */
  971         if (io_offset + io_asize > start_offset) {
  972                 io_size = vdev_draid_asize_to_psize(vd,
  973                     start_offset - io_offset);
  974         }
  975 
  976         /*
  977          * At most a block may span the logical end of one group and the start
  978          * of the next group. Therefore, at the end of a group the io_size must
  979          * span the group width evenly and the remainder must be aligned to the
  980          * start of the next group.
  981          */
  982         IMPLY(abd_offset == 0 && io_size < zio->io_size,
  983             (io_asize >> ashift) % vdc->vdc_groupwidth == 0);
  984         IMPLY(abd_offset != 0,
  985             vdev_draid_group_to_offset(vd, group) == io_offset);
  986 
  987         /* Lookup starting byte offset on each child vdev */
  988         uint64_t groupstart, perm;
  989         uint64_t physical_offset = vdev_draid_logical_to_physical(vd,
  990             io_offset, &perm, &groupstart);
  991 
  992         /*
  993          * If there is less than groupwidth drives available after the group
  994          * start, the group is going to wrap onto the next row. 'wrap' is the
  995          * group disk number that starts on the next row.
  996          */
  997         uint64_t ndisks = vdc->vdc_ndisks;
  998         uint64_t groupwidth = vdc->vdc_groupwidth;
  999         uint64_t wrap = groupwidth;
 1000 
 1001         if (groupstart + groupwidth > ndisks)
 1002                 wrap = ndisks - groupstart;
 1003 
 1004         /* The io size in units of the vdev's minimum sector size. */
 1005         const uint64_t psize = io_size >> ashift;
 1006 
 1007         /*
 1008          * "Quotient": The number of data sectors for this stripe on all but
 1009          * the "big column" child vdevs that also contain "remainder" data.
 1010          */
 1011         uint64_t q = psize / vdc->vdc_ndata;
 1012 
 1013         /*
 1014          * "Remainder": The number of partial stripe data sectors in this I/O.
 1015          * This will add a sector to some, but not all, child vdevs.
 1016          */
 1017         uint64_t r = psize - q * vdc->vdc_ndata;
 1018 
 1019         /* The number of "big columns" - those which contain remainder data. */
 1020         uint64_t bc = (r == 0 ? 0 : r + vdc->vdc_nparity);
 1021         ASSERT3U(bc, <, groupwidth);
 1022 
 1023         /* The total number of data and parity sectors for this I/O. */
 1024         uint64_t tot = psize + (vdc->vdc_nparity * (q + (r == 0 ? 0 : 1)));
 1025 
 1026         raidz_row_t *rr;
 1027         rr = kmem_alloc(offsetof(raidz_row_t, rr_col[groupwidth]), KM_SLEEP);
 1028         rr->rr_cols = groupwidth;
 1029         rr->rr_scols = groupwidth;
 1030         rr->rr_bigcols = bc;
 1031         rr->rr_missingdata = 0;
 1032         rr->rr_missingparity = 0;
 1033         rr->rr_firstdatacol = vdc->vdc_nparity;
 1034         rr->rr_abd_empty = NULL;
 1035 #ifdef ZFS_DEBUG
 1036         rr->rr_offset = io_offset;
 1037         rr->rr_size = io_size;
 1038 #endif
 1039         *rrp = rr;
 1040 
 1041         uint8_t *base;
 1042         uint64_t iter, asize = 0;
 1043         vdev_draid_get_perm(vdc, perm, &base, &iter);
 1044         for (uint64_t i = 0; i < groupwidth; i++) {
 1045                 raidz_col_t *rc = &rr->rr_col[i];
 1046                 uint64_t c = (groupstart + i) % ndisks;
 1047 
 1048                 /* increment the offset if we wrap to the next row */
 1049                 if (i == wrap)
 1050                         physical_offset += VDEV_DRAID_ROWHEIGHT;
 1051 
 1052                 rc->rc_devidx = vdev_draid_permute_id(vdc, base, iter, c);
 1053                 rc->rc_offset = physical_offset;
 1054                 rc->rc_abd = NULL;
 1055                 rc->rc_orig_data = NULL;
 1056                 rc->rc_error = 0;
 1057                 rc->rc_tried = 0;
 1058                 rc->rc_skipped = 0;
 1059                 rc->rc_force_repair = 0;
 1060                 rc->rc_allow_repair = 1;
 1061                 rc->rc_need_orig_restore = B_FALSE;
 1062 
 1063                 if (q == 0 && i >= bc)
 1064                         rc->rc_size = 0;
 1065                 else if (i < bc)
 1066                         rc->rc_size = (q + 1) << ashift;
 1067                 else
 1068                         rc->rc_size = q << ashift;
 1069 
 1070                 asize += rc->rc_size;
 1071         }
 1072 
 1073         ASSERT3U(asize, ==, tot << ashift);
 1074         rr->rr_nempty = roundup(tot, groupwidth) - tot;
 1075         IMPLY(bc > 0, rr->rr_nempty == groupwidth - bc);
 1076 
 1077         /* Allocate buffers for the parity columns */
 1078         for (uint64_t c = 0; c < rr->rr_firstdatacol; c++) {
 1079                 raidz_col_t *rc = &rr->rr_col[c];
 1080                 rc->rc_abd = abd_alloc_linear(rc->rc_size, B_FALSE);
 1081         }
 1082 
 1083         /*
 1084          * Map buffers for data columns and allocate/map buffers for skip
 1085          * sectors.  There are three distinct cases for dRAID which are
 1086          * required to support sequential rebuild.
 1087          */
 1088         if (zio->io_type == ZIO_TYPE_WRITE) {
 1089                 vdev_draid_map_alloc_write(zio, abd_offset, rr);
 1090         } else if ((rr->rr_nempty > 0) &&
 1091             (zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER))) {
 1092                 vdev_draid_map_alloc_scrub(zio, abd_offset, rr);
 1093         } else {
 1094                 ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
 1095                 vdev_draid_map_alloc_read(zio, abd_offset, rr);
 1096         }
 1097 
 1098         return (io_size);
 1099 }
 1100 
 1101 /*
 1102  * Allocate the raidz mapping to be applied to the dRAID I/O.  The parity
 1103  * calculations for dRAID are identical to raidz however there are a few
 1104  * differences in the layout.
 1105  *
 1106  * - dRAID always allocates a full stripe width. Any extra sectors due
 1107  *   this padding are zero filled and written to disk. They will be read
 1108  *   back during a scrub or repair operation since they are included in
 1109  *   the parity calculation. This property enables sequential resilvering.
 1110  *
 1111  * - When the block at the logical offset spans redundancy groups then two
 1112  *   rows are allocated in the raidz_map_t. One row resides at the end of
 1113  *   the first group and the other at the start of the following group.
 1114  */
 1115 static raidz_map_t *
 1116 vdev_draid_map_alloc(zio_t *zio)
 1117 {
 1118         raidz_row_t *rr[2];
 1119         uint64_t abd_offset = 0;
 1120         uint64_t abd_size = zio->io_size;
 1121         uint64_t io_offset = zio->io_offset;
 1122         uint64_t size;
 1123         int nrows = 1;
 1124 
 1125         size = vdev_draid_map_alloc_row(zio, &rr[0], io_offset,
 1126             abd_offset, abd_size);
 1127         if (size < abd_size) {
 1128                 vdev_t *vd = zio->io_vd;
 1129 
 1130                 io_offset += vdev_draid_asize(vd, size);
 1131                 abd_offset += size;
 1132                 abd_size -= size;
 1133                 nrows++;
 1134 
 1135                 ASSERT3U(io_offset, ==, vdev_draid_group_to_offset(
 1136                     vd, vdev_draid_offset_to_group(vd, io_offset)));
 1137                 ASSERT3U(abd_offset, <, zio->io_size);
 1138                 ASSERT3U(abd_size, !=, 0);
 1139 
 1140                 size = vdev_draid_map_alloc_row(zio, &rr[1],
 1141                     io_offset, abd_offset, abd_size);
 1142                 VERIFY3U(size, ==, abd_size);
 1143         }
 1144 
 1145         raidz_map_t *rm;
 1146         rm = kmem_zalloc(offsetof(raidz_map_t, rm_row[nrows]), KM_SLEEP);
 1147         rm->rm_ops = vdev_raidz_math_get_ops();
 1148         rm->rm_nrows = nrows;
 1149         rm->rm_row[0] = rr[0];
 1150         if (nrows == 2)
 1151                 rm->rm_row[1] = rr[1];
 1152 
 1153         return (rm);
 1154 }
 1155 
 1156 /*
 1157  * Given an offset into a dRAID return the next group width aligned offset
 1158  * which can be used to start an allocation.
 1159  */
 1160 static uint64_t
 1161 vdev_draid_get_astart(vdev_t *vd, const uint64_t start)
 1162 {
 1163         vdev_draid_config_t *vdc = vd->vdev_tsd;
 1164 
 1165         ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
 1166 
 1167         return (roundup(start, vdc->vdc_groupwidth << vd->vdev_ashift));
 1168 }
 1169 
 1170 /*
 1171  * Allocatable space for dRAID is (children - nspares) * sizeof(smallest child)
 1172  * rounded down to the last full slice.  So each child must provide at least
 1173  * 1 / (children - nspares) of its asize.
 1174  */
 1175 static uint64_t
 1176 vdev_draid_min_asize(vdev_t *vd)
 1177 {
 1178         vdev_draid_config_t *vdc = vd->vdev_tsd;
 1179 
 1180         ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
 1181 
 1182         return (VDEV_DRAID_REFLOW_RESERVE +
 1183             (vd->vdev_min_asize + vdc->vdc_ndisks - 1) / (vdc->vdc_ndisks));
 1184 }
 1185 
 1186 /*
 1187  * When using dRAID the minimum allocation size is determined by the number
 1188  * of data disks in the redundancy group.  Full stripes are always used.
 1189  */
 1190 static uint64_t
 1191 vdev_draid_min_alloc(vdev_t *vd)
 1192 {
 1193         vdev_draid_config_t *vdc = vd->vdev_tsd;
 1194 
 1195         ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
 1196 
 1197         return (vdc->vdc_ndata << vd->vdev_ashift);
 1198 }
 1199 
 1200 /*
 1201  * Returns true if the txg range does not exist on any leaf vdev.
 1202  *
 1203  * A dRAID spare does not fit into the DTL model. While it has child vdevs
 1204  * there is no redundancy among them, and the effective child vdev is
 1205  * determined by offset. Essentially we do a vdev_dtl_reassess() on the
 1206  * fly by replacing a dRAID spare with the child vdev under the offset.
 1207  * Note that it is a recursive process because the child vdev can be
 1208  * another dRAID spare and so on.
 1209  */
 1210 boolean_t
 1211 vdev_draid_missing(vdev_t *vd, uint64_t physical_offset, uint64_t txg,
 1212     uint64_t size)
 1213 {
 1214         if (vd->vdev_ops == &vdev_spare_ops ||
 1215             vd->vdev_ops == &vdev_replacing_ops) {
 1216                 /*
 1217                  * Check all of the readable children, if any child
 1218                  * contains the txg range the data it is not missing.
 1219                  */
 1220                 for (int c = 0; c < vd->vdev_children; c++) {
 1221                         vdev_t *cvd = vd->vdev_child[c];
 1222 
 1223                         if (!vdev_readable(cvd))
 1224                                 continue;
 1225 
 1226                         if (!vdev_draid_missing(cvd, physical_offset,
 1227                             txg, size))
 1228                                 return (B_FALSE);
 1229                 }
 1230 
 1231                 return (B_TRUE);
 1232         }
 1233 
 1234         if (vd->vdev_ops == &vdev_draid_spare_ops) {
 1235                 /*
 1236                  * When sequentially resilvering we don't have a proper
 1237                  * txg range so instead we must presume all txgs are
 1238                  * missing on this vdev until the resilver completes.
 1239                  */
 1240                 if (vd->vdev_rebuild_txg != 0)
 1241                         return (B_TRUE);
 1242 
 1243                 /*
 1244                  * DTL_MISSING is set for all prior txgs when a resilver
 1245                  * is started in spa_vdev_attach().
 1246                  */
 1247                 if (vdev_dtl_contains(vd, DTL_MISSING, txg, size))
 1248                         return (B_TRUE);
 1249 
 1250                 /*
 1251                  * Consult the DTL on the relevant vdev. Either a vdev
 1252                  * leaf or spare/replace mirror child may be returned so
 1253                  * we must recursively call vdev_draid_missing_impl().
 1254                  */
 1255                 vd = vdev_draid_spare_get_child(vd, physical_offset);
 1256                 if (vd == NULL)
 1257                         return (B_TRUE);
 1258 
 1259                 return (vdev_draid_missing(vd, physical_offset,
 1260                     txg, size));
 1261         }
 1262 
 1263         return (vdev_dtl_contains(vd, DTL_MISSING, txg, size));
 1264 }
 1265 
 1266 /*
 1267  * Returns true if the txg is only partially replicated on the leaf vdevs.
 1268  */
 1269 static boolean_t
 1270 vdev_draid_partial(vdev_t *vd, uint64_t physical_offset, uint64_t txg,
 1271     uint64_t size)
 1272 {
 1273         if (vd->vdev_ops == &vdev_spare_ops ||
 1274             vd->vdev_ops == &vdev_replacing_ops) {
 1275                 /*
 1276                  * Check all of the readable children, if any child is
 1277                  * missing the txg range then it is partially replicated.
 1278                  */
 1279                 for (int c = 0; c < vd->vdev_children; c++) {
 1280                         vdev_t *cvd = vd->vdev_child[c];
 1281 
 1282                         if (!vdev_readable(cvd))
 1283                                 continue;
 1284 
 1285                         if (vdev_draid_partial(cvd, physical_offset, txg, size))
 1286                                 return (B_TRUE);
 1287                 }
 1288 
 1289                 return (B_FALSE);
 1290         }
 1291 
 1292         if (vd->vdev_ops == &vdev_draid_spare_ops) {
 1293                 /*
 1294                  * When sequentially resilvering we don't have a proper
 1295                  * txg range so instead we must presume all txgs are
 1296                  * missing on this vdev until the resilver completes.
 1297                  */
 1298                 if (vd->vdev_rebuild_txg != 0)
 1299                         return (B_TRUE);
 1300 
 1301                 /*
 1302                  * DTL_MISSING is set for all prior txgs when a resilver
 1303                  * is started in spa_vdev_attach().
 1304                  */
 1305                 if (vdev_dtl_contains(vd, DTL_MISSING, txg, size))
 1306                         return (B_TRUE);
 1307 
 1308                 /*
 1309                  * Consult the DTL on the relevant vdev. Either a vdev
 1310                  * leaf or spare/replace mirror child may be returned so
 1311                  * we must recursively call vdev_draid_missing_impl().
 1312                  */
 1313                 vd = vdev_draid_spare_get_child(vd, physical_offset);
 1314                 if (vd == NULL)
 1315                         return (B_TRUE);
 1316 
 1317                 return (vdev_draid_partial(vd, physical_offset, txg, size));
 1318         }
 1319 
 1320         return (vdev_dtl_contains(vd, DTL_MISSING, txg, size));
 1321 }
 1322 
 1323 /*
 1324  * Determine if the vdev is readable at the given offset.
 1325  */
 1326 boolean_t
 1327 vdev_draid_readable(vdev_t *vd, uint64_t physical_offset)
 1328 {
 1329         if (vd->vdev_ops == &vdev_draid_spare_ops) {
 1330                 vd = vdev_draid_spare_get_child(vd, physical_offset);
 1331                 if (vd == NULL)
 1332                         return (B_FALSE);
 1333         }
 1334 
 1335         if (vd->vdev_ops == &vdev_spare_ops ||
 1336             vd->vdev_ops == &vdev_replacing_ops) {
 1337 
 1338                 for (int c = 0; c < vd->vdev_children; c++) {
 1339                         vdev_t *cvd = vd->vdev_child[c];
 1340 
 1341                         if (!vdev_readable(cvd))
 1342                                 continue;
 1343 
 1344                         if (vdev_draid_readable(cvd, physical_offset))
 1345                                 return (B_TRUE);
 1346                 }
 1347 
 1348                 return (B_FALSE);
 1349         }
 1350 
 1351         return (vdev_readable(vd));
 1352 }
 1353 
 1354 /*
 1355  * Returns the first distributed spare found under the provided vdev tree.
 1356  */
 1357 static vdev_t *
 1358 vdev_draid_find_spare(vdev_t *vd)
 1359 {
 1360         if (vd->vdev_ops == &vdev_draid_spare_ops)
 1361                 return (vd);
 1362 
 1363         for (int c = 0; c < vd->vdev_children; c++) {
 1364                 vdev_t *svd = vdev_draid_find_spare(vd->vdev_child[c]);
 1365                 if (svd != NULL)
 1366                         return (svd);
 1367         }
 1368 
 1369         return (NULL);
 1370 }
 1371 
 1372 /*
 1373  * Returns B_TRUE if the passed in vdev is currently "faulted".
 1374  * Faulted, in this context, means that the vdev represents a
 1375  * replacing or sparing vdev tree.
 1376  */
 1377 static boolean_t
 1378 vdev_draid_faulted(vdev_t *vd, uint64_t physical_offset)
 1379 {
 1380         if (vd->vdev_ops == &vdev_draid_spare_ops) {
 1381                 vd = vdev_draid_spare_get_child(vd, physical_offset);
 1382                 if (vd == NULL)
 1383                         return (B_FALSE);
 1384 
 1385                 /*
 1386                  * After resolving the distributed spare to a leaf vdev
 1387                  * check the parent to determine if it's "faulted".
 1388                  */
 1389                 vd = vd->vdev_parent;
 1390         }
 1391 
 1392         return (vd->vdev_ops == &vdev_replacing_ops ||
 1393             vd->vdev_ops == &vdev_spare_ops);
 1394 }
 1395 
 1396 /*
 1397  * Determine if the dRAID block at the logical offset is degraded.
 1398  * Used by sequential resilver.
 1399  */
 1400 static boolean_t
 1401 vdev_draid_group_degraded(vdev_t *vd, uint64_t offset)
 1402 {
 1403         vdev_draid_config_t *vdc = vd->vdev_tsd;
 1404 
 1405         ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
 1406         ASSERT3U(vdev_draid_get_astart(vd, offset), ==, offset);
 1407 
 1408         uint64_t groupstart, perm;
 1409         uint64_t physical_offset = vdev_draid_logical_to_physical(vd,
 1410             offset, &perm, &groupstart);
 1411 
 1412         uint8_t *base;
 1413         uint64_t iter;
 1414         vdev_draid_get_perm(vdc, perm, &base, &iter);
 1415 
 1416         for (uint64_t i = 0; i < vdc->vdc_groupwidth; i++) {
 1417                 uint64_t c = (groupstart + i) % vdc->vdc_ndisks;
 1418                 uint64_t cid = vdev_draid_permute_id(vdc, base, iter, c);
 1419                 vdev_t *cvd = vd->vdev_child[cid];
 1420 
 1421                 /* Group contains a faulted vdev. */
 1422                 if (vdev_draid_faulted(cvd, physical_offset))
 1423                         return (B_TRUE);
 1424 
 1425                 /*
 1426                  * Always check groups with active distributed spares
 1427                  * because any vdev failure in the pool will affect them.
 1428                  */
 1429                 if (vdev_draid_find_spare(cvd) != NULL)
 1430                         return (B_TRUE);
 1431         }
 1432 
 1433         return (B_FALSE);
 1434 }
 1435 
 1436 /*
 1437  * Determine if the txg is missing.  Used by healing resilver.
 1438  */
 1439 static boolean_t
 1440 vdev_draid_group_missing(vdev_t *vd, uint64_t offset, uint64_t txg,
 1441     uint64_t size)
 1442 {
 1443         vdev_draid_config_t *vdc = vd->vdev_tsd;
 1444 
 1445         ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
 1446         ASSERT3U(vdev_draid_get_astart(vd, offset), ==, offset);
 1447 
 1448         uint64_t groupstart, perm;
 1449         uint64_t physical_offset = vdev_draid_logical_to_physical(vd,
 1450             offset, &perm, &groupstart);
 1451 
 1452         uint8_t *base;
 1453         uint64_t iter;
 1454         vdev_draid_get_perm(vdc, perm, &base, &iter);
 1455 
 1456         for (uint64_t i = 0; i < vdc->vdc_groupwidth; i++) {
 1457                 uint64_t c = (groupstart + i) % vdc->vdc_ndisks;
 1458                 uint64_t cid = vdev_draid_permute_id(vdc, base, iter, c);
 1459                 vdev_t *cvd = vd->vdev_child[cid];
 1460 
 1461                 /* Transaction group is known to be partially replicated. */
 1462                 if (vdev_draid_partial(cvd, physical_offset, txg, size))
 1463                         return (B_TRUE);
 1464 
 1465                 /*
 1466                  * Always check groups with active distributed spares
 1467                  * because any vdev failure in the pool will affect them.
 1468                  */
 1469                 if (vdev_draid_find_spare(cvd) != NULL)
 1470                         return (B_TRUE);
 1471         }
 1472 
 1473         return (B_FALSE);
 1474 }
 1475 
 1476 /*
 1477  * Find the smallest child asize and largest sector size to calculate the
 1478  * available capacity.  Distributed spares are ignored since their capacity
 1479  * is also based of the minimum child size in the top-level dRAID.
 1480  */
 1481 static void
 1482 vdev_draid_calculate_asize(vdev_t *vd, uint64_t *asizep, uint64_t *max_asizep,
 1483     uint64_t *logical_ashiftp, uint64_t *physical_ashiftp)
 1484 {
 1485         uint64_t logical_ashift = 0, physical_ashift = 0;
 1486         uint64_t asize = 0, max_asize = 0;
 1487 
 1488         ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
 1489 
 1490         for (int c = 0; c < vd->vdev_children; c++) {
 1491                 vdev_t *cvd = vd->vdev_child[c];
 1492 
 1493                 if (cvd->vdev_ops == &vdev_draid_spare_ops)
 1494                         continue;
 1495 
 1496                 asize = MIN(asize - 1, cvd->vdev_asize - 1) + 1;
 1497                 max_asize = MIN(max_asize - 1, cvd->vdev_max_asize - 1) + 1;
 1498                 logical_ashift = MAX(logical_ashift, cvd->vdev_ashift);
 1499         }
 1500         for (int c = 0; c < vd->vdev_children; c++) {
 1501                 vdev_t *cvd = vd->vdev_child[c];
 1502 
 1503                 if (cvd->vdev_ops == &vdev_draid_spare_ops)
 1504                         continue;
 1505                 physical_ashift = vdev_best_ashift(logical_ashift,
 1506                     physical_ashift, cvd->vdev_physical_ashift);
 1507         }
 1508 
 1509         *asizep = asize;
 1510         *max_asizep = max_asize;
 1511         *logical_ashiftp = logical_ashift;
 1512         *physical_ashiftp = physical_ashift;
 1513 }
 1514 
 1515 /*
 1516  * Open spare vdevs.
 1517  */
 1518 static boolean_t
 1519 vdev_draid_open_spares(vdev_t *vd)
 1520 {
 1521         return (vd->vdev_ops == &vdev_draid_spare_ops ||
 1522             vd->vdev_ops == &vdev_replacing_ops ||
 1523             vd->vdev_ops == &vdev_spare_ops);
 1524 }
 1525 
 1526 /*
 1527  * Open all children, excluding spares.
 1528  */
 1529 static boolean_t
 1530 vdev_draid_open_children(vdev_t *vd)
 1531 {
 1532         return (!vdev_draid_open_spares(vd));
 1533 }
 1534 
 1535 /*
 1536  * Open a top-level dRAID vdev.
 1537  */
 1538 static int
 1539 vdev_draid_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize,
 1540     uint64_t *logical_ashift, uint64_t *physical_ashift)
 1541 {
 1542         vdev_draid_config_t *vdc =  vd->vdev_tsd;
 1543         uint64_t nparity = vdc->vdc_nparity;
 1544         int open_errors = 0;
 1545 
 1546         if (nparity > VDEV_DRAID_MAXPARITY ||
 1547             vd->vdev_children < nparity + 1) {
 1548                 vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
 1549                 return (SET_ERROR(EINVAL));
 1550         }
 1551 
 1552         /*
 1553          * First open the normal children then the distributed spares.  This
 1554          * ordering is important to ensure the distributed spares calculate
 1555          * the correct psize in the event that the dRAID vdevs were expanded.
 1556          */
 1557         vdev_open_children_subset(vd, vdev_draid_open_children);
 1558         vdev_open_children_subset(vd, vdev_draid_open_spares);
 1559 
 1560         /* Verify enough of the children are available to continue. */
 1561         for (int c = 0; c < vd->vdev_children; c++) {
 1562                 if (vd->vdev_child[c]->vdev_open_error != 0) {
 1563                         if ((++open_errors) > nparity) {
 1564                                 vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS;
 1565                                 return (SET_ERROR(ENXIO));
 1566                         }
 1567                 }
 1568         }
 1569 
 1570         /*
 1571          * Allocatable capacity is the sum of the space on all children less
 1572          * the number of distributed spares rounded down to last full row
 1573          * and then to the last full group. An additional 32MB of scratch
 1574          * space is reserved at the end of each child for use by the dRAID
 1575          * expansion feature.
 1576          */
 1577         uint64_t child_asize, child_max_asize;
 1578         vdev_draid_calculate_asize(vd, &child_asize, &child_max_asize,
 1579             logical_ashift, physical_ashift);
 1580 
 1581         /*
 1582          * Should be unreachable since the minimum child size is 64MB, but
 1583          * we want to make sure an underflow absolutely cannot occur here.
 1584          */
 1585         if (child_asize < VDEV_DRAID_REFLOW_RESERVE ||
 1586             child_max_asize < VDEV_DRAID_REFLOW_RESERVE) {
 1587                 return (SET_ERROR(ENXIO));
 1588         }
 1589 
 1590         child_asize = ((child_asize - VDEV_DRAID_REFLOW_RESERVE) /
 1591             VDEV_DRAID_ROWHEIGHT) * VDEV_DRAID_ROWHEIGHT;
 1592         child_max_asize = ((child_max_asize - VDEV_DRAID_REFLOW_RESERVE) /
 1593             VDEV_DRAID_ROWHEIGHT) * VDEV_DRAID_ROWHEIGHT;
 1594 
 1595         *asize = (((child_asize * vdc->vdc_ndisks) / vdc->vdc_groupsz) *
 1596             vdc->vdc_groupsz);
 1597         *max_asize = (((child_max_asize * vdc->vdc_ndisks) / vdc->vdc_groupsz) *
 1598             vdc->vdc_groupsz);
 1599 
 1600         return (0);
 1601 }
 1602 
 1603 /*
 1604  * Close a top-level dRAID vdev.
 1605  */
 1606 static void
 1607 vdev_draid_close(vdev_t *vd)
 1608 {
 1609         for (int c = 0; c < vd->vdev_children; c++) {
 1610                 if (vd->vdev_child[c] != NULL)
 1611                         vdev_close(vd->vdev_child[c]);
 1612         }
 1613 }
 1614 
 1615 /*
 1616  * Return the maximum asize for a rebuild zio in the provided range
 1617  * given the following constraints.  A dRAID chunks may not:
 1618  *
 1619  * - Exceed the maximum allowed block size (SPA_MAXBLOCKSIZE), or
 1620  * - Span dRAID redundancy groups.
 1621  */
 1622 static uint64_t
 1623 vdev_draid_rebuild_asize(vdev_t *vd, uint64_t start, uint64_t asize,
 1624     uint64_t max_segment)
 1625 {
 1626         vdev_draid_config_t *vdc = vd->vdev_tsd;
 1627 
 1628         ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
 1629 
 1630         uint64_t ashift = vd->vdev_ashift;
 1631         uint64_t ndata = vdc->vdc_ndata;
 1632         uint64_t psize = MIN(P2ROUNDUP(max_segment * ndata, 1 << ashift),
 1633             SPA_MAXBLOCKSIZE);
 1634 
 1635         ASSERT3U(vdev_draid_get_astart(vd, start), ==, start);
 1636         ASSERT3U(asize % (vdc->vdc_groupwidth << ashift), ==, 0);
 1637 
 1638         /* Chunks must evenly span all data columns in the group. */
 1639         psize = (((psize >> ashift) / ndata) * ndata) << ashift;
 1640         uint64_t chunk_size = MIN(asize, vdev_psize_to_asize(vd, psize));
 1641 
 1642         /* Reduce the chunk size to the group space remaining. */
 1643         uint64_t group = vdev_draid_offset_to_group(vd, start);
 1644         uint64_t left = vdev_draid_group_to_offset(vd, group + 1) - start;
 1645         chunk_size = MIN(chunk_size, left);
 1646 
 1647         ASSERT3U(chunk_size % (vdc->vdc_groupwidth << ashift), ==, 0);
 1648         ASSERT3U(vdev_draid_offset_to_group(vd, start), ==,
 1649             vdev_draid_offset_to_group(vd, start + chunk_size - 1));
 1650 
 1651         return (chunk_size);
 1652 }
 1653 
 1654 /*
 1655  * Align the start of the metaslab to the group width and slightly reduce
 1656  * its size to a multiple of the group width.  Since full stripe writes are
 1657  * required by dRAID this space is unallocable.  Furthermore, aligning the
 1658  * metaslab start is important for vdev initialize and TRIM which both operate
 1659  * on metaslab boundaries which vdev_xlate() expects to be aligned.
 1660  */
 1661 static void
 1662 vdev_draid_metaslab_init(vdev_t *vd, uint64_t *ms_start, uint64_t *ms_size)
 1663 {
 1664         vdev_draid_config_t *vdc = vd->vdev_tsd;
 1665 
 1666         ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
 1667 
 1668         uint64_t sz = vdc->vdc_groupwidth << vd->vdev_ashift;
 1669         uint64_t astart = vdev_draid_get_astart(vd, *ms_start);
 1670         uint64_t asize = ((*ms_size - (astart - *ms_start)) / sz) * sz;
 1671 
 1672         *ms_start = astart;
 1673         *ms_size = asize;
 1674 
 1675         ASSERT0(*ms_start % sz);
 1676         ASSERT0(*ms_size % sz);
 1677 }
 1678 
 1679 /*
 1680  * Add virtual dRAID spares to the list of valid spares. In order to accomplish
 1681  * this the existing array must be freed and reallocated with the additional
 1682  * entries.
 1683  */
 1684 int
 1685 vdev_draid_spare_create(nvlist_t *nvroot, vdev_t *vd, uint64_t *ndraidp,
 1686     uint64_t next_vdev_id)
 1687 {
 1688         uint64_t draid_nspares = 0;
 1689         uint64_t ndraid = 0;
 1690         int error;
 1691 
 1692         for (uint64_t i = 0; i < vd->vdev_children; i++) {
 1693                 vdev_t *cvd = vd->vdev_child[i];
 1694 
 1695                 if (cvd->vdev_ops == &vdev_draid_ops) {
 1696                         vdev_draid_config_t *vdc = cvd->vdev_tsd;
 1697                         draid_nspares += vdc->vdc_nspares;
 1698                         ndraid++;
 1699                 }
 1700         }
 1701 
 1702         if (draid_nspares == 0) {
 1703                 *ndraidp = ndraid;
 1704                 return (0);
 1705         }
 1706 
 1707         nvlist_t **old_spares, **new_spares;
 1708         uint_t old_nspares;
 1709         error = nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
 1710             &old_spares, &old_nspares);
 1711         if (error)
 1712                 old_nspares = 0;
 1713 
 1714         /* Allocate memory and copy of the existing spares. */
 1715         new_spares = kmem_alloc(sizeof (nvlist_t *) *
 1716             (draid_nspares + old_nspares), KM_SLEEP);
 1717         for (uint_t i = 0; i < old_nspares; i++)
 1718                 new_spares[i] = fnvlist_dup(old_spares[i]);
 1719 
 1720         /* Add new distributed spares to ZPOOL_CONFIG_SPARES. */
 1721         uint64_t n = old_nspares;
 1722         for (uint64_t vdev_id = 0; vdev_id < vd->vdev_children; vdev_id++) {
 1723                 vdev_t *cvd = vd->vdev_child[vdev_id];
 1724                 char path[64];
 1725 
 1726                 if (cvd->vdev_ops != &vdev_draid_ops)
 1727                         continue;
 1728 
 1729                 vdev_draid_config_t *vdc = cvd->vdev_tsd;
 1730                 uint64_t nspares = vdc->vdc_nspares;
 1731                 uint64_t nparity = vdc->vdc_nparity;
 1732 
 1733                 for (uint64_t spare_id = 0; spare_id < nspares; spare_id++) {
 1734                         memset(path, 0, sizeof (path));
 1735                         (void) snprintf(path, sizeof (path) - 1,
 1736                             "%s%llu-%llu-%llu", VDEV_TYPE_DRAID,
 1737                             (u_longlong_t)nparity,
 1738                             (u_longlong_t)next_vdev_id + vdev_id,
 1739                             (u_longlong_t)spare_id);
 1740 
 1741                         nvlist_t *spare = fnvlist_alloc();
 1742                         fnvlist_add_string(spare, ZPOOL_CONFIG_PATH, path);
 1743                         fnvlist_add_string(spare, ZPOOL_CONFIG_TYPE,
 1744                             VDEV_TYPE_DRAID_SPARE);
 1745                         fnvlist_add_uint64(spare, ZPOOL_CONFIG_TOP_GUID,
 1746                             cvd->vdev_guid);
 1747                         fnvlist_add_uint64(spare, ZPOOL_CONFIG_SPARE_ID,
 1748                             spare_id);
 1749                         fnvlist_add_uint64(spare, ZPOOL_CONFIG_IS_LOG, 0);
 1750                         fnvlist_add_uint64(spare, ZPOOL_CONFIG_IS_SPARE, 1);
 1751                         fnvlist_add_uint64(spare, ZPOOL_CONFIG_WHOLE_DISK, 1);
 1752                         fnvlist_add_uint64(spare, ZPOOL_CONFIG_ASHIFT,
 1753                             cvd->vdev_ashift);
 1754 
 1755                         new_spares[n] = spare;
 1756                         n++;
 1757                 }
 1758         }
 1759 
 1760         if (n > 0) {
 1761                 (void) nvlist_remove_all(nvroot, ZPOOL_CONFIG_SPARES);
 1762                 fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
 1763                     (const nvlist_t **)new_spares, n);
 1764         }
 1765 
 1766         for (int i = 0; i < n; i++)
 1767                 nvlist_free(new_spares[i]);
 1768 
 1769         kmem_free(new_spares, sizeof (*new_spares) * n);
 1770         *ndraidp = ndraid;
 1771 
 1772         return (0);
 1773 }
 1774 
 1775 /*
 1776  * Determine if any portion of the provided block resides on a child vdev
 1777  * with a dirty DTL and therefore needs to be resilvered.
 1778  */
 1779 static boolean_t
 1780 vdev_draid_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
 1781     uint64_t phys_birth)
 1782 {
 1783         uint64_t offset = DVA_GET_OFFSET(dva);
 1784         uint64_t asize = vdev_draid_asize(vd, psize);
 1785 
 1786         if (phys_birth == TXG_UNKNOWN) {
 1787                 /*
 1788                  * Sequential resilver.  There is no meaningful phys_birth
 1789                  * for this block, we can only determine if block resides
 1790                  * in a degraded group in which case it must be resilvered.
 1791                  */
 1792                 ASSERT3U(vdev_draid_offset_to_group(vd, offset), ==,
 1793                     vdev_draid_offset_to_group(vd, offset + asize - 1));
 1794 
 1795                 return (vdev_draid_group_degraded(vd, offset));
 1796         } else {
 1797                 /*
 1798                  * Healing resilver.  TXGs not in DTL_PARTIAL are intact,
 1799                  * as are blocks in non-degraded groups.
 1800                  */
 1801                 if (!vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1))
 1802                         return (B_FALSE);
 1803 
 1804                 if (vdev_draid_group_missing(vd, offset, phys_birth, 1))
 1805                         return (B_TRUE);
 1806 
 1807                 /* The block may span groups in which case check both. */
 1808                 if (vdev_draid_offset_to_group(vd, offset) !=
 1809                     vdev_draid_offset_to_group(vd, offset + asize - 1)) {
 1810                         if (vdev_draid_group_missing(vd,
 1811                             offset + asize, phys_birth, 1))
 1812                                 return (B_TRUE);
 1813                 }
 1814 
 1815                 return (B_FALSE);
 1816         }
 1817 }
 1818 
 1819 static boolean_t
 1820 vdev_draid_rebuilding(vdev_t *vd)
 1821 {
 1822         if (vd->vdev_ops->vdev_op_leaf && vd->vdev_rebuild_txg)
 1823                 return (B_TRUE);
 1824 
 1825         for (int i = 0; i < vd->vdev_children; i++) {
 1826                 if (vdev_draid_rebuilding(vd->vdev_child[i])) {
 1827                         return (B_TRUE);
 1828                 }
 1829         }
 1830 
 1831         return (B_FALSE);
 1832 }
 1833 
 1834 static void
 1835 vdev_draid_io_verify(vdev_t *vd, raidz_row_t *rr, int col)
 1836 {
 1837 #ifdef ZFS_DEBUG
 1838         range_seg64_t logical_rs, physical_rs, remain_rs;
 1839         logical_rs.rs_start = rr->rr_offset;
 1840         logical_rs.rs_end = logical_rs.rs_start +
 1841             vdev_draid_asize(vd, rr->rr_size);
 1842 
 1843         raidz_col_t *rc = &rr->rr_col[col];
 1844         vdev_t *cvd = vd->vdev_child[rc->rc_devidx];
 1845 
 1846         vdev_xlate(cvd, &logical_rs, &physical_rs, &remain_rs);
 1847         ASSERT(vdev_xlate_is_empty(&remain_rs));
 1848         ASSERT3U(rc->rc_offset, ==, physical_rs.rs_start);
 1849         ASSERT3U(rc->rc_offset, <, physical_rs.rs_end);
 1850         ASSERT3U(rc->rc_offset + rc->rc_size, ==, physical_rs.rs_end);
 1851 #endif
 1852 }
 1853 
 1854 /*
 1855  * For write operations:
 1856  * 1. Generate the parity data
 1857  * 2. Create child zio write operations to each column's vdev, for both
 1858  *    data and parity.  A gang ABD is allocated by vdev_draid_map_alloc()
 1859  *    if a skip sector needs to be added to a column.
 1860  */
 1861 static void
 1862 vdev_draid_io_start_write(zio_t *zio, raidz_row_t *rr)
 1863 {
 1864         vdev_t *vd = zio->io_vd;
 1865         raidz_map_t *rm = zio->io_vsd;
 1866 
 1867         vdev_raidz_generate_parity_row(rm, rr);
 1868 
 1869         for (int c = 0; c < rr->rr_cols; c++) {
 1870                 raidz_col_t *rc = &rr->rr_col[c];
 1871 
 1872                 /*
 1873                  * Empty columns are zero filled and included in the parity
 1874                  * calculation and therefore must be written.
 1875                  */
 1876                 ASSERT3U(rc->rc_size, !=, 0);
 1877 
 1878                 /* Verify physical to logical translation */
 1879                 vdev_draid_io_verify(vd, rr, c);
 1880 
 1881                 zio_nowait(zio_vdev_child_io(zio, NULL,
 1882                     vd->vdev_child[rc->rc_devidx], rc->rc_offset,
 1883                     rc->rc_abd, rc->rc_size, zio->io_type, zio->io_priority,
 1884                     0, vdev_raidz_child_done, rc));
 1885         }
 1886 }
 1887 
 1888 /*
 1889  * For read operations:
 1890  * 1. The vdev_draid_map_alloc() function will create a minimal raidz
 1891  *    mapping for the read based on the zio->io_flags.  There are two
 1892  *    possible mappings either 1) a normal read, or 2) a scrub/resilver.
 1893  * 2. Create the zio read operations.  This will include all parity
 1894  *    columns and skip sectors for a scrub/resilver.
 1895  */
 1896 static void
 1897 vdev_draid_io_start_read(zio_t *zio, raidz_row_t *rr)
 1898 {
 1899         vdev_t *vd = zio->io_vd;
 1900 
 1901         /* Sequential rebuild must do IO at redundancy group boundary. */
 1902         IMPLY(zio->io_priority == ZIO_PRIORITY_REBUILD, rr->rr_nempty == 0);
 1903 
 1904         /*
 1905          * Iterate over the columns in reverse order so that we hit the parity
 1906          * last.  Any errors along the way will force us to read the parity.
 1907          * For scrub/resilver IOs which verify skip sectors, a gang ABD will
 1908          * have been allocated to store them and rc->rc_size is increased.
 1909          */
 1910         for (int c = rr->rr_cols - 1; c >= 0; c--) {
 1911                 raidz_col_t *rc = &rr->rr_col[c];
 1912                 vdev_t *cvd = vd->vdev_child[rc->rc_devidx];
 1913 
 1914                 if (!vdev_draid_readable(cvd, rc->rc_offset)) {
 1915                         if (c >= rr->rr_firstdatacol)
 1916                                 rr->rr_missingdata++;
 1917                         else
 1918                                 rr->rr_missingparity++;
 1919                         rc->rc_error = SET_ERROR(ENXIO);
 1920                         rc->rc_tried = 1;
 1921                         rc->rc_skipped = 1;
 1922                         continue;
 1923                 }
 1924 
 1925                 if (vdev_draid_missing(cvd, rc->rc_offset, zio->io_txg, 1)) {
 1926                         if (c >= rr->rr_firstdatacol)
 1927                                 rr->rr_missingdata++;
 1928                         else
 1929                                 rr->rr_missingparity++;
 1930                         rc->rc_error = SET_ERROR(ESTALE);
 1931                         rc->rc_skipped = 1;
 1932                         continue;
 1933                 }
 1934 
 1935                 /*
 1936                  * Empty columns may be read during vdev_draid_io_done().
 1937                  * Only skip them after the readable and missing checks
 1938                  * verify they are available.
 1939                  */
 1940                 if (rc->rc_size == 0) {
 1941                         rc->rc_skipped = 1;
 1942                         continue;
 1943                 }
 1944 
 1945                 if (zio->io_flags & ZIO_FLAG_RESILVER) {
 1946                         vdev_t *svd;
 1947 
 1948                         /*
 1949                          * Sequential rebuilds need to always consider the data
 1950                          * on the child being rebuilt to be stale.  This is
 1951                          * important when all columns are available to aid
 1952                          * known reconstruction in identifing which columns
 1953                          * contain incorrect data.
 1954                          *
 1955                          * Furthermore, all repairs need to be constrained to
 1956                          * the devices being rebuilt because without a checksum
 1957                          * we cannot verify the data is actually correct and
 1958                          * performing an incorrect repair could result in
 1959                          * locking in damage and making the data unrecoverable.
 1960                          */
 1961                         if (zio->io_priority == ZIO_PRIORITY_REBUILD) {
 1962                                 if (vdev_draid_rebuilding(cvd)) {
 1963                                         if (c >= rr->rr_firstdatacol)
 1964                                                 rr->rr_missingdata++;
 1965                                         else
 1966                                                 rr->rr_missingparity++;
 1967                                         rc->rc_error = SET_ERROR(ESTALE);
 1968                                         rc->rc_skipped = 1;
 1969                                         rc->rc_allow_repair = 1;
 1970                                         continue;
 1971                                 } else {
 1972                                         rc->rc_allow_repair = 0;
 1973                                 }
 1974                         } else {
 1975                                 rc->rc_allow_repair = 1;
 1976                         }
 1977 
 1978                         /*
 1979                          * If this child is a distributed spare then the
 1980                          * offset might reside on the vdev being replaced.
 1981                          * In which case this data must be written to the
 1982                          * new device.  Failure to do so would result in
 1983                          * checksum errors when the old device is detached
 1984                          * and the pool is scrubbed.
 1985                          */
 1986                         if ((svd = vdev_draid_find_spare(cvd)) != NULL) {
 1987                                 svd = vdev_draid_spare_get_child(svd,
 1988                                     rc->rc_offset);
 1989                                 if (svd && (svd->vdev_ops == &vdev_spare_ops ||
 1990                                     svd->vdev_ops == &vdev_replacing_ops)) {
 1991                                         rc->rc_force_repair = 1;
 1992 
 1993                                         if (vdev_draid_rebuilding(svd))
 1994                                                 rc->rc_allow_repair = 1;
 1995                                 }
 1996                         }
 1997 
 1998                         /*
 1999                          * Always issue a repair IO to this child when its
 2000                          * a spare or replacing vdev with an active rebuild.
 2001                          */
 2002                         if ((cvd->vdev_ops == &vdev_spare_ops ||
 2003                             cvd->vdev_ops == &vdev_replacing_ops) &&
 2004                             vdev_draid_rebuilding(cvd)) {
 2005                                 rc->rc_force_repair = 1;
 2006                                 rc->rc_allow_repair = 1;
 2007                         }
 2008                 }
 2009         }
 2010 
 2011         /*
 2012          * Either a parity or data column is missing this means a repair
 2013          * may be attempted by vdev_draid_io_done().  Expand the raid map
 2014          * to read in empty columns which are needed along with the parity
 2015          * during reconstruction.
 2016          */
 2017         if ((rr->rr_missingdata > 0 || rr->rr_missingparity > 0) &&
 2018             rr->rr_nempty > 0 && rr->rr_abd_empty == NULL) {
 2019                 vdev_draid_map_alloc_empty(zio, rr);
 2020         }
 2021 
 2022         for (int c = rr->rr_cols - 1; c >= 0; c--) {
 2023                 raidz_col_t *rc = &rr->rr_col[c];
 2024                 vdev_t *cvd = vd->vdev_child[rc->rc_devidx];
 2025 
 2026                 if (rc->rc_error || rc->rc_size == 0)
 2027                         continue;
 2028 
 2029                 if (c >= rr->rr_firstdatacol || rr->rr_missingdata > 0 ||
 2030                     (zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER))) {
 2031                         zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
 2032                             rc->rc_offset, rc->rc_abd, rc->rc_size,
 2033                             zio->io_type, zio->io_priority, 0,
 2034                             vdev_raidz_child_done, rc));
 2035                 }
 2036         }
 2037 }
 2038 
 2039 /*
 2040  * Start an IO operation to a dRAID vdev.
 2041  */
 2042 static void
 2043 vdev_draid_io_start(zio_t *zio)
 2044 {
 2045         vdev_t *vd __maybe_unused = zio->io_vd;
 2046 
 2047         ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
 2048         ASSERT3U(zio->io_offset, ==, vdev_draid_get_astart(vd, zio->io_offset));
 2049 
 2050         raidz_map_t *rm = vdev_draid_map_alloc(zio);
 2051         zio->io_vsd = rm;
 2052         zio->io_vsd_ops = &vdev_raidz_vsd_ops;
 2053 
 2054         if (zio->io_type == ZIO_TYPE_WRITE) {
 2055                 for (int i = 0; i < rm->rm_nrows; i++) {
 2056                         vdev_draid_io_start_write(zio, rm->rm_row[i]);
 2057                 }
 2058         } else {
 2059                 ASSERT(zio->io_type == ZIO_TYPE_READ);
 2060 
 2061                 for (int i = 0; i < rm->rm_nrows; i++) {
 2062                         vdev_draid_io_start_read(zio, rm->rm_row[i]);
 2063                 }
 2064         }
 2065 
 2066         zio_execute(zio);
 2067 }
 2068 
 2069 /*
 2070  * Complete an IO operation on a dRAID vdev.  The raidz logic can be applied
 2071  * to dRAID since the layout is fully described by the raidz_map_t.
 2072  */
 2073 static void
 2074 vdev_draid_io_done(zio_t *zio)
 2075 {
 2076         vdev_raidz_io_done(zio);
 2077 }
 2078 
 2079 static void
 2080 vdev_draid_state_change(vdev_t *vd, int faulted, int degraded)
 2081 {
 2082         vdev_draid_config_t *vdc = vd->vdev_tsd;
 2083         ASSERT(vd->vdev_ops == &vdev_draid_ops);
 2084 
 2085         if (faulted > vdc->vdc_nparity)
 2086                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
 2087                     VDEV_AUX_NO_REPLICAS);
 2088         else if (degraded + faulted != 0)
 2089                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE);
 2090         else
 2091                 vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE);
 2092 }
 2093 
 2094 static void
 2095 vdev_draid_xlate(vdev_t *cvd, const range_seg64_t *logical_rs,
 2096     range_seg64_t *physical_rs, range_seg64_t *remain_rs)
 2097 {
 2098         vdev_t *raidvd = cvd->vdev_parent;
 2099         ASSERT(raidvd->vdev_ops == &vdev_draid_ops);
 2100 
 2101         vdev_draid_config_t *vdc = raidvd->vdev_tsd;
 2102         uint64_t ashift = raidvd->vdev_top->vdev_ashift;
 2103 
 2104         /* Make sure the offsets are block-aligned */
 2105         ASSERT0(logical_rs->rs_start % (1 << ashift));
 2106         ASSERT0(logical_rs->rs_end % (1 << ashift));
 2107 
 2108         uint64_t logical_start = logical_rs->rs_start;
 2109         uint64_t logical_end = logical_rs->rs_end;
 2110 
 2111         /*
 2112          * Unaligned ranges must be skipped. All metaslabs are correctly
 2113          * aligned so this should not happen, but this case is handled in
 2114          * case it's needed by future callers.
 2115          */
 2116         uint64_t astart = vdev_draid_get_astart(raidvd, logical_start);
 2117         if (astart != logical_start) {
 2118                 physical_rs->rs_start = logical_start;
 2119                 physical_rs->rs_end = logical_start;
 2120                 remain_rs->rs_start = MIN(astart, logical_end);
 2121                 remain_rs->rs_end = logical_end;
 2122                 return;
 2123         }
 2124 
 2125         /*
 2126          * Unlike with mirrors and raidz a dRAID logical range can map
 2127          * to multiple non-contiguous physical ranges. This is handled by
 2128          * limiting the size of the logical range to a single group and
 2129          * setting the remain argument such that it describes the remaining
 2130          * unmapped logical range. This is stricter than absolutely
 2131          * necessary but helps simplify the logic below.
 2132          */
 2133         uint64_t group = vdev_draid_offset_to_group(raidvd, logical_start);
 2134         uint64_t nextstart = vdev_draid_group_to_offset(raidvd, group + 1);
 2135         if (logical_end > nextstart)
 2136                 logical_end = nextstart;
 2137 
 2138         /* Find the starting offset for each vdev in the group */
 2139         uint64_t perm, groupstart;
 2140         uint64_t start = vdev_draid_logical_to_physical(raidvd,
 2141             logical_start, &perm, &groupstart);
 2142         uint64_t end = start;
 2143 
 2144         uint8_t *base;
 2145         uint64_t iter, id;
 2146         vdev_draid_get_perm(vdc, perm, &base, &iter);
 2147 
 2148         /*
 2149          * Check if the passed child falls within the group.  If it does
 2150          * update the start and end to reflect the physical range.
 2151          * Otherwise, leave them unmodified which will result in an empty
 2152          * (zero-length) physical range being returned.
 2153          */
 2154         for (uint64_t i = 0; i < vdc->vdc_groupwidth; i++) {
 2155                 uint64_t c = (groupstart + i) % vdc->vdc_ndisks;
 2156 
 2157                 if (c == 0 && i != 0) {
 2158                         /* the group wrapped, increment the start */
 2159                         start += VDEV_DRAID_ROWHEIGHT;
 2160                         end = start;
 2161                 }
 2162 
 2163                 id = vdev_draid_permute_id(vdc, base, iter, c);
 2164                 if (id == cvd->vdev_id) {
 2165                         uint64_t b_size = (logical_end >> ashift) -
 2166                             (logical_start >> ashift);
 2167                         ASSERT3U(b_size, >, 0);
 2168                         end = start + ((((b_size - 1) /
 2169                             vdc->vdc_groupwidth) + 1) << ashift);
 2170                         break;
 2171                 }
 2172         }
 2173         physical_rs->rs_start = start;
 2174         physical_rs->rs_end = end;
 2175 
 2176         /*
 2177          * Only top-level vdevs are allowed to set remain_rs because
 2178          * when .vdev_op_xlate() is called for their children the full
 2179          * logical range is not provided by vdev_xlate().
 2180          */
 2181         remain_rs->rs_start = logical_end;
 2182         remain_rs->rs_end = logical_rs->rs_end;
 2183 
 2184         ASSERT3U(physical_rs->rs_start, <=, logical_start);
 2185         ASSERT3U(physical_rs->rs_end - physical_rs->rs_start, <=,
 2186             logical_end - logical_start);
 2187 }
 2188 
 2189 /*
 2190  * Add dRAID specific fields to the config nvlist.
 2191  */
 2192 static void
 2193 vdev_draid_config_generate(vdev_t *vd, nvlist_t *nv)
 2194 {
 2195         ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
 2196         vdev_draid_config_t *vdc = vd->vdev_tsd;
 2197 
 2198         fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vdc->vdc_nparity);
 2199         fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NDATA, vdc->vdc_ndata);
 2200         fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NSPARES, vdc->vdc_nspares);
 2201         fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NGROUPS, vdc->vdc_ngroups);
 2202 }
 2203 
 2204 /*
 2205  * Initialize private dRAID specific fields from the nvlist.
 2206  */
 2207 static int
 2208 vdev_draid_init(spa_t *spa, nvlist_t *nv, void **tsd)
 2209 {
 2210         (void) spa;
 2211         uint64_t ndata, nparity, nspares, ngroups;
 2212         int error;
 2213 
 2214         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DRAID_NDATA, &ndata))
 2215                 return (SET_ERROR(EINVAL));
 2216 
 2217         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, &nparity) ||
 2218             nparity == 0 || nparity > VDEV_DRAID_MAXPARITY) {
 2219                 return (SET_ERROR(EINVAL));
 2220         }
 2221 
 2222         uint_t children;
 2223         nvlist_t **child;
 2224         if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
 2225             &child, &children) != 0 || children == 0 ||
 2226             children > VDEV_DRAID_MAX_CHILDREN) {
 2227                 return (SET_ERROR(EINVAL));
 2228         }
 2229 
 2230         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DRAID_NSPARES, &nspares) ||
 2231             nspares > 100 || nspares > (children - (ndata + nparity))) {
 2232                 return (SET_ERROR(EINVAL));
 2233         }
 2234 
 2235         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DRAID_NGROUPS, &ngroups) ||
 2236             ngroups == 0 || ngroups > VDEV_DRAID_MAX_CHILDREN) {
 2237                 return (SET_ERROR(EINVAL));
 2238         }
 2239 
 2240         /*
 2241          * Validate the minimum number of children exist per group for the
 2242          * specified parity level (draid1 >= 2, draid2 >= 3, draid3 >= 4).
 2243          */
 2244         if (children < (ndata + nparity + nspares))
 2245                 return (SET_ERROR(EINVAL));
 2246 
 2247         /*
 2248          * Create the dRAID configuration using the pool nvlist configuration
 2249          * and the fixed mapping for the correct number of children.
 2250          */
 2251         vdev_draid_config_t *vdc;
 2252         const draid_map_t *map;
 2253 
 2254         error = vdev_draid_lookup_map(children, &map);
 2255         if (error)
 2256                 return (SET_ERROR(EINVAL));
 2257 
 2258         vdc = kmem_zalloc(sizeof (*vdc), KM_SLEEP);
 2259         vdc->vdc_ndata = ndata;
 2260         vdc->vdc_nparity = nparity;
 2261         vdc->vdc_nspares = nspares;
 2262         vdc->vdc_children = children;
 2263         vdc->vdc_ngroups = ngroups;
 2264         vdc->vdc_nperms = map->dm_nperms;
 2265 
 2266         error = vdev_draid_generate_perms(map, &vdc->vdc_perms);
 2267         if (error) {
 2268                 kmem_free(vdc, sizeof (*vdc));
 2269                 return (SET_ERROR(EINVAL));
 2270         }
 2271 
 2272         /*
 2273          * Derived constants.
 2274          */
 2275         vdc->vdc_groupwidth = vdc->vdc_ndata + vdc->vdc_nparity;
 2276         vdc->vdc_ndisks = vdc->vdc_children - vdc->vdc_nspares;
 2277         vdc->vdc_groupsz = vdc->vdc_groupwidth * VDEV_DRAID_ROWHEIGHT;
 2278         vdc->vdc_devslicesz = (vdc->vdc_groupsz * vdc->vdc_ngroups) /
 2279             vdc->vdc_ndisks;
 2280 
 2281         ASSERT3U(vdc->vdc_groupwidth, >=, 2);
 2282         ASSERT3U(vdc->vdc_groupwidth, <=, vdc->vdc_ndisks);
 2283         ASSERT3U(vdc->vdc_groupsz, >=, 2 * VDEV_DRAID_ROWHEIGHT);
 2284         ASSERT3U(vdc->vdc_devslicesz, >=, VDEV_DRAID_ROWHEIGHT);
 2285         ASSERT3U(vdc->vdc_devslicesz % VDEV_DRAID_ROWHEIGHT, ==, 0);
 2286         ASSERT3U((vdc->vdc_groupwidth * vdc->vdc_ngroups) %
 2287             vdc->vdc_ndisks, ==, 0);
 2288 
 2289         *tsd = vdc;
 2290 
 2291         return (0);
 2292 }
 2293 
 2294 static void
 2295 vdev_draid_fini(vdev_t *vd)
 2296 {
 2297         vdev_draid_config_t *vdc = vd->vdev_tsd;
 2298 
 2299         vmem_free(vdc->vdc_perms, sizeof (uint8_t) *
 2300             vdc->vdc_children * vdc->vdc_nperms);
 2301         kmem_free(vdc, sizeof (*vdc));
 2302 }
 2303 
 2304 static uint64_t
 2305 vdev_draid_nparity(vdev_t *vd)
 2306 {
 2307         vdev_draid_config_t *vdc = vd->vdev_tsd;
 2308 
 2309         return (vdc->vdc_nparity);
 2310 }
 2311 
 2312 static uint64_t
 2313 vdev_draid_ndisks(vdev_t *vd)
 2314 {
 2315         vdev_draid_config_t *vdc = vd->vdev_tsd;
 2316 
 2317         return (vdc->vdc_ndisks);
 2318 }
 2319 
 2320 vdev_ops_t vdev_draid_ops = {
 2321         .vdev_op_init = vdev_draid_init,
 2322         .vdev_op_fini = vdev_draid_fini,
 2323         .vdev_op_open = vdev_draid_open,
 2324         .vdev_op_close = vdev_draid_close,
 2325         .vdev_op_asize = vdev_draid_asize,
 2326         .vdev_op_min_asize = vdev_draid_min_asize,
 2327         .vdev_op_min_alloc = vdev_draid_min_alloc,
 2328         .vdev_op_io_start = vdev_draid_io_start,
 2329         .vdev_op_io_done = vdev_draid_io_done,
 2330         .vdev_op_state_change = vdev_draid_state_change,
 2331         .vdev_op_need_resilver = vdev_draid_need_resilver,
 2332         .vdev_op_hold = NULL,
 2333         .vdev_op_rele = NULL,
 2334         .vdev_op_remap = NULL,
 2335         .vdev_op_xlate = vdev_draid_xlate,
 2336         .vdev_op_rebuild_asize = vdev_draid_rebuild_asize,
 2337         .vdev_op_metaslab_init = vdev_draid_metaslab_init,
 2338         .vdev_op_config_generate = vdev_draid_config_generate,
 2339         .vdev_op_nparity = vdev_draid_nparity,
 2340         .vdev_op_ndisks = vdev_draid_ndisks,
 2341         .vdev_op_type = VDEV_TYPE_DRAID,
 2342         .vdev_op_leaf = B_FALSE,
 2343 };
 2344 
 2345 
 2346 /*
 2347  * A dRAID distributed spare is a virtual leaf vdev which is included in the
 2348  * parent dRAID configuration.  The last N columns of the dRAID permutation
 2349  * table are used to determine on which dRAID children a specific offset
 2350  * should be written.  These spare leaf vdevs can only be used to replace
 2351  * faulted children in the same dRAID configuration.
 2352  */
 2353 
 2354 /*
 2355  * Distributed spare state.  All fields are set when the distributed spare is
 2356  * first opened and are immutable.
 2357  */
 2358 typedef struct {
 2359         vdev_t *vds_draid_vdev;         /* top-level parent dRAID vdev */
 2360         uint64_t vds_top_guid;          /* top-level parent dRAID guid */
 2361         uint64_t vds_spare_id;          /* spare id (0 - vdc->vdc_nspares-1) */
 2362 } vdev_draid_spare_t;
 2363 
 2364 /*
 2365  * Returns the parent dRAID vdev to which the distributed spare belongs.
 2366  * This may be safely called even when the vdev is not open.
 2367  */
 2368 vdev_t *
 2369 vdev_draid_spare_get_parent(vdev_t *vd)
 2370 {
 2371         vdev_draid_spare_t *vds = vd->vdev_tsd;
 2372 
 2373         ASSERT3P(vd->vdev_ops, ==, &vdev_draid_spare_ops);
 2374 
 2375         if (vds->vds_draid_vdev != NULL)
 2376                 return (vds->vds_draid_vdev);
 2377 
 2378         return (vdev_lookup_by_guid(vd->vdev_spa->spa_root_vdev,
 2379             vds->vds_top_guid));
 2380 }
 2381 
 2382 /*
 2383  * A dRAID space is active when it's the child of a vdev using the
 2384  * vdev_spare_ops, vdev_replacing_ops or vdev_draid_ops.
 2385  */
 2386 static boolean_t
 2387 vdev_draid_spare_is_active(vdev_t *vd)
 2388 {
 2389         vdev_t *pvd = vd->vdev_parent;
 2390 
 2391         if (pvd != NULL && (pvd->vdev_ops == &vdev_spare_ops ||
 2392             pvd->vdev_ops == &vdev_replacing_ops ||
 2393             pvd->vdev_ops == &vdev_draid_ops)) {
 2394                 return (B_TRUE);
 2395         } else {
 2396                 return (B_FALSE);
 2397         }
 2398 }
 2399 
 2400 /*
 2401  * Given a dRAID distribute spare vdev, returns the physical child vdev
 2402  * on which the provided offset resides.  This may involve recursing through
 2403  * multiple layers of distributed spares.  Note that offset is relative to
 2404  * this vdev.
 2405  */
 2406 vdev_t *
 2407 vdev_draid_spare_get_child(vdev_t *vd, uint64_t physical_offset)
 2408 {
 2409         vdev_draid_spare_t *vds = vd->vdev_tsd;
 2410 
 2411         ASSERT3P(vd->vdev_ops, ==, &vdev_draid_spare_ops);
 2412 
 2413         /* The vdev is closed */
 2414         if (vds->vds_draid_vdev == NULL)
 2415                 return (NULL);
 2416 
 2417         vdev_t *tvd = vds->vds_draid_vdev;
 2418         vdev_draid_config_t *vdc = tvd->vdev_tsd;
 2419 
 2420         ASSERT3P(tvd->vdev_ops, ==, &vdev_draid_ops);
 2421         ASSERT3U(vds->vds_spare_id, <, vdc->vdc_nspares);
 2422 
 2423         uint8_t *base;
 2424         uint64_t iter;
 2425         uint64_t perm = physical_offset / vdc->vdc_devslicesz;
 2426 
 2427         vdev_draid_get_perm(vdc, perm, &base, &iter);
 2428 
 2429         uint64_t cid = vdev_draid_permute_id(vdc, base, iter,
 2430             (tvd->vdev_children - 1) - vds->vds_spare_id);
 2431         vdev_t *cvd = tvd->vdev_child[cid];
 2432 
 2433         if (cvd->vdev_ops == &vdev_draid_spare_ops)
 2434                 return (vdev_draid_spare_get_child(cvd, physical_offset));
 2435 
 2436         return (cvd);
 2437 }
 2438 
 2439 static void
 2440 vdev_draid_spare_close(vdev_t *vd)
 2441 {
 2442         vdev_draid_spare_t *vds = vd->vdev_tsd;
 2443         vds->vds_draid_vdev = NULL;
 2444 }
 2445 
 2446 /*
 2447  * Opening a dRAID spare device is done by looking up the associated dRAID
 2448  * top-level vdev guid from the spare configuration.
 2449  */
 2450 static int
 2451 vdev_draid_spare_open(vdev_t *vd, uint64_t *psize, uint64_t *max_psize,
 2452     uint64_t *logical_ashift, uint64_t *physical_ashift)
 2453 {
 2454         vdev_draid_spare_t *vds = vd->vdev_tsd;
 2455         vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
 2456         uint64_t asize, max_asize;
 2457 
 2458         vdev_t *tvd = vdev_lookup_by_guid(rvd, vds->vds_top_guid);
 2459         if (tvd == NULL) {
 2460                 /*
 2461                  * When spa_vdev_add() is labeling new spares the
 2462                  * associated dRAID is not attached to the root vdev
 2463                  * nor does this spare have a parent.  Simulate a valid
 2464                  * device in order to allow the label to be initialized
 2465                  * and the distributed spare added to the configuration.
 2466                  */
 2467                 if (vd->vdev_parent == NULL) {
 2468                         *psize = *max_psize = SPA_MINDEVSIZE;
 2469                         *logical_ashift = *physical_ashift = ASHIFT_MIN;
 2470                         return (0);
 2471                 }
 2472 
 2473                 return (SET_ERROR(EINVAL));
 2474         }
 2475 
 2476         vdev_draid_config_t *vdc = tvd->vdev_tsd;
 2477         if (tvd->vdev_ops != &vdev_draid_ops || vdc == NULL)
 2478                 return (SET_ERROR(EINVAL));
 2479 
 2480         if (vds->vds_spare_id >= vdc->vdc_nspares)
 2481                 return (SET_ERROR(EINVAL));
 2482 
 2483         /*
 2484          * Neither tvd->vdev_asize or tvd->vdev_max_asize can be used here
 2485          * because the caller may be vdev_draid_open() in which case the
 2486          * values are stale as they haven't yet been updated by vdev_open().
 2487          * To avoid this always recalculate the dRAID asize and max_asize.
 2488          */
 2489         vdev_draid_calculate_asize(tvd, &asize, &max_asize,
 2490             logical_ashift, physical_ashift);
 2491 
 2492         *psize = asize + VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
 2493         *max_psize = max_asize + VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
 2494 
 2495         vds->vds_draid_vdev = tvd;
 2496 
 2497         return (0);
 2498 }
 2499 
 2500 /*
 2501  * Completed distributed spare IO.  Store the result in the parent zio
 2502  * as if it had performed the operation itself.  Only the first error is
 2503  * preserved if there are multiple errors.
 2504  */
 2505 static void
 2506 vdev_draid_spare_child_done(zio_t *zio)
 2507 {
 2508         zio_t *pio = zio->io_private;
 2509 
 2510         /*
 2511          * IOs are issued to non-writable vdevs in order to keep their
 2512          * DTLs accurate.  However, we don't want to propagate the
 2513          * error in to the distributed spare's DTL.  When resilvering
 2514          * vdev_draid_need_resilver() will consult the relevant DTL
 2515          * to determine if the data is missing and must be repaired.
 2516          */
 2517         if (!vdev_writeable(zio->io_vd))
 2518                 return;
 2519 
 2520         if (pio->io_error == 0)
 2521                 pio->io_error = zio->io_error;
 2522 }
 2523 
 2524 /*
 2525  * Returns a valid label nvlist for the distributed spare vdev.  This is
 2526  * used to bypass the IO pipeline to avoid the complexity of constructing
 2527  * a complete label with valid checksum to return when read.
 2528  */
 2529 nvlist_t *
 2530 vdev_draid_read_config_spare(vdev_t *vd)
 2531 {
 2532         spa_t *spa = vd->vdev_spa;
 2533         spa_aux_vdev_t *sav = &spa->spa_spares;
 2534         uint64_t guid = vd->vdev_guid;
 2535 
 2536         nvlist_t *nv = fnvlist_alloc();
 2537         fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1);
 2538         fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg);
 2539         fnvlist_add_uint64(nv, ZPOOL_CONFIG_VERSION, spa_version(spa));
 2540         fnvlist_add_string(nv, ZPOOL_CONFIG_POOL_NAME, spa_name(spa));
 2541         fnvlist_add_uint64(nv, ZPOOL_CONFIG_POOL_GUID, spa_guid(spa));
 2542         fnvlist_add_uint64(nv, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg);
 2543         fnvlist_add_uint64(nv, ZPOOL_CONFIG_TOP_GUID, vd->vdev_top->vdev_guid);
 2544         fnvlist_add_uint64(nv, ZPOOL_CONFIG_POOL_STATE,
 2545             vdev_draid_spare_is_active(vd) ?
 2546             POOL_STATE_ACTIVE : POOL_STATE_SPARE);
 2547 
 2548         /* Set the vdev guid based on the vdev list in sav_count. */
 2549         for (int i = 0; i < sav->sav_count; i++) {
 2550                 if (sav->sav_vdevs[i]->vdev_ops == &vdev_draid_spare_ops &&
 2551                     strcmp(sav->sav_vdevs[i]->vdev_path, vd->vdev_path) == 0) {
 2552                         guid = sav->sav_vdevs[i]->vdev_guid;
 2553                         break;
 2554                 }
 2555         }
 2556 
 2557         fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, guid);
 2558 
 2559         return (nv);
 2560 }
 2561 
 2562 /*
 2563  * Handle any ioctl requested of the distributed spare.  Only flushes
 2564  * are supported in which case all children must be flushed.
 2565  */
 2566 static int
 2567 vdev_draid_spare_ioctl(zio_t *zio)
 2568 {
 2569         vdev_t *vd = zio->io_vd;
 2570         int error = 0;
 2571 
 2572         if (zio->io_cmd == DKIOCFLUSHWRITECACHE) {
 2573                 for (int c = 0; c < vd->vdev_children; c++) {
 2574                         zio_nowait(zio_vdev_child_io(zio, NULL,
 2575                             vd->vdev_child[c], zio->io_offset, zio->io_abd,
 2576                             zio->io_size, zio->io_type, zio->io_priority, 0,
 2577                             vdev_draid_spare_child_done, zio));
 2578                 }
 2579         } else {
 2580                 error = SET_ERROR(ENOTSUP);
 2581         }
 2582 
 2583         return (error);
 2584 }
 2585 
 2586 /*
 2587  * Initiate an IO to the distributed spare.  For normal IOs this entails using
 2588  * the zio->io_offset and permutation table to calculate which child dRAID vdev
 2589  * is responsible for the data.  Then passing along the zio to that child to
 2590  * perform the actual IO.  The label ranges are not stored on disk and require
 2591  * some special handling which is described below.
 2592  */
 2593 static void
 2594 vdev_draid_spare_io_start(zio_t *zio)
 2595 {
 2596         vdev_t *cvd = NULL, *vd = zio->io_vd;
 2597         vdev_draid_spare_t *vds = vd->vdev_tsd;
 2598         uint64_t offset = zio->io_offset - VDEV_LABEL_START_SIZE;
 2599 
 2600         /*
 2601          * If the vdev is closed, it's likely in the REMOVED or FAULTED state.
 2602          * Nothing to be done here but return failure.
 2603          */
 2604         if (vds == NULL) {
 2605                 zio->io_error = ENXIO;
 2606                 zio_interrupt(zio);
 2607                 return;
 2608         }
 2609 
 2610         switch (zio->io_type) {
 2611         case ZIO_TYPE_IOCTL:
 2612                 zio->io_error = vdev_draid_spare_ioctl(zio);
 2613                 break;
 2614 
 2615         case ZIO_TYPE_WRITE:
 2616                 if (VDEV_OFFSET_IS_LABEL(vd, zio->io_offset)) {
 2617                         /*
 2618                          * Accept probe IOs and config writers to simulate the
 2619                          * existence of an on disk label.  vdev_label_sync(),
 2620                          * vdev_uberblock_sync() and vdev_copy_uberblocks()
 2621                          * skip the distributed spares.  This only leaves
 2622                          * vdev_label_init() which is allowed to succeed to
 2623                          * avoid adding special cases the function.
 2624                          */
 2625                         if (zio->io_flags & ZIO_FLAG_PROBE ||
 2626                             zio->io_flags & ZIO_FLAG_CONFIG_WRITER) {
 2627                                 zio->io_error = 0;
 2628                         } else {
 2629                                 zio->io_error = SET_ERROR(EIO);
 2630                         }
 2631                 } else {
 2632                         cvd = vdev_draid_spare_get_child(vd, offset);
 2633 
 2634                         if (cvd == NULL) {
 2635                                 zio->io_error = SET_ERROR(ENXIO);
 2636                         } else {
 2637                                 zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
 2638                                     offset, zio->io_abd, zio->io_size,
 2639                                     zio->io_type, zio->io_priority, 0,
 2640                                     vdev_draid_spare_child_done, zio));
 2641                         }
 2642                 }
 2643                 break;
 2644 
 2645         case ZIO_TYPE_READ:
 2646                 if (VDEV_OFFSET_IS_LABEL(vd, zio->io_offset)) {
 2647                         /*
 2648                          * Accept probe IOs to simulate the existence of a
 2649                          * label.  vdev_label_read_config() bypasses the
 2650                          * pipeline to read the label configuration and
 2651                          * vdev_uberblock_load() skips distributed spares
 2652                          * when attempting to locate the best uberblock.
 2653                          */
 2654                         if (zio->io_flags & ZIO_FLAG_PROBE) {
 2655                                 zio->io_error = 0;
 2656                         } else {
 2657                                 zio->io_error = SET_ERROR(EIO);
 2658                         }
 2659                 } else {
 2660                         cvd = vdev_draid_spare_get_child(vd, offset);
 2661 
 2662                         if (cvd == NULL || !vdev_readable(cvd)) {
 2663                                 zio->io_error = SET_ERROR(ENXIO);
 2664                         } else {
 2665                                 zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
 2666                                     offset, zio->io_abd, zio->io_size,
 2667                                     zio->io_type, zio->io_priority, 0,
 2668                                     vdev_draid_spare_child_done, zio));
 2669                         }
 2670                 }
 2671                 break;
 2672 
 2673         case ZIO_TYPE_TRIM:
 2674                 /* The vdev label ranges are never trimmed */
 2675                 ASSERT0(VDEV_OFFSET_IS_LABEL(vd, zio->io_offset));
 2676 
 2677                 cvd = vdev_draid_spare_get_child(vd, offset);
 2678 
 2679                 if (cvd == NULL || !cvd->vdev_has_trim) {
 2680                         zio->io_error = SET_ERROR(ENXIO);
 2681                 } else {
 2682                         zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
 2683                             offset, zio->io_abd, zio->io_size,
 2684                             zio->io_type, zio->io_priority, 0,
 2685                             vdev_draid_spare_child_done, zio));
 2686                 }
 2687                 break;
 2688 
 2689         default:
 2690                 zio->io_error = SET_ERROR(ENOTSUP);
 2691                 break;
 2692         }
 2693 
 2694         zio_execute(zio);
 2695 }
 2696 
 2697 static void
 2698 vdev_draid_spare_io_done(zio_t *zio)
 2699 {
 2700         (void) zio;
 2701 }
 2702 
 2703 /*
 2704  * Lookup the full spare config in spa->spa_spares.sav_config and
 2705  * return the top_guid and spare_id for the named spare.
 2706  */
 2707 static int
 2708 vdev_draid_spare_lookup(spa_t *spa, nvlist_t *nv, uint64_t *top_guidp,
 2709     uint64_t *spare_idp)
 2710 {
 2711         nvlist_t **spares;
 2712         uint_t nspares;
 2713         int error;
 2714 
 2715         if ((spa->spa_spares.sav_config == NULL) ||
 2716             (nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
 2717             ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0)) {
 2718                 return (SET_ERROR(ENOENT));
 2719         }
 2720 
 2721         char *spare_name;
 2722         error = nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &spare_name);
 2723         if (error != 0)
 2724                 return (SET_ERROR(EINVAL));
 2725 
 2726         for (int i = 0; i < nspares; i++) {
 2727                 nvlist_t *spare = spares[i];
 2728                 uint64_t top_guid, spare_id;
 2729                 char *type, *path;
 2730 
 2731                 /* Skip non-distributed spares */
 2732                 error = nvlist_lookup_string(spare, ZPOOL_CONFIG_TYPE, &type);
 2733                 if (error != 0 || strcmp(type, VDEV_TYPE_DRAID_SPARE) != 0)
 2734                         continue;
 2735 
 2736                 /* Skip spares with the wrong name */
 2737                 error = nvlist_lookup_string(spare, ZPOOL_CONFIG_PATH, &path);
 2738                 if (error != 0 || strcmp(path, spare_name) != 0)
 2739                         continue;
 2740 
 2741                 /* Found the matching spare */
 2742                 error = nvlist_lookup_uint64(spare,
 2743                     ZPOOL_CONFIG_TOP_GUID, &top_guid);
 2744                 if (error == 0) {
 2745                         error = nvlist_lookup_uint64(spare,
 2746                             ZPOOL_CONFIG_SPARE_ID, &spare_id);
 2747                 }
 2748 
 2749                 if (error != 0) {
 2750                         return (SET_ERROR(EINVAL));
 2751                 } else {
 2752                         *top_guidp = top_guid;
 2753                         *spare_idp = spare_id;
 2754                         return (0);
 2755                 }
 2756         }
 2757 
 2758         return (SET_ERROR(ENOENT));
 2759 }
 2760 
 2761 /*
 2762  * Initialize private dRAID spare specific fields from the nvlist.
 2763  */
 2764 static int
 2765 vdev_draid_spare_init(spa_t *spa, nvlist_t *nv, void **tsd)
 2766 {
 2767         vdev_draid_spare_t *vds;
 2768         uint64_t top_guid = 0;
 2769         uint64_t spare_id;
 2770 
 2771         /*
 2772          * In the normal case check the list of spares stored in the spa
 2773          * to lookup the top_guid and spare_id for provided spare config.
 2774          * When creating a new pool or adding vdevs the spare list is not
 2775          * yet populated and the values are provided in the passed config.
 2776          */
 2777         if (vdev_draid_spare_lookup(spa, nv, &top_guid, &spare_id) != 0) {
 2778                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_TOP_GUID,
 2779                     &top_guid) != 0)
 2780                         return (SET_ERROR(EINVAL));
 2781 
 2782                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_SPARE_ID,
 2783                     &spare_id) != 0)
 2784                         return (SET_ERROR(EINVAL));
 2785         }
 2786 
 2787         vds = kmem_alloc(sizeof (vdev_draid_spare_t), KM_SLEEP);
 2788         vds->vds_draid_vdev = NULL;
 2789         vds->vds_top_guid = top_guid;
 2790         vds->vds_spare_id = spare_id;
 2791 
 2792         *tsd = vds;
 2793 
 2794         return (0);
 2795 }
 2796 
 2797 static void
 2798 vdev_draid_spare_fini(vdev_t *vd)
 2799 {
 2800         kmem_free(vd->vdev_tsd, sizeof (vdev_draid_spare_t));
 2801 }
 2802 
 2803 static void
 2804 vdev_draid_spare_config_generate(vdev_t *vd, nvlist_t *nv)
 2805 {
 2806         vdev_draid_spare_t *vds = vd->vdev_tsd;
 2807 
 2808         ASSERT3P(vd->vdev_ops, ==, &vdev_draid_spare_ops);
 2809 
 2810         fnvlist_add_uint64(nv, ZPOOL_CONFIG_TOP_GUID, vds->vds_top_guid);
 2811         fnvlist_add_uint64(nv, ZPOOL_CONFIG_SPARE_ID, vds->vds_spare_id);
 2812 }
 2813 
 2814 vdev_ops_t vdev_draid_spare_ops = {
 2815         .vdev_op_init = vdev_draid_spare_init,
 2816         .vdev_op_fini = vdev_draid_spare_fini,
 2817         .vdev_op_open = vdev_draid_spare_open,
 2818         .vdev_op_close = vdev_draid_spare_close,
 2819         .vdev_op_asize = vdev_default_asize,
 2820         .vdev_op_min_asize = vdev_default_min_asize,
 2821         .vdev_op_min_alloc = NULL,
 2822         .vdev_op_io_start = vdev_draid_spare_io_start,
 2823         .vdev_op_io_done = vdev_draid_spare_io_done,
 2824         .vdev_op_state_change = NULL,
 2825         .vdev_op_need_resilver = NULL,
 2826         .vdev_op_hold = NULL,
 2827         .vdev_op_rele = NULL,
 2828         .vdev_op_remap = NULL,
 2829         .vdev_op_xlate = vdev_default_xlate,
 2830         .vdev_op_rebuild_asize = NULL,
 2831         .vdev_op_metaslab_init = NULL,
 2832         .vdev_op_config_generate = vdev_draid_spare_config_generate,
 2833         .vdev_op_nparity = NULL,
 2834         .vdev_op_ndisks = NULL,
 2835         .vdev_op_type = VDEV_TYPE_DRAID_SPARE,
 2836         .vdev_op_leaf = B_TRUE,
 2837 };

Cache object: 67fbcf77d44517266f7dc2648b52ff4a


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.