The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/contrib/openzfs/module/zfs/vdev_indirect.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * CDDL HEADER START
    3  *
    4  * This file and its contents are supplied under the terms of the
    5  * Common Development and Distribution License ("CDDL"), version 1.0.
    6  * You may only use this file in accordance with the terms of version
    7  * 1.0 of the CDDL.
    8  *
    9  * A full copy of the text of the CDDL should have accompanied this
   10  * source.  A copy of the CDDL is also available via the Internet at
   11  * http://www.illumos.org/license/CDDL.
   12  *
   13  * CDDL HEADER END
   14  */
   15 
   16 /*
   17  * Copyright (c) 2014, 2017 by Delphix. All rights reserved.
   18  * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
   19  * Copyright (c) 2014, 2020 by Delphix. All rights reserved.
   20  */
   21 
   22 #include <sys/zfs_context.h>
   23 #include <sys/spa.h>
   24 #include <sys/spa_impl.h>
   25 #include <sys/vdev_impl.h>
   26 #include <sys/fs/zfs.h>
   27 #include <sys/zio.h>
   28 #include <sys/zio_checksum.h>
   29 #include <sys/metaslab.h>
   30 #include <sys/dmu.h>
   31 #include <sys/vdev_indirect_mapping.h>
   32 #include <sys/dmu_tx.h>
   33 #include <sys/dsl_synctask.h>
   34 #include <sys/zap.h>
   35 #include <sys/abd.h>
   36 #include <sys/zthr.h>
   37 
   38 /*
   39  * An indirect vdev corresponds to a vdev that has been removed.  Since
   40  * we cannot rewrite block pointers of snapshots, etc., we keep a
   41  * mapping from old location on the removed device to the new location
   42  * on another device in the pool and use this mapping whenever we need
   43  * to access the DVA.  Unfortunately, this mapping did not respect
   44  * logical block boundaries when it was first created, and so a DVA on
   45  * this indirect vdev may be "split" into multiple sections that each
   46  * map to a different location.  As a consequence, not all DVAs can be
   47  * translated to an equivalent new DVA.  Instead we must provide a
   48  * "vdev_remap" operation that executes a callback on each contiguous
   49  * segment of the new location.  This function is used in multiple ways:
   50  *
   51  *  - I/Os to this vdev use the callback to determine where the
   52  *    data is now located, and issue child I/Os for each segment's new
   53  *    location.
   54  *
   55  *  - frees and claims to this vdev use the callback to free or claim
   56  *    each mapped segment.  (Note that we don't actually need to claim
   57  *    log blocks on indirect vdevs, because we don't allocate to
   58  *    removing vdevs.  However, zdb uses zio_claim() for its leak
   59  *    detection.)
   60  */
   61 
   62 /*
   63  * "Big theory statement" for how we mark blocks obsolete.
   64  *
   65  * When a block on an indirect vdev is freed or remapped, a section of
   66  * that vdev's mapping may no longer be referenced (aka "obsolete").  We
   67  * keep track of how much of each mapping entry is obsolete.  When
   68  * an entry becomes completely obsolete, we can remove it, thus reducing
   69  * the memory used by the mapping.  The complete picture of obsolescence
   70  * is given by the following data structures, described below:
   71  *  - the entry-specific obsolete count
   72  *  - the vdev-specific obsolete spacemap
   73  *  - the pool-specific obsolete bpobj
   74  *
   75  * == On disk data structures used ==
   76  *
   77  * We track the obsolete space for the pool using several objects.  Each
   78  * of these objects is created on demand and freed when no longer
   79  * needed, and is assumed to be empty if it does not exist.
   80  * SPA_FEATURE_OBSOLETE_COUNTS includes the count of these objects.
   81  *
   82  *  - Each vic_mapping_object (associated with an indirect vdev) can
   83  *    have a vimp_counts_object.  This is an array of uint32_t's
   84  *    with the same number of entries as the vic_mapping_object.  When
   85  *    the mapping is condensed, entries from the vic_obsolete_sm_object
   86  *    (see below) are folded into the counts.  Therefore, each
   87  *    obsolete_counts entry tells us the number of bytes in the
   88  *    corresponding mapping entry that were not referenced when the
   89  *    mapping was last condensed.
   90  *
   91  *  - Each indirect or removing vdev can have a vic_obsolete_sm_object.
   92  *    This is a space map containing an alloc entry for every DVA that
   93  *    has been obsoleted since the last time this indirect vdev was
   94  *    condensed.  We use this object in order to improve performance
   95  *    when marking a DVA as obsolete.  Instead of modifying an arbitrary
   96  *    offset of the vimp_counts_object, we only need to append an entry
   97  *    to the end of this object.  When a DVA becomes obsolete, it is
   98  *    added to the obsolete space map.  This happens when the DVA is
   99  *    freed, remapped and not referenced by a snapshot, or the last
  100  *    snapshot referencing it is destroyed.
  101  *
  102  *  - Each dataset can have a ds_remap_deadlist object.  This is a
  103  *    deadlist object containing all blocks that were remapped in this
  104  *    dataset but referenced in a previous snapshot.  Blocks can *only*
  105  *    appear on this list if they were remapped (dsl_dataset_block_remapped);
  106  *    blocks that were killed in a head dataset are put on the normal
  107  *    ds_deadlist and marked obsolete when they are freed.
  108  *
  109  *  - The pool can have a dp_obsolete_bpobj.  This is a list of blocks
  110  *    in the pool that need to be marked obsolete.  When a snapshot is
  111  *    destroyed, we move some of the ds_remap_deadlist to the obsolete
  112  *    bpobj (see dsl_destroy_snapshot_handle_remaps()).  We then
  113  *    asynchronously process the obsolete bpobj, moving its entries to
  114  *    the specific vdevs' obsolete space maps.
  115  *
  116  * == Summary of how we mark blocks as obsolete ==
  117  *
  118  * - When freeing a block: if any DVA is on an indirect vdev, append to
  119  *   vic_obsolete_sm_object.
  120  * - When remapping a block, add dva to ds_remap_deadlist (if prev snap
  121  *   references; otherwise append to vic_obsolete_sm_object).
  122  * - When freeing a snapshot: move parts of ds_remap_deadlist to
  123  *   dp_obsolete_bpobj (same algorithm as ds_deadlist).
  124  * - When syncing the spa: process dp_obsolete_bpobj, moving ranges to
  125  *   individual vdev's vic_obsolete_sm_object.
  126  */
  127 
  128 /*
  129  * "Big theory statement" for how we condense indirect vdevs.
  130  *
  131  * Condensing an indirect vdev's mapping is the process of determining
  132  * the precise counts of obsolete space for each mapping entry (by
  133  * integrating the obsolete spacemap into the obsolete counts) and
  134  * writing out a new mapping that contains only referenced entries.
  135  *
  136  * We condense a vdev when we expect the mapping to shrink (see
  137  * vdev_indirect_should_condense()), but only perform one condense at a
  138  * time to limit the memory usage.  In addition, we use a separate
  139  * open-context thread (spa_condense_indirect_thread) to incrementally
  140  * create the new mapping object in a way that minimizes the impact on
  141  * the rest of the system.
  142  *
  143  * == Generating a new mapping ==
  144  *
  145  * To generate a new mapping, we follow these steps:
  146  *
  147  * 1. Save the old obsolete space map and create a new mapping object
  148  *    (see spa_condense_indirect_start_sync()).  This initializes the
  149  *    spa_condensing_indirect_phys with the "previous obsolete space map",
  150  *    which is now read only.  Newly obsolete DVAs will be added to a
  151  *    new (initially empty) obsolete space map, and will not be
  152  *    considered as part of this condense operation.
  153  *
  154  * 2. Construct in memory the precise counts of obsolete space for each
  155  *    mapping entry, by incorporating the obsolete space map into the
  156  *    counts.  (See vdev_indirect_mapping_load_obsolete_{counts,spacemap}().)
  157  *
  158  * 3. Iterate through each mapping entry, writing to the new mapping any
  159  *    entries that are not completely obsolete (i.e. which don't have
  160  *    obsolete count == mapping length).  (See
  161  *    spa_condense_indirect_generate_new_mapping().)
  162  *
  163  * 4. Destroy the old mapping object and switch over to the new one
  164  *    (spa_condense_indirect_complete_sync).
  165  *
  166  * == Restarting from failure ==
  167  *
  168  * To restart the condense when we import/open the pool, we must start
  169  * at the 2nd step above: reconstruct the precise counts in memory,
  170  * based on the space map + counts.  Then in the 3rd step, we start
  171  * iterating where we left off: at vimp_max_offset of the new mapping
  172  * object.
  173  */
  174 
  175 static int zfs_condense_indirect_vdevs_enable = B_TRUE;
  176 
  177 /*
  178  * Condense if at least this percent of the bytes in the mapping is
  179  * obsolete.  With the default of 25%, the amount of space mapped
  180  * will be reduced to 1% of its original size after at most 16
  181  * condenses.  Higher values will condense less often (causing less
  182  * i/o); lower values will reduce the mapping size more quickly.
  183  */
  184 static uint_t zfs_condense_indirect_obsolete_pct = 25;
  185 
  186 /*
  187  * Condense if the obsolete space map takes up more than this amount of
  188  * space on disk (logically).  This limits the amount of disk space
  189  * consumed by the obsolete space map; the default of 1GB is small enough
  190  * that we typically don't mind "wasting" it.
  191  */
  192 static uint64_t zfs_condense_max_obsolete_bytes = 1024 * 1024 * 1024;
  193 
  194 /*
  195  * Don't bother condensing if the mapping uses less than this amount of
  196  * memory.  The default of 128KB is considered a "trivial" amount of
  197  * memory and not worth reducing.
  198  */
  199 static uint64_t zfs_condense_min_mapping_bytes = 128 * 1024;
  200 
  201 /*
  202  * This is used by the test suite so that it can ensure that certain
  203  * actions happen while in the middle of a condense (which might otherwise
  204  * complete too quickly).  If used to reduce the performance impact of
  205  * condensing in production, a maximum value of 1 should be sufficient.
  206  */
  207 static uint_t zfs_condense_indirect_commit_entry_delay_ms = 0;
  208 
  209 /*
  210  * If an indirect split block contains more than this many possible unique
  211  * combinations when being reconstructed, consider it too computationally
  212  * expensive to check them all. Instead, try at most 100 randomly-selected
  213  * combinations each time the block is accessed.  This allows all segment
  214  * copies to participate fairly in the reconstruction when all combinations
  215  * cannot be checked and prevents repeated use of one bad copy.
  216  */
  217 uint_t zfs_reconstruct_indirect_combinations_max = 4096;
  218 
  219 /*
  220  * Enable to simulate damaged segments and validate reconstruction.  This
  221  * is intentionally not exposed as a module parameter.
  222  */
  223 unsigned long zfs_reconstruct_indirect_damage_fraction = 0;
  224 
  225 /*
  226  * The indirect_child_t represents the vdev that we will read from, when we
  227  * need to read all copies of the data (e.g. for scrub or reconstruction).
  228  * For plain (non-mirror) top-level vdevs (i.e. is_vdev is not a mirror),
  229  * ic_vdev is the same as is_vdev.  However, for mirror top-level vdevs,
  230  * ic_vdev is a child of the mirror.
  231  */
  232 typedef struct indirect_child {
  233         abd_t *ic_data;
  234         vdev_t *ic_vdev;
  235 
  236         /*
  237          * ic_duplicate is NULL when the ic_data contents are unique, when it
  238          * is determined to be a duplicate it references the primary child.
  239          */
  240         struct indirect_child *ic_duplicate;
  241         list_node_t ic_node; /* node on is_unique_child */
  242         int ic_error; /* set when a child does not contain the data */
  243 } indirect_child_t;
  244 
  245 /*
  246  * The indirect_split_t represents one mapped segment of an i/o to the
  247  * indirect vdev. For non-split (contiguously-mapped) blocks, there will be
  248  * only one indirect_split_t, with is_split_offset==0 and is_size==io_size.
  249  * For split blocks, there will be several of these.
  250  */
  251 typedef struct indirect_split {
  252         list_node_t is_node; /* link on iv_splits */
  253 
  254         /*
  255          * is_split_offset is the offset into the i/o.
  256          * This is the sum of the previous splits' is_size's.
  257          */
  258         uint64_t is_split_offset;
  259 
  260         vdev_t *is_vdev; /* top-level vdev */
  261         uint64_t is_target_offset; /* offset on is_vdev */
  262         uint64_t is_size;
  263         int is_children; /* number of entries in is_child[] */
  264         int is_unique_children; /* number of entries in is_unique_child */
  265         list_t is_unique_child;
  266 
  267         /*
  268          * is_good_child is the child that we are currently using to
  269          * attempt reconstruction.
  270          */
  271         indirect_child_t *is_good_child;
  272 
  273         indirect_child_t is_child[];
  274 } indirect_split_t;
  275 
  276 /*
  277  * The indirect_vsd_t is associated with each i/o to the indirect vdev.
  278  * It is the "Vdev-Specific Data" in the zio_t's io_vsd.
  279  */
  280 typedef struct indirect_vsd {
  281         boolean_t iv_split_block;
  282         boolean_t iv_reconstruct;
  283         uint64_t iv_unique_combinations;
  284         uint64_t iv_attempts;
  285         uint64_t iv_attempts_max;
  286 
  287         list_t iv_splits; /* list of indirect_split_t's */
  288 } indirect_vsd_t;
  289 
  290 static void
  291 vdev_indirect_map_free(zio_t *zio)
  292 {
  293         indirect_vsd_t *iv = zio->io_vsd;
  294 
  295         indirect_split_t *is;
  296         while ((is = list_head(&iv->iv_splits)) != NULL) {
  297                 for (int c = 0; c < is->is_children; c++) {
  298                         indirect_child_t *ic = &is->is_child[c];
  299                         if (ic->ic_data != NULL)
  300                                 abd_free(ic->ic_data);
  301                 }
  302                 list_remove(&iv->iv_splits, is);
  303 
  304                 indirect_child_t *ic;
  305                 while ((ic = list_head(&is->is_unique_child)) != NULL)
  306                         list_remove(&is->is_unique_child, ic);
  307 
  308                 list_destroy(&is->is_unique_child);
  309 
  310                 kmem_free(is,
  311                     offsetof(indirect_split_t, is_child[is->is_children]));
  312         }
  313         kmem_free(iv, sizeof (*iv));
  314 }
  315 
  316 static const zio_vsd_ops_t vdev_indirect_vsd_ops = {
  317         .vsd_free = vdev_indirect_map_free,
  318 };
  319 
  320 /*
  321  * Mark the given offset and size as being obsolete.
  322  */
  323 void
  324 vdev_indirect_mark_obsolete(vdev_t *vd, uint64_t offset, uint64_t size)
  325 {
  326         spa_t *spa = vd->vdev_spa;
  327 
  328         ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, !=, 0);
  329         ASSERT(vd->vdev_removing || vd->vdev_ops == &vdev_indirect_ops);
  330         ASSERT(size > 0);
  331         VERIFY(vdev_indirect_mapping_entry_for_offset(
  332             vd->vdev_indirect_mapping, offset) != NULL);
  333 
  334         if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
  335                 mutex_enter(&vd->vdev_obsolete_lock);
  336                 range_tree_add(vd->vdev_obsolete_segments, offset, size);
  337                 mutex_exit(&vd->vdev_obsolete_lock);
  338                 vdev_dirty(vd, 0, NULL, spa_syncing_txg(spa));
  339         }
  340 }
  341 
  342 /*
  343  * Mark the DVA vdev_id:offset:size as being obsolete in the given tx. This
  344  * wrapper is provided because the DMU does not know about vdev_t's and
  345  * cannot directly call vdev_indirect_mark_obsolete.
  346  */
  347 void
  348 spa_vdev_indirect_mark_obsolete(spa_t *spa, uint64_t vdev_id, uint64_t offset,
  349     uint64_t size, dmu_tx_t *tx)
  350 {
  351         vdev_t *vd = vdev_lookup_top(spa, vdev_id);
  352         ASSERT(dmu_tx_is_syncing(tx));
  353 
  354         /* The DMU can only remap indirect vdevs. */
  355         ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
  356         vdev_indirect_mark_obsolete(vd, offset, size);
  357 }
  358 
  359 static spa_condensing_indirect_t *
  360 spa_condensing_indirect_create(spa_t *spa)
  361 {
  362         spa_condensing_indirect_phys_t *scip =
  363             &spa->spa_condensing_indirect_phys;
  364         spa_condensing_indirect_t *sci = kmem_zalloc(sizeof (*sci), KM_SLEEP);
  365         objset_t *mos = spa->spa_meta_objset;
  366 
  367         for (int i = 0; i < TXG_SIZE; i++) {
  368                 list_create(&sci->sci_new_mapping_entries[i],
  369                     sizeof (vdev_indirect_mapping_entry_t),
  370                     offsetof(vdev_indirect_mapping_entry_t, vime_node));
  371         }
  372 
  373         sci->sci_new_mapping =
  374             vdev_indirect_mapping_open(mos, scip->scip_next_mapping_object);
  375 
  376         return (sci);
  377 }
  378 
  379 static void
  380 spa_condensing_indirect_destroy(spa_condensing_indirect_t *sci)
  381 {
  382         for (int i = 0; i < TXG_SIZE; i++)
  383                 list_destroy(&sci->sci_new_mapping_entries[i]);
  384 
  385         if (sci->sci_new_mapping != NULL)
  386                 vdev_indirect_mapping_close(sci->sci_new_mapping);
  387 
  388         kmem_free(sci, sizeof (*sci));
  389 }
  390 
  391 boolean_t
  392 vdev_indirect_should_condense(vdev_t *vd)
  393 {
  394         vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
  395         spa_t *spa = vd->vdev_spa;
  396 
  397         ASSERT(dsl_pool_sync_context(spa->spa_dsl_pool));
  398 
  399         if (!zfs_condense_indirect_vdevs_enable)
  400                 return (B_FALSE);
  401 
  402         /*
  403          * We can only condense one indirect vdev at a time.
  404          */
  405         if (spa->spa_condensing_indirect != NULL)
  406                 return (B_FALSE);
  407 
  408         if (spa_shutting_down(spa))
  409                 return (B_FALSE);
  410 
  411         /*
  412          * The mapping object size must not change while we are
  413          * condensing, so we can only condense indirect vdevs
  414          * (not vdevs that are still in the middle of being removed).
  415          */
  416         if (vd->vdev_ops != &vdev_indirect_ops)
  417                 return (B_FALSE);
  418 
  419         /*
  420          * If nothing new has been marked obsolete, there is no
  421          * point in condensing.
  422          */
  423         uint64_t obsolete_sm_obj __maybe_unused;
  424         ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_obj));
  425         if (vd->vdev_obsolete_sm == NULL) {
  426                 ASSERT0(obsolete_sm_obj);
  427                 return (B_FALSE);
  428         }
  429 
  430         ASSERT(vd->vdev_obsolete_sm != NULL);
  431 
  432         ASSERT3U(obsolete_sm_obj, ==, space_map_object(vd->vdev_obsolete_sm));
  433 
  434         uint64_t bytes_mapped = vdev_indirect_mapping_bytes_mapped(vim);
  435         uint64_t bytes_obsolete = space_map_allocated(vd->vdev_obsolete_sm);
  436         uint64_t mapping_size = vdev_indirect_mapping_size(vim);
  437         uint64_t obsolete_sm_size = space_map_length(vd->vdev_obsolete_sm);
  438 
  439         ASSERT3U(bytes_obsolete, <=, bytes_mapped);
  440 
  441         /*
  442          * If a high percentage of the bytes that are mapped have become
  443          * obsolete, condense (unless the mapping is already small enough).
  444          * This has a good chance of reducing the amount of memory used
  445          * by the mapping.
  446          */
  447         if (bytes_obsolete * 100 / bytes_mapped >=
  448             zfs_condense_indirect_obsolete_pct &&
  449             mapping_size > zfs_condense_min_mapping_bytes) {
  450                 zfs_dbgmsg("should condense vdev %llu because obsolete "
  451                     "spacemap covers %d%% of %lluMB mapping",
  452                     (u_longlong_t)vd->vdev_id,
  453                     (int)(bytes_obsolete * 100 / bytes_mapped),
  454                     (u_longlong_t)bytes_mapped / 1024 / 1024);
  455                 return (B_TRUE);
  456         }
  457 
  458         /*
  459          * If the obsolete space map takes up too much space on disk,
  460          * condense in order to free up this disk space.
  461          */
  462         if (obsolete_sm_size >= zfs_condense_max_obsolete_bytes) {
  463                 zfs_dbgmsg("should condense vdev %llu because obsolete sm "
  464                     "length %lluMB >= max size %lluMB",
  465                     (u_longlong_t)vd->vdev_id,
  466                     (u_longlong_t)obsolete_sm_size / 1024 / 1024,
  467                     (u_longlong_t)zfs_condense_max_obsolete_bytes /
  468                     1024 / 1024);
  469                 return (B_TRUE);
  470         }
  471 
  472         return (B_FALSE);
  473 }
  474 
  475 /*
  476  * This sync task completes (finishes) a condense, deleting the old
  477  * mapping and replacing it with the new one.
  478  */
  479 static void
  480 spa_condense_indirect_complete_sync(void *arg, dmu_tx_t *tx)
  481 {
  482         spa_condensing_indirect_t *sci = arg;
  483         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
  484         spa_condensing_indirect_phys_t *scip =
  485             &spa->spa_condensing_indirect_phys;
  486         vdev_t *vd = vdev_lookup_top(spa, scip->scip_vdev);
  487         vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
  488         objset_t *mos = spa->spa_meta_objset;
  489         vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
  490         uint64_t old_count = vdev_indirect_mapping_num_entries(old_mapping);
  491         uint64_t new_count =
  492             vdev_indirect_mapping_num_entries(sci->sci_new_mapping);
  493 
  494         ASSERT(dmu_tx_is_syncing(tx));
  495         ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
  496         ASSERT3P(sci, ==, spa->spa_condensing_indirect);
  497         for (int i = 0; i < TXG_SIZE; i++) {
  498                 ASSERT(list_is_empty(&sci->sci_new_mapping_entries[i]));
  499         }
  500         ASSERT(vic->vic_mapping_object != 0);
  501         ASSERT3U(vd->vdev_id, ==, scip->scip_vdev);
  502         ASSERT(scip->scip_next_mapping_object != 0);
  503         ASSERT(scip->scip_prev_obsolete_sm_object != 0);
  504 
  505         /*
  506          * Reset vdev_indirect_mapping to refer to the new object.
  507          */
  508         rw_enter(&vd->vdev_indirect_rwlock, RW_WRITER);
  509         vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
  510         vd->vdev_indirect_mapping = sci->sci_new_mapping;
  511         rw_exit(&vd->vdev_indirect_rwlock);
  512 
  513         sci->sci_new_mapping = NULL;
  514         vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx);
  515         vic->vic_mapping_object = scip->scip_next_mapping_object;
  516         scip->scip_next_mapping_object = 0;
  517 
  518         space_map_free_obj(mos, scip->scip_prev_obsolete_sm_object, tx);
  519         spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
  520         scip->scip_prev_obsolete_sm_object = 0;
  521 
  522         scip->scip_vdev = 0;
  523 
  524         VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
  525             DMU_POOL_CONDENSING_INDIRECT, tx));
  526         spa_condensing_indirect_destroy(spa->spa_condensing_indirect);
  527         spa->spa_condensing_indirect = NULL;
  528 
  529         zfs_dbgmsg("finished condense of vdev %llu in txg %llu: "
  530             "new mapping object %llu has %llu entries "
  531             "(was %llu entries)",
  532             (u_longlong_t)vd->vdev_id, (u_longlong_t)dmu_tx_get_txg(tx),
  533             (u_longlong_t)vic->vic_mapping_object,
  534             (u_longlong_t)new_count, (u_longlong_t)old_count);
  535 
  536         vdev_config_dirty(spa->spa_root_vdev);
  537 }
  538 
  539 /*
  540  * This sync task appends entries to the new mapping object.
  541  */
  542 static void
  543 spa_condense_indirect_commit_sync(void *arg, dmu_tx_t *tx)
  544 {
  545         spa_condensing_indirect_t *sci = arg;
  546         uint64_t txg = dmu_tx_get_txg(tx);
  547         spa_t *spa __maybe_unused = dmu_tx_pool(tx)->dp_spa;
  548 
  549         ASSERT(dmu_tx_is_syncing(tx));
  550         ASSERT3P(sci, ==, spa->spa_condensing_indirect);
  551 
  552         vdev_indirect_mapping_add_entries(sci->sci_new_mapping,
  553             &sci->sci_new_mapping_entries[txg & TXG_MASK], tx);
  554         ASSERT(list_is_empty(&sci->sci_new_mapping_entries[txg & TXG_MASK]));
  555 }
  556 
  557 /*
  558  * Open-context function to add one entry to the new mapping.  The new
  559  * entry will be remembered and written from syncing context.
  560  */
  561 static void
  562 spa_condense_indirect_commit_entry(spa_t *spa,
  563     vdev_indirect_mapping_entry_phys_t *vimep, uint32_t count)
  564 {
  565         spa_condensing_indirect_t *sci = spa->spa_condensing_indirect;
  566 
  567         ASSERT3U(count, <, DVA_GET_ASIZE(&vimep->vimep_dst));
  568 
  569         dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
  570         dmu_tx_hold_space(tx, sizeof (*vimep) + sizeof (count));
  571         VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
  572         int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
  573 
  574         /*
  575          * If we are the first entry committed this txg, kick off the sync
  576          * task to write to the MOS on our behalf.
  577          */
  578         if (list_is_empty(&sci->sci_new_mapping_entries[txgoff])) {
  579                 dsl_sync_task_nowait(dmu_tx_pool(tx),
  580                     spa_condense_indirect_commit_sync, sci, tx);
  581         }
  582 
  583         vdev_indirect_mapping_entry_t *vime =
  584             kmem_alloc(sizeof (*vime), KM_SLEEP);
  585         vime->vime_mapping = *vimep;
  586         vime->vime_obsolete_count = count;
  587         list_insert_tail(&sci->sci_new_mapping_entries[txgoff], vime);
  588 
  589         dmu_tx_commit(tx);
  590 }
  591 
  592 static void
  593 spa_condense_indirect_generate_new_mapping(vdev_t *vd,
  594     uint32_t *obsolete_counts, uint64_t start_index, zthr_t *zthr)
  595 {
  596         spa_t *spa = vd->vdev_spa;
  597         uint64_t mapi = start_index;
  598         vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
  599         uint64_t old_num_entries =
  600             vdev_indirect_mapping_num_entries(old_mapping);
  601 
  602         ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
  603         ASSERT3U(vd->vdev_id, ==, spa->spa_condensing_indirect_phys.scip_vdev);
  604 
  605         zfs_dbgmsg("starting condense of vdev %llu from index %llu",
  606             (u_longlong_t)vd->vdev_id,
  607             (u_longlong_t)mapi);
  608 
  609         while (mapi < old_num_entries) {
  610 
  611                 if (zthr_iscancelled(zthr)) {
  612                         zfs_dbgmsg("pausing condense of vdev %llu "
  613                             "at index %llu", (u_longlong_t)vd->vdev_id,
  614                             (u_longlong_t)mapi);
  615                         break;
  616                 }
  617 
  618                 vdev_indirect_mapping_entry_phys_t *entry =
  619                     &old_mapping->vim_entries[mapi];
  620                 uint64_t entry_size = DVA_GET_ASIZE(&entry->vimep_dst);
  621                 ASSERT3U(obsolete_counts[mapi], <=, entry_size);
  622                 if (obsolete_counts[mapi] < entry_size) {
  623                         spa_condense_indirect_commit_entry(spa, entry,
  624                             obsolete_counts[mapi]);
  625 
  626                         /*
  627                          * This delay may be requested for testing, debugging,
  628                          * or performance reasons.
  629                          */
  630                         hrtime_t now = gethrtime();
  631                         hrtime_t sleep_until = now + MSEC2NSEC(
  632                             zfs_condense_indirect_commit_entry_delay_ms);
  633                         zfs_sleep_until(sleep_until);
  634                 }
  635 
  636                 mapi++;
  637         }
  638 }
  639 
  640 static boolean_t
  641 spa_condense_indirect_thread_check(void *arg, zthr_t *zthr)
  642 {
  643         (void) zthr;
  644         spa_t *spa = arg;
  645 
  646         return (spa->spa_condensing_indirect != NULL);
  647 }
  648 
  649 static void
  650 spa_condense_indirect_thread(void *arg, zthr_t *zthr)
  651 {
  652         spa_t *spa = arg;
  653         vdev_t *vd;
  654 
  655         ASSERT3P(spa->spa_condensing_indirect, !=, NULL);
  656         spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
  657         vd = vdev_lookup_top(spa, spa->spa_condensing_indirect_phys.scip_vdev);
  658         ASSERT3P(vd, !=, NULL);
  659         spa_config_exit(spa, SCL_VDEV, FTAG);
  660 
  661         spa_condensing_indirect_t *sci = spa->spa_condensing_indirect;
  662         spa_condensing_indirect_phys_t *scip =
  663             &spa->spa_condensing_indirect_phys;
  664         uint32_t *counts;
  665         uint64_t start_index;
  666         vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
  667         space_map_t *prev_obsolete_sm = NULL;
  668 
  669         ASSERT3U(vd->vdev_id, ==, scip->scip_vdev);
  670         ASSERT(scip->scip_next_mapping_object != 0);
  671         ASSERT(scip->scip_prev_obsolete_sm_object != 0);
  672         ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
  673 
  674         for (int i = 0; i < TXG_SIZE; i++) {
  675                 /*
  676                  * The list must start out empty in order for the
  677                  * _commit_sync() sync task to be properly registered
  678                  * on the first call to _commit_entry(); so it's wise
  679                  * to double check and ensure we actually are starting
  680                  * with empty lists.
  681                  */
  682                 ASSERT(list_is_empty(&sci->sci_new_mapping_entries[i]));
  683         }
  684 
  685         VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset,
  686             scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0));
  687         counts = vdev_indirect_mapping_load_obsolete_counts(old_mapping);
  688         if (prev_obsolete_sm != NULL) {
  689                 vdev_indirect_mapping_load_obsolete_spacemap(old_mapping,
  690                     counts, prev_obsolete_sm);
  691         }
  692         space_map_close(prev_obsolete_sm);
  693 
  694         /*
  695          * Generate new mapping.  Determine what index to continue from
  696          * based on the max offset that we've already written in the
  697          * new mapping.
  698          */
  699         uint64_t max_offset =
  700             vdev_indirect_mapping_max_offset(sci->sci_new_mapping);
  701         if (max_offset == 0) {
  702                 /* We haven't written anything to the new mapping yet. */
  703                 start_index = 0;
  704         } else {
  705                 /*
  706                  * Pick up from where we left off. _entry_for_offset()
  707                  * returns a pointer into the vim_entries array. If
  708                  * max_offset is greater than any of the mappings
  709                  * contained in the table  NULL will be returned and
  710                  * that indicates we've exhausted our iteration of the
  711                  * old_mapping.
  712                  */
  713 
  714                 vdev_indirect_mapping_entry_phys_t *entry =
  715                     vdev_indirect_mapping_entry_for_offset_or_next(old_mapping,
  716                     max_offset);
  717 
  718                 if (entry == NULL) {
  719                         /*
  720                          * We've already written the whole new mapping.
  721                          * This special value will cause us to skip the
  722                          * generate_new_mapping step and just do the sync
  723                          * task to complete the condense.
  724                          */
  725                         start_index = UINT64_MAX;
  726                 } else {
  727                         start_index = entry - old_mapping->vim_entries;
  728                         ASSERT3U(start_index, <,
  729                             vdev_indirect_mapping_num_entries(old_mapping));
  730                 }
  731         }
  732 
  733         spa_condense_indirect_generate_new_mapping(vd, counts,
  734             start_index, zthr);
  735 
  736         vdev_indirect_mapping_free_obsolete_counts(old_mapping, counts);
  737 
  738         /*
  739          * If the zthr has received a cancellation signal while running
  740          * in generate_new_mapping() or at any point after that, then bail
  741          * early. We don't want to complete the condense if the spa is
  742          * shutting down.
  743          */
  744         if (zthr_iscancelled(zthr))
  745                 return;
  746 
  747         VERIFY0(dsl_sync_task(spa_name(spa), NULL,
  748             spa_condense_indirect_complete_sync, sci, 0,
  749             ZFS_SPACE_CHECK_EXTRA_RESERVED));
  750 }
  751 
  752 /*
  753  * Sync task to begin the condensing process.
  754  */
  755 void
  756 spa_condense_indirect_start_sync(vdev_t *vd, dmu_tx_t *tx)
  757 {
  758         spa_t *spa = vd->vdev_spa;
  759         spa_condensing_indirect_phys_t *scip =
  760             &spa->spa_condensing_indirect_phys;
  761 
  762         ASSERT0(scip->scip_next_mapping_object);
  763         ASSERT0(scip->scip_prev_obsolete_sm_object);
  764         ASSERT0(scip->scip_vdev);
  765         ASSERT(dmu_tx_is_syncing(tx));
  766         ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
  767         ASSERT(spa_feature_is_active(spa, SPA_FEATURE_OBSOLETE_COUNTS));
  768         ASSERT(vdev_indirect_mapping_num_entries(vd->vdev_indirect_mapping));
  769 
  770         uint64_t obsolete_sm_obj;
  771         VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_obj));
  772         ASSERT3U(obsolete_sm_obj, !=, 0);
  773 
  774         scip->scip_vdev = vd->vdev_id;
  775         scip->scip_next_mapping_object =
  776             vdev_indirect_mapping_alloc(spa->spa_meta_objset, tx);
  777 
  778         scip->scip_prev_obsolete_sm_object = obsolete_sm_obj;
  779 
  780         /*
  781          * We don't need to allocate a new space map object, since
  782          * vdev_indirect_sync_obsolete will allocate one when needed.
  783          */
  784         space_map_close(vd->vdev_obsolete_sm);
  785         vd->vdev_obsolete_sm = NULL;
  786         VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
  787             VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx));
  788 
  789         VERIFY0(zap_add(spa->spa_dsl_pool->dp_meta_objset,
  790             DMU_POOL_DIRECTORY_OBJECT,
  791             DMU_POOL_CONDENSING_INDIRECT, sizeof (uint64_t),
  792             sizeof (*scip) / sizeof (uint64_t), scip, tx));
  793 
  794         ASSERT3P(spa->spa_condensing_indirect, ==, NULL);
  795         spa->spa_condensing_indirect = spa_condensing_indirect_create(spa);
  796 
  797         zfs_dbgmsg("starting condense of vdev %llu in txg %llu: "
  798             "posm=%llu nm=%llu",
  799             (u_longlong_t)vd->vdev_id, (u_longlong_t)dmu_tx_get_txg(tx),
  800             (u_longlong_t)scip->scip_prev_obsolete_sm_object,
  801             (u_longlong_t)scip->scip_next_mapping_object);
  802 
  803         zthr_wakeup(spa->spa_condense_zthr);
  804 }
  805 
  806 /*
  807  * Sync to the given vdev's obsolete space map any segments that are no longer
  808  * referenced as of the given txg.
  809  *
  810  * If the obsolete space map doesn't exist yet, create and open it.
  811  */
  812 void
  813 vdev_indirect_sync_obsolete(vdev_t *vd, dmu_tx_t *tx)
  814 {
  815         spa_t *spa = vd->vdev_spa;
  816         vdev_indirect_config_t *vic __maybe_unused = &vd->vdev_indirect_config;
  817 
  818         ASSERT3U(vic->vic_mapping_object, !=, 0);
  819         ASSERT(range_tree_space(vd->vdev_obsolete_segments) > 0);
  820         ASSERT(vd->vdev_removing || vd->vdev_ops == &vdev_indirect_ops);
  821         ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS));
  822 
  823         uint64_t obsolete_sm_object;
  824         VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
  825         if (obsolete_sm_object == 0) {
  826                 obsolete_sm_object = space_map_alloc(spa->spa_meta_objset,
  827                     zfs_vdev_standard_sm_blksz, tx);
  828 
  829                 ASSERT(vd->vdev_top_zap != 0);
  830                 VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
  831                     VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM,
  832                     sizeof (obsolete_sm_object), 1, &obsolete_sm_object, tx));
  833                 ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
  834                 ASSERT3U(obsolete_sm_object, !=, 0);
  835 
  836                 spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
  837                 VERIFY0(space_map_open(&vd->vdev_obsolete_sm,
  838                     spa->spa_meta_objset, obsolete_sm_object,
  839                     0, vd->vdev_asize, 0));
  840         }
  841 
  842         ASSERT(vd->vdev_obsolete_sm != NULL);
  843         ASSERT3U(obsolete_sm_object, ==,
  844             space_map_object(vd->vdev_obsolete_sm));
  845 
  846         space_map_write(vd->vdev_obsolete_sm,
  847             vd->vdev_obsolete_segments, SM_ALLOC, SM_NO_VDEVID, tx);
  848         range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL);
  849 }
  850 
  851 int
  852 spa_condense_init(spa_t *spa)
  853 {
  854         int error = zap_lookup(spa->spa_meta_objset,
  855             DMU_POOL_DIRECTORY_OBJECT,
  856             DMU_POOL_CONDENSING_INDIRECT, sizeof (uint64_t),
  857             sizeof (spa->spa_condensing_indirect_phys) / sizeof (uint64_t),
  858             &spa->spa_condensing_indirect_phys);
  859         if (error == 0) {
  860                 if (spa_writeable(spa)) {
  861                         spa->spa_condensing_indirect =
  862                             spa_condensing_indirect_create(spa);
  863                 }
  864                 return (0);
  865         } else if (error == ENOENT) {
  866                 return (0);
  867         } else {
  868                 return (error);
  869         }
  870 }
  871 
  872 void
  873 spa_condense_fini(spa_t *spa)
  874 {
  875         if (spa->spa_condensing_indirect != NULL) {
  876                 spa_condensing_indirect_destroy(spa->spa_condensing_indirect);
  877                 spa->spa_condensing_indirect = NULL;
  878         }
  879 }
  880 
  881 void
  882 spa_start_indirect_condensing_thread(spa_t *spa)
  883 {
  884         ASSERT3P(spa->spa_condense_zthr, ==, NULL);
  885         spa->spa_condense_zthr = zthr_create("z_indirect_condense",
  886             spa_condense_indirect_thread_check,
  887             spa_condense_indirect_thread, spa, minclsyspri);
  888 }
  889 
  890 /*
  891  * Gets the obsolete spacemap object from the vdev's ZAP.  On success sm_obj
  892  * will contain either the obsolete spacemap object or zero if none exists.
  893  * All other errors are returned to the caller.
  894  */
  895 int
  896 vdev_obsolete_sm_object(vdev_t *vd, uint64_t *sm_obj)
  897 {
  898         ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
  899 
  900         if (vd->vdev_top_zap == 0) {
  901                 *sm_obj = 0;
  902                 return (0);
  903         }
  904 
  905         int error = zap_lookup(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
  906             VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, sizeof (uint64_t), 1, sm_obj);
  907         if (error == ENOENT) {
  908                 *sm_obj = 0;
  909                 error = 0;
  910         }
  911 
  912         return (error);
  913 }
  914 
  915 /*
  916  * Gets the obsolete count are precise spacemap object from the vdev's ZAP.
  917  * On success are_precise will be set to reflect if the counts are precise.
  918  * All other errors are returned to the caller.
  919  */
  920 int
  921 vdev_obsolete_counts_are_precise(vdev_t *vd, boolean_t *are_precise)
  922 {
  923         ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
  924 
  925         if (vd->vdev_top_zap == 0) {
  926                 *are_precise = B_FALSE;
  927                 return (0);
  928         }
  929 
  930         uint64_t val = 0;
  931         int error = zap_lookup(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
  932             VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (val), 1, &val);
  933         if (error == 0) {
  934                 *are_precise = (val != 0);
  935         } else if (error == ENOENT) {
  936                 *are_precise = B_FALSE;
  937                 error = 0;
  938         }
  939 
  940         return (error);
  941 }
  942 
  943 static void
  944 vdev_indirect_close(vdev_t *vd)
  945 {
  946         (void) vd;
  947 }
  948 
  949 static int
  950 vdev_indirect_open(vdev_t *vd, uint64_t *psize, uint64_t *max_psize,
  951     uint64_t *logical_ashift, uint64_t *physical_ashift)
  952 {
  953         *psize = *max_psize = vd->vdev_asize +
  954             VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
  955         *logical_ashift = vd->vdev_ashift;
  956         *physical_ashift = vd->vdev_physical_ashift;
  957         return (0);
  958 }
  959 
  960 typedef struct remap_segment {
  961         vdev_t *rs_vd;
  962         uint64_t rs_offset;
  963         uint64_t rs_asize;
  964         uint64_t rs_split_offset;
  965         list_node_t rs_node;
  966 } remap_segment_t;
  967 
  968 static remap_segment_t *
  969 rs_alloc(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t split_offset)
  970 {
  971         remap_segment_t *rs = kmem_alloc(sizeof (remap_segment_t), KM_SLEEP);
  972         rs->rs_vd = vd;
  973         rs->rs_offset = offset;
  974         rs->rs_asize = asize;
  975         rs->rs_split_offset = split_offset;
  976         return (rs);
  977 }
  978 
  979 /*
  980  * Given an indirect vdev and an extent on that vdev, it duplicates the
  981  * physical entries of the indirect mapping that correspond to the extent
  982  * to a new array and returns a pointer to it. In addition, copied_entries
  983  * is populated with the number of mapping entries that were duplicated.
  984  *
  985  * Note that the function assumes that the caller holds vdev_indirect_rwlock.
  986  * This ensures that the mapping won't change due to condensing as we
  987  * copy over its contents.
  988  *
  989  * Finally, since we are doing an allocation, it is up to the caller to
  990  * free the array allocated in this function.
  991  */
  992 static vdev_indirect_mapping_entry_phys_t *
  993 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *vd, uint64_t offset,
  994     uint64_t asize, uint64_t *copied_entries)
  995 {
  996         vdev_indirect_mapping_entry_phys_t *duplicate_mappings = NULL;
  997         vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
  998         uint64_t entries = 0;
  999 
 1000         ASSERT(RW_READ_HELD(&vd->vdev_indirect_rwlock));
 1001 
 1002         vdev_indirect_mapping_entry_phys_t *first_mapping =
 1003             vdev_indirect_mapping_entry_for_offset(vim, offset);
 1004         ASSERT3P(first_mapping, !=, NULL);
 1005 
 1006         vdev_indirect_mapping_entry_phys_t *m = first_mapping;
 1007         while (asize > 0) {
 1008                 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
 1009 
 1010                 ASSERT3U(offset, >=, DVA_MAPPING_GET_SRC_OFFSET(m));
 1011                 ASSERT3U(offset, <, DVA_MAPPING_GET_SRC_OFFSET(m) + size);
 1012 
 1013                 uint64_t inner_offset = offset - DVA_MAPPING_GET_SRC_OFFSET(m);
 1014                 uint64_t inner_size = MIN(asize, size - inner_offset);
 1015 
 1016                 offset += inner_size;
 1017                 asize -= inner_size;
 1018                 entries++;
 1019                 m++;
 1020         }
 1021 
 1022         size_t copy_length = entries * sizeof (*first_mapping);
 1023         duplicate_mappings = kmem_alloc(copy_length, KM_SLEEP);
 1024         memcpy(duplicate_mappings, first_mapping, copy_length);
 1025         *copied_entries = entries;
 1026 
 1027         return (duplicate_mappings);
 1028 }
 1029 
 1030 /*
 1031  * Goes through the relevant indirect mappings until it hits a concrete vdev
 1032  * and issues the callback. On the way to the concrete vdev, if any other
 1033  * indirect vdevs are encountered, then the callback will also be called on
 1034  * each of those indirect vdevs. For example, if the segment is mapped to
 1035  * segment A on indirect vdev 1, and then segment A on indirect vdev 1 is
 1036  * mapped to segment B on concrete vdev 2, then the callback will be called on
 1037  * both vdev 1 and vdev 2.
 1038  *
 1039  * While the callback passed to vdev_indirect_remap() is called on every vdev
 1040  * the function encounters, certain callbacks only care about concrete vdevs.
 1041  * These types of callbacks should return immediately and explicitly when they
 1042  * are called on an indirect vdev.
 1043  *
 1044  * Because there is a possibility that a DVA section in the indirect device
 1045  * has been split into multiple sections in our mapping, we keep track
 1046  * of the relevant contiguous segments of the new location (remap_segment_t)
 1047  * in a stack. This way we can call the callback for each of the new sections
 1048  * created by a single section of the indirect device. Note though, that in
 1049  * this scenario the callbacks in each split block won't occur in-order in
 1050  * terms of offset, so callers should not make any assumptions about that.
 1051  *
 1052  * For callbacks that don't handle split blocks and immediately return when
 1053  * they encounter them (as is the case for remap_blkptr_cb), the caller can
 1054  * assume that its callback will be applied from the first indirect vdev
 1055  * encountered to the last one and then the concrete vdev, in that order.
 1056  */
 1057 static void
 1058 vdev_indirect_remap(vdev_t *vd, uint64_t offset, uint64_t asize,
 1059     void (*func)(uint64_t, vdev_t *, uint64_t, uint64_t, void *), void *arg)
 1060 {
 1061         list_t stack;
 1062         spa_t *spa = vd->vdev_spa;
 1063 
 1064         list_create(&stack, sizeof (remap_segment_t),
 1065             offsetof(remap_segment_t, rs_node));
 1066 
 1067         for (remap_segment_t *rs = rs_alloc(vd, offset, asize, 0);
 1068             rs != NULL; rs = list_remove_head(&stack)) {
 1069                 vdev_t *v = rs->rs_vd;
 1070                 uint64_t num_entries = 0;
 1071 
 1072                 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
 1073                 ASSERT(rs->rs_asize > 0);
 1074 
 1075                 /*
 1076                  * Note: As this function can be called from open context
 1077                  * (e.g. zio_read()), we need the following rwlock to
 1078                  * prevent the mapping from being changed by condensing.
 1079                  *
 1080                  * So we grab the lock and we make a copy of the entries
 1081                  * that are relevant to the extent that we are working on.
 1082                  * Once that is done, we drop the lock and iterate over
 1083                  * our copy of the mapping. Once we are done with the with
 1084                  * the remap segment and we free it, we also free our copy
 1085                  * of the indirect mapping entries that are relevant to it.
 1086                  *
 1087                  * This way we don't need to wait until the function is
 1088                  * finished with a segment, to condense it. In addition, we
 1089                  * don't need a recursive rwlock for the case that a call to
 1090                  * vdev_indirect_remap() needs to call itself (through the
 1091                  * codepath of its callback) for the same vdev in the middle
 1092                  * of its execution.
 1093                  */
 1094                 rw_enter(&v->vdev_indirect_rwlock, RW_READER);
 1095                 ASSERT3P(v->vdev_indirect_mapping, !=, NULL);
 1096 
 1097                 vdev_indirect_mapping_entry_phys_t *mapping =
 1098                     vdev_indirect_mapping_duplicate_adjacent_entries(v,
 1099                     rs->rs_offset, rs->rs_asize, &num_entries);
 1100                 ASSERT3P(mapping, !=, NULL);
 1101                 ASSERT3U(num_entries, >, 0);
 1102                 rw_exit(&v->vdev_indirect_rwlock);
 1103 
 1104                 for (uint64_t i = 0; i < num_entries; i++) {
 1105                         /*
 1106                          * Note: the vdev_indirect_mapping can not change
 1107                          * while we are running.  It only changes while the
 1108                          * removal is in progress, and then only from syncing
 1109                          * context. While a removal is in progress, this
 1110                          * function is only called for frees, which also only
 1111                          * happen from syncing context.
 1112                          */
 1113                         vdev_indirect_mapping_entry_phys_t *m = &mapping[i];
 1114 
 1115                         ASSERT3P(m, !=, NULL);
 1116                         ASSERT3U(rs->rs_asize, >, 0);
 1117 
 1118                         uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
 1119                         uint64_t dst_offset = DVA_GET_OFFSET(&m->vimep_dst);
 1120                         uint64_t dst_vdev = DVA_GET_VDEV(&m->vimep_dst);
 1121 
 1122                         ASSERT3U(rs->rs_offset, >=,
 1123                             DVA_MAPPING_GET_SRC_OFFSET(m));
 1124                         ASSERT3U(rs->rs_offset, <,
 1125                             DVA_MAPPING_GET_SRC_OFFSET(m) + size);
 1126                         ASSERT3U(dst_vdev, !=, v->vdev_id);
 1127 
 1128                         uint64_t inner_offset = rs->rs_offset -
 1129                             DVA_MAPPING_GET_SRC_OFFSET(m);
 1130                         uint64_t inner_size =
 1131                             MIN(rs->rs_asize, size - inner_offset);
 1132 
 1133                         vdev_t *dst_v = vdev_lookup_top(spa, dst_vdev);
 1134                         ASSERT3P(dst_v, !=, NULL);
 1135 
 1136                         if (dst_v->vdev_ops == &vdev_indirect_ops) {
 1137                                 list_insert_head(&stack,
 1138                                     rs_alloc(dst_v, dst_offset + inner_offset,
 1139                                     inner_size, rs->rs_split_offset));
 1140 
 1141                         }
 1142 
 1143                         if ((zfs_flags & ZFS_DEBUG_INDIRECT_REMAP) &&
 1144                             IS_P2ALIGNED(inner_size, 2 * SPA_MINBLOCKSIZE)) {
 1145                                 /*
 1146                                  * Note: This clause exists only solely for
 1147                                  * testing purposes. We use it to ensure that
 1148                                  * split blocks work and that the callbacks
 1149                                  * using them yield the same result if issued
 1150                                  * in reverse order.
 1151                                  */
 1152                                 uint64_t inner_half = inner_size / 2;
 1153 
 1154                                 func(rs->rs_split_offset + inner_half, dst_v,
 1155                                     dst_offset + inner_offset + inner_half,
 1156                                     inner_half, arg);
 1157 
 1158                                 func(rs->rs_split_offset, dst_v,
 1159                                     dst_offset + inner_offset,
 1160                                     inner_half, arg);
 1161                         } else {
 1162                                 func(rs->rs_split_offset, dst_v,
 1163                                     dst_offset + inner_offset,
 1164                                     inner_size, arg);
 1165                         }
 1166 
 1167                         rs->rs_offset += inner_size;
 1168                         rs->rs_asize -= inner_size;
 1169                         rs->rs_split_offset += inner_size;
 1170                 }
 1171                 VERIFY0(rs->rs_asize);
 1172 
 1173                 kmem_free(mapping, num_entries * sizeof (*mapping));
 1174                 kmem_free(rs, sizeof (remap_segment_t));
 1175         }
 1176         list_destroy(&stack);
 1177 }
 1178 
 1179 static void
 1180 vdev_indirect_child_io_done(zio_t *zio)
 1181 {
 1182         zio_t *pio = zio->io_private;
 1183 
 1184         mutex_enter(&pio->io_lock);
 1185         pio->io_error = zio_worst_error(pio->io_error, zio->io_error);
 1186         mutex_exit(&pio->io_lock);
 1187 
 1188         abd_free(zio->io_abd);
 1189 }
 1190 
 1191 /*
 1192  * This is a callback for vdev_indirect_remap() which allocates an
 1193  * indirect_split_t for each split segment and adds it to iv_splits.
 1194  */
 1195 static void
 1196 vdev_indirect_gather_splits(uint64_t split_offset, vdev_t *vd, uint64_t offset,
 1197     uint64_t size, void *arg)
 1198 {
 1199         zio_t *zio = arg;
 1200         indirect_vsd_t *iv = zio->io_vsd;
 1201 
 1202         ASSERT3P(vd, !=, NULL);
 1203 
 1204         if (vd->vdev_ops == &vdev_indirect_ops)
 1205                 return;
 1206 
 1207         int n = 1;
 1208         if (vd->vdev_ops == &vdev_mirror_ops)
 1209                 n = vd->vdev_children;
 1210 
 1211         indirect_split_t *is =
 1212             kmem_zalloc(offsetof(indirect_split_t, is_child[n]), KM_SLEEP);
 1213 
 1214         is->is_children = n;
 1215         is->is_size = size;
 1216         is->is_split_offset = split_offset;
 1217         is->is_target_offset = offset;
 1218         is->is_vdev = vd;
 1219         list_create(&is->is_unique_child, sizeof (indirect_child_t),
 1220             offsetof(indirect_child_t, ic_node));
 1221 
 1222         /*
 1223          * Note that we only consider multiple copies of the data for
 1224          * *mirror* vdevs.  We don't for "replacing" or "spare" vdevs, even
 1225          * though they use the same ops as mirror, because there's only one
 1226          * "good" copy under the replacing/spare.
 1227          */
 1228         if (vd->vdev_ops == &vdev_mirror_ops) {
 1229                 for (int i = 0; i < n; i++) {
 1230                         is->is_child[i].ic_vdev = vd->vdev_child[i];
 1231                         list_link_init(&is->is_child[i].ic_node);
 1232                 }
 1233         } else {
 1234                 is->is_child[0].ic_vdev = vd;
 1235         }
 1236 
 1237         list_insert_tail(&iv->iv_splits, is);
 1238 }
 1239 
 1240 static void
 1241 vdev_indirect_read_split_done(zio_t *zio)
 1242 {
 1243         indirect_child_t *ic = zio->io_private;
 1244 
 1245         if (zio->io_error != 0) {
 1246                 /*
 1247                  * Clear ic_data to indicate that we do not have data for this
 1248                  * child.
 1249                  */
 1250                 abd_free(ic->ic_data);
 1251                 ic->ic_data = NULL;
 1252         }
 1253 }
 1254 
 1255 /*
 1256  * Issue reads for all copies (mirror children) of all splits.
 1257  */
 1258 static void
 1259 vdev_indirect_read_all(zio_t *zio)
 1260 {
 1261         indirect_vsd_t *iv = zio->io_vsd;
 1262 
 1263         ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
 1264 
 1265         for (indirect_split_t *is = list_head(&iv->iv_splits);
 1266             is != NULL; is = list_next(&iv->iv_splits, is)) {
 1267                 for (int i = 0; i < is->is_children; i++) {
 1268                         indirect_child_t *ic = &is->is_child[i];
 1269 
 1270                         if (!vdev_readable(ic->ic_vdev))
 1271                                 continue;
 1272 
 1273                         /*
 1274                          * If a child is missing the data, set ic_error. Used
 1275                          * in vdev_indirect_repair(). We perform the read
 1276                          * nevertheless which provides the opportunity to
 1277                          * reconstruct the split block if at all possible.
 1278                          */
 1279                         if (vdev_dtl_contains(ic->ic_vdev, DTL_MISSING,
 1280                             zio->io_txg, 1))
 1281                                 ic->ic_error = SET_ERROR(ESTALE);
 1282 
 1283                         ic->ic_data = abd_alloc_sametype(zio->io_abd,
 1284                             is->is_size);
 1285                         ic->ic_duplicate = NULL;
 1286 
 1287                         zio_nowait(zio_vdev_child_io(zio, NULL,
 1288                             ic->ic_vdev, is->is_target_offset, ic->ic_data,
 1289                             is->is_size, zio->io_type, zio->io_priority, 0,
 1290                             vdev_indirect_read_split_done, ic));
 1291                 }
 1292         }
 1293         iv->iv_reconstruct = B_TRUE;
 1294 }
 1295 
 1296 static void
 1297 vdev_indirect_io_start(zio_t *zio)
 1298 {
 1299         spa_t *spa __maybe_unused = zio->io_spa;
 1300         indirect_vsd_t *iv = kmem_zalloc(sizeof (*iv), KM_SLEEP);
 1301         list_create(&iv->iv_splits,
 1302             sizeof (indirect_split_t), offsetof(indirect_split_t, is_node));
 1303 
 1304         zio->io_vsd = iv;
 1305         zio->io_vsd_ops = &vdev_indirect_vsd_ops;
 1306 
 1307         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
 1308         if (zio->io_type != ZIO_TYPE_READ) {
 1309                 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
 1310                 /*
 1311                  * Note: this code can handle other kinds of writes,
 1312                  * but we don't expect them.
 1313                  */
 1314                 ASSERT((zio->io_flags & (ZIO_FLAG_SELF_HEAL |
 1315                     ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE)) != 0);
 1316         }
 1317 
 1318         vdev_indirect_remap(zio->io_vd, zio->io_offset, zio->io_size,
 1319             vdev_indirect_gather_splits, zio);
 1320 
 1321         indirect_split_t *first = list_head(&iv->iv_splits);
 1322         ASSERT3P(first, !=, NULL);
 1323         if (first->is_size == zio->io_size) {
 1324                 /*
 1325                  * This is not a split block; we are pointing to the entire
 1326                  * data, which will checksum the same as the original data.
 1327                  * Pass the BP down so that the child i/o can verify the
 1328                  * checksum, and try a different location if available
 1329                  * (e.g. on a mirror).
 1330                  *
 1331                  * While this special case could be handled the same as the
 1332                  * general (split block) case, doing it this way ensures
 1333                  * that the vast majority of blocks on indirect vdevs
 1334                  * (which are not split) are handled identically to blocks
 1335                  * on non-indirect vdevs.  This allows us to be less strict
 1336                  * about performance in the general (but rare) case.
 1337                  */
 1338                 ASSERT0(first->is_split_offset);
 1339                 ASSERT3P(list_next(&iv->iv_splits, first), ==, NULL);
 1340                 zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
 1341                     first->is_vdev, first->is_target_offset,
 1342                     abd_get_offset(zio->io_abd, 0),
 1343                     zio->io_size, zio->io_type, zio->io_priority, 0,
 1344                     vdev_indirect_child_io_done, zio));
 1345         } else {
 1346                 iv->iv_split_block = B_TRUE;
 1347                 if (zio->io_type == ZIO_TYPE_READ &&
 1348                     zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER)) {
 1349                         /*
 1350                          * Read all copies.  Note that for simplicity,
 1351                          * we don't bother consulting the DTL in the
 1352                          * resilver case.
 1353                          */
 1354                         vdev_indirect_read_all(zio);
 1355                 } else {
 1356                         /*
 1357                          * If this is a read zio, we read one copy of each
 1358                          * split segment, from the top-level vdev.  Since
 1359                          * we don't know the checksum of each split
 1360                          * individually, the child zio can't ensure that
 1361                          * we get the right data. E.g. if it's a mirror,
 1362                          * it will just read from a random (healthy) leaf
 1363                          * vdev. We have to verify the checksum in
 1364                          * vdev_indirect_io_done().
 1365                          *
 1366                          * For write zios, the vdev code will ensure we write
 1367                          * to all children.
 1368                          */
 1369                         for (indirect_split_t *is = list_head(&iv->iv_splits);
 1370                             is != NULL; is = list_next(&iv->iv_splits, is)) {
 1371                                 zio_nowait(zio_vdev_child_io(zio, NULL,
 1372                                     is->is_vdev, is->is_target_offset,
 1373                                     abd_get_offset(zio->io_abd,
 1374                                     is->is_split_offset), is->is_size,
 1375                                     zio->io_type, zio->io_priority, 0,
 1376                                     vdev_indirect_child_io_done, zio));
 1377                         }
 1378 
 1379                 }
 1380         }
 1381 
 1382         zio_execute(zio);
 1383 }
 1384 
 1385 /*
 1386  * Report a checksum error for a child.
 1387  */
 1388 static void
 1389 vdev_indirect_checksum_error(zio_t *zio,
 1390     indirect_split_t *is, indirect_child_t *ic)
 1391 {
 1392         vdev_t *vd = ic->ic_vdev;
 1393 
 1394         if (zio->io_flags & ZIO_FLAG_SPECULATIVE)
 1395                 return;
 1396 
 1397         mutex_enter(&vd->vdev_stat_lock);
 1398         vd->vdev_stat.vs_checksum_errors++;
 1399         mutex_exit(&vd->vdev_stat_lock);
 1400 
 1401         zio_bad_cksum_t zbc = {{{ 0 }}};
 1402         abd_t *bad_abd = ic->ic_data;
 1403         abd_t *good_abd = is->is_good_child->ic_data;
 1404         (void) zfs_ereport_post_checksum(zio->io_spa, vd, NULL, zio,
 1405             is->is_target_offset, is->is_size, good_abd, bad_abd, &zbc);
 1406 }
 1407 
 1408 /*
 1409  * Issue repair i/os for any incorrect copies.  We do this by comparing
 1410  * each split segment's correct data (is_good_child's ic_data) with each
 1411  * other copy of the data.  If they differ, then we overwrite the bad data
 1412  * with the good copy.  The DTL is checked in vdev_indirect_read_all() and
 1413  * if a vdev is missing a copy of the data we set ic_error and the read is
 1414  * performed. This provides the opportunity to reconstruct the split block
 1415  * if at all possible. ic_error is checked here and if set it suppresses
 1416  * incrementing the checksum counter. Aside from this DTLs are not checked,
 1417  * which simplifies this code and also issues the optimal number of writes
 1418  * (based on which copies actually read bad data, as opposed to which we
 1419  * think might be wrong).  For the same reason, we always use
 1420  * ZIO_FLAG_SELF_HEAL, to bypass the DTL check in zio_vdev_io_start().
 1421  */
 1422 static void
 1423 vdev_indirect_repair(zio_t *zio)
 1424 {
 1425         indirect_vsd_t *iv = zio->io_vsd;
 1426 
 1427         if (!spa_writeable(zio->io_spa))
 1428                 return;
 1429 
 1430         for (indirect_split_t *is = list_head(&iv->iv_splits);
 1431             is != NULL; is = list_next(&iv->iv_splits, is)) {
 1432                 for (int c = 0; c < is->is_children; c++) {
 1433                         indirect_child_t *ic = &is->is_child[c];
 1434                         if (ic == is->is_good_child)
 1435                                 continue;
 1436                         if (ic->ic_data == NULL)
 1437                                 continue;
 1438                         if (ic->ic_duplicate == is->is_good_child)
 1439                                 continue;
 1440 
 1441                         zio_nowait(zio_vdev_child_io(zio, NULL,
 1442                             ic->ic_vdev, is->is_target_offset,
 1443                             is->is_good_child->ic_data, is->is_size,
 1444                             ZIO_TYPE_WRITE, ZIO_PRIORITY_ASYNC_WRITE,
 1445                             ZIO_FLAG_IO_REPAIR | ZIO_FLAG_SELF_HEAL,
 1446                             NULL, NULL));
 1447 
 1448                         /*
 1449                          * If ic_error is set the current child does not have
 1450                          * a copy of the data, so suppress incrementing the
 1451                          * checksum counter.
 1452                          */
 1453                         if (ic->ic_error == ESTALE)
 1454                                 continue;
 1455 
 1456                         vdev_indirect_checksum_error(zio, is, ic);
 1457                 }
 1458         }
 1459 }
 1460 
 1461 /*
 1462  * Report checksum errors on all children that we read from.
 1463  */
 1464 static void
 1465 vdev_indirect_all_checksum_errors(zio_t *zio)
 1466 {
 1467         indirect_vsd_t *iv = zio->io_vsd;
 1468 
 1469         if (zio->io_flags & ZIO_FLAG_SPECULATIVE)
 1470                 return;
 1471 
 1472         for (indirect_split_t *is = list_head(&iv->iv_splits);
 1473             is != NULL; is = list_next(&iv->iv_splits, is)) {
 1474                 for (int c = 0; c < is->is_children; c++) {
 1475                         indirect_child_t *ic = &is->is_child[c];
 1476 
 1477                         if (ic->ic_data == NULL)
 1478                                 continue;
 1479 
 1480                         vdev_t *vd = ic->ic_vdev;
 1481 
 1482                         mutex_enter(&vd->vdev_stat_lock);
 1483                         vd->vdev_stat.vs_checksum_errors++;
 1484                         mutex_exit(&vd->vdev_stat_lock);
 1485                         (void) zfs_ereport_post_checksum(zio->io_spa, vd,
 1486                             NULL, zio, is->is_target_offset, is->is_size,
 1487                             NULL, NULL, NULL);
 1488                 }
 1489         }
 1490 }
 1491 
 1492 /*
 1493  * Copy data from all the splits to a main zio then validate the checksum.
 1494  * If then checksum is successfully validated return success.
 1495  */
 1496 static int
 1497 vdev_indirect_splits_checksum_validate(indirect_vsd_t *iv, zio_t *zio)
 1498 {
 1499         zio_bad_cksum_t zbc;
 1500 
 1501         for (indirect_split_t *is = list_head(&iv->iv_splits);
 1502             is != NULL; is = list_next(&iv->iv_splits, is)) {
 1503 
 1504                 ASSERT3P(is->is_good_child->ic_data, !=, NULL);
 1505                 ASSERT3P(is->is_good_child->ic_duplicate, ==, NULL);
 1506 
 1507                 abd_copy_off(zio->io_abd, is->is_good_child->ic_data,
 1508                     is->is_split_offset, 0, is->is_size);
 1509         }
 1510 
 1511         return (zio_checksum_error(zio, &zbc));
 1512 }
 1513 
 1514 /*
 1515  * There are relatively few possible combinations making it feasible to
 1516  * deterministically check them all.  We do this by setting the good_child
 1517  * to the next unique split version.  If we reach the end of the list then
 1518  * "carry over" to the next unique split version (like counting in base
 1519  * is_unique_children, but each digit can have a different base).
 1520  */
 1521 static int
 1522 vdev_indirect_splits_enumerate_all(indirect_vsd_t *iv, zio_t *zio)
 1523 {
 1524         boolean_t more = B_TRUE;
 1525 
 1526         iv->iv_attempts = 0;
 1527 
 1528         for (indirect_split_t *is = list_head(&iv->iv_splits);
 1529             is != NULL; is = list_next(&iv->iv_splits, is))
 1530                 is->is_good_child = list_head(&is->is_unique_child);
 1531 
 1532         while (more == B_TRUE) {
 1533                 iv->iv_attempts++;
 1534                 more = B_FALSE;
 1535 
 1536                 if (vdev_indirect_splits_checksum_validate(iv, zio) == 0)
 1537                         return (0);
 1538 
 1539                 for (indirect_split_t *is = list_head(&iv->iv_splits);
 1540                     is != NULL; is = list_next(&iv->iv_splits, is)) {
 1541                         is->is_good_child = list_next(&is->is_unique_child,
 1542                             is->is_good_child);
 1543                         if (is->is_good_child != NULL) {
 1544                                 more = B_TRUE;
 1545                                 break;
 1546                         }
 1547 
 1548                         is->is_good_child = list_head(&is->is_unique_child);
 1549                 }
 1550         }
 1551 
 1552         ASSERT3S(iv->iv_attempts, <=, iv->iv_unique_combinations);
 1553 
 1554         return (SET_ERROR(ECKSUM));
 1555 }
 1556 
 1557 /*
 1558  * There are too many combinations to try all of them in a reasonable amount
 1559  * of time.  So try a fixed number of random combinations from the unique
 1560  * split versions, after which we'll consider the block unrecoverable.
 1561  */
 1562 static int
 1563 vdev_indirect_splits_enumerate_randomly(indirect_vsd_t *iv, zio_t *zio)
 1564 {
 1565         iv->iv_attempts = 0;
 1566 
 1567         while (iv->iv_attempts < iv->iv_attempts_max) {
 1568                 iv->iv_attempts++;
 1569 
 1570                 for (indirect_split_t *is = list_head(&iv->iv_splits);
 1571                     is != NULL; is = list_next(&iv->iv_splits, is)) {
 1572                         indirect_child_t *ic = list_head(&is->is_unique_child);
 1573                         int children = is->is_unique_children;
 1574 
 1575                         for (int i = random_in_range(children); i > 0; i--)
 1576                                 ic = list_next(&is->is_unique_child, ic);
 1577 
 1578                         ASSERT3P(ic, !=, NULL);
 1579                         is->is_good_child = ic;
 1580                 }
 1581 
 1582                 if (vdev_indirect_splits_checksum_validate(iv, zio) == 0)
 1583                         return (0);
 1584         }
 1585 
 1586         return (SET_ERROR(ECKSUM));
 1587 }
 1588 
 1589 /*
 1590  * This is a validation function for reconstruction.  It randomly selects
 1591  * a good combination, if one can be found, and then it intentionally
 1592  * damages all other segment copes by zeroing them.  This forces the
 1593  * reconstruction algorithm to locate the one remaining known good copy.
 1594  */
 1595 static int
 1596 vdev_indirect_splits_damage(indirect_vsd_t *iv, zio_t *zio)
 1597 {
 1598         int error;
 1599 
 1600         /* Presume all the copies are unique for initial selection. */
 1601         for (indirect_split_t *is = list_head(&iv->iv_splits);
 1602             is != NULL; is = list_next(&iv->iv_splits, is)) {
 1603                 is->is_unique_children = 0;
 1604 
 1605                 for (int i = 0; i < is->is_children; i++) {
 1606                         indirect_child_t *ic = &is->is_child[i];
 1607                         if (ic->ic_data != NULL) {
 1608                                 is->is_unique_children++;
 1609                                 list_insert_tail(&is->is_unique_child, ic);
 1610                         }
 1611                 }
 1612 
 1613                 if (list_is_empty(&is->is_unique_child)) {
 1614                         error = SET_ERROR(EIO);
 1615                         goto out;
 1616                 }
 1617         }
 1618 
 1619         /*
 1620          * Set each is_good_child to a randomly-selected child which
 1621          * is known to contain validated data.
 1622          */
 1623         error = vdev_indirect_splits_enumerate_randomly(iv, zio);
 1624         if (error)
 1625                 goto out;
 1626 
 1627         /*
 1628          * Damage all but the known good copy by zeroing it.  This will
 1629          * result in two or less unique copies per indirect_child_t.
 1630          * Both may need to be checked in order to reconstruct the block.
 1631          * Set iv->iv_attempts_max such that all unique combinations will
 1632          * enumerated, but limit the damage to at most 12 indirect splits.
 1633          */
 1634         iv->iv_attempts_max = 1;
 1635 
 1636         for (indirect_split_t *is = list_head(&iv->iv_splits);
 1637             is != NULL; is = list_next(&iv->iv_splits, is)) {
 1638                 for (int c = 0; c < is->is_children; c++) {
 1639                         indirect_child_t *ic = &is->is_child[c];
 1640 
 1641                         if (ic == is->is_good_child)
 1642                                 continue;
 1643                         if (ic->ic_data == NULL)
 1644                                 continue;
 1645 
 1646                         abd_zero(ic->ic_data, abd_get_size(ic->ic_data));
 1647                 }
 1648 
 1649                 iv->iv_attempts_max *= 2;
 1650                 if (iv->iv_attempts_max >= (1ULL << 12)) {
 1651                         iv->iv_attempts_max = UINT64_MAX;
 1652                         break;
 1653                 }
 1654         }
 1655 
 1656 out:
 1657         /* Empty the unique children lists so they can be reconstructed. */
 1658         for (indirect_split_t *is = list_head(&iv->iv_splits);
 1659             is != NULL; is = list_next(&iv->iv_splits, is)) {
 1660                 indirect_child_t *ic;
 1661                 while ((ic = list_head(&is->is_unique_child)) != NULL)
 1662                         list_remove(&is->is_unique_child, ic);
 1663 
 1664                 is->is_unique_children = 0;
 1665         }
 1666 
 1667         return (error);
 1668 }
 1669 
 1670 /*
 1671  * This function is called when we have read all copies of the data and need
 1672  * to try to find a combination of copies that gives us the right checksum.
 1673  *
 1674  * If we pointed to any mirror vdevs, this effectively does the job of the
 1675  * mirror.  The mirror vdev code can't do its own job because we don't know
 1676  * the checksum of each split segment individually.
 1677  *
 1678  * We have to try every unique combination of copies of split segments, until
 1679  * we find one that checksums correctly.  Duplicate segment copies are first
 1680  * identified and latter skipped during reconstruction.  This optimization
 1681  * reduces the search space and ensures that of the remaining combinations
 1682  * at most one is correct.
 1683  *
 1684  * When the total number of combinations is small they can all be checked.
 1685  * For example, if we have 3 segments in the split, and each points to a
 1686  * 2-way mirror with unique copies, we will have the following pieces of data:
 1687  *
 1688  *       |     mirror child
 1689  * split |     [0]        [1]
 1690  * ======|=====================
 1691  *   A   |  data_A_0   data_A_1
 1692  *   B   |  data_B_0   data_B_1
 1693  *   C   |  data_C_0   data_C_1
 1694  *
 1695  * We will try the following (mirror children)^(number of splits) (2^3=8)
 1696  * combinations, which is similar to bitwise-little-endian counting in
 1697  * binary.  In general each "digit" corresponds to a split segment, and the
 1698  * base of each digit is is_children, which can be different for each
 1699  * digit.
 1700  *
 1701  * "low bit"        "high bit"
 1702  *        v                 v
 1703  * data_A_0 data_B_0 data_C_0
 1704  * data_A_1 data_B_0 data_C_0
 1705  * data_A_0 data_B_1 data_C_0
 1706  * data_A_1 data_B_1 data_C_0
 1707  * data_A_0 data_B_0 data_C_1
 1708  * data_A_1 data_B_0 data_C_1
 1709  * data_A_0 data_B_1 data_C_1
 1710  * data_A_1 data_B_1 data_C_1
 1711  *
 1712  * Note that the split segments may be on the same or different top-level
 1713  * vdevs. In either case, we may need to try lots of combinations (see
 1714  * zfs_reconstruct_indirect_combinations_max).  This ensures that if a mirror
 1715  * has small silent errors on all of its children, we can still reconstruct
 1716  * the correct data, as long as those errors are at sufficiently-separated
 1717  * offsets (specifically, separated by the largest block size - default of
 1718  * 128KB, but up to 16MB).
 1719  */
 1720 static void
 1721 vdev_indirect_reconstruct_io_done(zio_t *zio)
 1722 {
 1723         indirect_vsd_t *iv = zio->io_vsd;
 1724         boolean_t known_good = B_FALSE;
 1725         int error;
 1726 
 1727         iv->iv_unique_combinations = 1;
 1728         iv->iv_attempts_max = UINT64_MAX;
 1729 
 1730         if (zfs_reconstruct_indirect_combinations_max > 0)
 1731                 iv->iv_attempts_max = zfs_reconstruct_indirect_combinations_max;
 1732 
 1733         /*
 1734          * If nonzero, every 1/x blocks will be damaged, in order to validate
 1735          * reconstruction when there are split segments with damaged copies.
 1736          * Known_good will be TRUE when reconstruction is known to be possible.
 1737          */
 1738         if (zfs_reconstruct_indirect_damage_fraction != 0 &&
 1739             random_in_range(zfs_reconstruct_indirect_damage_fraction) == 0)
 1740                 known_good = (vdev_indirect_splits_damage(iv, zio) == 0);
 1741 
 1742         /*
 1743          * Determine the unique children for a split segment and add them
 1744          * to the is_unique_child list.  By restricting reconstruction
 1745          * to these children, only unique combinations will be considered.
 1746          * This can vastly reduce the search space when there are a large
 1747          * number of indirect splits.
 1748          */
 1749         for (indirect_split_t *is = list_head(&iv->iv_splits);
 1750             is != NULL; is = list_next(&iv->iv_splits, is)) {
 1751                 is->is_unique_children = 0;
 1752 
 1753                 for (int i = 0; i < is->is_children; i++) {
 1754                         indirect_child_t *ic_i = &is->is_child[i];
 1755 
 1756                         if (ic_i->ic_data == NULL ||
 1757                             ic_i->ic_duplicate != NULL)
 1758                                 continue;
 1759 
 1760                         for (int j = i + 1; j < is->is_children; j++) {
 1761                                 indirect_child_t *ic_j = &is->is_child[j];
 1762 
 1763                                 if (ic_j->ic_data == NULL ||
 1764                                     ic_j->ic_duplicate != NULL)
 1765                                         continue;
 1766 
 1767                                 if (abd_cmp(ic_i->ic_data, ic_j->ic_data) == 0)
 1768                                         ic_j->ic_duplicate = ic_i;
 1769                         }
 1770 
 1771                         is->is_unique_children++;
 1772                         list_insert_tail(&is->is_unique_child, ic_i);
 1773                 }
 1774 
 1775                 /* Reconstruction is impossible, no valid children */
 1776                 EQUIV(list_is_empty(&is->is_unique_child),
 1777                     is->is_unique_children == 0);
 1778                 if (list_is_empty(&is->is_unique_child)) {
 1779                         zio->io_error = EIO;
 1780                         vdev_indirect_all_checksum_errors(zio);
 1781                         zio_checksum_verified(zio);
 1782                         return;
 1783                 }
 1784 
 1785                 iv->iv_unique_combinations *= is->is_unique_children;
 1786         }
 1787 
 1788         if (iv->iv_unique_combinations <= iv->iv_attempts_max)
 1789                 error = vdev_indirect_splits_enumerate_all(iv, zio);
 1790         else
 1791                 error = vdev_indirect_splits_enumerate_randomly(iv, zio);
 1792 
 1793         if (error != 0) {
 1794                 /* All attempted combinations failed. */
 1795                 ASSERT3B(known_good, ==, B_FALSE);
 1796                 zio->io_error = error;
 1797                 vdev_indirect_all_checksum_errors(zio);
 1798         } else {
 1799                 /*
 1800                  * The checksum has been successfully validated.  Issue
 1801                  * repair I/Os to any copies of splits which don't match
 1802                  * the validated version.
 1803                  */
 1804                 ASSERT0(vdev_indirect_splits_checksum_validate(iv, zio));
 1805                 vdev_indirect_repair(zio);
 1806                 zio_checksum_verified(zio);
 1807         }
 1808 }
 1809 
 1810 static void
 1811 vdev_indirect_io_done(zio_t *zio)
 1812 {
 1813         indirect_vsd_t *iv = zio->io_vsd;
 1814 
 1815         if (iv->iv_reconstruct) {
 1816                 /*
 1817                  * We have read all copies of the data (e.g. from mirrors),
 1818                  * either because this was a scrub/resilver, or because the
 1819                  * one-copy read didn't checksum correctly.
 1820                  */
 1821                 vdev_indirect_reconstruct_io_done(zio);
 1822                 return;
 1823         }
 1824 
 1825         if (!iv->iv_split_block) {
 1826                 /*
 1827                  * This was not a split block, so we passed the BP down,
 1828                  * and the checksum was handled by the (one) child zio.
 1829                  */
 1830                 return;
 1831         }
 1832 
 1833         zio_bad_cksum_t zbc;
 1834         int ret = zio_checksum_error(zio, &zbc);
 1835         if (ret == 0) {
 1836                 zio_checksum_verified(zio);
 1837                 return;
 1838         }
 1839 
 1840         /*
 1841          * The checksum didn't match.  Read all copies of all splits, and
 1842          * then we will try to reconstruct.  The next time
 1843          * vdev_indirect_io_done() is called, iv_reconstruct will be set.
 1844          */
 1845         vdev_indirect_read_all(zio);
 1846 
 1847         zio_vdev_io_redone(zio);
 1848 }
 1849 
 1850 vdev_ops_t vdev_indirect_ops = {
 1851         .vdev_op_init = NULL,
 1852         .vdev_op_fini = NULL,
 1853         .vdev_op_open = vdev_indirect_open,
 1854         .vdev_op_close = vdev_indirect_close,
 1855         .vdev_op_asize = vdev_default_asize,
 1856         .vdev_op_min_asize = vdev_default_min_asize,
 1857         .vdev_op_min_alloc = NULL,
 1858         .vdev_op_io_start = vdev_indirect_io_start,
 1859         .vdev_op_io_done = vdev_indirect_io_done,
 1860         .vdev_op_state_change = NULL,
 1861         .vdev_op_need_resilver = NULL,
 1862         .vdev_op_hold = NULL,
 1863         .vdev_op_rele = NULL,
 1864         .vdev_op_remap = vdev_indirect_remap,
 1865         .vdev_op_xlate = NULL,
 1866         .vdev_op_rebuild_asize = NULL,
 1867         .vdev_op_metaslab_init = NULL,
 1868         .vdev_op_config_generate = NULL,
 1869         .vdev_op_nparity = NULL,
 1870         .vdev_op_ndisks = NULL,
 1871         .vdev_op_type = VDEV_TYPE_INDIRECT,     /* name of this vdev type */
 1872         .vdev_op_leaf = B_FALSE                 /* leaf vdev */
 1873 };
 1874 
 1875 EXPORT_SYMBOL(spa_condense_fini);
 1876 EXPORT_SYMBOL(spa_start_indirect_condensing_thread);
 1877 EXPORT_SYMBOL(spa_condense_indirect_start_sync);
 1878 EXPORT_SYMBOL(spa_condense_init);
 1879 EXPORT_SYMBOL(spa_vdev_indirect_mark_obsolete);
 1880 EXPORT_SYMBOL(vdev_indirect_mark_obsolete);
 1881 EXPORT_SYMBOL(vdev_indirect_should_condense);
 1882 EXPORT_SYMBOL(vdev_indirect_sync_obsolete);
 1883 EXPORT_SYMBOL(vdev_obsolete_counts_are_precise);
 1884 EXPORT_SYMBOL(vdev_obsolete_sm_object);
 1885 
 1886 /* BEGIN CSTYLED */
 1887 ZFS_MODULE_PARAM(zfs_condense, zfs_condense_, indirect_vdevs_enable, INT,
 1888         ZMOD_RW, "Whether to attempt condensing indirect vdev mappings");
 1889 
 1890 ZFS_MODULE_PARAM(zfs_condense, zfs_condense_, indirect_obsolete_pct, UINT,
 1891         ZMOD_RW,
 1892         "Minimum obsolete percent of bytes in the mapping "
 1893         "to attempt condensing");
 1894 
 1895 ZFS_MODULE_PARAM(zfs_condense, zfs_condense_, min_mapping_bytes, U64, ZMOD_RW,
 1896         "Don't bother condensing if the mapping uses less than this amount of "
 1897         "memory");
 1898 
 1899 ZFS_MODULE_PARAM(zfs_condense, zfs_condense_, max_obsolete_bytes, U64,
 1900         ZMOD_RW,
 1901         "Minimum size obsolete spacemap to attempt condensing");
 1902 
 1903 ZFS_MODULE_PARAM(zfs_condense, zfs_condense_, indirect_commit_entry_delay_ms,
 1904         UINT, ZMOD_RW,
 1905         "Used by tests to ensure certain actions happen in the middle of a "
 1906         "condense. A maximum value of 1 should be sufficient.");
 1907 
 1908 ZFS_MODULE_PARAM(zfs_reconstruct, zfs_reconstruct_, indirect_combinations_max,
 1909         UINT, ZMOD_RW,
 1910         "Maximum number of combinations when reconstructing split segments");
 1911 /* END CSTYLED */

Cache object: 8c21a4917eb2c4c07d5817a6b4a3e52d


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.