The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/contrib/openzfs/module/zfs/vdev_label.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * CDDL HEADER START
    3  *
    4  * The contents of this file are subject to the terms of the
    5  * Common Development and Distribution License (the "License").
    6  * You may not use this file except in compliance with the License.
    7  *
    8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
    9  * or https://opensource.org/licenses/CDDL-1.0.
   10  * See the License for the specific language governing permissions
   11  * and limitations under the License.
   12  *
   13  * When distributing Covered Code, include this CDDL HEADER in each
   14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
   15  * If applicable, add the following below this CDDL HEADER, with the
   16  * fields enclosed by brackets "[]" replaced with your own identifying
   17  * information: Portions Copyright [yyyy] [name of copyright owner]
   18  *
   19  * CDDL HEADER END
   20  */
   21 
   22 /*
   23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
   24  * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
   25  * Copyright (c) 2017, Intel Corporation.
   26  */
   27 
   28 /*
   29  * Virtual Device Labels
   30  * ---------------------
   31  *
   32  * The vdev label serves several distinct purposes:
   33  *
   34  *      1. Uniquely identify this device as part of a ZFS pool and confirm its
   35  *         identity within the pool.
   36  *
   37  *      2. Verify that all the devices given in a configuration are present
   38  *         within the pool.
   39  *
   40  *      3. Determine the uberblock for the pool.
   41  *
   42  *      4. In case of an import operation, determine the configuration of the
   43  *         toplevel vdev of which it is a part.
   44  *
   45  *      5. If an import operation cannot find all the devices in the pool,
   46  *         provide enough information to the administrator to determine which
   47  *         devices are missing.
   48  *
   49  * It is important to note that while the kernel is responsible for writing the
   50  * label, it only consumes the information in the first three cases.  The
   51  * latter information is only consumed in userland when determining the
   52  * configuration to import a pool.
   53  *
   54  *
   55  * Label Organization
   56  * ------------------
   57  *
   58  * Before describing the contents of the label, it's important to understand how
   59  * the labels are written and updated with respect to the uberblock.
   60  *
   61  * When the pool configuration is altered, either because it was newly created
   62  * or a device was added, we want to update all the labels such that we can deal
   63  * with fatal failure at any point.  To this end, each disk has two labels which
   64  * are updated before and after the uberblock is synced.  Assuming we have
   65  * labels and an uberblock with the following transaction groups:
   66  *
   67  *              L1          UB          L2
   68  *           +------+    +------+    +------+
   69  *           |      |    |      |    |      |
   70  *           | t10  |    | t10  |    | t10  |
   71  *           |      |    |      |    |      |
   72  *           +------+    +------+    +------+
   73  *
   74  * In this stable state, the labels and the uberblock were all updated within
   75  * the same transaction group (10).  Each label is mirrored and checksummed, so
   76  * that we can detect when we fail partway through writing the label.
   77  *
   78  * In order to identify which labels are valid, the labels are written in the
   79  * following manner:
   80  *
   81  *      1. For each vdev, update 'L1' to the new label
   82  *      2. Update the uberblock
   83  *      3. For each vdev, update 'L2' to the new label
   84  *
   85  * Given arbitrary failure, we can determine the correct label to use based on
   86  * the transaction group.  If we fail after updating L1 but before updating the
   87  * UB, we will notice that L1's transaction group is greater than the uberblock,
   88  * so L2 must be valid.  If we fail after writing the uberblock but before
   89  * writing L2, we will notice that L2's transaction group is less than L1, and
   90  * therefore L1 is valid.
   91  *
   92  * Another added complexity is that not every label is updated when the config
   93  * is synced.  If we add a single device, we do not want to have to re-write
   94  * every label for every device in the pool.  This means that both L1 and L2 may
   95  * be older than the pool uberblock, because the necessary information is stored
   96  * on another vdev.
   97  *
   98  *
   99  * On-disk Format
  100  * --------------
  101  *
  102  * The vdev label consists of two distinct parts, and is wrapped within the
  103  * vdev_label_t structure.  The label includes 8k of padding to permit legacy
  104  * VTOC disk labels, but is otherwise ignored.
  105  *
  106  * The first half of the label is a packed nvlist which contains pool wide
  107  * properties, per-vdev properties, and configuration information.  It is
  108  * described in more detail below.
  109  *
  110  * The latter half of the label consists of a redundant array of uberblocks.
  111  * These uberblocks are updated whenever a transaction group is committed,
  112  * or when the configuration is updated.  When a pool is loaded, we scan each
  113  * vdev for the 'best' uberblock.
  114  *
  115  *
  116  * Configuration Information
  117  * -------------------------
  118  *
  119  * The nvlist describing the pool and vdev contains the following elements:
  120  *
  121  *      version         ZFS on-disk version
  122  *      name            Pool name
  123  *      state           Pool state
  124  *      txg             Transaction group in which this label was written
  125  *      pool_guid       Unique identifier for this pool
  126  *      vdev_tree       An nvlist describing vdev tree.
  127  *      features_for_read
  128  *                      An nvlist of the features necessary for reading the MOS.
  129  *
  130  * Each leaf device label also contains the following:
  131  *
  132  *      top_guid        Unique ID for top-level vdev in which this is contained
  133  *      guid            Unique ID for the leaf vdev
  134  *
  135  * The 'vs' configuration follows the format described in 'spa_config.c'.
  136  */
  137 
  138 #include <sys/zfs_context.h>
  139 #include <sys/spa.h>
  140 #include <sys/spa_impl.h>
  141 #include <sys/dmu.h>
  142 #include <sys/zap.h>
  143 #include <sys/vdev.h>
  144 #include <sys/vdev_impl.h>
  145 #include <sys/vdev_draid.h>
  146 #include <sys/uberblock_impl.h>
  147 #include <sys/metaslab.h>
  148 #include <sys/metaslab_impl.h>
  149 #include <sys/zio.h>
  150 #include <sys/dsl_scan.h>
  151 #include <sys/abd.h>
  152 #include <sys/fs/zfs.h>
  153 #include <sys/byteorder.h>
  154 #include <sys/zfs_bootenv.h>
  155 
  156 /*
  157  * Basic routines to read and write from a vdev label.
  158  * Used throughout the rest of this file.
  159  */
  160 uint64_t
  161 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
  162 {
  163         ASSERT(offset < sizeof (vdev_label_t));
  164         ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0);
  165 
  166         return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
  167             0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
  168 }
  169 
  170 /*
  171  * Returns back the vdev label associated with the passed in offset.
  172  */
  173 int
  174 vdev_label_number(uint64_t psize, uint64_t offset)
  175 {
  176         int l;
  177 
  178         if (offset >= psize - VDEV_LABEL_END_SIZE) {
  179                 offset -= psize - VDEV_LABEL_END_SIZE;
  180                 offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t);
  181         }
  182         l = offset / sizeof (vdev_label_t);
  183         return (l < VDEV_LABELS ? l : -1);
  184 }
  185 
  186 static void
  187 vdev_label_read(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
  188     uint64_t size, zio_done_func_t *done, void *private, int flags)
  189 {
  190         ASSERT(
  191             spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE ||
  192             spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE);
  193         ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
  194 
  195         zio_nowait(zio_read_phys(zio, vd,
  196             vdev_label_offset(vd->vdev_psize, l, offset),
  197             size, buf, ZIO_CHECKSUM_LABEL, done, private,
  198             ZIO_PRIORITY_SYNC_READ, flags, B_TRUE));
  199 }
  200 
  201 void
  202 vdev_label_write(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
  203     uint64_t size, zio_done_func_t *done, void *private, int flags)
  204 {
  205         ASSERT(
  206             spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE ||
  207             spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE);
  208         ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
  209 
  210         zio_nowait(zio_write_phys(zio, vd,
  211             vdev_label_offset(vd->vdev_psize, l, offset),
  212             size, buf, ZIO_CHECKSUM_LABEL, done, private,
  213             ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE));
  214 }
  215 
  216 /*
  217  * Generate the nvlist representing this vdev's stats
  218  */
  219 void
  220 vdev_config_generate_stats(vdev_t *vd, nvlist_t *nv)
  221 {
  222         nvlist_t *nvx;
  223         vdev_stat_t *vs;
  224         vdev_stat_ex_t *vsx;
  225 
  226         vs = kmem_alloc(sizeof (*vs), KM_SLEEP);
  227         vsx = kmem_alloc(sizeof (*vsx), KM_SLEEP);
  228 
  229         vdev_get_stats_ex(vd, vs, vsx);
  230         fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS,
  231             (uint64_t *)vs, sizeof (*vs) / sizeof (uint64_t));
  232 
  233         /*
  234          * Add extended stats into a special extended stats nvlist.  This keeps
  235          * all the extended stats nicely grouped together.  The extended stats
  236          * nvlist is then added to the main nvlist.
  237          */
  238         nvx = fnvlist_alloc();
  239 
  240         /* ZIOs in flight to disk */
  241         fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_ACTIVE_QUEUE,
  242             vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_READ]);
  243 
  244         fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_ACTIVE_QUEUE,
  245             vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_WRITE]);
  246 
  247         fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_ACTIVE_QUEUE,
  248             vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_READ]);
  249 
  250         fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_ACTIVE_QUEUE,
  251             vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_WRITE]);
  252 
  253         fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_ACTIVE_QUEUE,
  254             vsx->vsx_active_queue[ZIO_PRIORITY_SCRUB]);
  255 
  256         fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_TRIM_ACTIVE_QUEUE,
  257             vsx->vsx_active_queue[ZIO_PRIORITY_TRIM]);
  258 
  259         fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_REBUILD_ACTIVE_QUEUE,
  260             vsx->vsx_active_queue[ZIO_PRIORITY_REBUILD]);
  261 
  262         /* ZIOs pending */
  263         fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_PEND_QUEUE,
  264             vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_READ]);
  265 
  266         fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_PEND_QUEUE,
  267             vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_WRITE]);
  268 
  269         fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_PEND_QUEUE,
  270             vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_READ]);
  271 
  272         fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_PEND_QUEUE,
  273             vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_WRITE]);
  274 
  275         fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_PEND_QUEUE,
  276             vsx->vsx_pend_queue[ZIO_PRIORITY_SCRUB]);
  277 
  278         fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_TRIM_PEND_QUEUE,
  279             vsx->vsx_pend_queue[ZIO_PRIORITY_TRIM]);
  280 
  281         fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_REBUILD_PEND_QUEUE,
  282             vsx->vsx_pend_queue[ZIO_PRIORITY_REBUILD]);
  283 
  284         /* Histograms */
  285         fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_R_LAT_HISTO,
  286             vsx->vsx_total_histo[ZIO_TYPE_READ],
  287             ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_READ]));
  288 
  289         fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_W_LAT_HISTO,
  290             vsx->vsx_total_histo[ZIO_TYPE_WRITE],
  291             ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_WRITE]));
  292 
  293         fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_R_LAT_HISTO,
  294             vsx->vsx_disk_histo[ZIO_TYPE_READ],
  295             ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_READ]));
  296 
  297         fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_W_LAT_HISTO,
  298             vsx->vsx_disk_histo[ZIO_TYPE_WRITE],
  299             ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_WRITE]));
  300 
  301         fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_LAT_HISTO,
  302             vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ],
  303             ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ]));
  304 
  305         fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_LAT_HISTO,
  306             vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE],
  307             ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE]));
  308 
  309         fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_LAT_HISTO,
  310             vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ],
  311             ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ]));
  312 
  313         fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_LAT_HISTO,
  314             vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE],
  315             ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE]));
  316 
  317         fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SCRUB_LAT_HISTO,
  318             vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB],
  319             ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB]));
  320 
  321         fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TRIM_LAT_HISTO,
  322             vsx->vsx_queue_histo[ZIO_PRIORITY_TRIM],
  323             ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_TRIM]));
  324 
  325         fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_REBUILD_LAT_HISTO,
  326             vsx->vsx_queue_histo[ZIO_PRIORITY_REBUILD],
  327             ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_REBUILD]));
  328 
  329         /* Request sizes */
  330         fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_R_HISTO,
  331             vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ],
  332             ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ]));
  333 
  334         fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_W_HISTO,
  335             vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE],
  336             ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE]));
  337 
  338         fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_R_HISTO,
  339             vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ],
  340             ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ]));
  341 
  342         fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_W_HISTO,
  343             vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE],
  344             ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE]));
  345 
  346         fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_SCRUB_HISTO,
  347             vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB],
  348             ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB]));
  349 
  350         fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_TRIM_HISTO,
  351             vsx->vsx_ind_histo[ZIO_PRIORITY_TRIM],
  352             ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_TRIM]));
  353 
  354         fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_REBUILD_HISTO,
  355             vsx->vsx_ind_histo[ZIO_PRIORITY_REBUILD],
  356             ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_REBUILD]));
  357 
  358         fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_R_HISTO,
  359             vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ],
  360             ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ]));
  361 
  362         fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_W_HISTO,
  363             vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE],
  364             ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE]));
  365 
  366         fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_R_HISTO,
  367             vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ],
  368             ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ]));
  369 
  370         fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_W_HISTO,
  371             vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE],
  372             ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE]));
  373 
  374         fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_SCRUB_HISTO,
  375             vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB],
  376             ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB]));
  377 
  378         fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_TRIM_HISTO,
  379             vsx->vsx_agg_histo[ZIO_PRIORITY_TRIM],
  380             ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_TRIM]));
  381 
  382         fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_REBUILD_HISTO,
  383             vsx->vsx_agg_histo[ZIO_PRIORITY_REBUILD],
  384             ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_REBUILD]));
  385 
  386         /* IO delays */
  387         fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SLOW_IOS, vs->vs_slow_ios);
  388 
  389         /* Add extended stats nvlist to main nvlist */
  390         fnvlist_add_nvlist(nv, ZPOOL_CONFIG_VDEV_STATS_EX, nvx);
  391 
  392         fnvlist_free(nvx);
  393         kmem_free(vs, sizeof (*vs));
  394         kmem_free(vsx, sizeof (*vsx));
  395 }
  396 
  397 static void
  398 root_vdev_actions_getprogress(vdev_t *vd, nvlist_t *nvl)
  399 {
  400         spa_t *spa = vd->vdev_spa;
  401 
  402         if (vd != spa->spa_root_vdev)
  403                 return;
  404 
  405         /* provide either current or previous scan information */
  406         pool_scan_stat_t ps;
  407         if (spa_scan_get_stats(spa, &ps) == 0) {
  408                 fnvlist_add_uint64_array(nvl,
  409                     ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps,
  410                     sizeof (pool_scan_stat_t) / sizeof (uint64_t));
  411         }
  412 
  413         pool_removal_stat_t prs;
  414         if (spa_removal_get_stats(spa, &prs) == 0) {
  415                 fnvlist_add_uint64_array(nvl,
  416                     ZPOOL_CONFIG_REMOVAL_STATS, (uint64_t *)&prs,
  417                     sizeof (prs) / sizeof (uint64_t));
  418         }
  419 
  420         pool_checkpoint_stat_t pcs;
  421         if (spa_checkpoint_get_stats(spa, &pcs) == 0) {
  422                 fnvlist_add_uint64_array(nvl,
  423                     ZPOOL_CONFIG_CHECKPOINT_STATS, (uint64_t *)&pcs,
  424                     sizeof (pcs) / sizeof (uint64_t));
  425         }
  426 }
  427 
  428 static void
  429 top_vdev_actions_getprogress(vdev_t *vd, nvlist_t *nvl)
  430 {
  431         if (vd == vd->vdev_top) {
  432                 vdev_rebuild_stat_t vrs;
  433                 if (vdev_rebuild_get_stats(vd, &vrs) == 0) {
  434                         fnvlist_add_uint64_array(nvl,
  435                             ZPOOL_CONFIG_REBUILD_STATS, (uint64_t *)&vrs,
  436                             sizeof (vrs) / sizeof (uint64_t));
  437                 }
  438         }
  439 }
  440 
  441 /*
  442  * Generate the nvlist representing this vdev's config.
  443  */
  444 nvlist_t *
  445 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
  446     vdev_config_flag_t flags)
  447 {
  448         nvlist_t *nv = NULL;
  449         vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
  450 
  451         nv = fnvlist_alloc();
  452 
  453         fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type);
  454         if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)))
  455                 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id);
  456         fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid);
  457 
  458         if (vd->vdev_path != NULL)
  459                 fnvlist_add_string(nv, ZPOOL_CONFIG_PATH, vd->vdev_path);
  460 
  461         if (vd->vdev_devid != NULL)
  462                 fnvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vd->vdev_devid);
  463 
  464         if (vd->vdev_physpath != NULL)
  465                 fnvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
  466                     vd->vdev_physpath);
  467 
  468         if (vd->vdev_enc_sysfs_path != NULL)
  469                 fnvlist_add_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
  470                     vd->vdev_enc_sysfs_path);
  471 
  472         if (vd->vdev_fru != NULL)
  473                 fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru);
  474 
  475         if (vd->vdev_ops->vdev_op_config_generate != NULL)
  476                 vd->vdev_ops->vdev_op_config_generate(vd, nv);
  477 
  478         if (vd->vdev_wholedisk != -1ULL) {
  479                 fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
  480                     vd->vdev_wholedisk);
  481         }
  482 
  483         if (vd->vdev_not_present && !(flags & VDEV_CONFIG_MISSING))
  484                 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1);
  485 
  486         if (vd->vdev_isspare)
  487                 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1);
  488 
  489         if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) &&
  490             vd == vd->vdev_top) {
  491                 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
  492                     vd->vdev_ms_array);
  493                 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
  494                     vd->vdev_ms_shift);
  495                 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift);
  496                 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
  497                     vd->vdev_asize);
  498                 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog);
  499                 if (vd->vdev_noalloc) {
  500                         fnvlist_add_uint64(nv, ZPOOL_CONFIG_NONALLOCATING,
  501                             vd->vdev_noalloc);
  502                 }
  503                 if (vd->vdev_removing) {
  504                         fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING,
  505                             vd->vdev_removing);
  506                 }
  507 
  508                 /* zpool command expects alloc class data */
  509                 if (getstats && vd->vdev_alloc_bias != VDEV_BIAS_NONE) {
  510                         const char *bias = NULL;
  511 
  512                         switch (vd->vdev_alloc_bias) {
  513                         case VDEV_BIAS_LOG:
  514                                 bias = VDEV_ALLOC_BIAS_LOG;
  515                                 break;
  516                         case VDEV_BIAS_SPECIAL:
  517                                 bias = VDEV_ALLOC_BIAS_SPECIAL;
  518                                 break;
  519                         case VDEV_BIAS_DEDUP:
  520                                 bias = VDEV_ALLOC_BIAS_DEDUP;
  521                                 break;
  522                         default:
  523                                 ASSERT3U(vd->vdev_alloc_bias, ==,
  524                                     VDEV_BIAS_NONE);
  525                         }
  526                         fnvlist_add_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
  527                             bias);
  528                 }
  529         }
  530 
  531         if (vd->vdev_dtl_sm != NULL) {
  532                 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
  533                     space_map_object(vd->vdev_dtl_sm));
  534         }
  535 
  536         if (vic->vic_mapping_object != 0) {
  537                 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
  538                     vic->vic_mapping_object);
  539         }
  540 
  541         if (vic->vic_births_object != 0) {
  542                 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
  543                     vic->vic_births_object);
  544         }
  545 
  546         if (vic->vic_prev_indirect_vdev != UINT64_MAX) {
  547                 fnvlist_add_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
  548                     vic->vic_prev_indirect_vdev);
  549         }
  550 
  551         if (vd->vdev_crtxg)
  552                 fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg);
  553 
  554         if (vd->vdev_expansion_time)
  555                 fnvlist_add_uint64(nv, ZPOOL_CONFIG_EXPANSION_TIME,
  556                     vd->vdev_expansion_time);
  557 
  558         if (flags & VDEV_CONFIG_MOS) {
  559                 if (vd->vdev_leaf_zap != 0) {
  560                         ASSERT(vd->vdev_ops->vdev_op_leaf);
  561                         fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_LEAF_ZAP,
  562                             vd->vdev_leaf_zap);
  563                 }
  564 
  565                 if (vd->vdev_top_zap != 0) {
  566                         ASSERT(vd == vd->vdev_top);
  567                         fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
  568                             vd->vdev_top_zap);
  569                 }
  570 
  571                 if (vd->vdev_resilver_deferred) {
  572                         ASSERT(vd->vdev_ops->vdev_op_leaf);
  573                         ASSERT(spa->spa_resilver_deferred);
  574                         fnvlist_add_boolean(nv, ZPOOL_CONFIG_RESILVER_DEFER);
  575                 }
  576         }
  577 
  578         if (getstats) {
  579                 vdev_config_generate_stats(vd, nv);
  580 
  581                 root_vdev_actions_getprogress(vd, nv);
  582                 top_vdev_actions_getprogress(vd, nv);
  583 
  584                 /*
  585                  * Note: this can be called from open context
  586                  * (spa_get_stats()), so we need the rwlock to prevent
  587                  * the mapping from being changed by condensing.
  588                  */
  589                 rw_enter(&vd->vdev_indirect_rwlock, RW_READER);
  590                 if (vd->vdev_indirect_mapping != NULL) {
  591                         ASSERT(vd->vdev_indirect_births != NULL);
  592                         vdev_indirect_mapping_t *vim =
  593                             vd->vdev_indirect_mapping;
  594                         fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE,
  595                             vdev_indirect_mapping_size(vim));
  596                 }
  597                 rw_exit(&vd->vdev_indirect_rwlock);
  598                 if (vd->vdev_mg != NULL &&
  599                     vd->vdev_mg->mg_fragmentation != ZFS_FRAG_INVALID) {
  600                         /*
  601                          * Compute approximately how much memory would be used
  602                          * for the indirect mapping if this device were to
  603                          * be removed.
  604                          *
  605                          * Note: If the frag metric is invalid, then not
  606                          * enough metaslabs have been converted to have
  607                          * histograms.
  608                          */
  609                         uint64_t seg_count = 0;
  610                         uint64_t to_alloc = vd->vdev_stat.vs_alloc;
  611 
  612                         /*
  613                          * There are the same number of allocated segments
  614                          * as free segments, so we will have at least one
  615                          * entry per free segment.  However, small free
  616                          * segments (smaller than vdev_removal_max_span)
  617                          * will be combined with adjacent allocated segments
  618                          * as a single mapping.
  619                          */
  620                         for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
  621                                 if (i + 1 < highbit64(vdev_removal_max_span)
  622                                     - 1) {
  623                                         to_alloc +=
  624                                             vd->vdev_mg->mg_histogram[i] <<
  625                                             (i + 1);
  626                                 } else {
  627                                         seg_count +=
  628                                             vd->vdev_mg->mg_histogram[i];
  629                                 }
  630                         }
  631 
  632                         /*
  633                          * The maximum length of a mapping is
  634                          * zfs_remove_max_segment, so we need at least one entry
  635                          * per zfs_remove_max_segment of allocated data.
  636                          */
  637                         seg_count += to_alloc / spa_remove_max_segment(spa);
  638 
  639                         fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE,
  640                             seg_count *
  641                             sizeof (vdev_indirect_mapping_entry_phys_t));
  642                 }
  643         }
  644 
  645         if (!vd->vdev_ops->vdev_op_leaf) {
  646                 nvlist_t **child;
  647                 int c, idx;
  648 
  649                 ASSERT(!vd->vdev_ishole);
  650 
  651                 child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
  652                     KM_SLEEP);
  653 
  654                 for (c = 0, idx = 0; c < vd->vdev_children; c++) {
  655                         vdev_t *cvd = vd->vdev_child[c];
  656 
  657                         /*
  658                          * If we're generating an nvlist of removing
  659                          * vdevs then skip over any device which is
  660                          * not being removed.
  661                          */
  662                         if ((flags & VDEV_CONFIG_REMOVING) &&
  663                             !cvd->vdev_removing)
  664                                 continue;
  665 
  666                         child[idx++] = vdev_config_generate(spa, cvd,
  667                             getstats, flags);
  668                 }
  669 
  670                 if (idx) {
  671                         fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
  672                             (const nvlist_t * const *)child, idx);
  673                 }
  674 
  675                 for (c = 0; c < idx; c++)
  676                         nvlist_free(child[c]);
  677 
  678                 kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
  679 
  680         } else {
  681                 const char *aux = NULL;
  682 
  683                 if (vd->vdev_offline && !vd->vdev_tmpoffline)
  684                         fnvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, B_TRUE);
  685                 if (vd->vdev_resilver_txg != 0)
  686                         fnvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
  687                             vd->vdev_resilver_txg);
  688                 if (vd->vdev_rebuild_txg != 0)
  689                         fnvlist_add_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG,
  690                             vd->vdev_rebuild_txg);
  691                 if (vd->vdev_faulted)
  692                         fnvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, B_TRUE);
  693                 if (vd->vdev_degraded)
  694                         fnvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, B_TRUE);
  695                 if (vd->vdev_removed)
  696                         fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, B_TRUE);
  697                 if (vd->vdev_unspare)
  698                         fnvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, B_TRUE);
  699                 if (vd->vdev_ishole)
  700                         fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, B_TRUE);
  701 
  702                 /* Set the reason why we're FAULTED/DEGRADED. */
  703                 switch (vd->vdev_stat.vs_aux) {
  704                 case VDEV_AUX_ERR_EXCEEDED:
  705                         aux = "err_exceeded";
  706                         break;
  707 
  708                 case VDEV_AUX_EXTERNAL:
  709                         aux = "external";
  710                         break;
  711                 }
  712 
  713                 if (aux != NULL && !vd->vdev_tmpoffline) {
  714                         fnvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, aux);
  715                 } else {
  716                         /*
  717                          * We're healthy - clear any previous AUX_STATE values.
  718                          */
  719                         if (nvlist_exists(nv, ZPOOL_CONFIG_AUX_STATE))
  720                                 nvlist_remove_all(nv, ZPOOL_CONFIG_AUX_STATE);
  721                 }
  722 
  723                 if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) {
  724                         fnvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID,
  725                             vd->vdev_orig_guid);
  726                 }
  727         }
  728 
  729         return (nv);
  730 }
  731 
  732 /*
  733  * Generate a view of the top-level vdevs.  If we currently have holes
  734  * in the namespace, then generate an array which contains a list of holey
  735  * vdevs.  Additionally, add the number of top-level children that currently
  736  * exist.
  737  */
  738 void
  739 vdev_top_config_generate(spa_t *spa, nvlist_t *config)
  740 {
  741         vdev_t *rvd = spa->spa_root_vdev;
  742         uint64_t *array;
  743         uint_t c, idx;
  744 
  745         array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP);
  746 
  747         for (c = 0, idx = 0; c < rvd->vdev_children; c++) {
  748                 vdev_t *tvd = rvd->vdev_child[c];
  749 
  750                 if (tvd->vdev_ishole) {
  751                         array[idx++] = c;
  752                 }
  753         }
  754 
  755         if (idx) {
  756                 VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY,
  757                     array, idx) == 0);
  758         }
  759 
  760         VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
  761             rvd->vdev_children) == 0);
  762 
  763         kmem_free(array, rvd->vdev_children * sizeof (uint64_t));
  764 }
  765 
  766 /*
  767  * Returns the configuration from the label of the given vdev. For vdevs
  768  * which don't have a txg value stored on their label (i.e. spares/cache)
  769  * or have not been completely initialized (txg = 0) just return
  770  * the configuration from the first valid label we find. Otherwise,
  771  * find the most up-to-date label that does not exceed the specified
  772  * 'txg' value.
  773  */
  774 nvlist_t *
  775 vdev_label_read_config(vdev_t *vd, uint64_t txg)
  776 {
  777         spa_t *spa = vd->vdev_spa;
  778         nvlist_t *config = NULL;
  779         vdev_phys_t *vp[VDEV_LABELS];
  780         abd_t *vp_abd[VDEV_LABELS];
  781         zio_t *zio[VDEV_LABELS];
  782         uint64_t best_txg = 0;
  783         uint64_t label_txg = 0;
  784         int error = 0;
  785         int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
  786             ZIO_FLAG_SPECULATIVE;
  787 
  788         ASSERT(vd->vdev_validate_thread == curthread ||
  789             spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
  790 
  791         if (!vdev_readable(vd))
  792                 return (NULL);
  793 
  794         /*
  795          * The label for a dRAID distributed spare is not stored on disk.
  796          * Instead it is generated when needed which allows us to bypass
  797          * the pipeline when reading the config from the label.
  798          */
  799         if (vd->vdev_ops == &vdev_draid_spare_ops)
  800                 return (vdev_draid_read_config_spare(vd));
  801 
  802         for (int l = 0; l < VDEV_LABELS; l++) {
  803                 vp_abd[l] = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
  804                 vp[l] = abd_to_buf(vp_abd[l]);
  805         }
  806 
  807 retry:
  808         for (int l = 0; l < VDEV_LABELS; l++) {
  809                 zio[l] = zio_root(spa, NULL, NULL, flags);
  810 
  811                 vdev_label_read(zio[l], vd, l, vp_abd[l],
  812                     offsetof(vdev_label_t, vl_vdev_phys), sizeof (vdev_phys_t),
  813                     NULL, NULL, flags);
  814         }
  815         for (int l = 0; l < VDEV_LABELS; l++) {
  816                 nvlist_t *label = NULL;
  817 
  818                 if (zio_wait(zio[l]) == 0 &&
  819                     nvlist_unpack(vp[l]->vp_nvlist, sizeof (vp[l]->vp_nvlist),
  820                     &label, 0) == 0) {
  821                         /*
  822                          * Auxiliary vdevs won't have txg values in their
  823                          * labels and newly added vdevs may not have been
  824                          * completely initialized so just return the
  825                          * configuration from the first valid label we
  826                          * encounter.
  827                          */
  828                         error = nvlist_lookup_uint64(label,
  829                             ZPOOL_CONFIG_POOL_TXG, &label_txg);
  830                         if ((error || label_txg == 0) && !config) {
  831                                 config = label;
  832                                 for (l++; l < VDEV_LABELS; l++)
  833                                         zio_wait(zio[l]);
  834                                 break;
  835                         } else if (label_txg <= txg && label_txg > best_txg) {
  836                                 best_txg = label_txg;
  837                                 nvlist_free(config);
  838                                 config = fnvlist_dup(label);
  839                         }
  840                 }
  841 
  842                 if (label != NULL) {
  843                         nvlist_free(label);
  844                         label = NULL;
  845                 }
  846         }
  847 
  848         if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) {
  849                 flags |= ZIO_FLAG_TRYHARD;
  850                 goto retry;
  851         }
  852 
  853         /*
  854          * We found a valid label but it didn't pass txg restrictions.
  855          */
  856         if (config == NULL && label_txg != 0) {
  857                 vdev_dbgmsg(vd, "label discarded as txg is too large "
  858                     "(%llu > %llu)", (u_longlong_t)label_txg,
  859                     (u_longlong_t)txg);
  860         }
  861 
  862         for (int l = 0; l < VDEV_LABELS; l++) {
  863                 abd_free(vp_abd[l]);
  864         }
  865 
  866         return (config);
  867 }
  868 
  869 /*
  870  * Determine if a device is in use.  The 'spare_guid' parameter will be filled
  871  * in with the device guid if this spare is active elsewhere on the system.
  872  */
  873 static boolean_t
  874 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
  875     uint64_t *spare_guid, uint64_t *l2cache_guid)
  876 {
  877         spa_t *spa = vd->vdev_spa;
  878         uint64_t state, pool_guid, device_guid, txg, spare_pool;
  879         uint64_t vdtxg = 0;
  880         nvlist_t *label;
  881 
  882         if (spare_guid)
  883                 *spare_guid = 0ULL;
  884         if (l2cache_guid)
  885                 *l2cache_guid = 0ULL;
  886 
  887         /*
  888          * Read the label, if any, and perform some basic sanity checks.
  889          */
  890         if ((label = vdev_label_read_config(vd, -1ULL)) == NULL)
  891                 return (B_FALSE);
  892 
  893         (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
  894             &vdtxg);
  895 
  896         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
  897             &state) != 0 ||
  898             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
  899             &device_guid) != 0) {
  900                 nvlist_free(label);
  901                 return (B_FALSE);
  902         }
  903 
  904         if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
  905             (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
  906             &pool_guid) != 0 ||
  907             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
  908             &txg) != 0)) {
  909                 nvlist_free(label);
  910                 return (B_FALSE);
  911         }
  912 
  913         nvlist_free(label);
  914 
  915         /*
  916          * Check to see if this device indeed belongs to the pool it claims to
  917          * be a part of.  The only way this is allowed is if the device is a hot
  918          * spare (which we check for later on).
  919          */
  920         if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
  921             !spa_guid_exists(pool_guid, device_guid) &&
  922             !spa_spare_exists(device_guid, NULL, NULL) &&
  923             !spa_l2cache_exists(device_guid, NULL))
  924                 return (B_FALSE);
  925 
  926         /*
  927          * If the transaction group is zero, then this an initialized (but
  928          * unused) label.  This is only an error if the create transaction
  929          * on-disk is the same as the one we're using now, in which case the
  930          * user has attempted to add the same vdev multiple times in the same
  931          * transaction.
  932          */
  933         if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
  934             txg == 0 && vdtxg == crtxg)
  935                 return (B_TRUE);
  936 
  937         /*
  938          * Check to see if this is a spare device.  We do an explicit check for
  939          * spa_has_spare() here because it may be on our pending list of spares
  940          * to add.
  941          */
  942         if (spa_spare_exists(device_guid, &spare_pool, NULL) ||
  943             spa_has_spare(spa, device_guid)) {
  944                 if (spare_guid)
  945                         *spare_guid = device_guid;
  946 
  947                 switch (reason) {
  948                 case VDEV_LABEL_CREATE:
  949                         return (B_TRUE);
  950 
  951                 case VDEV_LABEL_REPLACE:
  952                         return (!spa_has_spare(spa, device_guid) ||
  953                             spare_pool != 0ULL);
  954 
  955                 case VDEV_LABEL_SPARE:
  956                         return (spa_has_spare(spa, device_guid));
  957                 default:
  958                         break;
  959                 }
  960         }
  961 
  962         /*
  963          * Check to see if this is an l2cache device.
  964          */
  965         if (spa_l2cache_exists(device_guid, NULL) ||
  966             spa_has_l2cache(spa, device_guid)) {
  967                 if (l2cache_guid)
  968                         *l2cache_guid = device_guid;
  969 
  970                 switch (reason) {
  971                 case VDEV_LABEL_CREATE:
  972                         return (B_TRUE);
  973 
  974                 case VDEV_LABEL_REPLACE:
  975                         return (!spa_has_l2cache(spa, device_guid));
  976 
  977                 case VDEV_LABEL_L2CACHE:
  978                         return (spa_has_l2cache(spa, device_guid));
  979                 default:
  980                         break;
  981                 }
  982         }
  983 
  984         /*
  985          * We can't rely on a pool's state if it's been imported
  986          * read-only.  Instead we look to see if the pools is marked
  987          * read-only in the namespace and set the state to active.
  988          */
  989         if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
  990             (spa = spa_by_guid(pool_guid, device_guid)) != NULL &&
  991             spa_mode(spa) == SPA_MODE_READ)
  992                 state = POOL_STATE_ACTIVE;
  993 
  994         /*
  995          * If the device is marked ACTIVE, then this device is in use by another
  996          * pool on the system.
  997          */
  998         return (state == POOL_STATE_ACTIVE);
  999 }
 1000 
 1001 /*
 1002  * Initialize a vdev label.  We check to make sure each leaf device is not in
 1003  * use, and writable.  We put down an initial label which we will later
 1004  * overwrite with a complete label.  Note that it's important to do this
 1005  * sequentially, not in parallel, so that we catch cases of multiple use of the
 1006  * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
 1007  * itself.
 1008  */
 1009 int
 1010 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
 1011 {
 1012         spa_t *spa = vd->vdev_spa;
 1013         nvlist_t *label;
 1014         vdev_phys_t *vp;
 1015         abd_t *vp_abd;
 1016         abd_t *bootenv;
 1017         uberblock_t *ub;
 1018         abd_t *ub_abd;
 1019         zio_t *zio;
 1020         char *buf;
 1021         size_t buflen;
 1022         int error;
 1023         uint64_t spare_guid = 0, l2cache_guid = 0;
 1024         int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
 1025 
 1026         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
 1027 
 1028         for (int c = 0; c < vd->vdev_children; c++)
 1029                 if ((error = vdev_label_init(vd->vdev_child[c],
 1030                     crtxg, reason)) != 0)
 1031                         return (error);
 1032 
 1033         /* Track the creation time for this vdev */
 1034         vd->vdev_crtxg = crtxg;
 1035 
 1036         if (!vd->vdev_ops->vdev_op_leaf || !spa_writeable(spa))
 1037                 return (0);
 1038 
 1039         /*
 1040          * Dead vdevs cannot be initialized.
 1041          */
 1042         if (vdev_is_dead(vd))
 1043                 return (SET_ERROR(EIO));
 1044 
 1045         /*
 1046          * Determine if the vdev is in use.
 1047          */
 1048         if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT &&
 1049             vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid))
 1050                 return (SET_ERROR(EBUSY));
 1051 
 1052         /*
 1053          * If this is a request to add or replace a spare or l2cache device
 1054          * that is in use elsewhere on the system, then we must update the
 1055          * guid (which was initialized to a random value) to reflect the
 1056          * actual GUID (which is shared between multiple pools).
 1057          */
 1058         if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE &&
 1059             spare_guid != 0ULL) {
 1060                 uint64_t guid_delta = spare_guid - vd->vdev_guid;
 1061 
 1062                 vd->vdev_guid += guid_delta;
 1063 
 1064                 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
 1065                         pvd->vdev_guid_sum += guid_delta;
 1066 
 1067                 /*
 1068                  * If this is a replacement, then we want to fallthrough to the
 1069                  * rest of the code.  If we're adding a spare, then it's already
 1070                  * labeled appropriately and we can just return.
 1071                  */
 1072                 if (reason == VDEV_LABEL_SPARE)
 1073                         return (0);
 1074                 ASSERT(reason == VDEV_LABEL_REPLACE ||
 1075                     reason == VDEV_LABEL_SPLIT);
 1076         }
 1077 
 1078         if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE &&
 1079             l2cache_guid != 0ULL) {
 1080                 uint64_t guid_delta = l2cache_guid - vd->vdev_guid;
 1081 
 1082                 vd->vdev_guid += guid_delta;
 1083 
 1084                 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
 1085                         pvd->vdev_guid_sum += guid_delta;
 1086 
 1087                 /*
 1088                  * If this is a replacement, then we want to fallthrough to the
 1089                  * rest of the code.  If we're adding an l2cache, then it's
 1090                  * already labeled appropriately and we can just return.
 1091                  */
 1092                 if (reason == VDEV_LABEL_L2CACHE)
 1093                         return (0);
 1094                 ASSERT(reason == VDEV_LABEL_REPLACE);
 1095         }
 1096 
 1097         /*
 1098          * Initialize its label.
 1099          */
 1100         vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
 1101         abd_zero(vp_abd, sizeof (vdev_phys_t));
 1102         vp = abd_to_buf(vp_abd);
 1103 
 1104         /*
 1105          * Generate a label describing the pool and our top-level vdev.
 1106          * We mark it as being from txg 0 to indicate that it's not
 1107          * really part of an active pool just yet.  The labels will
 1108          * be written again with a meaningful txg by spa_sync().
 1109          */
 1110         if (reason == VDEV_LABEL_SPARE ||
 1111             (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
 1112                 /*
 1113                  * For inactive hot spares, we generate a special label that
 1114                  * identifies as a mutually shared hot spare.  We write the
 1115                  * label if we are adding a hot spare, or if we are removing an
 1116                  * active hot spare (in which case we want to revert the
 1117                  * labels).
 1118                  */
 1119                 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
 1120 
 1121                 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
 1122                     spa_version(spa)) == 0);
 1123                 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
 1124                     POOL_STATE_SPARE) == 0);
 1125                 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
 1126                     vd->vdev_guid) == 0);
 1127         } else if (reason == VDEV_LABEL_L2CACHE ||
 1128             (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) {
 1129                 /*
 1130                  * For level 2 ARC devices, add a special label.
 1131                  */
 1132                 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
 1133 
 1134                 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
 1135                     spa_version(spa)) == 0);
 1136                 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
 1137                     POOL_STATE_L2CACHE) == 0);
 1138                 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
 1139                     vd->vdev_guid) == 0);
 1140         } else {
 1141                 uint64_t txg = 0ULL;
 1142 
 1143                 if (reason == VDEV_LABEL_SPLIT)
 1144                         txg = spa->spa_uberblock.ub_txg;
 1145                 label = spa_config_generate(spa, vd, txg, B_FALSE);
 1146 
 1147                 /*
 1148                  * Add our creation time.  This allows us to detect multiple
 1149                  * vdev uses as described above, and automatically expires if we
 1150                  * fail.
 1151                  */
 1152                 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
 1153                     crtxg) == 0);
 1154         }
 1155 
 1156         buf = vp->vp_nvlist;
 1157         buflen = sizeof (vp->vp_nvlist);
 1158 
 1159         error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP);
 1160         if (error != 0) {
 1161                 nvlist_free(label);
 1162                 abd_free(vp_abd);
 1163                 /* EFAULT means nvlist_pack ran out of room */
 1164                 return (SET_ERROR(error == EFAULT ? ENAMETOOLONG : EINVAL));
 1165         }
 1166 
 1167         /*
 1168          * Initialize uberblock template.
 1169          */
 1170         ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_RING, B_TRUE);
 1171         abd_zero(ub_abd, VDEV_UBERBLOCK_RING);
 1172         abd_copy_from_buf(ub_abd, &spa->spa_uberblock, sizeof (uberblock_t));
 1173         ub = abd_to_buf(ub_abd);
 1174         ub->ub_txg = 0;
 1175 
 1176         /* Initialize the 2nd padding area. */
 1177         bootenv = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE);
 1178         abd_zero(bootenv, VDEV_PAD_SIZE);
 1179 
 1180         /*
 1181          * Write everything in parallel.
 1182          */
 1183 retry:
 1184         zio = zio_root(spa, NULL, NULL, flags);
 1185 
 1186         for (int l = 0; l < VDEV_LABELS; l++) {
 1187 
 1188                 vdev_label_write(zio, vd, l, vp_abd,
 1189                     offsetof(vdev_label_t, vl_vdev_phys),
 1190                     sizeof (vdev_phys_t), NULL, NULL, flags);
 1191 
 1192                 /*
 1193                  * Skip the 1st padding area.
 1194                  * Zero out the 2nd padding area where it might have
 1195                  * left over data from previous filesystem format.
 1196                  */
 1197                 vdev_label_write(zio, vd, l, bootenv,
 1198                     offsetof(vdev_label_t, vl_be),
 1199                     VDEV_PAD_SIZE, NULL, NULL, flags);
 1200 
 1201                 vdev_label_write(zio, vd, l, ub_abd,
 1202                     offsetof(vdev_label_t, vl_uberblock),
 1203                     VDEV_UBERBLOCK_RING, NULL, NULL, flags);
 1204         }
 1205 
 1206         error = zio_wait(zio);
 1207 
 1208         if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
 1209                 flags |= ZIO_FLAG_TRYHARD;
 1210                 goto retry;
 1211         }
 1212 
 1213         nvlist_free(label);
 1214         abd_free(bootenv);
 1215         abd_free(ub_abd);
 1216         abd_free(vp_abd);
 1217 
 1218         /*
 1219          * If this vdev hasn't been previously identified as a spare, then we
 1220          * mark it as such only if a) we are labeling it as a spare, or b) it
 1221          * exists as a spare elsewhere in the system.  Do the same for
 1222          * level 2 ARC devices.
 1223          */
 1224         if (error == 0 && !vd->vdev_isspare &&
 1225             (reason == VDEV_LABEL_SPARE ||
 1226             spa_spare_exists(vd->vdev_guid, NULL, NULL)))
 1227                 spa_spare_add(vd);
 1228 
 1229         if (error == 0 && !vd->vdev_isl2cache &&
 1230             (reason == VDEV_LABEL_L2CACHE ||
 1231             spa_l2cache_exists(vd->vdev_guid, NULL)))
 1232                 spa_l2cache_add(vd);
 1233 
 1234         return (error);
 1235 }
 1236 
 1237 /*
 1238  * Done callback for vdev_label_read_bootenv_impl. If this is the first
 1239  * callback to finish, store our abd in the callback pointer. Otherwise, we
 1240  * just free our abd and return.
 1241  */
 1242 static void
 1243 vdev_label_read_bootenv_done(zio_t *zio)
 1244 {
 1245         zio_t *rio = zio->io_private;
 1246         abd_t **cbp = rio->io_private;
 1247 
 1248         ASSERT3U(zio->io_size, ==, VDEV_PAD_SIZE);
 1249 
 1250         if (zio->io_error == 0) {
 1251                 mutex_enter(&rio->io_lock);
 1252                 if (*cbp == NULL) {
 1253                         /* Will free this buffer in vdev_label_read_bootenv. */
 1254                         *cbp = zio->io_abd;
 1255                 } else {
 1256                         abd_free(zio->io_abd);
 1257                 }
 1258                 mutex_exit(&rio->io_lock);
 1259         } else {
 1260                 abd_free(zio->io_abd);
 1261         }
 1262 }
 1263 
 1264 static void
 1265 vdev_label_read_bootenv_impl(zio_t *zio, vdev_t *vd, int flags)
 1266 {
 1267         for (int c = 0; c < vd->vdev_children; c++)
 1268                 vdev_label_read_bootenv_impl(zio, vd->vdev_child[c], flags);
 1269 
 1270         /*
 1271          * We just use the first label that has a correct checksum; the
 1272          * bootloader should have rewritten them all to be the same on boot,
 1273          * and any changes we made since boot have been the same across all
 1274          * labels.
 1275          */
 1276         if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
 1277                 for (int l = 0; l < VDEV_LABELS; l++) {
 1278                         vdev_label_read(zio, vd, l,
 1279                             abd_alloc_linear(VDEV_PAD_SIZE, B_FALSE),
 1280                             offsetof(vdev_label_t, vl_be), VDEV_PAD_SIZE,
 1281                             vdev_label_read_bootenv_done, zio, flags);
 1282                 }
 1283         }
 1284 }
 1285 
 1286 int
 1287 vdev_label_read_bootenv(vdev_t *rvd, nvlist_t *bootenv)
 1288 {
 1289         nvlist_t *config;
 1290         spa_t *spa = rvd->vdev_spa;
 1291         abd_t *abd = NULL;
 1292         int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
 1293             ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
 1294 
 1295         ASSERT(bootenv);
 1296         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
 1297 
 1298         zio_t *zio = zio_root(spa, NULL, &abd, flags);
 1299         vdev_label_read_bootenv_impl(zio, rvd, flags);
 1300         int err = zio_wait(zio);
 1301 
 1302         if (abd != NULL) {
 1303                 char *buf;
 1304                 vdev_boot_envblock_t *vbe = abd_to_buf(abd);
 1305 
 1306                 vbe->vbe_version = ntohll(vbe->vbe_version);
 1307                 switch (vbe->vbe_version) {
 1308                 case VB_RAW:
 1309                         /*
 1310                          * if we have textual data in vbe_bootenv, create nvlist
 1311                          * with key "envmap".
 1312                          */
 1313                         fnvlist_add_uint64(bootenv, BOOTENV_VERSION, VB_RAW);
 1314                         vbe->vbe_bootenv[sizeof (vbe->vbe_bootenv) - 1] = '\0';
 1315                         fnvlist_add_string(bootenv, GRUB_ENVMAP,
 1316                             vbe->vbe_bootenv);
 1317                         break;
 1318 
 1319                 case VB_NVLIST:
 1320                         err = nvlist_unpack(vbe->vbe_bootenv,
 1321                             sizeof (vbe->vbe_bootenv), &config, 0);
 1322                         if (err == 0) {
 1323                                 fnvlist_merge(bootenv, config);
 1324                                 nvlist_free(config);
 1325                                 break;
 1326                         }
 1327                         zfs_fallthrough;
 1328                 default:
 1329                         /* Check for FreeBSD zfs bootonce command string */
 1330                         buf = abd_to_buf(abd);
 1331                         if (*buf == '\0') {
 1332                                 fnvlist_add_uint64(bootenv, BOOTENV_VERSION,
 1333                                     VB_NVLIST);
 1334                                 break;
 1335                         }
 1336                         fnvlist_add_string(bootenv, FREEBSD_BOOTONCE, buf);
 1337                 }
 1338 
 1339                 /*
 1340                  * abd was allocated in vdev_label_read_bootenv_impl()
 1341                  */
 1342                 abd_free(abd);
 1343                 /*
 1344                  * If we managed to read any successfully,
 1345                  * return success.
 1346                  */
 1347                 return (0);
 1348         }
 1349         return (err);
 1350 }
 1351 
 1352 int
 1353 vdev_label_write_bootenv(vdev_t *vd, nvlist_t *env)
 1354 {
 1355         zio_t *zio;
 1356         spa_t *spa = vd->vdev_spa;
 1357         vdev_boot_envblock_t *bootenv;
 1358         int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
 1359         int error;
 1360         size_t nvsize;
 1361         char *nvbuf;
 1362 
 1363         error = nvlist_size(env, &nvsize, NV_ENCODE_XDR);
 1364         if (error != 0)
 1365                 return (SET_ERROR(error));
 1366 
 1367         if (nvsize >= sizeof (bootenv->vbe_bootenv)) {
 1368                 return (SET_ERROR(E2BIG));
 1369         }
 1370 
 1371         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
 1372 
 1373         error = ENXIO;
 1374         for (int c = 0; c < vd->vdev_children; c++) {
 1375                 int child_err;
 1376 
 1377                 child_err = vdev_label_write_bootenv(vd->vdev_child[c], env);
 1378                 /*
 1379                  * As long as any of the disks managed to write all of their
 1380                  * labels successfully, return success.
 1381                  */
 1382                 if (child_err == 0)
 1383                         error = child_err;
 1384         }
 1385 
 1386         if (!vd->vdev_ops->vdev_op_leaf || vdev_is_dead(vd) ||
 1387             !vdev_writeable(vd)) {
 1388                 return (error);
 1389         }
 1390         ASSERT3U(sizeof (*bootenv), ==, VDEV_PAD_SIZE);
 1391         abd_t *abd = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE);
 1392         abd_zero(abd, VDEV_PAD_SIZE);
 1393 
 1394         bootenv = abd_borrow_buf_copy(abd, VDEV_PAD_SIZE);
 1395         nvbuf = bootenv->vbe_bootenv;
 1396         nvsize = sizeof (bootenv->vbe_bootenv);
 1397 
 1398         bootenv->vbe_version = fnvlist_lookup_uint64(env, BOOTENV_VERSION);
 1399         switch (bootenv->vbe_version) {
 1400         case VB_RAW:
 1401                 if (nvlist_lookup_string(env, GRUB_ENVMAP, &nvbuf) == 0) {
 1402                         (void) strlcpy(bootenv->vbe_bootenv, nvbuf, nvsize);
 1403                 }
 1404                 error = 0;
 1405                 break;
 1406 
 1407         case VB_NVLIST:
 1408                 error = nvlist_pack(env, &nvbuf, &nvsize, NV_ENCODE_XDR,
 1409                     KM_SLEEP);
 1410                 break;
 1411 
 1412         default:
 1413                 error = EINVAL;
 1414                 break;
 1415         }
 1416 
 1417         if (error == 0) {
 1418                 bootenv->vbe_version = htonll(bootenv->vbe_version);
 1419                 abd_return_buf_copy(abd, bootenv, VDEV_PAD_SIZE);
 1420         } else {
 1421                 abd_free(abd);
 1422                 return (SET_ERROR(error));
 1423         }
 1424 
 1425 retry:
 1426         zio = zio_root(spa, NULL, NULL, flags);
 1427         for (int l = 0; l < VDEV_LABELS; l++) {
 1428                 vdev_label_write(zio, vd, l, abd,
 1429                     offsetof(vdev_label_t, vl_be),
 1430                     VDEV_PAD_SIZE, NULL, NULL, flags);
 1431         }
 1432 
 1433         error = zio_wait(zio);
 1434         if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
 1435                 flags |= ZIO_FLAG_TRYHARD;
 1436                 goto retry;
 1437         }
 1438 
 1439         abd_free(abd);
 1440         return (error);
 1441 }
 1442 
 1443 /*
 1444  * ==========================================================================
 1445  * uberblock load/sync
 1446  * ==========================================================================
 1447  */
 1448 
 1449 /*
 1450  * Consider the following situation: txg is safely synced to disk.  We've
 1451  * written the first uberblock for txg + 1, and then we lose power.  When we
 1452  * come back up, we fail to see the uberblock for txg + 1 because, say,
 1453  * it was on a mirrored device and the replica to which we wrote txg + 1
 1454  * is now offline.  If we then make some changes and sync txg + 1, and then
 1455  * the missing replica comes back, then for a few seconds we'll have two
 1456  * conflicting uberblocks on disk with the same txg.  The solution is simple:
 1457  * among uberblocks with equal txg, choose the one with the latest timestamp.
 1458  */
 1459 static int
 1460 vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2)
 1461 {
 1462         int cmp = TREE_CMP(ub1->ub_txg, ub2->ub_txg);
 1463 
 1464         if (likely(cmp))
 1465                 return (cmp);
 1466 
 1467         cmp = TREE_CMP(ub1->ub_timestamp, ub2->ub_timestamp);
 1468         if (likely(cmp))
 1469                 return (cmp);
 1470 
 1471         /*
 1472          * If MMP_VALID(ub) && MMP_SEQ_VALID(ub) then the host has an MMP-aware
 1473          * ZFS, e.g. OpenZFS >= 0.7.
 1474          *
 1475          * If one ub has MMP and the other does not, they were written by
 1476          * different hosts, which matters for MMP.  So we treat no MMP/no SEQ as
 1477          * a 0 value.
 1478          *
 1479          * Since timestamp and txg are the same if we get this far, either is
 1480          * acceptable for importing the pool.
 1481          */
 1482         unsigned int seq1 = 0;
 1483         unsigned int seq2 = 0;
 1484 
 1485         if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1))
 1486                 seq1 = MMP_SEQ(ub1);
 1487 
 1488         if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2))
 1489                 seq2 = MMP_SEQ(ub2);
 1490 
 1491         return (TREE_CMP(seq1, seq2));
 1492 }
 1493 
 1494 struct ubl_cbdata {
 1495         uberblock_t     *ubl_ubbest;    /* Best uberblock */
 1496         vdev_t          *ubl_vd;        /* vdev associated with the above */
 1497 };
 1498 
 1499 static void
 1500 vdev_uberblock_load_done(zio_t *zio)
 1501 {
 1502         vdev_t *vd = zio->io_vd;
 1503         spa_t *spa = zio->io_spa;
 1504         zio_t *rio = zio->io_private;
 1505         uberblock_t *ub = abd_to_buf(zio->io_abd);
 1506         struct ubl_cbdata *cbp = rio->io_private;
 1507 
 1508         ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd));
 1509 
 1510         if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
 1511                 mutex_enter(&rio->io_lock);
 1512                 if (ub->ub_txg <= spa->spa_load_max_txg &&
 1513                     vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) {
 1514                         /*
 1515                          * Keep track of the vdev in which this uberblock
 1516                          * was found. We will use this information later
 1517                          * to obtain the config nvlist associated with
 1518                          * this uberblock.
 1519                          */
 1520                         *cbp->ubl_ubbest = *ub;
 1521                         cbp->ubl_vd = vd;
 1522                 }
 1523                 mutex_exit(&rio->io_lock);
 1524         }
 1525 
 1526         abd_free(zio->io_abd);
 1527 }
 1528 
 1529 static void
 1530 vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags,
 1531     struct ubl_cbdata *cbp)
 1532 {
 1533         for (int c = 0; c < vd->vdev_children; c++)
 1534                 vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp);
 1535 
 1536         if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd) &&
 1537             vd->vdev_ops != &vdev_draid_spare_ops) {
 1538                 for (int l = 0; l < VDEV_LABELS; l++) {
 1539                         for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
 1540                                 vdev_label_read(zio, vd, l,
 1541                                     abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd),
 1542                                     B_TRUE), VDEV_UBERBLOCK_OFFSET(vd, n),
 1543                                     VDEV_UBERBLOCK_SIZE(vd),
 1544                                     vdev_uberblock_load_done, zio, flags);
 1545                         }
 1546                 }
 1547         }
 1548 }
 1549 
 1550 /*
 1551  * Reads the 'best' uberblock from disk along with its associated
 1552  * configuration. First, we read the uberblock array of each label of each
 1553  * vdev, keeping track of the uberblock with the highest txg in each array.
 1554  * Then, we read the configuration from the same vdev as the best uberblock.
 1555  */
 1556 void
 1557 vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config)
 1558 {
 1559         zio_t *zio;
 1560         spa_t *spa = rvd->vdev_spa;
 1561         struct ubl_cbdata cb;
 1562         int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
 1563             ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
 1564 
 1565         ASSERT(ub);
 1566         ASSERT(config);
 1567 
 1568         memset(ub, 0, sizeof (uberblock_t));
 1569         *config = NULL;
 1570 
 1571         cb.ubl_ubbest = ub;
 1572         cb.ubl_vd = NULL;
 1573 
 1574         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
 1575         zio = zio_root(spa, NULL, &cb, flags);
 1576         vdev_uberblock_load_impl(zio, rvd, flags, &cb);
 1577         (void) zio_wait(zio);
 1578 
 1579         /*
 1580          * It's possible that the best uberblock was discovered on a label
 1581          * that has a configuration which was written in a future txg.
 1582          * Search all labels on this vdev to find the configuration that
 1583          * matches the txg for our uberblock.
 1584          */
 1585         if (cb.ubl_vd != NULL) {
 1586                 vdev_dbgmsg(cb.ubl_vd, "best uberblock found for spa %s. "
 1587                     "txg %llu", spa->spa_name, (u_longlong_t)ub->ub_txg);
 1588 
 1589                 *config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg);
 1590                 if (*config == NULL && spa->spa_extreme_rewind) {
 1591                         vdev_dbgmsg(cb.ubl_vd, "failed to read label config. "
 1592                             "Trying again without txg restrictions.");
 1593                         *config = vdev_label_read_config(cb.ubl_vd, UINT64_MAX);
 1594                 }
 1595                 if (*config == NULL) {
 1596                         vdev_dbgmsg(cb.ubl_vd, "failed to read label config");
 1597                 }
 1598         }
 1599         spa_config_exit(spa, SCL_ALL, FTAG);
 1600 }
 1601 
 1602 /*
 1603  * For use when a leaf vdev is expanded.
 1604  * The location of labels 2 and 3 changed, and at the new location the
 1605  * uberblock rings are either empty or contain garbage.  The sync will write
 1606  * new configs there because the vdev is dirty, but expansion also needs the
 1607  * uberblock rings copied.  Read them from label 0 which did not move.
 1608  *
 1609  * Since the point is to populate labels {2,3} with valid uberblocks,
 1610  * we zero uberblocks we fail to read or which are not valid.
 1611  */
 1612 
 1613 static void
 1614 vdev_copy_uberblocks(vdev_t *vd)
 1615 {
 1616         abd_t *ub_abd;
 1617         zio_t *write_zio;
 1618         int locks = (SCL_L2ARC | SCL_ZIO);
 1619         int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
 1620             ZIO_FLAG_SPECULATIVE;
 1621 
 1622         ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_READER) ==
 1623             SCL_STATE);
 1624         ASSERT(vd->vdev_ops->vdev_op_leaf);
 1625 
 1626         /*
 1627          * No uberblocks are stored on distributed spares, they may be
 1628          * safely skipped when expanding a leaf vdev.
 1629          */
 1630         if (vd->vdev_ops == &vdev_draid_spare_ops)
 1631                 return;
 1632 
 1633         spa_config_enter(vd->vdev_spa, locks, FTAG, RW_READER);
 1634 
 1635         ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd), B_TRUE);
 1636 
 1637         write_zio = zio_root(vd->vdev_spa, NULL, NULL, flags);
 1638         for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
 1639                 const int src_label = 0;
 1640                 zio_t *zio;
 1641 
 1642                 zio = zio_root(vd->vdev_spa, NULL, NULL, flags);
 1643                 vdev_label_read(zio, vd, src_label, ub_abd,
 1644                     VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
 1645                     NULL, NULL, flags);
 1646 
 1647                 if (zio_wait(zio) || uberblock_verify(abd_to_buf(ub_abd)))
 1648                         abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd));
 1649 
 1650                 for (int l = 2; l < VDEV_LABELS; l++)
 1651                         vdev_label_write(write_zio, vd, l, ub_abd,
 1652                             VDEV_UBERBLOCK_OFFSET(vd, n),
 1653                             VDEV_UBERBLOCK_SIZE(vd), NULL, NULL,
 1654                             flags | ZIO_FLAG_DONT_PROPAGATE);
 1655         }
 1656         (void) zio_wait(write_zio);
 1657 
 1658         spa_config_exit(vd->vdev_spa, locks, FTAG);
 1659 
 1660         abd_free(ub_abd);
 1661 }
 1662 
 1663 /*
 1664  * On success, increment root zio's count of good writes.
 1665  * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
 1666  */
 1667 static void
 1668 vdev_uberblock_sync_done(zio_t *zio)
 1669 {
 1670         uint64_t *good_writes = zio->io_private;
 1671 
 1672         if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
 1673                 atomic_inc_64(good_writes);
 1674 }
 1675 
 1676 /*
 1677  * Write the uberblock to all labels of all leaves of the specified vdev.
 1678  */
 1679 static void
 1680 vdev_uberblock_sync(zio_t *zio, uint64_t *good_writes,
 1681     uberblock_t *ub, vdev_t *vd, int flags)
 1682 {
 1683         for (uint64_t c = 0; c < vd->vdev_children; c++) {
 1684                 vdev_uberblock_sync(zio, good_writes,
 1685                     ub, vd->vdev_child[c], flags);
 1686         }
 1687 
 1688         if (!vd->vdev_ops->vdev_op_leaf)
 1689                 return;
 1690 
 1691         if (!vdev_writeable(vd))
 1692                 return;
 1693 
 1694         /*
 1695          * There's no need to write uberblocks to a distributed spare, they
 1696          * are already stored on all the leaves of the parent dRAID.  For
 1697          * this same reason vdev_uberblock_load_impl() skips distributed
 1698          * spares when reading uberblocks.
 1699          */
 1700         if (vd->vdev_ops == &vdev_draid_spare_ops)
 1701                 return;
 1702 
 1703         /* If the vdev was expanded, need to copy uberblock rings. */
 1704         if (vd->vdev_state == VDEV_STATE_HEALTHY &&
 1705             vd->vdev_copy_uberblocks == B_TRUE) {
 1706                 vdev_copy_uberblocks(vd);
 1707                 vd->vdev_copy_uberblocks = B_FALSE;
 1708         }
 1709 
 1710         int m = spa_multihost(vd->vdev_spa) ? MMP_BLOCKS_PER_LABEL : 0;
 1711         int n = ub->ub_txg % (VDEV_UBERBLOCK_COUNT(vd) - m);
 1712 
 1713         /* Copy the uberblock_t into the ABD */
 1714         abd_t *ub_abd = abd_alloc_for_io(VDEV_UBERBLOCK_SIZE(vd), B_TRUE);
 1715         abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd));
 1716         abd_copy_from_buf(ub_abd, ub, sizeof (uberblock_t));
 1717 
 1718         for (int l = 0; l < VDEV_LABELS; l++)
 1719                 vdev_label_write(zio, vd, l, ub_abd,
 1720                     VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
 1721                     vdev_uberblock_sync_done, good_writes,
 1722                     flags | ZIO_FLAG_DONT_PROPAGATE);
 1723 
 1724         abd_free(ub_abd);
 1725 }
 1726 
 1727 /* Sync the uberblocks to all vdevs in svd[] */
 1728 static int
 1729 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
 1730 {
 1731         spa_t *spa = svd[0]->vdev_spa;
 1732         zio_t *zio;
 1733         uint64_t good_writes = 0;
 1734 
 1735         zio = zio_root(spa, NULL, NULL, flags);
 1736 
 1737         for (int v = 0; v < svdcount; v++)
 1738                 vdev_uberblock_sync(zio, &good_writes, ub, svd[v], flags);
 1739 
 1740         (void) zio_wait(zio);
 1741 
 1742         /*
 1743          * Flush the uberblocks to disk.  This ensures that the odd labels
 1744          * are no longer needed (because the new uberblocks and the even
 1745          * labels are safely on disk), so it is safe to overwrite them.
 1746          */
 1747         zio = zio_root(spa, NULL, NULL, flags);
 1748 
 1749         for (int v = 0; v < svdcount; v++) {
 1750                 if (vdev_writeable(svd[v])) {
 1751                         zio_flush(zio, svd[v]);
 1752                 }
 1753         }
 1754 
 1755         (void) zio_wait(zio);
 1756 
 1757         return (good_writes >= 1 ? 0 : EIO);
 1758 }
 1759 
 1760 /*
 1761  * On success, increment the count of good writes for our top-level vdev.
 1762  */
 1763 static void
 1764 vdev_label_sync_done(zio_t *zio)
 1765 {
 1766         uint64_t *good_writes = zio->io_private;
 1767 
 1768         if (zio->io_error == 0)
 1769                 atomic_inc_64(good_writes);
 1770 }
 1771 
 1772 /*
 1773  * If there weren't enough good writes, indicate failure to the parent.
 1774  */
 1775 static void
 1776 vdev_label_sync_top_done(zio_t *zio)
 1777 {
 1778         uint64_t *good_writes = zio->io_private;
 1779 
 1780         if (*good_writes == 0)
 1781                 zio->io_error = SET_ERROR(EIO);
 1782 
 1783         kmem_free(good_writes, sizeof (uint64_t));
 1784 }
 1785 
 1786 /*
 1787  * We ignore errors for log and cache devices, simply free the private data.
 1788  */
 1789 static void
 1790 vdev_label_sync_ignore_done(zio_t *zio)
 1791 {
 1792         kmem_free(zio->io_private, sizeof (uint64_t));
 1793 }
 1794 
 1795 /*
 1796  * Write all even or odd labels to all leaves of the specified vdev.
 1797  */
 1798 static void
 1799 vdev_label_sync(zio_t *zio, uint64_t *good_writes,
 1800     vdev_t *vd, int l, uint64_t txg, int flags)
 1801 {
 1802         nvlist_t *label;
 1803         vdev_phys_t *vp;
 1804         abd_t *vp_abd;
 1805         char *buf;
 1806         size_t buflen;
 1807 
 1808         for (int c = 0; c < vd->vdev_children; c++) {
 1809                 vdev_label_sync(zio, good_writes,
 1810                     vd->vdev_child[c], l, txg, flags);
 1811         }
 1812 
 1813         if (!vd->vdev_ops->vdev_op_leaf)
 1814                 return;
 1815 
 1816         if (!vdev_writeable(vd))
 1817                 return;
 1818 
 1819         /*
 1820          * The top-level config never needs to be written to a distributed
 1821          * spare.  When read vdev_dspare_label_read_config() will generate
 1822          * the config for the vdev_label_read_config().
 1823          */
 1824         if (vd->vdev_ops == &vdev_draid_spare_ops)
 1825                 return;
 1826 
 1827         /*
 1828          * Generate a label describing the top-level config to which we belong.
 1829          */
 1830         label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
 1831 
 1832         vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
 1833         abd_zero(vp_abd, sizeof (vdev_phys_t));
 1834         vp = abd_to_buf(vp_abd);
 1835 
 1836         buf = vp->vp_nvlist;
 1837         buflen = sizeof (vp->vp_nvlist);
 1838 
 1839         if (!nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP)) {
 1840                 for (; l < VDEV_LABELS; l += 2) {
 1841                         vdev_label_write(zio, vd, l, vp_abd,
 1842                             offsetof(vdev_label_t, vl_vdev_phys),
 1843                             sizeof (vdev_phys_t),
 1844                             vdev_label_sync_done, good_writes,
 1845                             flags | ZIO_FLAG_DONT_PROPAGATE);
 1846                 }
 1847         }
 1848 
 1849         abd_free(vp_abd);
 1850         nvlist_free(label);
 1851 }
 1852 
 1853 static int
 1854 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags)
 1855 {
 1856         list_t *dl = &spa->spa_config_dirty_list;
 1857         vdev_t *vd;
 1858         zio_t *zio;
 1859         int error;
 1860 
 1861         /*
 1862          * Write the new labels to disk.
 1863          */
 1864         zio = zio_root(spa, NULL, NULL, flags);
 1865 
 1866         for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) {
 1867                 uint64_t *good_writes;
 1868 
 1869                 ASSERT(!vd->vdev_ishole);
 1870 
 1871                 good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
 1872                 zio_t *vio = zio_null(zio, spa, NULL,
 1873                     (vd->vdev_islog || vd->vdev_aux != NULL) ?
 1874                     vdev_label_sync_ignore_done : vdev_label_sync_top_done,
 1875                     good_writes, flags);
 1876                 vdev_label_sync(vio, good_writes, vd, l, txg, flags);
 1877                 zio_nowait(vio);
 1878         }
 1879 
 1880         error = zio_wait(zio);
 1881 
 1882         /*
 1883          * Flush the new labels to disk.
 1884          */
 1885         zio = zio_root(spa, NULL, NULL, flags);
 1886 
 1887         for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd))
 1888                 zio_flush(zio, vd);
 1889 
 1890         (void) zio_wait(zio);
 1891 
 1892         return (error);
 1893 }
 1894 
 1895 /*
 1896  * Sync the uberblock and any changes to the vdev configuration.
 1897  *
 1898  * The order of operations is carefully crafted to ensure that
 1899  * if the system panics or loses power at any time, the state on disk
 1900  * is still transactionally consistent.  The in-line comments below
 1901  * describe the failure semantics at each stage.
 1902  *
 1903  * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
 1904  * at any time, you can just call it again, and it will resume its work.
 1905  */
 1906 int
 1907 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg)
 1908 {
 1909         spa_t *spa = svd[0]->vdev_spa;
 1910         uberblock_t *ub = &spa->spa_uberblock;
 1911         int error = 0;
 1912         int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
 1913 
 1914         ASSERT(svdcount != 0);
 1915 retry:
 1916         /*
 1917          * Normally, we don't want to try too hard to write every label and
 1918          * uberblock.  If there is a flaky disk, we don't want the rest of the
 1919          * sync process to block while we retry.  But if we can't write a
 1920          * single label out, we should retry with ZIO_FLAG_TRYHARD before
 1921          * bailing out and declaring the pool faulted.
 1922          */
 1923         if (error != 0) {
 1924                 if ((flags & ZIO_FLAG_TRYHARD) != 0)
 1925                         return (error);
 1926                 flags |= ZIO_FLAG_TRYHARD;
 1927         }
 1928 
 1929         ASSERT(ub->ub_txg <= txg);
 1930 
 1931         /*
 1932          * If this isn't a resync due to I/O errors,
 1933          * and nothing changed in this transaction group,
 1934          * and the vdev configuration hasn't changed,
 1935          * then there's nothing to do.
 1936          */
 1937         if (ub->ub_txg < txg) {
 1938                 boolean_t changed = uberblock_update(ub, spa->spa_root_vdev,
 1939                     txg, spa->spa_mmp.mmp_delay);
 1940 
 1941                 if (!changed && list_is_empty(&spa->spa_config_dirty_list))
 1942                         return (0);
 1943         }
 1944 
 1945         if (txg > spa_freeze_txg(spa))
 1946                 return (0);
 1947 
 1948         ASSERT(txg <= spa->spa_final_txg);
 1949 
 1950         /*
 1951          * Flush the write cache of every disk that's been written to
 1952          * in this transaction group.  This ensures that all blocks
 1953          * written in this txg will be committed to stable storage
 1954          * before any uberblock that references them.
 1955          */
 1956         zio_t *zio = zio_root(spa, NULL, NULL, flags);
 1957 
 1958         for (vdev_t *vd =
 1959             txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd != NULL;
 1960             vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)))
 1961                 zio_flush(zio, vd);
 1962 
 1963         (void) zio_wait(zio);
 1964 
 1965         /*
 1966          * Sync out the even labels (L0, L2) for every dirty vdev.  If the
 1967          * system dies in the middle of this process, that's OK: all of the
 1968          * even labels that made it to disk will be newer than any uberblock,
 1969          * and will therefore be considered invalid.  The odd labels (L1, L3),
 1970          * which have not yet been touched, will still be valid.  We flush
 1971          * the new labels to disk to ensure that all even-label updates
 1972          * are committed to stable storage before the uberblock update.
 1973          */
 1974         if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0) {
 1975                 if ((flags & ZIO_FLAG_TRYHARD) != 0) {
 1976                         zfs_dbgmsg("vdev_label_sync_list() returned error %d "
 1977                             "for pool '%s' when syncing out the even labels "
 1978                             "of dirty vdevs", error, spa_name(spa));
 1979                 }
 1980                 goto retry;
 1981         }
 1982 
 1983         /*
 1984          * Sync the uberblocks to all vdevs in svd[].
 1985          * If the system dies in the middle of this step, there are two cases
 1986          * to consider, and the on-disk state is consistent either way:
 1987          *
 1988          * (1)  If none of the new uberblocks made it to disk, then the
 1989          *      previous uberblock will be the newest, and the odd labels
 1990          *      (which had not yet been touched) will be valid with respect
 1991          *      to that uberblock.
 1992          *
 1993          * (2)  If one or more new uberblocks made it to disk, then they
 1994          *      will be the newest, and the even labels (which had all
 1995          *      been successfully committed) will be valid with respect
 1996          *      to the new uberblocks.
 1997          */
 1998         if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0) {
 1999                 if ((flags & ZIO_FLAG_TRYHARD) != 0) {
 2000                         zfs_dbgmsg("vdev_uberblock_sync_list() returned error "
 2001                             "%d for pool '%s'", error, spa_name(spa));
 2002                 }
 2003                 goto retry;
 2004         }
 2005 
 2006         if (spa_multihost(spa))
 2007                 mmp_update_uberblock(spa, ub);
 2008 
 2009         /*
 2010          * Sync out odd labels for every dirty vdev.  If the system dies
 2011          * in the middle of this process, the even labels and the new
 2012          * uberblocks will suffice to open the pool.  The next time
 2013          * the pool is opened, the first thing we'll do -- before any
 2014          * user data is modified -- is mark every vdev dirty so that
 2015          * all labels will be brought up to date.  We flush the new labels
 2016          * to disk to ensure that all odd-label updates are committed to
 2017          * stable storage before the next transaction group begins.
 2018          */
 2019         if ((error = vdev_label_sync_list(spa, 1, txg, flags)) != 0) {
 2020                 if ((flags & ZIO_FLAG_TRYHARD) != 0) {
 2021                         zfs_dbgmsg("vdev_label_sync_list() returned error %d "
 2022                             "for pool '%s' when syncing out the odd labels of "
 2023                             "dirty vdevs", error, spa_name(spa));
 2024                 }
 2025                 goto retry;
 2026         }
 2027 
 2028         return (0);
 2029 }

Cache object: a2166071d55a1a002a969ff202d17e39


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.