The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/contrib/openzfs/module/zfs/vdev_raidz_math.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * CDDL HEADER START
    3  *
    4  * The contents of this file are subject to the terms of the
    5  * Common Development and Distribution License (the "License").
    6  * You may not use this file except in compliance with the License.
    7  *
    8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
    9  * or https://opensource.org/licenses/CDDL-1.0.
   10  * See the License for the specific language governing permissions
   11  * and limitations under the License.
   12  *
   13  * When distributing Covered Code, include this CDDL HEADER in each
   14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
   15  * If applicable, add the following below this CDDL HEADER, with the
   16  * fields enclosed by brackets "[]" replaced with your own identifying
   17  * information: Portions Copyright [yyyy] [name of copyright owner]
   18  *
   19  * CDDL HEADER END
   20  */
   21 /*
   22  * Copyright (C) 2016 Gvozden Nešković. All rights reserved.
   23  */
   24 
   25 #include <sys/zfs_context.h>
   26 #include <sys/types.h>
   27 #include <sys/zio.h>
   28 #include <sys/debug.h>
   29 #include <sys/zfs_debug.h>
   30 #include <sys/vdev_raidz.h>
   31 #include <sys/vdev_raidz_impl.h>
   32 #include <sys/simd.h>
   33 
   34 /* Opaque implementation with NULL methods to represent original methods */
   35 static const raidz_impl_ops_t vdev_raidz_original_impl = {
   36         .name = "original",
   37         .is_supported = raidz_will_scalar_work,
   38 };
   39 
   40 /* RAIDZ parity op that contain the fastest methods */
   41 static raidz_impl_ops_t vdev_raidz_fastest_impl = {
   42         .name = "fastest"
   43 };
   44 
   45 /* All compiled in implementations */
   46 static const raidz_impl_ops_t *const raidz_all_maths[] = {
   47         &vdev_raidz_original_impl,
   48         &vdev_raidz_scalar_impl,
   49 #if defined(__x86_64) && defined(HAVE_SSE2)     /* only x86_64 for now */
   50         &vdev_raidz_sse2_impl,
   51 #endif
   52 #if defined(__x86_64) && defined(HAVE_SSSE3)    /* only x86_64 for now */
   53         &vdev_raidz_ssse3_impl,
   54 #endif
   55 #if defined(__x86_64) && defined(HAVE_AVX2)     /* only x86_64 for now */
   56         &vdev_raidz_avx2_impl,
   57 #endif
   58 #if defined(__x86_64) && defined(HAVE_AVX512F)  /* only x86_64 for now */
   59         &vdev_raidz_avx512f_impl,
   60 #endif
   61 #if defined(__x86_64) && defined(HAVE_AVX512BW) /* only x86_64 for now */
   62         &vdev_raidz_avx512bw_impl,
   63 #endif
   64 #if defined(__aarch64__) && !defined(__FreeBSD__)
   65         &vdev_raidz_aarch64_neon_impl,
   66         &vdev_raidz_aarch64_neonx2_impl,
   67 #endif
   68 #if defined(__powerpc__) && defined(__altivec__)
   69         &vdev_raidz_powerpc_altivec_impl,
   70 #endif
   71 };
   72 
   73 /* Indicate that benchmark has been completed */
   74 static boolean_t raidz_math_initialized = B_FALSE;
   75 
   76 /* Select raidz implementation */
   77 #define IMPL_FASTEST    (UINT32_MAX)
   78 #define IMPL_CYCLE      (UINT32_MAX - 1)
   79 #define IMPL_ORIGINAL   (0)
   80 #define IMPL_SCALAR     (1)
   81 
   82 #define RAIDZ_IMPL_READ(i)      (*(volatile uint32_t *) &(i))
   83 
   84 static uint32_t zfs_vdev_raidz_impl = IMPL_SCALAR;
   85 static uint32_t user_sel_impl = IMPL_FASTEST;
   86 
   87 /* Hold all supported implementations */
   88 static size_t raidz_supp_impl_cnt = 0;
   89 static raidz_impl_ops_t *raidz_supp_impl[ARRAY_SIZE(raidz_all_maths)];
   90 
   91 #if defined(_KERNEL)
   92 /*
   93  * kstats values for supported implementations
   94  * Values represent per disk throughput of 8 disk+parity raidz vdev [B/s]
   95  */
   96 static raidz_impl_kstat_t raidz_impl_kstats[ARRAY_SIZE(raidz_all_maths) + 1];
   97 
   98 /* kstat for benchmarked implementations */
   99 static kstat_t *raidz_math_kstat = NULL;
  100 #endif
  101 
  102 /*
  103  * Returns the RAIDZ operations for raidz_map() parity calculations.   When
  104  * a SIMD implementation is not allowed in the current context, then fallback
  105  * to the fastest generic implementation.
  106  */
  107 const raidz_impl_ops_t *
  108 vdev_raidz_math_get_ops(void)
  109 {
  110         if (!kfpu_allowed())
  111                 return (&vdev_raidz_scalar_impl);
  112 
  113         raidz_impl_ops_t *ops = NULL;
  114         const uint32_t impl = RAIDZ_IMPL_READ(zfs_vdev_raidz_impl);
  115 
  116         switch (impl) {
  117         case IMPL_FASTEST:
  118                 ASSERT(raidz_math_initialized);
  119                 ops = &vdev_raidz_fastest_impl;
  120                 break;
  121         case IMPL_CYCLE:
  122                 /* Cycle through all supported implementations */
  123                 ASSERT(raidz_math_initialized);
  124                 ASSERT3U(raidz_supp_impl_cnt, >, 0);
  125                 static size_t cycle_impl_idx = 0;
  126                 size_t idx = (++cycle_impl_idx) % raidz_supp_impl_cnt;
  127                 ops = raidz_supp_impl[idx];
  128                 break;
  129         case IMPL_ORIGINAL:
  130                 ops = (raidz_impl_ops_t *)&vdev_raidz_original_impl;
  131                 break;
  132         case IMPL_SCALAR:
  133                 ops = (raidz_impl_ops_t *)&vdev_raidz_scalar_impl;
  134                 break;
  135         default:
  136                 ASSERT3U(impl, <, raidz_supp_impl_cnt);
  137                 ASSERT3U(raidz_supp_impl_cnt, >, 0);
  138                 if (impl < ARRAY_SIZE(raidz_all_maths))
  139                         ops = raidz_supp_impl[impl];
  140                 break;
  141         }
  142 
  143         ASSERT3P(ops, !=, NULL);
  144 
  145         return (ops);
  146 }
  147 
  148 /*
  149  * Select parity generation method for raidz_map
  150  */
  151 int
  152 vdev_raidz_math_generate(raidz_map_t *rm, raidz_row_t *rr)
  153 {
  154         raidz_gen_f gen_parity = NULL;
  155 
  156         switch (raidz_parity(rm)) {
  157                 case 1:
  158                         gen_parity = rm->rm_ops->gen[RAIDZ_GEN_P];
  159                         break;
  160                 case 2:
  161                         gen_parity = rm->rm_ops->gen[RAIDZ_GEN_PQ];
  162                         break;
  163                 case 3:
  164                         gen_parity = rm->rm_ops->gen[RAIDZ_GEN_PQR];
  165                         break;
  166                 default:
  167                         gen_parity = NULL;
  168                         cmn_err(CE_PANIC, "invalid RAID-Z configuration %llu",
  169                             (u_longlong_t)raidz_parity(rm));
  170                         break;
  171         }
  172 
  173         /* if method is NULL execute the original implementation */
  174         if (gen_parity == NULL)
  175                 return (RAIDZ_ORIGINAL_IMPL);
  176 
  177         gen_parity(rr);
  178 
  179         return (0);
  180 }
  181 
  182 static raidz_rec_f
  183 reconstruct_fun_p_sel(raidz_map_t *rm, const int *parity_valid,
  184     const int nbaddata)
  185 {
  186         if (nbaddata == 1 && parity_valid[CODE_P]) {
  187                 return (rm->rm_ops->rec[RAIDZ_REC_P]);
  188         }
  189         return ((raidz_rec_f) NULL);
  190 }
  191 
  192 static raidz_rec_f
  193 reconstruct_fun_pq_sel(raidz_map_t *rm, const int *parity_valid,
  194     const int nbaddata)
  195 {
  196         if (nbaddata == 1) {
  197                 if (parity_valid[CODE_P]) {
  198                         return (rm->rm_ops->rec[RAIDZ_REC_P]);
  199                 } else if (parity_valid[CODE_Q]) {
  200                         return (rm->rm_ops->rec[RAIDZ_REC_Q]);
  201                 }
  202         } else if (nbaddata == 2 &&
  203             parity_valid[CODE_P] && parity_valid[CODE_Q]) {
  204                 return (rm->rm_ops->rec[RAIDZ_REC_PQ]);
  205         }
  206         return ((raidz_rec_f) NULL);
  207 }
  208 
  209 static raidz_rec_f
  210 reconstruct_fun_pqr_sel(raidz_map_t *rm, const int *parity_valid,
  211     const int nbaddata)
  212 {
  213         if (nbaddata == 1) {
  214                 if (parity_valid[CODE_P]) {
  215                         return (rm->rm_ops->rec[RAIDZ_REC_P]);
  216                 } else if (parity_valid[CODE_Q]) {
  217                         return (rm->rm_ops->rec[RAIDZ_REC_Q]);
  218                 } else if (parity_valid[CODE_R]) {
  219                         return (rm->rm_ops->rec[RAIDZ_REC_R]);
  220                 }
  221         } else if (nbaddata == 2) {
  222                 if (parity_valid[CODE_P] && parity_valid[CODE_Q]) {
  223                         return (rm->rm_ops->rec[RAIDZ_REC_PQ]);
  224                 } else if (parity_valid[CODE_P] && parity_valid[CODE_R]) {
  225                         return (rm->rm_ops->rec[RAIDZ_REC_PR]);
  226                 } else if (parity_valid[CODE_Q] && parity_valid[CODE_R]) {
  227                         return (rm->rm_ops->rec[RAIDZ_REC_QR]);
  228                 }
  229         } else if (nbaddata == 3 &&
  230             parity_valid[CODE_P] && parity_valid[CODE_Q] &&
  231             parity_valid[CODE_R]) {
  232                 return (rm->rm_ops->rec[RAIDZ_REC_PQR]);
  233         }
  234         return ((raidz_rec_f) NULL);
  235 }
  236 
  237 /*
  238  * Select data reconstruction method for raidz_map
  239  * @parity_valid - Parity validity flag
  240  * @dt           - Failed data index array
  241  * @nbaddata     - Number of failed data columns
  242  */
  243 int
  244 vdev_raidz_math_reconstruct(raidz_map_t *rm, raidz_row_t *rr,
  245     const int *parity_valid, const int *dt, const int nbaddata)
  246 {
  247         raidz_rec_f rec_fn = NULL;
  248 
  249         switch (raidz_parity(rm)) {
  250         case PARITY_P:
  251                 rec_fn = reconstruct_fun_p_sel(rm, parity_valid, nbaddata);
  252                 break;
  253         case PARITY_PQ:
  254                 rec_fn = reconstruct_fun_pq_sel(rm, parity_valid, nbaddata);
  255                 break;
  256         case PARITY_PQR:
  257                 rec_fn = reconstruct_fun_pqr_sel(rm, parity_valid, nbaddata);
  258                 break;
  259         default:
  260                 cmn_err(CE_PANIC, "invalid RAID-Z configuration %llu",
  261                     (u_longlong_t)raidz_parity(rm));
  262                 break;
  263         }
  264 
  265         if (rec_fn == NULL)
  266                 return (RAIDZ_ORIGINAL_IMPL);
  267         else
  268                 return (rec_fn(rr, dt));
  269 }
  270 
  271 const char *const raidz_gen_name[] = {
  272         "gen_p", "gen_pq", "gen_pqr"
  273 };
  274 const char *const raidz_rec_name[] = {
  275         "rec_p", "rec_q", "rec_r",
  276         "rec_pq", "rec_pr", "rec_qr", "rec_pqr"
  277 };
  278 
  279 #if defined(_KERNEL)
  280 
  281 #define RAIDZ_KSTAT_LINE_LEN    (17 + 10*12 + 1)
  282 
  283 static int
  284 raidz_math_kstat_headers(char *buf, size_t size)
  285 {
  286         ASSERT3U(size, >=, RAIDZ_KSTAT_LINE_LEN);
  287 
  288         ssize_t off = kmem_scnprintf(buf, size, "%-17s", "implementation");
  289 
  290         for (int i = 0; i < ARRAY_SIZE(raidz_gen_name); i++)
  291                 off += kmem_scnprintf(buf + off, size - off, "%-16s",
  292                     raidz_gen_name[i]);
  293 
  294         for (int i = 0; i < ARRAY_SIZE(raidz_rec_name); i++)
  295                 off += kmem_scnprintf(buf + off, size - off, "%-16s",
  296                     raidz_rec_name[i]);
  297 
  298         (void) kmem_scnprintf(buf + off, size - off, "\n");
  299 
  300         return (0);
  301 }
  302 
  303 static int
  304 raidz_math_kstat_data(char *buf, size_t size, void *data)
  305 {
  306         raidz_impl_kstat_t *fstat = &raidz_impl_kstats[raidz_supp_impl_cnt];
  307         raidz_impl_kstat_t *cstat = (raidz_impl_kstat_t *)data;
  308         ssize_t off = 0;
  309         int i;
  310 
  311         ASSERT3U(size, >=, RAIDZ_KSTAT_LINE_LEN);
  312 
  313         if (cstat == fstat) {
  314                 off += kmem_scnprintf(buf + off, size - off, "%-17s",
  315                     "fastest");
  316 
  317                 for (i = 0; i < ARRAY_SIZE(raidz_gen_name); i++) {
  318                         int id = fstat->gen[i];
  319                         off += kmem_scnprintf(buf + off, size - off, "%-16s",
  320                             raidz_supp_impl[id]->name);
  321                 }
  322                 for (i = 0; i < ARRAY_SIZE(raidz_rec_name); i++) {
  323                         int id = fstat->rec[i];
  324                         off += kmem_scnprintf(buf + off, size - off, "%-16s",
  325                             raidz_supp_impl[id]->name);
  326                 }
  327         } else {
  328                 ptrdiff_t id = cstat - raidz_impl_kstats;
  329 
  330                 off += kmem_scnprintf(buf + off, size - off, "%-17s",
  331                     raidz_supp_impl[id]->name);
  332 
  333                 for (i = 0; i < ARRAY_SIZE(raidz_gen_name); i++)
  334                         off += kmem_scnprintf(buf + off, size - off, "%-16llu",
  335                             (u_longlong_t)cstat->gen[i]);
  336 
  337                 for (i = 0; i < ARRAY_SIZE(raidz_rec_name); i++)
  338                         off += kmem_scnprintf(buf + off, size - off, "%-16llu",
  339                             (u_longlong_t)cstat->rec[i]);
  340         }
  341 
  342         (void) kmem_scnprintf(buf + off, size - off, "\n");
  343 
  344         return (0);
  345 }
  346 
  347 static void *
  348 raidz_math_kstat_addr(kstat_t *ksp, loff_t n)
  349 {
  350         if (n <= raidz_supp_impl_cnt)
  351                 ksp->ks_private = (void *) (raidz_impl_kstats + n);
  352         else
  353                 ksp->ks_private = NULL;
  354 
  355         return (ksp->ks_private);
  356 }
  357 
  358 #define BENCH_D_COLS    (8ULL)
  359 #define BENCH_COLS      (BENCH_D_COLS + PARITY_PQR)
  360 #define BENCH_ZIO_SIZE  (1ULL << SPA_OLD_MAXBLOCKSHIFT) /* 128 kiB */
  361 #define BENCH_NS        MSEC2NSEC(1)                    /* 1ms */
  362 
  363 typedef void (*benchmark_fn)(raidz_map_t *rm, const int fn);
  364 
  365 static void
  366 benchmark_gen_impl(raidz_map_t *rm, const int fn)
  367 {
  368         (void) fn;
  369         vdev_raidz_generate_parity(rm);
  370 }
  371 
  372 static void
  373 benchmark_rec_impl(raidz_map_t *rm, const int fn)
  374 {
  375         static const int rec_tgt[7][3] = {
  376                 {1, 2, 3},      /* rec_p:   bad QR & D[0]       */
  377                 {0, 2, 3},      /* rec_q:   bad PR & D[0]       */
  378                 {0, 1, 3},      /* rec_r:   bad PQ & D[0]       */
  379                 {2, 3, 4},      /* rec_pq:  bad R  & D[0][1]    */
  380                 {1, 3, 4},      /* rec_pr:  bad Q  & D[0][1]    */
  381                 {0, 3, 4},      /* rec_qr:  bad P  & D[0][1]    */
  382                 {3, 4, 5}       /* rec_pqr: bad    & D[0][1][2] */
  383         };
  384 
  385         vdev_raidz_reconstruct(rm, rec_tgt[fn], 3);
  386 }
  387 
  388 /*
  389  * Benchmarking of all supported implementations (raidz_supp_impl_cnt)
  390  * is performed by setting the rm_ops pointer and calling the top level
  391  * generate/reconstruct methods of bench_rm.
  392  */
  393 static void
  394 benchmark_raidz_impl(raidz_map_t *bench_rm, const int fn, benchmark_fn bench_fn)
  395 {
  396         uint64_t run_cnt, speed, best_speed = 0;
  397         hrtime_t t_start, t_diff;
  398         raidz_impl_ops_t *curr_impl;
  399         raidz_impl_kstat_t *fstat = &raidz_impl_kstats[raidz_supp_impl_cnt];
  400         int impl, i;
  401 
  402         for (impl = 0; impl < raidz_supp_impl_cnt; impl++) {
  403                 /* set an implementation to benchmark */
  404                 curr_impl = raidz_supp_impl[impl];
  405                 bench_rm->rm_ops = curr_impl;
  406 
  407                 run_cnt = 0;
  408                 t_start = gethrtime();
  409 
  410                 do {
  411                         for (i = 0; i < 5; i++, run_cnt++)
  412                                 bench_fn(bench_rm, fn);
  413 
  414                         t_diff = gethrtime() - t_start;
  415                 } while (t_diff < BENCH_NS);
  416 
  417                 speed = run_cnt * BENCH_ZIO_SIZE * NANOSEC;
  418                 speed /= (t_diff * BENCH_COLS);
  419 
  420                 if (bench_fn == benchmark_gen_impl)
  421                         raidz_impl_kstats[impl].gen[fn] = speed;
  422                 else
  423                         raidz_impl_kstats[impl].rec[fn] = speed;
  424 
  425                 /* Update fastest implementation method */
  426                 if (speed > best_speed) {
  427                         best_speed = speed;
  428 
  429                         if (bench_fn == benchmark_gen_impl) {
  430                                 fstat->gen[fn] = impl;
  431                                 vdev_raidz_fastest_impl.gen[fn] =
  432                                     curr_impl->gen[fn];
  433                         } else {
  434                                 fstat->rec[fn] = impl;
  435                                 vdev_raidz_fastest_impl.rec[fn] =
  436                                     curr_impl->rec[fn];
  437                         }
  438                 }
  439         }
  440 }
  441 #endif
  442 
  443 /*
  444  * Initialize and benchmark all supported implementations.
  445  */
  446 static void
  447 benchmark_raidz(void)
  448 {
  449         raidz_impl_ops_t *curr_impl;
  450         int i, c;
  451 
  452         /* Move supported impl into raidz_supp_impl */
  453         for (i = 0, c = 0; i < ARRAY_SIZE(raidz_all_maths); i++) {
  454                 curr_impl = (raidz_impl_ops_t *)raidz_all_maths[i];
  455 
  456                 if (curr_impl->init)
  457                         curr_impl->init();
  458 
  459                 if (curr_impl->is_supported())
  460                         raidz_supp_impl[c++] = (raidz_impl_ops_t *)curr_impl;
  461         }
  462         membar_producer();              /* complete raidz_supp_impl[] init */
  463         raidz_supp_impl_cnt = c;        /* number of supported impl */
  464 
  465 #if defined(_KERNEL)
  466         abd_t *pabd;
  467         zio_t *bench_zio = NULL;
  468         raidz_map_t *bench_rm = NULL;
  469         uint64_t bench_parity;
  470 
  471         /* Fake a zio and run the benchmark on a warmed up buffer */
  472         bench_zio = kmem_zalloc(sizeof (zio_t), KM_SLEEP);
  473         bench_zio->io_offset = 0;
  474         bench_zio->io_size = BENCH_ZIO_SIZE; /* only data columns */
  475         bench_zio->io_abd = abd_alloc_linear(BENCH_ZIO_SIZE, B_TRUE);
  476         memset(abd_to_buf(bench_zio->io_abd), 0xAA, BENCH_ZIO_SIZE);
  477 
  478         /* Benchmark parity generation methods */
  479         for (int fn = 0; fn < RAIDZ_GEN_NUM; fn++) {
  480                 bench_parity = fn + 1;
  481                 /* New raidz_map is needed for each generate_p/q/r */
  482                 bench_rm = vdev_raidz_map_alloc(bench_zio, SPA_MINBLOCKSHIFT,
  483                     BENCH_D_COLS + bench_parity, bench_parity);
  484 
  485                 benchmark_raidz_impl(bench_rm, fn, benchmark_gen_impl);
  486 
  487                 vdev_raidz_map_free(bench_rm);
  488         }
  489 
  490         /* Benchmark data reconstruction methods */
  491         bench_rm = vdev_raidz_map_alloc(bench_zio, SPA_MINBLOCKSHIFT,
  492             BENCH_COLS, PARITY_PQR);
  493 
  494         /* Ensure that fake parity blocks are initialized */
  495         for (c = 0; c < bench_rm->rm_row[0]->rr_firstdatacol; c++) {
  496                 pabd = bench_rm->rm_row[0]->rr_col[c].rc_abd;
  497                 memset(abd_to_buf(pabd), 0xAA, abd_get_size(pabd));
  498         }
  499 
  500         for (int fn = 0; fn < RAIDZ_REC_NUM; fn++)
  501                 benchmark_raidz_impl(bench_rm, fn, benchmark_rec_impl);
  502 
  503         vdev_raidz_map_free(bench_rm);
  504 
  505         /* cleanup the bench zio */
  506         abd_free(bench_zio->io_abd);
  507         kmem_free(bench_zio, sizeof (zio_t));
  508 #else
  509         /*
  510          * Skip the benchmark in user space to avoid impacting libzpool
  511          * consumers (zdb, zhack, zinject, ztest).  The last implementation
  512          * is assumed to be the fastest and used by default.
  513          */
  514         memcpy(&vdev_raidz_fastest_impl,
  515             raidz_supp_impl[raidz_supp_impl_cnt - 1],
  516             sizeof (vdev_raidz_fastest_impl));
  517         strcpy(vdev_raidz_fastest_impl.name, "fastest");
  518 #endif /* _KERNEL */
  519 }
  520 
  521 void
  522 vdev_raidz_math_init(void)
  523 {
  524         /* Determine the fastest available implementation. */
  525         benchmark_raidz();
  526 
  527 #if defined(_KERNEL)
  528         /* Install kstats for all implementations */
  529         raidz_math_kstat = kstat_create("zfs", 0, "vdev_raidz_bench", "misc",
  530             KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VIRTUAL);
  531         if (raidz_math_kstat != NULL) {
  532                 raidz_math_kstat->ks_data = NULL;
  533                 raidz_math_kstat->ks_ndata = UINT32_MAX;
  534                 kstat_set_raw_ops(raidz_math_kstat,
  535                     raidz_math_kstat_headers,
  536                     raidz_math_kstat_data,
  537                     raidz_math_kstat_addr);
  538                 kstat_install(raidz_math_kstat);
  539         }
  540 #endif
  541 
  542         /* Finish initialization */
  543         atomic_swap_32(&zfs_vdev_raidz_impl, user_sel_impl);
  544         raidz_math_initialized = B_TRUE;
  545 }
  546 
  547 void
  548 vdev_raidz_math_fini(void)
  549 {
  550         raidz_impl_ops_t const *curr_impl;
  551 
  552 #if defined(_KERNEL)
  553         if (raidz_math_kstat != NULL) {
  554                 kstat_delete(raidz_math_kstat);
  555                 raidz_math_kstat = NULL;
  556         }
  557 #endif
  558 
  559         for (int i = 0; i < ARRAY_SIZE(raidz_all_maths); i++) {
  560                 curr_impl = raidz_all_maths[i];
  561                 if (curr_impl->fini)
  562                         curr_impl->fini();
  563         }
  564 }
  565 
  566 static const struct {
  567         const char *name;
  568         uint32_t sel;
  569 } math_impl_opts[] = {
  570                 { "cycle",      IMPL_CYCLE },
  571                 { "fastest",    IMPL_FASTEST },
  572                 { "original",   IMPL_ORIGINAL },
  573                 { "scalar",     IMPL_SCALAR }
  574 };
  575 
  576 /*
  577  * Function sets desired raidz implementation.
  578  *
  579  * If we are called before init(), user preference will be saved in
  580  * user_sel_impl, and applied in later init() call. This occurs when module
  581  * parameter is specified on module load. Otherwise, directly update
  582  * zfs_vdev_raidz_impl.
  583  *
  584  * @val         Name of raidz implementation to use
  585  * @param       Unused.
  586  */
  587 int
  588 vdev_raidz_impl_set(const char *val)
  589 {
  590         int err = -EINVAL;
  591         char req_name[RAIDZ_IMPL_NAME_MAX];
  592         uint32_t impl = RAIDZ_IMPL_READ(user_sel_impl);
  593         size_t i;
  594 
  595         /* sanitize input */
  596         i = strnlen(val, RAIDZ_IMPL_NAME_MAX);
  597         if (i == 0 || i == RAIDZ_IMPL_NAME_MAX)
  598                 return (err);
  599 
  600         strlcpy(req_name, val, RAIDZ_IMPL_NAME_MAX);
  601         while (i > 0 && !!isspace(req_name[i-1]))
  602                 i--;
  603         req_name[i] = '\0';
  604 
  605         /* Check mandatory options */
  606         for (i = 0; i < ARRAY_SIZE(math_impl_opts); i++) {
  607                 if (strcmp(req_name, math_impl_opts[i].name) == 0) {
  608                         impl = math_impl_opts[i].sel;
  609                         err = 0;
  610                         break;
  611                 }
  612         }
  613 
  614         /* check all supported impl if init() was already called */
  615         if (err != 0 && raidz_math_initialized) {
  616                 /* check all supported implementations */
  617                 for (i = 0; i < raidz_supp_impl_cnt; i++) {
  618                         if (strcmp(req_name, raidz_supp_impl[i]->name) == 0) {
  619                                 impl = i;
  620                                 err = 0;
  621                                 break;
  622                         }
  623                 }
  624         }
  625 
  626         if (err == 0) {
  627                 if (raidz_math_initialized)
  628                         atomic_swap_32(&zfs_vdev_raidz_impl, impl);
  629                 else
  630                         atomic_swap_32(&user_sel_impl, impl);
  631         }
  632 
  633         return (err);
  634 }
  635 
  636 #if defined(_KERNEL) && defined(__linux__)
  637 
  638 static int
  639 zfs_vdev_raidz_impl_set(const char *val, zfs_kernel_param_t *kp)
  640 {
  641         return (vdev_raidz_impl_set(val));
  642 }
  643 
  644 static int
  645 zfs_vdev_raidz_impl_get(char *buffer, zfs_kernel_param_t *kp)
  646 {
  647         int i, cnt = 0;
  648         char *fmt;
  649         const uint32_t impl = RAIDZ_IMPL_READ(zfs_vdev_raidz_impl);
  650 
  651         ASSERT(raidz_math_initialized);
  652 
  653         /* list mandatory options */
  654         for (i = 0; i < ARRAY_SIZE(math_impl_opts) - 2; i++) {
  655                 fmt = (impl == math_impl_opts[i].sel) ? "[%s] " : "%s ";
  656                 cnt += kmem_scnprintf(buffer + cnt, PAGE_SIZE - cnt, fmt,
  657                     math_impl_opts[i].name);
  658         }
  659 
  660         /* list all supported implementations */
  661         for (i = 0; i < raidz_supp_impl_cnt; i++) {
  662                 fmt = (i == impl) ? "[%s] " : "%s ";
  663                 cnt += kmem_scnprintf(buffer + cnt, PAGE_SIZE - cnt, fmt,
  664                     raidz_supp_impl[i]->name);
  665         }
  666 
  667         return (cnt);
  668 }
  669 
  670 module_param_call(zfs_vdev_raidz_impl, zfs_vdev_raidz_impl_set,
  671     zfs_vdev_raidz_impl_get, NULL, 0644);
  672 MODULE_PARM_DESC(zfs_vdev_raidz_impl, "Select raidz implementation.");
  673 #endif

Cache object: 293ef5c1f2d5b56e7391178ee9068ee8


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.