1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 *
23 * Copyright (c) 2018, Intel Corporation.
24 * Copyright (c) 2020 by Lawrence Livermore National Security, LLC.
25 * Copyright (c) 2022 Hewlett Packard Enterprise Development LP.
26 */
27
28 #include <sys/vdev_impl.h>
29 #include <sys/vdev_draid.h>
30 #include <sys/dsl_scan.h>
31 #include <sys/spa_impl.h>
32 #include <sys/metaslab_impl.h>
33 #include <sys/vdev_rebuild.h>
34 #include <sys/zio.h>
35 #include <sys/dmu_tx.h>
36 #include <sys/arc.h>
37 #include <sys/zap.h>
38
39 /*
40 * This file contains the sequential reconstruction implementation for
41 * resilvering. This form of resilvering is internally referred to as device
42 * rebuild to avoid conflating it with the traditional healing reconstruction
43 * performed by the dsl scan code.
44 *
45 * When replacing a device, or scrubbing the pool, ZFS has historically used
46 * a process called resilvering which is a form of healing reconstruction.
47 * This approach has the advantage that as blocks are read from disk their
48 * checksums can be immediately verified and the data repaired. Unfortunately,
49 * it also results in a random IO pattern to the disk even when extra care
50 * is taken to sequentialize the IO as much as possible. This substantially
51 * increases the time required to resilver the pool and restore redundancy.
52 *
53 * For mirrored devices it's possible to implement an alternate sequential
54 * reconstruction strategy when resilvering. Sequential reconstruction
55 * behaves like a traditional RAID rebuild and reconstructs a device in LBA
56 * order without verifying the checksum. After this phase completes a second
57 * scrub phase is started to verify all of the checksums. This two phase
58 * process will take longer than the healing reconstruction described above.
59 * However, it has that advantage that after the reconstruction first phase
60 * completes redundancy has been restored. At this point the pool can incur
61 * another device failure without risking data loss.
62 *
63 * There are a few noteworthy limitations and other advantages of resilvering
64 * using sequential reconstruction vs healing reconstruction.
65 *
66 * Limitations:
67 *
68 * - Sequential reconstruction is not possible on RAIDZ due to its
69 * variable stripe width. Note dRAID uses a fixed stripe width which
70 * avoids this issue, but comes at the expense of some usable capacity.
71 *
72 * - Block checksums are not verified during sequential reconstruction.
73 * Similar to traditional RAID the parity/mirror data is reconstructed
74 * but cannot be immediately double checked. For this reason when the
75 * last active resilver completes the pool is automatically scrubbed
76 * by default.
77 *
78 * - Deferred resilvers using sequential reconstruction are not currently
79 * supported. When adding another vdev to an active top-level resilver
80 * it must be restarted.
81 *
82 * Advantages:
83 *
84 * - Sequential reconstruction is performed in LBA order which may be faster
85 * than healing reconstruction particularly when using HDDs (or
86 * especially with SMR devices). Only allocated capacity is resilvered.
87 *
88 * - Sequential reconstruction is not constrained by ZFS block boundaries.
89 * This allows it to issue larger IOs to disk which span multiple blocks
90 * allowing all of these logical blocks to be repaired with a single IO.
91 *
92 * - Unlike a healing resilver or scrub which are pool wide operations,
93 * sequential reconstruction is handled by the top-level vdevs. This
94 * allows for it to be started or canceled on a top-level vdev without
95 * impacting any other top-level vdevs in the pool.
96 *
97 * - Data only referenced by a pool checkpoint will be repaired because
98 * that space is reflected in the space maps. This differs for a
99 * healing resilver or scrub which will not repair that data.
100 */
101
102
103 /*
104 * Size of rebuild reads; defaults to 1MiB per data disk and is capped at
105 * SPA_MAXBLOCKSIZE.
106 */
107 static uint64_t zfs_rebuild_max_segment = 1024 * 1024;
108
109 /*
110 * Maximum number of parallelly executed bytes per leaf vdev caused by a
111 * sequential resilver. We attempt to strike a balance here between keeping
112 * the vdev queues full of I/Os at all times and not overflowing the queues
113 * to cause long latency, which would cause long txg sync times.
114 *
115 * A large default value can be safely used here because the default target
116 * segment size is also large (zfs_rebuild_max_segment=1M). This helps keep
117 * the queue depth short.
118 *
119 * 32MB was selected as the default value to achieve good performance with
120 * a large 90-drive dRAID HDD configuration (draid2:8d:90c:2s). A sequential
121 * rebuild was unable to saturate all of the drives using smaller values.
122 * With a value of 32MB the sequential resilver write rate was measured at
123 * 800MB/s sustained while rebuilding to a distributed spare.
124 */
125 static uint64_t zfs_rebuild_vdev_limit = 32 << 20;
126
127 /*
128 * Automatically start a pool scrub when the last active sequential resilver
129 * completes in order to verify the checksums of all blocks which have been
130 * resilvered. This option is enabled by default and is strongly recommended.
131 */
132 static int zfs_rebuild_scrub_enabled = 1;
133
134 /*
135 * For vdev_rebuild_initiate_sync() and vdev_rebuild_reset_sync().
136 */
137 static __attribute__((noreturn)) void vdev_rebuild_thread(void *arg);
138 static void vdev_rebuild_reset_sync(void *arg, dmu_tx_t *tx);
139
140 /*
141 * Clear the per-vdev rebuild bytes value for a vdev tree.
142 */
143 static void
144 clear_rebuild_bytes(vdev_t *vd)
145 {
146 vdev_stat_t *vs = &vd->vdev_stat;
147
148 for (uint64_t i = 0; i < vd->vdev_children; i++)
149 clear_rebuild_bytes(vd->vdev_child[i]);
150
151 mutex_enter(&vd->vdev_stat_lock);
152 vs->vs_rebuild_processed = 0;
153 mutex_exit(&vd->vdev_stat_lock);
154 }
155
156 /*
157 * Determines whether a vdev_rebuild_thread() should be stopped.
158 */
159 static boolean_t
160 vdev_rebuild_should_stop(vdev_t *vd)
161 {
162 return (!vdev_writeable(vd) || vd->vdev_removing ||
163 vd->vdev_rebuild_exit_wanted ||
164 vd->vdev_rebuild_cancel_wanted ||
165 vd->vdev_rebuild_reset_wanted);
166 }
167
168 /*
169 * Determine if the rebuild should be canceled. This may happen when all
170 * vdevs with MISSING DTLs are detached.
171 */
172 static boolean_t
173 vdev_rebuild_should_cancel(vdev_t *vd)
174 {
175 vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
176 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
177
178 if (!vdev_resilver_needed(vd, &vrp->vrp_min_txg, &vrp->vrp_max_txg))
179 return (B_TRUE);
180
181 return (B_FALSE);
182 }
183
184 /*
185 * The sync task for updating the on-disk state of a rebuild. This is
186 * scheduled by vdev_rebuild_range().
187 */
188 static void
189 vdev_rebuild_update_sync(void *arg, dmu_tx_t *tx)
190 {
191 int vdev_id = (uintptr_t)arg;
192 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
193 vdev_t *vd = vdev_lookup_top(spa, vdev_id);
194 vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
195 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
196 uint64_t txg = dmu_tx_get_txg(tx);
197
198 mutex_enter(&vd->vdev_rebuild_lock);
199
200 if (vr->vr_scan_offset[txg & TXG_MASK] > 0) {
201 vrp->vrp_last_offset = vr->vr_scan_offset[txg & TXG_MASK];
202 vr->vr_scan_offset[txg & TXG_MASK] = 0;
203 }
204
205 vrp->vrp_scan_time_ms = vr->vr_prev_scan_time_ms +
206 NSEC2MSEC(gethrtime() - vr->vr_pass_start_time);
207
208 VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
209 VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
210 REBUILD_PHYS_ENTRIES, vrp, tx));
211
212 mutex_exit(&vd->vdev_rebuild_lock);
213 }
214
215 /*
216 * Initialize the on-disk state for a new rebuild, start the rebuild thread.
217 */
218 static void
219 vdev_rebuild_initiate_sync(void *arg, dmu_tx_t *tx)
220 {
221 int vdev_id = (uintptr_t)arg;
222 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
223 vdev_t *vd = vdev_lookup_top(spa, vdev_id);
224 vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
225 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
226
227 ASSERT(vd->vdev_rebuilding);
228
229 spa_feature_incr(vd->vdev_spa, SPA_FEATURE_DEVICE_REBUILD, tx);
230
231 mutex_enter(&vd->vdev_rebuild_lock);
232 memset(vrp, 0, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES);
233 vrp->vrp_rebuild_state = VDEV_REBUILD_ACTIVE;
234 vrp->vrp_min_txg = 0;
235 vrp->vrp_max_txg = dmu_tx_get_txg(tx);
236 vrp->vrp_start_time = gethrestime_sec();
237 vrp->vrp_scan_time_ms = 0;
238 vr->vr_prev_scan_time_ms = 0;
239
240 /*
241 * Rebuilds are currently only used when replacing a device, in which
242 * case there must be DTL_MISSING entries. In the future, we could
243 * allow rebuilds to be used in a way similar to a scrub. This would
244 * be useful because it would allow us to rebuild the space used by
245 * pool checkpoints.
246 */
247 VERIFY(vdev_resilver_needed(vd, &vrp->vrp_min_txg, &vrp->vrp_max_txg));
248
249 VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
250 VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
251 REBUILD_PHYS_ENTRIES, vrp, tx));
252
253 spa_history_log_internal(spa, "rebuild", tx,
254 "vdev_id=%llu vdev_guid=%llu started",
255 (u_longlong_t)vd->vdev_id, (u_longlong_t)vd->vdev_guid);
256
257 ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
258 vd->vdev_rebuild_thread = thread_create(NULL, 0,
259 vdev_rebuild_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
260
261 mutex_exit(&vd->vdev_rebuild_lock);
262 }
263
264 static void
265 vdev_rebuild_log_notify(spa_t *spa, vdev_t *vd, const char *name)
266 {
267 nvlist_t *aux = fnvlist_alloc();
268
269 fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE, "sequential");
270 spa_event_notify(spa, vd, aux, name);
271 nvlist_free(aux);
272 }
273
274 /*
275 * Called to request that a new rebuild be started. The feature will remain
276 * active for the duration of the rebuild, then revert to the enabled state.
277 */
278 static void
279 vdev_rebuild_initiate(vdev_t *vd)
280 {
281 spa_t *spa = vd->vdev_spa;
282
283 ASSERT(vd->vdev_top == vd);
284 ASSERT(MUTEX_HELD(&vd->vdev_rebuild_lock));
285 ASSERT(!vd->vdev_rebuilding);
286
287 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
288 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
289
290 vd->vdev_rebuilding = B_TRUE;
291
292 dsl_sync_task_nowait(spa_get_dsl(spa), vdev_rebuild_initiate_sync,
293 (void *)(uintptr_t)vd->vdev_id, tx);
294 dmu_tx_commit(tx);
295
296 vdev_rebuild_log_notify(spa, vd, ESC_ZFS_RESILVER_START);
297 }
298
299 /*
300 * Update the on-disk state to completed when a rebuild finishes.
301 */
302 static void
303 vdev_rebuild_complete_sync(void *arg, dmu_tx_t *tx)
304 {
305 int vdev_id = (uintptr_t)arg;
306 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
307 vdev_t *vd = vdev_lookup_top(spa, vdev_id);
308 vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
309 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
310
311 mutex_enter(&vd->vdev_rebuild_lock);
312
313 /*
314 * Handle a second device failure if it occurs after all rebuild I/O
315 * has completed but before this sync task has been executed.
316 */
317 if (vd->vdev_rebuild_reset_wanted) {
318 mutex_exit(&vd->vdev_rebuild_lock);
319 vdev_rebuild_reset_sync(arg, tx);
320 return;
321 }
322
323 vrp->vrp_rebuild_state = VDEV_REBUILD_COMPLETE;
324 vrp->vrp_end_time = gethrestime_sec();
325
326 VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
327 VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
328 REBUILD_PHYS_ENTRIES, vrp, tx));
329
330 vdev_dtl_reassess(vd, tx->tx_txg, vrp->vrp_max_txg, B_TRUE, B_TRUE);
331 spa_feature_decr(vd->vdev_spa, SPA_FEATURE_DEVICE_REBUILD, tx);
332
333 spa_history_log_internal(spa, "rebuild", tx,
334 "vdev_id=%llu vdev_guid=%llu complete",
335 (u_longlong_t)vd->vdev_id, (u_longlong_t)vd->vdev_guid);
336 vdev_rebuild_log_notify(spa, vd, ESC_ZFS_RESILVER_FINISH);
337
338 /* Handles detaching of spares */
339 spa_async_request(spa, SPA_ASYNC_REBUILD_DONE);
340 vd->vdev_rebuilding = B_FALSE;
341 mutex_exit(&vd->vdev_rebuild_lock);
342
343 /*
344 * While we're in syncing context take the opportunity to
345 * setup the scrub when there are no more active rebuilds.
346 */
347 pool_scan_func_t func = POOL_SCAN_SCRUB;
348 if (dsl_scan_setup_check(&func, tx) == 0 &&
349 zfs_rebuild_scrub_enabled) {
350 dsl_scan_setup_sync(&func, tx);
351 }
352
353 cv_broadcast(&vd->vdev_rebuild_cv);
354
355 /* Clear recent error events (i.e. duplicate events tracking) */
356 zfs_ereport_clear(spa, NULL);
357 }
358
359 /*
360 * Update the on-disk state to canceled when a rebuild finishes.
361 */
362 static void
363 vdev_rebuild_cancel_sync(void *arg, dmu_tx_t *tx)
364 {
365 int vdev_id = (uintptr_t)arg;
366 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
367 vdev_t *vd = vdev_lookup_top(spa, vdev_id);
368 vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
369 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
370
371 mutex_enter(&vd->vdev_rebuild_lock);
372 vrp->vrp_rebuild_state = VDEV_REBUILD_CANCELED;
373 vrp->vrp_end_time = gethrestime_sec();
374
375 VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
376 VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
377 REBUILD_PHYS_ENTRIES, vrp, tx));
378
379 spa_feature_decr(vd->vdev_spa, SPA_FEATURE_DEVICE_REBUILD, tx);
380
381 spa_history_log_internal(spa, "rebuild", tx,
382 "vdev_id=%llu vdev_guid=%llu canceled",
383 (u_longlong_t)vd->vdev_id, (u_longlong_t)vd->vdev_guid);
384 vdev_rebuild_log_notify(spa, vd, ESC_ZFS_RESILVER_FINISH);
385
386 vd->vdev_rebuild_cancel_wanted = B_FALSE;
387 vd->vdev_rebuilding = B_FALSE;
388 mutex_exit(&vd->vdev_rebuild_lock);
389
390 spa_notify_waiters(spa);
391 cv_broadcast(&vd->vdev_rebuild_cv);
392 }
393
394 /*
395 * Resets the progress of a running rebuild. This will occur when a new
396 * vdev is added to rebuild.
397 */
398 static void
399 vdev_rebuild_reset_sync(void *arg, dmu_tx_t *tx)
400 {
401 int vdev_id = (uintptr_t)arg;
402 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
403 vdev_t *vd = vdev_lookup_top(spa, vdev_id);
404 vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
405 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
406
407 mutex_enter(&vd->vdev_rebuild_lock);
408
409 ASSERT(vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE);
410 ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
411
412 vrp->vrp_last_offset = 0;
413 vrp->vrp_min_txg = 0;
414 vrp->vrp_max_txg = dmu_tx_get_txg(tx);
415 vrp->vrp_bytes_scanned = 0;
416 vrp->vrp_bytes_issued = 0;
417 vrp->vrp_bytes_rebuilt = 0;
418 vrp->vrp_bytes_est = 0;
419 vrp->vrp_scan_time_ms = 0;
420 vr->vr_prev_scan_time_ms = 0;
421
422 /* See vdev_rebuild_initiate_sync comment */
423 VERIFY(vdev_resilver_needed(vd, &vrp->vrp_min_txg, &vrp->vrp_max_txg));
424
425 VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
426 VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
427 REBUILD_PHYS_ENTRIES, vrp, tx));
428
429 spa_history_log_internal(spa, "rebuild", tx,
430 "vdev_id=%llu vdev_guid=%llu reset",
431 (u_longlong_t)vd->vdev_id, (u_longlong_t)vd->vdev_guid);
432
433 vd->vdev_rebuild_reset_wanted = B_FALSE;
434 ASSERT(vd->vdev_rebuilding);
435
436 vd->vdev_rebuild_thread = thread_create(NULL, 0,
437 vdev_rebuild_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
438
439 mutex_exit(&vd->vdev_rebuild_lock);
440 }
441
442 /*
443 * Clear the last rebuild status.
444 */
445 void
446 vdev_rebuild_clear_sync(void *arg, dmu_tx_t *tx)
447 {
448 int vdev_id = (uintptr_t)arg;
449 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
450 vdev_t *vd = vdev_lookup_top(spa, vdev_id);
451 vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
452 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
453 objset_t *mos = spa_meta_objset(spa);
454
455 mutex_enter(&vd->vdev_rebuild_lock);
456
457 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD) ||
458 vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE) {
459 mutex_exit(&vd->vdev_rebuild_lock);
460 return;
461 }
462
463 clear_rebuild_bytes(vd);
464 memset(vrp, 0, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES);
465
466 if (vd->vdev_top_zap != 0 && zap_contains(mos, vd->vdev_top_zap,
467 VDEV_TOP_ZAP_VDEV_REBUILD_PHYS) == 0) {
468 VERIFY0(zap_update(mos, vd->vdev_top_zap,
469 VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
470 REBUILD_PHYS_ENTRIES, vrp, tx));
471 }
472
473 mutex_exit(&vd->vdev_rebuild_lock);
474 }
475
476 /*
477 * The zio_done_func_t callback for each rebuild I/O issued. It's responsible
478 * for updating the rebuild stats and limiting the number of in flight I/Os.
479 */
480 static void
481 vdev_rebuild_cb(zio_t *zio)
482 {
483 vdev_rebuild_t *vr = zio->io_private;
484 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
485 vdev_t *vd = vr->vr_top_vdev;
486
487 mutex_enter(&vr->vr_io_lock);
488 if (zio->io_error == ENXIO && !vdev_writeable(vd)) {
489 /*
490 * The I/O failed because the top-level vdev was unavailable.
491 * Attempt to roll back to the last completed offset, in order
492 * resume from the correct location if the pool is resumed.
493 * (This works because spa_sync waits on spa_txg_zio before
494 * it runs sync tasks.)
495 */
496 uint64_t *off = &vr->vr_scan_offset[zio->io_txg & TXG_MASK];
497 *off = MIN(*off, zio->io_offset);
498 } else if (zio->io_error) {
499 vrp->vrp_errors++;
500 }
501
502 abd_free(zio->io_abd);
503
504 ASSERT3U(vr->vr_bytes_inflight, >, 0);
505 vr->vr_bytes_inflight -= zio->io_size;
506 cv_broadcast(&vr->vr_io_cv);
507 mutex_exit(&vr->vr_io_lock);
508
509 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
510 }
511
512 /*
513 * Initialize a block pointer that can be used to read the given segment
514 * for sequential rebuild.
515 */
516 static void
517 vdev_rebuild_blkptr_init(blkptr_t *bp, vdev_t *vd, uint64_t start,
518 uint64_t asize)
519 {
520 ASSERT(vd->vdev_ops == &vdev_draid_ops ||
521 vd->vdev_ops == &vdev_mirror_ops ||
522 vd->vdev_ops == &vdev_replacing_ops ||
523 vd->vdev_ops == &vdev_spare_ops);
524
525 uint64_t psize = vd->vdev_ops == &vdev_draid_ops ?
526 vdev_draid_asize_to_psize(vd, asize) : asize;
527
528 BP_ZERO(bp);
529
530 DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id);
531 DVA_SET_OFFSET(&bp->blk_dva[0], start);
532 DVA_SET_GANG(&bp->blk_dva[0], 0);
533 DVA_SET_ASIZE(&bp->blk_dva[0], asize);
534
535 BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL);
536 BP_SET_LSIZE(bp, psize);
537 BP_SET_PSIZE(bp, psize);
538 BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF);
539 BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF);
540 BP_SET_TYPE(bp, DMU_OT_NONE);
541 BP_SET_LEVEL(bp, 0);
542 BP_SET_DEDUP(bp, 0);
543 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
544 }
545
546 /*
547 * Issues a rebuild I/O and takes care of rate limiting the number of queued
548 * rebuild I/Os. The provided start and size must be properly aligned for the
549 * top-level vdev type being rebuilt.
550 */
551 static int
552 vdev_rebuild_range(vdev_rebuild_t *vr, uint64_t start, uint64_t size)
553 {
554 uint64_t ms_id __maybe_unused = vr->vr_scan_msp->ms_id;
555 vdev_t *vd = vr->vr_top_vdev;
556 spa_t *spa = vd->vdev_spa;
557 blkptr_t blk;
558
559 ASSERT3U(ms_id, ==, start >> vd->vdev_ms_shift);
560 ASSERT3U(ms_id, ==, (start + size - 1) >> vd->vdev_ms_shift);
561
562 vr->vr_pass_bytes_scanned += size;
563 vr->vr_rebuild_phys.vrp_bytes_scanned += size;
564
565 /*
566 * Rebuild the data in this range by constructing a special block
567 * pointer. It has no relation to any existing blocks in the pool.
568 * However, by disabling checksum verification and issuing a scrub IO
569 * we can reconstruct and repair any children with missing data.
570 */
571 vdev_rebuild_blkptr_init(&blk, vd, start, size);
572 uint64_t psize = BP_GET_PSIZE(&blk);
573
574 if (!vdev_dtl_need_resilver(vd, &blk.blk_dva[0], psize, TXG_UNKNOWN))
575 return (0);
576
577 mutex_enter(&vr->vr_io_lock);
578
579 /* Limit in flight rebuild I/Os */
580 while (vr->vr_bytes_inflight >= vr->vr_bytes_inflight_max)
581 cv_wait(&vr->vr_io_cv, &vr->vr_io_lock);
582
583 vr->vr_bytes_inflight += psize;
584 mutex_exit(&vr->vr_io_lock);
585
586 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
587 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
588 uint64_t txg = dmu_tx_get_txg(tx);
589
590 spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER);
591 mutex_enter(&vd->vdev_rebuild_lock);
592
593 /* This is the first I/O for this txg. */
594 if (vr->vr_scan_offset[txg & TXG_MASK] == 0) {
595 vr->vr_scan_offset[txg & TXG_MASK] = start;
596 dsl_sync_task_nowait(spa_get_dsl(spa),
597 vdev_rebuild_update_sync,
598 (void *)(uintptr_t)vd->vdev_id, tx);
599 }
600
601 /* When exiting write out our progress. */
602 if (vdev_rebuild_should_stop(vd)) {
603 mutex_enter(&vr->vr_io_lock);
604 vr->vr_bytes_inflight -= psize;
605 mutex_exit(&vr->vr_io_lock);
606 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
607 mutex_exit(&vd->vdev_rebuild_lock);
608 dmu_tx_commit(tx);
609 return (SET_ERROR(EINTR));
610 }
611 mutex_exit(&vd->vdev_rebuild_lock);
612 dmu_tx_commit(tx);
613
614 vr->vr_scan_offset[txg & TXG_MASK] = start + size;
615 vr->vr_pass_bytes_issued += size;
616 vr->vr_rebuild_phys.vrp_bytes_issued += size;
617
618 zio_nowait(zio_read(spa->spa_txg_zio[txg & TXG_MASK], spa, &blk,
619 abd_alloc(psize, B_FALSE), psize, vdev_rebuild_cb, vr,
620 ZIO_PRIORITY_REBUILD, ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL |
621 ZIO_FLAG_RESILVER, NULL));
622
623 return (0);
624 }
625
626 /*
627 * Issues rebuild I/Os for all ranges in the provided vr->vr_tree range tree.
628 */
629 static int
630 vdev_rebuild_ranges(vdev_rebuild_t *vr)
631 {
632 vdev_t *vd = vr->vr_top_vdev;
633 zfs_btree_t *t = &vr->vr_scan_tree->rt_root;
634 zfs_btree_index_t idx;
635 int error;
636
637 for (range_seg_t *rs = zfs_btree_first(t, &idx); rs != NULL;
638 rs = zfs_btree_next(t, &idx, &idx)) {
639 uint64_t start = rs_get_start(rs, vr->vr_scan_tree);
640 uint64_t size = rs_get_end(rs, vr->vr_scan_tree) - start;
641
642 /*
643 * zfs_scan_suspend_progress can be set to disable rebuild
644 * progress for testing. See comment in dsl_scan_sync().
645 */
646 while (zfs_scan_suspend_progress &&
647 !vdev_rebuild_should_stop(vd)) {
648 delay(hz);
649 }
650
651 while (size > 0) {
652 uint64_t chunk_size;
653
654 /*
655 * Split range into legally-sized logical chunks
656 * given the constraints of the top-level vdev
657 * being rebuilt (dRAID or mirror).
658 */
659 ASSERT3P(vd->vdev_ops, !=, NULL);
660 chunk_size = vd->vdev_ops->vdev_op_rebuild_asize(vd,
661 start, size, zfs_rebuild_max_segment);
662
663 error = vdev_rebuild_range(vr, start, chunk_size);
664 if (error != 0)
665 return (error);
666
667 size -= chunk_size;
668 start += chunk_size;
669 }
670 }
671
672 return (0);
673 }
674
675 /*
676 * Calculates the estimated capacity which remains to be scanned. Since
677 * we traverse the pool in metaslab order only allocated capacity beyond
678 * the vrp_last_offset need be considered. All lower offsets must have
679 * already been rebuilt and are thus already included in vrp_bytes_scanned.
680 */
681 static void
682 vdev_rebuild_update_bytes_est(vdev_t *vd, uint64_t ms_id)
683 {
684 vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
685 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
686 uint64_t bytes_est = vrp->vrp_bytes_scanned;
687
688 if (vrp->vrp_last_offset < vd->vdev_ms[ms_id]->ms_start)
689 return;
690
691 for (uint64_t i = ms_id; i < vd->vdev_ms_count; i++) {
692 metaslab_t *msp = vd->vdev_ms[i];
693
694 mutex_enter(&msp->ms_lock);
695 bytes_est += metaslab_allocated_space(msp);
696 mutex_exit(&msp->ms_lock);
697 }
698
699 vrp->vrp_bytes_est = bytes_est;
700 }
701
702 /*
703 * Load from disk the top-level vdev's rebuild information.
704 */
705 int
706 vdev_rebuild_load(vdev_t *vd)
707 {
708 vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
709 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
710 spa_t *spa = vd->vdev_spa;
711 int err = 0;
712
713 mutex_enter(&vd->vdev_rebuild_lock);
714 vd->vdev_rebuilding = B_FALSE;
715
716 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD)) {
717 memset(vrp, 0, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES);
718 mutex_exit(&vd->vdev_rebuild_lock);
719 return (SET_ERROR(ENOTSUP));
720 }
721
722 ASSERT(vd->vdev_top == vd);
723
724 err = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
725 VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
726 REBUILD_PHYS_ENTRIES, vrp);
727
728 /*
729 * A missing or damaged VDEV_TOP_ZAP_VDEV_REBUILD_PHYS should
730 * not prevent a pool from being imported. Clear the rebuild
731 * status allowing a new resilver/rebuild to be started.
732 */
733 if (err == ENOENT || err == EOVERFLOW || err == ECKSUM) {
734 memset(vrp, 0, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES);
735 } else if (err) {
736 mutex_exit(&vd->vdev_rebuild_lock);
737 return (err);
738 }
739
740 vr->vr_prev_scan_time_ms = vrp->vrp_scan_time_ms;
741 vr->vr_top_vdev = vd;
742
743 mutex_exit(&vd->vdev_rebuild_lock);
744
745 return (0);
746 }
747
748 /*
749 * Each scan thread is responsible for rebuilding a top-level vdev. The
750 * rebuild progress in tracked on-disk in VDEV_TOP_ZAP_VDEV_REBUILD_PHYS.
751 */
752 static __attribute__((noreturn)) void
753 vdev_rebuild_thread(void *arg)
754 {
755 vdev_t *vd = arg;
756 spa_t *spa = vd->vdev_spa;
757 int error = 0;
758
759 /*
760 * If there's a scrub in process request that it be stopped. This
761 * is not required for a correct rebuild, but we do want rebuilds to
762 * emulate the resilver behavior as much as possible.
763 */
764 dsl_pool_t *dsl = spa_get_dsl(spa);
765 if (dsl_scan_scrubbing(dsl))
766 dsl_scan_cancel(dsl);
767
768 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
769 mutex_enter(&vd->vdev_rebuild_lock);
770
771 ASSERT3P(vd->vdev_top, ==, vd);
772 ASSERT3P(vd->vdev_rebuild_thread, !=, NULL);
773 ASSERT(vd->vdev_rebuilding);
774 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REBUILD));
775 ASSERT3B(vd->vdev_rebuild_cancel_wanted, ==, B_FALSE);
776
777 vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
778 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
779 vr->vr_top_vdev = vd;
780 vr->vr_scan_msp = NULL;
781 vr->vr_scan_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
782 mutex_init(&vr->vr_io_lock, NULL, MUTEX_DEFAULT, NULL);
783 cv_init(&vr->vr_io_cv, NULL, CV_DEFAULT, NULL);
784
785 vr->vr_pass_start_time = gethrtime();
786 vr->vr_pass_bytes_scanned = 0;
787 vr->vr_pass_bytes_issued = 0;
788
789 vr->vr_bytes_inflight_max = MAX(1ULL << 20,
790 zfs_rebuild_vdev_limit * vd->vdev_children);
791
792 uint64_t update_est_time = gethrtime();
793 vdev_rebuild_update_bytes_est(vd, 0);
794
795 clear_rebuild_bytes(vr->vr_top_vdev);
796
797 mutex_exit(&vd->vdev_rebuild_lock);
798
799 /*
800 * Systematically walk the metaslabs and issue rebuild I/Os for
801 * all ranges in the allocated space map.
802 */
803 for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
804 metaslab_t *msp = vd->vdev_ms[i];
805 vr->vr_scan_msp = msp;
806
807 /*
808 * Removal of vdevs from the vdev tree may eliminate the need
809 * for the rebuild, in which case it should be canceled. The
810 * vdev_rebuild_cancel_wanted flag is set until the sync task
811 * completes. This may be after the rebuild thread exits.
812 */
813 if (vdev_rebuild_should_cancel(vd)) {
814 vd->vdev_rebuild_cancel_wanted = B_TRUE;
815 error = EINTR;
816 break;
817 }
818
819 ASSERT0(range_tree_space(vr->vr_scan_tree));
820
821 /* Disable any new allocations to this metaslab */
822 spa_config_exit(spa, SCL_CONFIG, FTAG);
823 metaslab_disable(msp);
824
825 mutex_enter(&msp->ms_sync_lock);
826 mutex_enter(&msp->ms_lock);
827
828 /*
829 * If there are outstanding allocations wait for them to be
830 * synced. This is needed to ensure all allocated ranges are
831 * on disk and therefore will be rebuilt.
832 */
833 for (int j = 0; j < TXG_SIZE; j++) {
834 if (range_tree_space(msp->ms_allocating[j])) {
835 mutex_exit(&msp->ms_lock);
836 mutex_exit(&msp->ms_sync_lock);
837 txg_wait_synced(dsl, 0);
838 mutex_enter(&msp->ms_sync_lock);
839 mutex_enter(&msp->ms_lock);
840 break;
841 }
842 }
843
844 /*
845 * When a metaslab has been allocated from read its allocated
846 * ranges from the space map object into the vr_scan_tree.
847 * Then add inflight / unflushed ranges and remove inflight /
848 * unflushed frees. This is the minimum range to be rebuilt.
849 */
850 if (msp->ms_sm != NULL) {
851 VERIFY0(space_map_load(msp->ms_sm,
852 vr->vr_scan_tree, SM_ALLOC));
853
854 for (int i = 0; i < TXG_SIZE; i++) {
855 ASSERT0(range_tree_space(
856 msp->ms_allocating[i]));
857 }
858
859 range_tree_walk(msp->ms_unflushed_allocs,
860 range_tree_add, vr->vr_scan_tree);
861 range_tree_walk(msp->ms_unflushed_frees,
862 range_tree_remove, vr->vr_scan_tree);
863
864 /*
865 * Remove ranges which have already been rebuilt based
866 * on the last offset. This can happen when restarting
867 * a scan after exporting and re-importing the pool.
868 */
869 range_tree_clear(vr->vr_scan_tree, 0,
870 vrp->vrp_last_offset);
871 }
872
873 mutex_exit(&msp->ms_lock);
874 mutex_exit(&msp->ms_sync_lock);
875
876 /*
877 * To provide an accurate estimate re-calculate the estimated
878 * size every 5 minutes to account for recent allocations and
879 * frees made to space maps which have not yet been rebuilt.
880 */
881 if (gethrtime() > update_est_time + SEC2NSEC(300)) {
882 update_est_time = gethrtime();
883 vdev_rebuild_update_bytes_est(vd, i);
884 }
885
886 /*
887 * Walk the allocated space map and issue the rebuild I/O.
888 */
889 error = vdev_rebuild_ranges(vr);
890 range_tree_vacate(vr->vr_scan_tree, NULL, NULL);
891
892 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
893 metaslab_enable(msp, B_FALSE, B_FALSE);
894
895 if (error != 0)
896 break;
897 }
898
899 range_tree_destroy(vr->vr_scan_tree);
900 spa_config_exit(spa, SCL_CONFIG, FTAG);
901
902 /* Wait for any remaining rebuild I/O to complete */
903 mutex_enter(&vr->vr_io_lock);
904 while (vr->vr_bytes_inflight > 0)
905 cv_wait(&vr->vr_io_cv, &vr->vr_io_lock);
906
907 mutex_exit(&vr->vr_io_lock);
908
909 mutex_destroy(&vr->vr_io_lock);
910 cv_destroy(&vr->vr_io_cv);
911
912 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
913
914 dsl_pool_t *dp = spa_get_dsl(spa);
915 dmu_tx_t *tx = dmu_tx_create_dd(dp->dp_mos_dir);
916 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
917
918 mutex_enter(&vd->vdev_rebuild_lock);
919 if (error == 0) {
920 /*
921 * After a successful rebuild clear the DTLs of all ranges
922 * which were missing when the rebuild was started. These
923 * ranges must have been rebuilt as a consequence of rebuilding
924 * all allocated space. Note that unlike a scrub or resilver
925 * the rebuild operation will reconstruct data only referenced
926 * by a pool checkpoint. See the dsl_scan_done() comments.
927 */
928 dsl_sync_task_nowait(dp, vdev_rebuild_complete_sync,
929 (void *)(uintptr_t)vd->vdev_id, tx);
930 } else if (vd->vdev_rebuild_cancel_wanted) {
931 /*
932 * The rebuild operation was canceled. This will occur when
933 * a device participating in the rebuild is detached.
934 */
935 dsl_sync_task_nowait(dp, vdev_rebuild_cancel_sync,
936 (void *)(uintptr_t)vd->vdev_id, tx);
937 } else if (vd->vdev_rebuild_reset_wanted) {
938 /*
939 * Reset the running rebuild without canceling and restarting
940 * it. This will occur when a new device is attached and must
941 * participate in the rebuild.
942 */
943 dsl_sync_task_nowait(dp, vdev_rebuild_reset_sync,
944 (void *)(uintptr_t)vd->vdev_id, tx);
945 } else {
946 /*
947 * The rebuild operation should be suspended. This may occur
948 * when detaching a child vdev or when exporting the pool. The
949 * rebuild is left in the active state so it will be resumed.
950 */
951 ASSERT(vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE);
952 vd->vdev_rebuilding = B_FALSE;
953 }
954
955 dmu_tx_commit(tx);
956
957 vd->vdev_rebuild_thread = NULL;
958 mutex_exit(&vd->vdev_rebuild_lock);
959 spa_config_exit(spa, SCL_CONFIG, FTAG);
960
961 cv_broadcast(&vd->vdev_rebuild_cv);
962
963 thread_exit();
964 }
965
966 /*
967 * Returns B_TRUE if any top-level vdev are rebuilding.
968 */
969 boolean_t
970 vdev_rebuild_active(vdev_t *vd)
971 {
972 spa_t *spa = vd->vdev_spa;
973 boolean_t ret = B_FALSE;
974
975 if (vd == spa->spa_root_vdev) {
976 for (uint64_t i = 0; i < vd->vdev_children; i++) {
977 ret = vdev_rebuild_active(vd->vdev_child[i]);
978 if (ret)
979 return (ret);
980 }
981 } else if (vd->vdev_top_zap != 0) {
982 vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
983 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
984
985 mutex_enter(&vd->vdev_rebuild_lock);
986 ret = (vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE);
987 mutex_exit(&vd->vdev_rebuild_lock);
988 }
989
990 return (ret);
991 }
992
993 /*
994 * Start a rebuild operation. The rebuild may be restarted when the
995 * top-level vdev is currently actively rebuilding.
996 */
997 void
998 vdev_rebuild(vdev_t *vd)
999 {
1000 vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
1001 vdev_rebuild_phys_t *vrp __maybe_unused = &vr->vr_rebuild_phys;
1002
1003 ASSERT(vd->vdev_top == vd);
1004 ASSERT(vdev_is_concrete(vd));
1005 ASSERT(!vd->vdev_removing);
1006 ASSERT(spa_feature_is_enabled(vd->vdev_spa,
1007 SPA_FEATURE_DEVICE_REBUILD));
1008
1009 mutex_enter(&vd->vdev_rebuild_lock);
1010 if (vd->vdev_rebuilding) {
1011 ASSERT3U(vrp->vrp_rebuild_state, ==, VDEV_REBUILD_ACTIVE);
1012
1013 /*
1014 * Signal a running rebuild operation that it should restart
1015 * from the beginning because a new device was attached. The
1016 * vdev_rebuild_reset_wanted flag is set until the sync task
1017 * completes. This may be after the rebuild thread exits.
1018 */
1019 if (!vd->vdev_rebuild_reset_wanted)
1020 vd->vdev_rebuild_reset_wanted = B_TRUE;
1021 } else {
1022 vdev_rebuild_initiate(vd);
1023 }
1024 mutex_exit(&vd->vdev_rebuild_lock);
1025 }
1026
1027 static void
1028 vdev_rebuild_restart_impl(vdev_t *vd)
1029 {
1030 spa_t *spa = vd->vdev_spa;
1031
1032 if (vd == spa->spa_root_vdev) {
1033 for (uint64_t i = 0; i < vd->vdev_children; i++)
1034 vdev_rebuild_restart_impl(vd->vdev_child[i]);
1035
1036 } else if (vd->vdev_top_zap != 0) {
1037 vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
1038 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
1039
1040 mutex_enter(&vd->vdev_rebuild_lock);
1041 if (vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE &&
1042 vdev_writeable(vd) && !vd->vdev_rebuilding) {
1043 ASSERT(spa_feature_is_active(spa,
1044 SPA_FEATURE_DEVICE_REBUILD));
1045 vd->vdev_rebuilding = B_TRUE;
1046 vd->vdev_rebuild_thread = thread_create(NULL, 0,
1047 vdev_rebuild_thread, vd, 0, &p0, TS_RUN,
1048 maxclsyspri);
1049 }
1050 mutex_exit(&vd->vdev_rebuild_lock);
1051 }
1052 }
1053
1054 /*
1055 * Conditionally restart all of the vdev_rebuild_thread's for a pool. The
1056 * feature flag must be active and the rebuild in the active state. This
1057 * cannot be used to start a new rebuild.
1058 */
1059 void
1060 vdev_rebuild_restart(spa_t *spa)
1061 {
1062 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1063
1064 vdev_rebuild_restart_impl(spa->spa_root_vdev);
1065 }
1066
1067 /*
1068 * Stop and wait for all of the vdev_rebuild_thread's associated with the
1069 * vdev tree provide to be terminated (canceled or stopped).
1070 */
1071 void
1072 vdev_rebuild_stop_wait(vdev_t *vd)
1073 {
1074 spa_t *spa = vd->vdev_spa;
1075
1076 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1077
1078 if (vd == spa->spa_root_vdev) {
1079 for (uint64_t i = 0; i < vd->vdev_children; i++)
1080 vdev_rebuild_stop_wait(vd->vdev_child[i]);
1081
1082 } else if (vd->vdev_top_zap != 0) {
1083 ASSERT(vd == vd->vdev_top);
1084
1085 mutex_enter(&vd->vdev_rebuild_lock);
1086 if (vd->vdev_rebuild_thread != NULL) {
1087 vd->vdev_rebuild_exit_wanted = B_TRUE;
1088 while (vd->vdev_rebuilding) {
1089 cv_wait(&vd->vdev_rebuild_cv,
1090 &vd->vdev_rebuild_lock);
1091 }
1092 vd->vdev_rebuild_exit_wanted = B_FALSE;
1093 }
1094 mutex_exit(&vd->vdev_rebuild_lock);
1095 }
1096 }
1097
1098 /*
1099 * Stop all rebuild operations but leave them in the active state so they
1100 * will be resumed when importing the pool.
1101 */
1102 void
1103 vdev_rebuild_stop_all(spa_t *spa)
1104 {
1105 vdev_rebuild_stop_wait(spa->spa_root_vdev);
1106 }
1107
1108 /*
1109 * Rebuild statistics reported per top-level vdev.
1110 */
1111 int
1112 vdev_rebuild_get_stats(vdev_t *tvd, vdev_rebuild_stat_t *vrs)
1113 {
1114 spa_t *spa = tvd->vdev_spa;
1115
1116 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD))
1117 return (SET_ERROR(ENOTSUP));
1118
1119 if (tvd != tvd->vdev_top || tvd->vdev_top_zap == 0)
1120 return (SET_ERROR(EINVAL));
1121
1122 int error = zap_contains(spa_meta_objset(spa),
1123 tvd->vdev_top_zap, VDEV_TOP_ZAP_VDEV_REBUILD_PHYS);
1124
1125 if (error == ENOENT) {
1126 memset(vrs, 0, sizeof (vdev_rebuild_stat_t));
1127 vrs->vrs_state = VDEV_REBUILD_NONE;
1128 error = 0;
1129 } else if (error == 0) {
1130 vdev_rebuild_t *vr = &tvd->vdev_rebuild_config;
1131 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
1132
1133 mutex_enter(&tvd->vdev_rebuild_lock);
1134 vrs->vrs_state = vrp->vrp_rebuild_state;
1135 vrs->vrs_start_time = vrp->vrp_start_time;
1136 vrs->vrs_end_time = vrp->vrp_end_time;
1137 vrs->vrs_scan_time_ms = vrp->vrp_scan_time_ms;
1138 vrs->vrs_bytes_scanned = vrp->vrp_bytes_scanned;
1139 vrs->vrs_bytes_issued = vrp->vrp_bytes_issued;
1140 vrs->vrs_bytes_rebuilt = vrp->vrp_bytes_rebuilt;
1141 vrs->vrs_bytes_est = vrp->vrp_bytes_est;
1142 vrs->vrs_errors = vrp->vrp_errors;
1143 vrs->vrs_pass_time_ms = NSEC2MSEC(gethrtime() -
1144 vr->vr_pass_start_time);
1145 vrs->vrs_pass_bytes_scanned = vr->vr_pass_bytes_scanned;
1146 vrs->vrs_pass_bytes_issued = vr->vr_pass_bytes_issued;
1147 mutex_exit(&tvd->vdev_rebuild_lock);
1148 }
1149
1150 return (error);
1151 }
1152
1153 ZFS_MODULE_PARAM(zfs, zfs_, rebuild_max_segment, U64, ZMOD_RW,
1154 "Max segment size in bytes of rebuild reads");
1155
1156 ZFS_MODULE_PARAM(zfs, zfs_, rebuild_vdev_limit, U64, ZMOD_RW,
1157 "Max bytes in flight per leaf vdev for sequential resilvers");
1158
1159 ZFS_MODULE_PARAM(zfs, zfs_, rebuild_scrub_enabled, INT, ZMOD_RW,
1160 "Automatically scrub after sequential resilver completes");
Cache object: bec0f7b7e96b280f458206818144e46c
|