The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/contrib/openzfs/module/zfs/vdev_removal.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * CDDL HEADER START
    3  *
    4  * The contents of this file are subject to the terms of the
    5  * Common Development and Distribution License (the "License").
    6  * You may not use this file except in compliance with the License.
    7  *
    8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
    9  * or https://opensource.org/licenses/CDDL-1.0.
   10  * See the License for the specific language governing permissions
   11  * and limitations under the License.
   12  *
   13  * When distributing Covered Code, include this CDDL HEADER in each
   14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
   15  * If applicable, add the following below this CDDL HEADER, with the
   16  * fields enclosed by brackets "[]" replaced with your own identifying
   17  * information: Portions Copyright [yyyy] [name of copyright owner]
   18  *
   19  * CDDL HEADER END
   20  */
   21 
   22 /*
   23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
   24  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
   25  * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
   26  */
   27 
   28 #include <sys/zfs_context.h>
   29 #include <sys/spa_impl.h>
   30 #include <sys/dmu.h>
   31 #include <sys/dmu_tx.h>
   32 #include <sys/zap.h>
   33 #include <sys/vdev_impl.h>
   34 #include <sys/metaslab.h>
   35 #include <sys/metaslab_impl.h>
   36 #include <sys/uberblock_impl.h>
   37 #include <sys/txg.h>
   38 #include <sys/avl.h>
   39 #include <sys/bpobj.h>
   40 #include <sys/dsl_pool.h>
   41 #include <sys/dsl_synctask.h>
   42 #include <sys/dsl_dir.h>
   43 #include <sys/arc.h>
   44 #include <sys/zfeature.h>
   45 #include <sys/vdev_indirect_births.h>
   46 #include <sys/vdev_indirect_mapping.h>
   47 #include <sys/abd.h>
   48 #include <sys/vdev_initialize.h>
   49 #include <sys/vdev_trim.h>
   50 #include <sys/trace_zfs.h>
   51 
   52 /*
   53  * This file contains the necessary logic to remove vdevs from a
   54  * storage pool.  Currently, the only devices that can be removed
   55  * are log, cache, and spare devices; and top level vdevs from a pool
   56  * w/o raidz or mirrors.  (Note that members of a mirror can be removed
   57  * by the detach operation.)
   58  *
   59  * Log vdevs are removed by evacuating them and then turning the vdev
   60  * into a hole vdev while holding spa config locks.
   61  *
   62  * Top level vdevs are removed and converted into an indirect vdev via
   63  * a multi-step process:
   64  *
   65  *  - Disable allocations from this device (spa_vdev_remove_top).
   66  *
   67  *  - From a new thread (spa_vdev_remove_thread), copy data from
   68  *    the removing vdev to a different vdev.  The copy happens in open
   69  *    context (spa_vdev_copy_impl) and issues a sync task
   70  *    (vdev_mapping_sync) so the sync thread can update the partial
   71  *    indirect mappings in core and on disk.
   72  *
   73  *  - If a free happens during a removal, it is freed from the
   74  *    removing vdev, and if it has already been copied, from the new
   75  *    location as well (free_from_removing_vdev).
   76  *
   77  *  - After the removal is completed, the copy thread converts the vdev
   78  *    into an indirect vdev (vdev_remove_complete) before instructing
   79  *    the sync thread to destroy the space maps and finish the removal
   80  *    (spa_finish_removal).
   81  */
   82 
   83 typedef struct vdev_copy_arg {
   84         metaslab_t      *vca_msp;
   85         uint64_t        vca_outstanding_bytes;
   86         uint64_t        vca_read_error_bytes;
   87         uint64_t        vca_write_error_bytes;
   88         kcondvar_t      vca_cv;
   89         kmutex_t        vca_lock;
   90 } vdev_copy_arg_t;
   91 
   92 /*
   93  * The maximum amount of memory we can use for outstanding i/o while
   94  * doing a device removal.  This determines how much i/o we can have
   95  * in flight concurrently.
   96  */
   97 static const uint_t zfs_remove_max_copy_bytes = 64 * 1024 * 1024;
   98 
   99 /*
  100  * The largest contiguous segment that we will attempt to allocate when
  101  * removing a device.  This can be no larger than SPA_MAXBLOCKSIZE.  If
  102  * there is a performance problem with attempting to allocate large blocks,
  103  * consider decreasing this.
  104  *
  105  * See also the accessor function spa_remove_max_segment().
  106  */
  107 uint_t zfs_remove_max_segment = SPA_MAXBLOCKSIZE;
  108 
  109 /*
  110  * Ignore hard IO errors during device removal.  When set if a device
  111  * encounters hard IO error during the removal process the removal will
  112  * not be cancelled.  This can result in a normally recoverable block
  113  * becoming permanently damaged and is not recommended.
  114  */
  115 static int zfs_removal_ignore_errors = 0;
  116 
  117 /*
  118  * Allow a remap segment to span free chunks of at most this size. The main
  119  * impact of a larger span is that we will read and write larger, more
  120  * contiguous chunks, with more "unnecessary" data -- trading off bandwidth
  121  * for iops.  The value here was chosen to align with
  122  * zfs_vdev_read_gap_limit, which is a similar concept when doing regular
  123  * reads (but there's no reason it has to be the same).
  124  *
  125  * Additionally, a higher span will have the following relatively minor
  126  * effects:
  127  *  - the mapping will be smaller, since one entry can cover more allocated
  128  *    segments
  129  *  - more of the fragmentation in the removing device will be preserved
  130  *  - we'll do larger allocations, which may fail and fall back on smaller
  131  *    allocations
  132  */
  133 uint_t vdev_removal_max_span = 32 * 1024;
  134 
  135 /*
  136  * This is used by the test suite so that it can ensure that certain
  137  * actions happen while in the middle of a removal.
  138  */
  139 int zfs_removal_suspend_progress = 0;
  140 
  141 #define VDEV_REMOVAL_ZAP_OBJS   "lzap"
  142 
  143 static __attribute__((noreturn)) void spa_vdev_remove_thread(void *arg);
  144 static int spa_vdev_remove_cancel_impl(spa_t *spa);
  145 
  146 static void
  147 spa_sync_removing_state(spa_t *spa, dmu_tx_t *tx)
  148 {
  149         VERIFY0(zap_update(spa->spa_dsl_pool->dp_meta_objset,
  150             DMU_POOL_DIRECTORY_OBJECT,
  151             DMU_POOL_REMOVING, sizeof (uint64_t),
  152             sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
  153             &spa->spa_removing_phys, tx));
  154 }
  155 
  156 static nvlist_t *
  157 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
  158 {
  159         for (int i = 0; i < count; i++) {
  160                 uint64_t guid =
  161                     fnvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID);
  162 
  163                 if (guid == target_guid)
  164                         return (nvpp[i]);
  165         }
  166 
  167         return (NULL);
  168 }
  169 
  170 static void
  171 vdev_activate(vdev_t *vd)
  172 {
  173         metaslab_group_t *mg = vd->vdev_mg;
  174         spa_t *spa = vd->vdev_spa;
  175         uint64_t vdev_space = spa_deflate(spa) ?
  176             vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
  177 
  178         ASSERT(!vd->vdev_islog);
  179         ASSERT(vd->vdev_noalloc);
  180 
  181         metaslab_group_activate(mg);
  182         metaslab_group_activate(vd->vdev_log_mg);
  183 
  184         ASSERT3U(spa->spa_nonallocating_dspace, >=, vdev_space);
  185 
  186         spa->spa_nonallocating_dspace -= vdev_space;
  187 
  188         vd->vdev_noalloc = B_FALSE;
  189 }
  190 
  191 static int
  192 vdev_passivate(vdev_t *vd, uint64_t *txg)
  193 {
  194         spa_t *spa = vd->vdev_spa;
  195         int error;
  196 
  197         ASSERT(!vd->vdev_noalloc);
  198 
  199         vdev_t *rvd = spa->spa_root_vdev;
  200         metaslab_group_t *mg = vd->vdev_mg;
  201         metaslab_class_t *normal = spa_normal_class(spa);
  202         if (mg->mg_class == normal) {
  203                 /*
  204                  * We must check that this is not the only allocating device in
  205                  * the pool before passivating, otherwise we will not be able
  206                  * to make progress because we can't allocate from any vdevs.
  207                  */
  208                 boolean_t last = B_TRUE;
  209                 for (uint64_t id = 0; id < rvd->vdev_children; id++) {
  210                         vdev_t *cvd = rvd->vdev_child[id];
  211 
  212                         if (cvd == vd ||
  213                             cvd->vdev_ops == &vdev_indirect_ops)
  214                                 continue;
  215 
  216                         metaslab_class_t *mc = cvd->vdev_mg->mg_class;
  217                         if (mc != normal)
  218                                 continue;
  219 
  220                         if (!cvd->vdev_noalloc) {
  221                                 last = B_FALSE;
  222                                 break;
  223                         }
  224                 }
  225                 if (last)
  226                         return (SET_ERROR(EINVAL));
  227         }
  228 
  229         metaslab_group_passivate(mg);
  230         ASSERT(!vd->vdev_islog);
  231         metaslab_group_passivate(vd->vdev_log_mg);
  232 
  233         /*
  234          * Wait for the youngest allocations and frees to sync,
  235          * and then wait for the deferral of those frees to finish.
  236          */
  237         spa_vdev_config_exit(spa, NULL,
  238             *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
  239 
  240         /*
  241          * We must ensure that no "stubby" log blocks are allocated
  242          * on the device to be removed.  These blocks could be
  243          * written at any time, including while we are in the middle
  244          * of copying them.
  245          */
  246         error = spa_reset_logs(spa);
  247 
  248         *txg = spa_vdev_config_enter(spa);
  249 
  250         if (error != 0) {
  251                 metaslab_group_activate(mg);
  252                 ASSERT(!vd->vdev_islog);
  253                 if (vd->vdev_log_mg != NULL)
  254                         metaslab_group_activate(vd->vdev_log_mg);
  255                 return (error);
  256         }
  257 
  258         spa->spa_nonallocating_dspace += spa_deflate(spa) ?
  259             vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
  260         vd->vdev_noalloc = B_TRUE;
  261 
  262         return (0);
  263 }
  264 
  265 /*
  266  * Turn off allocations for a top-level device from the pool.
  267  *
  268  * Turning off allocations for a top-level device can take a significant
  269  * amount of time. As a result we use the spa_vdev_config_[enter/exit]
  270  * functions which allow us to grab and release the spa_config_lock while
  271  * still holding the namespace lock. During each step the configuration
  272  * is synced out.
  273  */
  274 int
  275 spa_vdev_noalloc(spa_t *spa, uint64_t guid)
  276 {
  277         vdev_t *vd;
  278         uint64_t txg;
  279         int error = 0;
  280 
  281         ASSERT(!MUTEX_HELD(&spa_namespace_lock));
  282         ASSERT(spa_writeable(spa));
  283 
  284         txg = spa_vdev_enter(spa);
  285 
  286         ASSERT(MUTEX_HELD(&spa_namespace_lock));
  287 
  288         vd = spa_lookup_by_guid(spa, guid, B_FALSE);
  289 
  290         if (vd == NULL)
  291                 error = SET_ERROR(ENOENT);
  292         else if (vd->vdev_mg == NULL)
  293                 error = SET_ERROR(ZFS_ERR_VDEV_NOTSUP);
  294         else if (!vd->vdev_noalloc)
  295                 error = vdev_passivate(vd, &txg);
  296 
  297         if (error == 0) {
  298                 vdev_dirty_leaves(vd, VDD_DTL, txg);
  299                 vdev_config_dirty(vd);
  300         }
  301 
  302         error = spa_vdev_exit(spa, NULL, txg, error);
  303 
  304         return (error);
  305 }
  306 
  307 int
  308 spa_vdev_alloc(spa_t *spa, uint64_t guid)
  309 {
  310         vdev_t *vd;
  311         uint64_t txg;
  312         int error = 0;
  313 
  314         ASSERT(!MUTEX_HELD(&spa_namespace_lock));
  315         ASSERT(spa_writeable(spa));
  316 
  317         txg = spa_vdev_enter(spa);
  318 
  319         ASSERT(MUTEX_HELD(&spa_namespace_lock));
  320 
  321         vd = spa_lookup_by_guid(spa, guid, B_FALSE);
  322 
  323         if (vd == NULL)
  324                 error = SET_ERROR(ENOENT);
  325         else if (vd->vdev_mg == NULL)
  326                 error = SET_ERROR(ZFS_ERR_VDEV_NOTSUP);
  327         else if (!vd->vdev_removing)
  328                 vdev_activate(vd);
  329 
  330         if (error == 0) {
  331                 vdev_dirty_leaves(vd, VDD_DTL, txg);
  332                 vdev_config_dirty(vd);
  333         }
  334 
  335         (void) spa_vdev_exit(spa, NULL, txg, error);
  336 
  337         return (error);
  338 }
  339 
  340 static void
  341 spa_vdev_remove_aux(nvlist_t *config, const char *name, nvlist_t **dev,
  342     int count, nvlist_t *dev_to_remove)
  343 {
  344         nvlist_t **newdev = NULL;
  345 
  346         if (count > 1)
  347                 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
  348 
  349         for (int i = 0, j = 0; i < count; i++) {
  350                 if (dev[i] == dev_to_remove)
  351                         continue;
  352                 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
  353         }
  354 
  355         VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
  356         fnvlist_add_nvlist_array(config, name, (const nvlist_t * const *)newdev,
  357             count - 1);
  358 
  359         for (int i = 0; i < count - 1; i++)
  360                 nvlist_free(newdev[i]);
  361 
  362         if (count > 1)
  363                 kmem_free(newdev, (count - 1) * sizeof (void *));
  364 }
  365 
  366 static spa_vdev_removal_t *
  367 spa_vdev_removal_create(vdev_t *vd)
  368 {
  369         spa_vdev_removal_t *svr = kmem_zalloc(sizeof (*svr), KM_SLEEP);
  370         mutex_init(&svr->svr_lock, NULL, MUTEX_DEFAULT, NULL);
  371         cv_init(&svr->svr_cv, NULL, CV_DEFAULT, NULL);
  372         svr->svr_allocd_segs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
  373         svr->svr_vdev_id = vd->vdev_id;
  374 
  375         for (int i = 0; i < TXG_SIZE; i++) {
  376                 svr->svr_frees[i] = range_tree_create(NULL, RANGE_SEG64, NULL,
  377                     0, 0);
  378                 list_create(&svr->svr_new_segments[i],
  379                     sizeof (vdev_indirect_mapping_entry_t),
  380                     offsetof(vdev_indirect_mapping_entry_t, vime_node));
  381         }
  382 
  383         return (svr);
  384 }
  385 
  386 void
  387 spa_vdev_removal_destroy(spa_vdev_removal_t *svr)
  388 {
  389         for (int i = 0; i < TXG_SIZE; i++) {
  390                 ASSERT0(svr->svr_bytes_done[i]);
  391                 ASSERT0(svr->svr_max_offset_to_sync[i]);
  392                 range_tree_destroy(svr->svr_frees[i]);
  393                 list_destroy(&svr->svr_new_segments[i]);
  394         }
  395 
  396         range_tree_destroy(svr->svr_allocd_segs);
  397         mutex_destroy(&svr->svr_lock);
  398         cv_destroy(&svr->svr_cv);
  399         kmem_free(svr, sizeof (*svr));
  400 }
  401 
  402 /*
  403  * This is called as a synctask in the txg in which we will mark this vdev
  404  * as removing (in the config stored in the MOS).
  405  *
  406  * It begins the evacuation of a toplevel vdev by:
  407  * - initializing the spa_removing_phys which tracks this removal
  408  * - computing the amount of space to remove for accounting purposes
  409  * - dirtying all dbufs in the spa_config_object
  410  * - creating the spa_vdev_removal
  411  * - starting the spa_vdev_remove_thread
  412  */
  413 static void
  414 vdev_remove_initiate_sync(void *arg, dmu_tx_t *tx)
  415 {
  416         int vdev_id = (uintptr_t)arg;
  417         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
  418         vdev_t *vd = vdev_lookup_top(spa, vdev_id);
  419         vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
  420         objset_t *mos = spa->spa_dsl_pool->dp_meta_objset;
  421         spa_vdev_removal_t *svr = NULL;
  422         uint64_t txg __maybe_unused = dmu_tx_get_txg(tx);
  423 
  424         ASSERT0(vdev_get_nparity(vd));
  425         svr = spa_vdev_removal_create(vd);
  426 
  427         ASSERT(vd->vdev_removing);
  428         ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
  429 
  430         spa_feature_incr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
  431         if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
  432                 /*
  433                  * By activating the OBSOLETE_COUNTS feature, we prevent
  434                  * the pool from being downgraded and ensure that the
  435                  * refcounts are precise.
  436                  */
  437                 spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
  438                 uint64_t one = 1;
  439                 VERIFY0(zap_add(spa->spa_meta_objset, vd->vdev_top_zap,
  440                     VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (one), 1,
  441                     &one, tx));
  442                 boolean_t are_precise __maybe_unused;
  443                 ASSERT0(vdev_obsolete_counts_are_precise(vd, &are_precise));
  444                 ASSERT3B(are_precise, ==, B_TRUE);
  445         }
  446 
  447         vic->vic_mapping_object = vdev_indirect_mapping_alloc(mos, tx);
  448         vd->vdev_indirect_mapping =
  449             vdev_indirect_mapping_open(mos, vic->vic_mapping_object);
  450         vic->vic_births_object = vdev_indirect_births_alloc(mos, tx);
  451         vd->vdev_indirect_births =
  452             vdev_indirect_births_open(mos, vic->vic_births_object);
  453         spa->spa_removing_phys.sr_removing_vdev = vd->vdev_id;
  454         spa->spa_removing_phys.sr_start_time = gethrestime_sec();
  455         spa->spa_removing_phys.sr_end_time = 0;
  456         spa->spa_removing_phys.sr_state = DSS_SCANNING;
  457         spa->spa_removing_phys.sr_to_copy = 0;
  458         spa->spa_removing_phys.sr_copied = 0;
  459 
  460         /*
  461          * Note: We can't use vdev_stat's vs_alloc for sr_to_copy, because
  462          * there may be space in the defer tree, which is free, but still
  463          * counted in vs_alloc.
  464          */
  465         for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
  466                 metaslab_t *ms = vd->vdev_ms[i];
  467                 if (ms->ms_sm == NULL)
  468                         continue;
  469 
  470                 spa->spa_removing_phys.sr_to_copy +=
  471                     metaslab_allocated_space(ms);
  472 
  473                 /*
  474                  * Space which we are freeing this txg does not need to
  475                  * be copied.
  476                  */
  477                 spa->spa_removing_phys.sr_to_copy -=
  478                     range_tree_space(ms->ms_freeing);
  479 
  480                 ASSERT0(range_tree_space(ms->ms_freed));
  481                 for (int t = 0; t < TXG_SIZE; t++)
  482                         ASSERT0(range_tree_space(ms->ms_allocating[t]));
  483         }
  484 
  485         /*
  486          * Sync tasks are called before metaslab_sync(), so there should
  487          * be no already-synced metaslabs in the TXG_CLEAN list.
  488          */
  489         ASSERT3P(txg_list_head(&vd->vdev_ms_list, TXG_CLEAN(txg)), ==, NULL);
  490 
  491         spa_sync_removing_state(spa, tx);
  492 
  493         /*
  494          * All blocks that we need to read the most recent mapping must be
  495          * stored on concrete vdevs.  Therefore, we must dirty anything that
  496          * is read before spa_remove_init().  Specifically, the
  497          * spa_config_object.  (Note that although we already modified the
  498          * spa_config_object in spa_sync_removing_state, that may not have
  499          * modified all blocks of the object.)
  500          */
  501         dmu_object_info_t doi;
  502         VERIFY0(dmu_object_info(mos, DMU_POOL_DIRECTORY_OBJECT, &doi));
  503         for (uint64_t offset = 0; offset < doi.doi_max_offset; ) {
  504                 dmu_buf_t *dbuf;
  505                 VERIFY0(dmu_buf_hold(mos, DMU_POOL_DIRECTORY_OBJECT,
  506                     offset, FTAG, &dbuf, 0));
  507                 dmu_buf_will_dirty(dbuf, tx);
  508                 offset += dbuf->db_size;
  509                 dmu_buf_rele(dbuf, FTAG);
  510         }
  511 
  512         /*
  513          * Now that we've allocated the im_object, dirty the vdev to ensure
  514          * that the object gets written to the config on disk.
  515          */
  516         vdev_config_dirty(vd);
  517 
  518         zfs_dbgmsg("starting removal thread for vdev %llu (%px) in txg %llu "
  519             "im_obj=%llu", (u_longlong_t)vd->vdev_id, vd,
  520             (u_longlong_t)dmu_tx_get_txg(tx),
  521             (u_longlong_t)vic->vic_mapping_object);
  522 
  523         spa_history_log_internal(spa, "vdev remove started", tx,
  524             "%s vdev %llu %s", spa_name(spa), (u_longlong_t)vd->vdev_id,
  525             (vd->vdev_path != NULL) ? vd->vdev_path : "-");
  526         /*
  527          * Setting spa_vdev_removal causes subsequent frees to call
  528          * free_from_removing_vdev().  Note that we don't need any locking
  529          * because we are the sync thread, and metaslab_free_impl() is only
  530          * called from syncing context (potentially from a zio taskq thread,
  531          * but in any case only when there are outstanding free i/os, which
  532          * there are not).
  533          */
  534         ASSERT3P(spa->spa_vdev_removal, ==, NULL);
  535         spa->spa_vdev_removal = svr;
  536         svr->svr_thread = thread_create(NULL, 0,
  537             spa_vdev_remove_thread, spa, 0, &p0, TS_RUN, minclsyspri);
  538 }
  539 
  540 /*
  541  * When we are opening a pool, we must read the mapping for each
  542  * indirect vdev in order from most recently removed to least
  543  * recently removed.  We do this because the blocks for the mapping
  544  * of older indirect vdevs may be stored on more recently removed vdevs.
  545  * In order to read each indirect mapping object, we must have
  546  * initialized all more recently removed vdevs.
  547  */
  548 int
  549 spa_remove_init(spa_t *spa)
  550 {
  551         int error;
  552 
  553         error = zap_lookup(spa->spa_dsl_pool->dp_meta_objset,
  554             DMU_POOL_DIRECTORY_OBJECT,
  555             DMU_POOL_REMOVING, sizeof (uint64_t),
  556             sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
  557             &spa->spa_removing_phys);
  558 
  559         if (error == ENOENT) {
  560                 spa->spa_removing_phys.sr_state = DSS_NONE;
  561                 spa->spa_removing_phys.sr_removing_vdev = -1;
  562                 spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
  563                 spa->spa_indirect_vdevs_loaded = B_TRUE;
  564                 return (0);
  565         } else if (error != 0) {
  566                 return (error);
  567         }
  568 
  569         if (spa->spa_removing_phys.sr_state == DSS_SCANNING) {
  570                 /*
  571                  * We are currently removing a vdev.  Create and
  572                  * initialize a spa_vdev_removal_t from the bonus
  573                  * buffer of the removing vdevs vdev_im_object, and
  574                  * initialize its partial mapping.
  575                  */
  576                 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
  577                 vdev_t *vd = vdev_lookup_top(spa,
  578                     spa->spa_removing_phys.sr_removing_vdev);
  579 
  580                 if (vd == NULL) {
  581                         spa_config_exit(spa, SCL_STATE, FTAG);
  582                         return (EINVAL);
  583                 }
  584 
  585                 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
  586 
  587                 ASSERT(vdev_is_concrete(vd));
  588                 spa_vdev_removal_t *svr = spa_vdev_removal_create(vd);
  589                 ASSERT3U(svr->svr_vdev_id, ==, vd->vdev_id);
  590                 ASSERT(vd->vdev_removing);
  591 
  592                 vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
  593                     spa->spa_meta_objset, vic->vic_mapping_object);
  594                 vd->vdev_indirect_births = vdev_indirect_births_open(
  595                     spa->spa_meta_objset, vic->vic_births_object);
  596                 spa_config_exit(spa, SCL_STATE, FTAG);
  597 
  598                 spa->spa_vdev_removal = svr;
  599         }
  600 
  601         spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
  602         uint64_t indirect_vdev_id =
  603             spa->spa_removing_phys.sr_prev_indirect_vdev;
  604         while (indirect_vdev_id != UINT64_MAX) {
  605                 vdev_t *vd = vdev_lookup_top(spa, indirect_vdev_id);
  606                 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
  607 
  608                 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
  609                 vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
  610                     spa->spa_meta_objset, vic->vic_mapping_object);
  611                 vd->vdev_indirect_births = vdev_indirect_births_open(
  612                     spa->spa_meta_objset, vic->vic_births_object);
  613 
  614                 indirect_vdev_id = vic->vic_prev_indirect_vdev;
  615         }
  616         spa_config_exit(spa, SCL_STATE, FTAG);
  617 
  618         /*
  619          * Now that we've loaded all the indirect mappings, we can allow
  620          * reads from other blocks (e.g. via predictive prefetch).
  621          */
  622         spa->spa_indirect_vdevs_loaded = B_TRUE;
  623         return (0);
  624 }
  625 
  626 void
  627 spa_restart_removal(spa_t *spa)
  628 {
  629         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
  630 
  631         if (svr == NULL)
  632                 return;
  633 
  634         /*
  635          * In general when this function is called there is no
  636          * removal thread running. The only scenario where this
  637          * is not true is during spa_import() where this function
  638          * is called twice [once from spa_import_impl() and
  639          * spa_async_resume()]. Thus, in the scenario where we
  640          * import a pool that has an ongoing removal we don't
  641          * want to spawn a second thread.
  642          */
  643         if (svr->svr_thread != NULL)
  644                 return;
  645 
  646         if (!spa_writeable(spa))
  647                 return;
  648 
  649         zfs_dbgmsg("restarting removal of %llu",
  650             (u_longlong_t)svr->svr_vdev_id);
  651         svr->svr_thread = thread_create(NULL, 0, spa_vdev_remove_thread, spa,
  652             0, &p0, TS_RUN, minclsyspri);
  653 }
  654 
  655 /*
  656  * Process freeing from a device which is in the middle of being removed.
  657  * We must handle this carefully so that we attempt to copy freed data,
  658  * and we correctly free already-copied data.
  659  */
  660 void
  661 free_from_removing_vdev(vdev_t *vd, uint64_t offset, uint64_t size)
  662 {
  663         spa_t *spa = vd->vdev_spa;
  664         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
  665         vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
  666         uint64_t txg = spa_syncing_txg(spa);
  667         uint64_t max_offset_yet = 0;
  668 
  669         ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
  670         ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, ==,
  671             vdev_indirect_mapping_object(vim));
  672         ASSERT3U(vd->vdev_id, ==, svr->svr_vdev_id);
  673 
  674         mutex_enter(&svr->svr_lock);
  675 
  676         /*
  677          * Remove the segment from the removing vdev's spacemap.  This
  678          * ensures that we will not attempt to copy this space (if the
  679          * removal thread has not yet visited it), and also ensures
  680          * that we know what is actually allocated on the new vdevs
  681          * (needed if we cancel the removal).
  682          *
  683          * Note: we must do the metaslab_free_concrete() with the svr_lock
  684          * held, so that the remove_thread can not load this metaslab and then
  685          * visit this offset between the time that we metaslab_free_concrete()
  686          * and when we check to see if it has been visited.
  687          *
  688          * Note: The checkpoint flag is set to false as having/taking
  689          * a checkpoint and removing a device can't happen at the same
  690          * time.
  691          */
  692         ASSERT(!spa_has_checkpoint(spa));
  693         metaslab_free_concrete(vd, offset, size, B_FALSE);
  694 
  695         uint64_t synced_size = 0;
  696         uint64_t synced_offset = 0;
  697         uint64_t max_offset_synced = vdev_indirect_mapping_max_offset(vim);
  698         if (offset < max_offset_synced) {
  699                 /*
  700                  * The mapping for this offset is already on disk.
  701                  * Free from the new location.
  702                  *
  703                  * Note that we use svr_max_synced_offset because it is
  704                  * updated atomically with respect to the in-core mapping.
  705                  * By contrast, vim_max_offset is not.
  706                  *
  707                  * This block may be split between a synced entry and an
  708                  * in-flight or unvisited entry.  Only process the synced
  709                  * portion of it here.
  710                  */
  711                 synced_size = MIN(size, max_offset_synced - offset);
  712                 synced_offset = offset;
  713 
  714                 ASSERT3U(max_offset_yet, <=, max_offset_synced);
  715                 max_offset_yet = max_offset_synced;
  716 
  717                 DTRACE_PROBE3(remove__free__synced,
  718                     spa_t *, spa,
  719                     uint64_t, offset,
  720                     uint64_t, synced_size);
  721 
  722                 size -= synced_size;
  723                 offset += synced_size;
  724         }
  725 
  726         /*
  727          * Look at all in-flight txgs starting from the currently syncing one
  728          * and see if a section of this free is being copied. By starting from
  729          * this txg and iterating forward, we might find that this region
  730          * was copied in two different txgs and handle it appropriately.
  731          */
  732         for (int i = 0; i < TXG_CONCURRENT_STATES; i++) {
  733                 int txgoff = (txg + i) & TXG_MASK;
  734                 if (size > 0 && offset < svr->svr_max_offset_to_sync[txgoff]) {
  735                         /*
  736                          * The mapping for this offset is in flight, and
  737                          * will be synced in txg+i.
  738                          */
  739                         uint64_t inflight_size = MIN(size,
  740                             svr->svr_max_offset_to_sync[txgoff] - offset);
  741 
  742                         DTRACE_PROBE4(remove__free__inflight,
  743                             spa_t *, spa,
  744                             uint64_t, offset,
  745                             uint64_t, inflight_size,
  746                             uint64_t, txg + i);
  747 
  748                         /*
  749                          * We copy data in order of increasing offset.
  750                          * Therefore the max_offset_to_sync[] must increase
  751                          * (or be zero, indicating that nothing is being
  752                          * copied in that txg).
  753                          */
  754                         if (svr->svr_max_offset_to_sync[txgoff] != 0) {
  755                                 ASSERT3U(svr->svr_max_offset_to_sync[txgoff],
  756                                     >=, max_offset_yet);
  757                                 max_offset_yet =
  758                                     svr->svr_max_offset_to_sync[txgoff];
  759                         }
  760 
  761                         /*
  762                          * We've already committed to copying this segment:
  763                          * we have allocated space elsewhere in the pool for
  764                          * it and have an IO outstanding to copy the data. We
  765                          * cannot free the space before the copy has
  766                          * completed, or else the copy IO might overwrite any
  767                          * new data. To free that space, we record the
  768                          * segment in the appropriate svr_frees tree and free
  769                          * the mapped space later, in the txg where we have
  770                          * completed the copy and synced the mapping (see
  771                          * vdev_mapping_sync).
  772                          */
  773                         range_tree_add(svr->svr_frees[txgoff],
  774                             offset, inflight_size);
  775                         size -= inflight_size;
  776                         offset += inflight_size;
  777 
  778                         /*
  779                          * This space is already accounted for as being
  780                          * done, because it is being copied in txg+i.
  781                          * However, if i!=0, then it is being copied in
  782                          * a future txg.  If we crash after this txg
  783                          * syncs but before txg+i syncs, then the space
  784                          * will be free.  Therefore we must account
  785                          * for the space being done in *this* txg
  786                          * (when it is freed) rather than the future txg
  787                          * (when it will be copied).
  788                          */
  789                         ASSERT3U(svr->svr_bytes_done[txgoff], >=,
  790                             inflight_size);
  791                         svr->svr_bytes_done[txgoff] -= inflight_size;
  792                         svr->svr_bytes_done[txg & TXG_MASK] += inflight_size;
  793                 }
  794         }
  795         ASSERT0(svr->svr_max_offset_to_sync[TXG_CLEAN(txg) & TXG_MASK]);
  796 
  797         if (size > 0) {
  798                 /*
  799                  * The copy thread has not yet visited this offset.  Ensure
  800                  * that it doesn't.
  801                  */
  802 
  803                 DTRACE_PROBE3(remove__free__unvisited,
  804                     spa_t *, spa,
  805                     uint64_t, offset,
  806                     uint64_t, size);
  807 
  808                 if (svr->svr_allocd_segs != NULL)
  809                         range_tree_clear(svr->svr_allocd_segs, offset, size);
  810 
  811                 /*
  812                  * Since we now do not need to copy this data, for
  813                  * accounting purposes we have done our job and can count
  814                  * it as completed.
  815                  */
  816                 svr->svr_bytes_done[txg & TXG_MASK] += size;
  817         }
  818         mutex_exit(&svr->svr_lock);
  819 
  820         /*
  821          * Now that we have dropped svr_lock, process the synced portion
  822          * of this free.
  823          */
  824         if (synced_size > 0) {
  825                 vdev_indirect_mark_obsolete(vd, synced_offset, synced_size);
  826 
  827                 /*
  828                  * Note: this can only be called from syncing context,
  829                  * and the vdev_indirect_mapping is only changed from the
  830                  * sync thread, so we don't need svr_lock while doing
  831                  * metaslab_free_impl_cb.
  832                  */
  833                 boolean_t checkpoint = B_FALSE;
  834                 vdev_indirect_ops.vdev_op_remap(vd, synced_offset, synced_size,
  835                     metaslab_free_impl_cb, &checkpoint);
  836         }
  837 }
  838 
  839 /*
  840  * Stop an active removal and update the spa_removing phys.
  841  */
  842 static void
  843 spa_finish_removal(spa_t *spa, dsl_scan_state_t state, dmu_tx_t *tx)
  844 {
  845         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
  846         ASSERT3U(dmu_tx_get_txg(tx), ==, spa_syncing_txg(spa));
  847 
  848         /* Ensure the removal thread has completed before we free the svr. */
  849         spa_vdev_remove_suspend(spa);
  850 
  851         ASSERT(state == DSS_FINISHED || state == DSS_CANCELED);
  852 
  853         if (state == DSS_FINISHED) {
  854                 spa_removing_phys_t *srp = &spa->spa_removing_phys;
  855                 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
  856                 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
  857 
  858                 if (srp->sr_prev_indirect_vdev != -1) {
  859                         vdev_t *pvd;
  860                         pvd = vdev_lookup_top(spa,
  861                             srp->sr_prev_indirect_vdev);
  862                         ASSERT3P(pvd->vdev_ops, ==, &vdev_indirect_ops);
  863                 }
  864 
  865                 vic->vic_prev_indirect_vdev = srp->sr_prev_indirect_vdev;
  866                 srp->sr_prev_indirect_vdev = vd->vdev_id;
  867         }
  868         spa->spa_removing_phys.sr_state = state;
  869         spa->spa_removing_phys.sr_end_time = gethrestime_sec();
  870 
  871         spa->spa_vdev_removal = NULL;
  872         spa_vdev_removal_destroy(svr);
  873 
  874         spa_sync_removing_state(spa, tx);
  875         spa_notify_waiters(spa);
  876 
  877         vdev_config_dirty(spa->spa_root_vdev);
  878 }
  879 
  880 static void
  881 free_mapped_segment_cb(void *arg, uint64_t offset, uint64_t size)
  882 {
  883         vdev_t *vd = arg;
  884         vdev_indirect_mark_obsolete(vd, offset, size);
  885         boolean_t checkpoint = B_FALSE;
  886         vdev_indirect_ops.vdev_op_remap(vd, offset, size,
  887             metaslab_free_impl_cb, &checkpoint);
  888 }
  889 
  890 /*
  891  * On behalf of the removal thread, syncs an incremental bit more of
  892  * the indirect mapping to disk and updates the in-memory mapping.
  893  * Called as a sync task in every txg that the removal thread makes progress.
  894  */
  895 static void
  896 vdev_mapping_sync(void *arg, dmu_tx_t *tx)
  897 {
  898         spa_vdev_removal_t *svr = arg;
  899         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
  900         vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
  901         vdev_indirect_config_t *vic __maybe_unused = &vd->vdev_indirect_config;
  902         uint64_t txg = dmu_tx_get_txg(tx);
  903         vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
  904 
  905         ASSERT(vic->vic_mapping_object != 0);
  906         ASSERT3U(txg, ==, spa_syncing_txg(spa));
  907 
  908         vdev_indirect_mapping_add_entries(vim,
  909             &svr->svr_new_segments[txg & TXG_MASK], tx);
  910         vdev_indirect_births_add_entry(vd->vdev_indirect_births,
  911             vdev_indirect_mapping_max_offset(vim), dmu_tx_get_txg(tx), tx);
  912 
  913         /*
  914          * Free the copied data for anything that was freed while the
  915          * mapping entries were in flight.
  916          */
  917         mutex_enter(&svr->svr_lock);
  918         range_tree_vacate(svr->svr_frees[txg & TXG_MASK],
  919             free_mapped_segment_cb, vd);
  920         ASSERT3U(svr->svr_max_offset_to_sync[txg & TXG_MASK], >=,
  921             vdev_indirect_mapping_max_offset(vim));
  922         svr->svr_max_offset_to_sync[txg & TXG_MASK] = 0;
  923         mutex_exit(&svr->svr_lock);
  924 
  925         spa_sync_removing_state(spa, tx);
  926 }
  927 
  928 typedef struct vdev_copy_segment_arg {
  929         spa_t *vcsa_spa;
  930         dva_t *vcsa_dest_dva;
  931         uint64_t vcsa_txg;
  932         range_tree_t *vcsa_obsolete_segs;
  933 } vdev_copy_segment_arg_t;
  934 
  935 static void
  936 unalloc_seg(void *arg, uint64_t start, uint64_t size)
  937 {
  938         vdev_copy_segment_arg_t *vcsa = arg;
  939         spa_t *spa = vcsa->vcsa_spa;
  940         blkptr_t bp = { { { {0} } } };
  941 
  942         BP_SET_BIRTH(&bp, TXG_INITIAL, TXG_INITIAL);
  943         BP_SET_LSIZE(&bp, size);
  944         BP_SET_PSIZE(&bp, size);
  945         BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF);
  946         BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_OFF);
  947         BP_SET_TYPE(&bp, DMU_OT_NONE);
  948         BP_SET_LEVEL(&bp, 0);
  949         BP_SET_DEDUP(&bp, 0);
  950         BP_SET_BYTEORDER(&bp, ZFS_HOST_BYTEORDER);
  951 
  952         DVA_SET_VDEV(&bp.blk_dva[0], DVA_GET_VDEV(vcsa->vcsa_dest_dva));
  953         DVA_SET_OFFSET(&bp.blk_dva[0],
  954             DVA_GET_OFFSET(vcsa->vcsa_dest_dva) + start);
  955         DVA_SET_ASIZE(&bp.blk_dva[0], size);
  956 
  957         zio_free(spa, vcsa->vcsa_txg, &bp);
  958 }
  959 
  960 /*
  961  * All reads and writes associated with a call to spa_vdev_copy_segment()
  962  * are done.
  963  */
  964 static void
  965 spa_vdev_copy_segment_done(zio_t *zio)
  966 {
  967         vdev_copy_segment_arg_t *vcsa = zio->io_private;
  968 
  969         range_tree_vacate(vcsa->vcsa_obsolete_segs,
  970             unalloc_seg, vcsa);
  971         range_tree_destroy(vcsa->vcsa_obsolete_segs);
  972         kmem_free(vcsa, sizeof (*vcsa));
  973 
  974         spa_config_exit(zio->io_spa, SCL_STATE, zio->io_spa);
  975 }
  976 
  977 /*
  978  * The write of the new location is done.
  979  */
  980 static void
  981 spa_vdev_copy_segment_write_done(zio_t *zio)
  982 {
  983         vdev_copy_arg_t *vca = zio->io_private;
  984 
  985         abd_free(zio->io_abd);
  986 
  987         mutex_enter(&vca->vca_lock);
  988         vca->vca_outstanding_bytes -= zio->io_size;
  989 
  990         if (zio->io_error != 0)
  991                 vca->vca_write_error_bytes += zio->io_size;
  992 
  993         cv_signal(&vca->vca_cv);
  994         mutex_exit(&vca->vca_lock);
  995 }
  996 
  997 /*
  998  * The read of the old location is done.  The parent zio is the write to
  999  * the new location.  Allow it to start.
 1000  */
 1001 static void
 1002 spa_vdev_copy_segment_read_done(zio_t *zio)
 1003 {
 1004         vdev_copy_arg_t *vca = zio->io_private;
 1005 
 1006         if (zio->io_error != 0) {
 1007                 mutex_enter(&vca->vca_lock);
 1008                 vca->vca_read_error_bytes += zio->io_size;
 1009                 mutex_exit(&vca->vca_lock);
 1010         }
 1011 
 1012         zio_nowait(zio_unique_parent(zio));
 1013 }
 1014 
 1015 /*
 1016  * If the old and new vdevs are mirrors, we will read both sides of the old
 1017  * mirror, and write each copy to the corresponding side of the new mirror.
 1018  * If the old and new vdevs have a different number of children, we will do
 1019  * this as best as possible.  Since we aren't verifying checksums, this
 1020  * ensures that as long as there's a good copy of the data, we'll have a
 1021  * good copy after the removal, even if there's silent damage to one side
 1022  * of the mirror. If we're removing a mirror that has some silent damage,
 1023  * we'll have exactly the same damage in the new location (assuming that
 1024  * the new location is also a mirror).
 1025  *
 1026  * We accomplish this by creating a tree of zio_t's, with as many writes as
 1027  * there are "children" of the new vdev (a non-redundant vdev counts as one
 1028  * child, a 2-way mirror has 2 children, etc). Each write has an associated
 1029  * read from a child of the old vdev. Typically there will be the same
 1030  * number of children of the old and new vdevs.  However, if there are more
 1031  * children of the new vdev, some child(ren) of the old vdev will be issued
 1032  * multiple reads.  If there are more children of the old vdev, some copies
 1033  * will be dropped.
 1034  *
 1035  * For example, the tree of zio_t's for a 2-way mirror is:
 1036  *
 1037  *                            null
 1038  *                           /    \
 1039  *    write(new vdev, child 0)      write(new vdev, child 1)
 1040  *      |                             |
 1041  *    read(old vdev, child 0)       read(old vdev, child 1)
 1042  *
 1043  * Child zio's complete before their parents complete.  However, zio's
 1044  * created with zio_vdev_child_io() may be issued before their children
 1045  * complete.  In this case we need to make sure that the children (reads)
 1046  * complete before the parents (writes) are *issued*.  We do this by not
 1047  * calling zio_nowait() on each write until its corresponding read has
 1048  * completed.
 1049  *
 1050  * The spa_config_lock must be held while zio's created by
 1051  * zio_vdev_child_io() are in progress, to ensure that the vdev tree does
 1052  * not change (e.g. due to a concurrent "zpool attach/detach"). The "null"
 1053  * zio is needed to release the spa_config_lock after all the reads and
 1054  * writes complete. (Note that we can't grab the config lock for each read,
 1055  * because it is not reentrant - we could deadlock with a thread waiting
 1056  * for a write lock.)
 1057  */
 1058 static void
 1059 spa_vdev_copy_one_child(vdev_copy_arg_t *vca, zio_t *nzio,
 1060     vdev_t *source_vd, uint64_t source_offset,
 1061     vdev_t *dest_child_vd, uint64_t dest_offset, int dest_id, uint64_t size)
 1062 {
 1063         ASSERT3U(spa_config_held(nzio->io_spa, SCL_ALL, RW_READER), !=, 0);
 1064 
 1065         /*
 1066          * If the destination child in unwritable then there is no point
 1067          * in issuing the source reads which cannot be written.
 1068          */
 1069         if (!vdev_writeable(dest_child_vd))
 1070                 return;
 1071 
 1072         mutex_enter(&vca->vca_lock);
 1073         vca->vca_outstanding_bytes += size;
 1074         mutex_exit(&vca->vca_lock);
 1075 
 1076         abd_t *abd = abd_alloc_for_io(size, B_FALSE);
 1077 
 1078         vdev_t *source_child_vd = NULL;
 1079         if (source_vd->vdev_ops == &vdev_mirror_ops && dest_id != -1) {
 1080                 /*
 1081                  * Source and dest are both mirrors.  Copy from the same
 1082                  * child id as we are copying to (wrapping around if there
 1083                  * are more dest children than source children).  If the
 1084                  * preferred source child is unreadable select another.
 1085                  */
 1086                 for (int i = 0; i < source_vd->vdev_children; i++) {
 1087                         source_child_vd = source_vd->vdev_child[
 1088                             (dest_id + i) % source_vd->vdev_children];
 1089                         if (vdev_readable(source_child_vd))
 1090                                 break;
 1091                 }
 1092         } else {
 1093                 source_child_vd = source_vd;
 1094         }
 1095 
 1096         /*
 1097          * There should always be at least one readable source child or
 1098          * the pool would be in a suspended state.  Somehow selecting an
 1099          * unreadable child would result in IO errors, the removal process
 1100          * being cancelled, and the pool reverting to its pre-removal state.
 1101          */
 1102         ASSERT3P(source_child_vd, !=, NULL);
 1103 
 1104         zio_t *write_zio = zio_vdev_child_io(nzio, NULL,
 1105             dest_child_vd, dest_offset, abd, size,
 1106             ZIO_TYPE_WRITE, ZIO_PRIORITY_REMOVAL,
 1107             ZIO_FLAG_CANFAIL,
 1108             spa_vdev_copy_segment_write_done, vca);
 1109 
 1110         zio_nowait(zio_vdev_child_io(write_zio, NULL,
 1111             source_child_vd, source_offset, abd, size,
 1112             ZIO_TYPE_READ, ZIO_PRIORITY_REMOVAL,
 1113             ZIO_FLAG_CANFAIL,
 1114             spa_vdev_copy_segment_read_done, vca));
 1115 }
 1116 
 1117 /*
 1118  * Allocate a new location for this segment, and create the zio_t's to
 1119  * read from the old location and write to the new location.
 1120  */
 1121 static int
 1122 spa_vdev_copy_segment(vdev_t *vd, range_tree_t *segs,
 1123     uint64_t maxalloc, uint64_t txg,
 1124     vdev_copy_arg_t *vca, zio_alloc_list_t *zal)
 1125 {
 1126         metaslab_group_t *mg = vd->vdev_mg;
 1127         spa_t *spa = vd->vdev_spa;
 1128         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
 1129         vdev_indirect_mapping_entry_t *entry;
 1130         dva_t dst = {{ 0 }};
 1131         uint64_t start = range_tree_min(segs);
 1132         ASSERT0(P2PHASE(start, 1 << spa->spa_min_ashift));
 1133 
 1134         ASSERT3U(maxalloc, <=, SPA_MAXBLOCKSIZE);
 1135         ASSERT0(P2PHASE(maxalloc, 1 << spa->spa_min_ashift));
 1136 
 1137         uint64_t size = range_tree_span(segs);
 1138         if (range_tree_span(segs) > maxalloc) {
 1139                 /*
 1140                  * We can't allocate all the segments.  Prefer to end
 1141                  * the allocation at the end of a segment, thus avoiding
 1142                  * additional split blocks.
 1143                  */
 1144                 range_seg_max_t search;
 1145                 zfs_btree_index_t where;
 1146                 rs_set_start(&search, segs, start + maxalloc);
 1147                 rs_set_end(&search, segs, start + maxalloc);
 1148                 (void) zfs_btree_find(&segs->rt_root, &search, &where);
 1149                 range_seg_t *rs = zfs_btree_prev(&segs->rt_root, &where,
 1150                     &where);
 1151                 if (rs != NULL) {
 1152                         size = rs_get_end(rs, segs) - start;
 1153                 } else {
 1154                         /*
 1155                          * There are no segments that end before maxalloc.
 1156                          * I.e. the first segment is larger than maxalloc,
 1157                          * so we must split it.
 1158                          */
 1159                         size = maxalloc;
 1160                 }
 1161         }
 1162         ASSERT3U(size, <=, maxalloc);
 1163         ASSERT0(P2PHASE(size, 1 << spa->spa_min_ashift));
 1164 
 1165         /*
 1166          * An allocation class might not have any remaining vdevs or space
 1167          */
 1168         metaslab_class_t *mc = mg->mg_class;
 1169         if (mc->mc_groups == 0)
 1170                 mc = spa_normal_class(spa);
 1171         int error = metaslab_alloc_dva(spa, mc, size, &dst, 0, NULL, txg,
 1172             METASLAB_DONT_THROTTLE, zal, 0);
 1173         if (error == ENOSPC && mc != spa_normal_class(spa)) {
 1174                 error = metaslab_alloc_dva(spa, spa_normal_class(spa), size,
 1175                     &dst, 0, NULL, txg, METASLAB_DONT_THROTTLE, zal, 0);
 1176         }
 1177         if (error != 0)
 1178                 return (error);
 1179 
 1180         /*
 1181          * Determine the ranges that are not actually needed.  Offsets are
 1182          * relative to the start of the range to be copied (i.e. relative to the
 1183          * local variable "start").
 1184          */
 1185         range_tree_t *obsolete_segs = range_tree_create(NULL, RANGE_SEG64, NULL,
 1186             0, 0);
 1187 
 1188         zfs_btree_index_t where;
 1189         range_seg_t *rs = zfs_btree_first(&segs->rt_root, &where);
 1190         ASSERT3U(rs_get_start(rs, segs), ==, start);
 1191         uint64_t prev_seg_end = rs_get_end(rs, segs);
 1192         while ((rs = zfs_btree_next(&segs->rt_root, &where, &where)) != NULL) {
 1193                 if (rs_get_start(rs, segs) >= start + size) {
 1194                         break;
 1195                 } else {
 1196                         range_tree_add(obsolete_segs,
 1197                             prev_seg_end - start,
 1198                             rs_get_start(rs, segs) - prev_seg_end);
 1199                 }
 1200                 prev_seg_end = rs_get_end(rs, segs);
 1201         }
 1202         /* We don't end in the middle of an obsolete range */
 1203         ASSERT3U(start + size, <=, prev_seg_end);
 1204 
 1205         range_tree_clear(segs, start, size);
 1206 
 1207         /*
 1208          * We can't have any padding of the allocated size, otherwise we will
 1209          * misunderstand what's allocated, and the size of the mapping. We
 1210          * prevent padding by ensuring that all devices in the pool have the
 1211          * same ashift, and the allocation size is a multiple of the ashift.
 1212          */
 1213         VERIFY3U(DVA_GET_ASIZE(&dst), ==, size);
 1214 
 1215         entry = kmem_zalloc(sizeof (vdev_indirect_mapping_entry_t), KM_SLEEP);
 1216         DVA_MAPPING_SET_SRC_OFFSET(&entry->vime_mapping, start);
 1217         entry->vime_mapping.vimep_dst = dst;
 1218         if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
 1219                 entry->vime_obsolete_count = range_tree_space(obsolete_segs);
 1220         }
 1221 
 1222         vdev_copy_segment_arg_t *vcsa = kmem_zalloc(sizeof (*vcsa), KM_SLEEP);
 1223         vcsa->vcsa_dest_dva = &entry->vime_mapping.vimep_dst;
 1224         vcsa->vcsa_obsolete_segs = obsolete_segs;
 1225         vcsa->vcsa_spa = spa;
 1226         vcsa->vcsa_txg = txg;
 1227 
 1228         /*
 1229          * See comment before spa_vdev_copy_one_child().
 1230          */
 1231         spa_config_enter(spa, SCL_STATE, spa, RW_READER);
 1232         zio_t *nzio = zio_null(spa->spa_txg_zio[txg & TXG_MASK], spa, NULL,
 1233             spa_vdev_copy_segment_done, vcsa, 0);
 1234         vdev_t *dest_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dst));
 1235         if (dest_vd->vdev_ops == &vdev_mirror_ops) {
 1236                 for (int i = 0; i < dest_vd->vdev_children; i++) {
 1237                         vdev_t *child = dest_vd->vdev_child[i];
 1238                         spa_vdev_copy_one_child(vca, nzio, vd, start,
 1239                             child, DVA_GET_OFFSET(&dst), i, size);
 1240                 }
 1241         } else {
 1242                 spa_vdev_copy_one_child(vca, nzio, vd, start,
 1243                     dest_vd, DVA_GET_OFFSET(&dst), -1, size);
 1244         }
 1245         zio_nowait(nzio);
 1246 
 1247         list_insert_tail(&svr->svr_new_segments[txg & TXG_MASK], entry);
 1248         ASSERT3U(start + size, <=, vd->vdev_ms_count << vd->vdev_ms_shift);
 1249         vdev_dirty(vd, 0, NULL, txg);
 1250 
 1251         return (0);
 1252 }
 1253 
 1254 /*
 1255  * Complete the removal of a toplevel vdev. This is called as a
 1256  * synctask in the same txg that we will sync out the new config (to the
 1257  * MOS object) which indicates that this vdev is indirect.
 1258  */
 1259 static void
 1260 vdev_remove_complete_sync(void *arg, dmu_tx_t *tx)
 1261 {
 1262         spa_vdev_removal_t *svr = arg;
 1263         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
 1264         vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
 1265 
 1266         ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
 1267 
 1268         for (int i = 0; i < TXG_SIZE; i++) {
 1269                 ASSERT0(svr->svr_bytes_done[i]);
 1270         }
 1271 
 1272         ASSERT3U(spa->spa_removing_phys.sr_copied, ==,
 1273             spa->spa_removing_phys.sr_to_copy);
 1274 
 1275         vdev_destroy_spacemaps(vd, tx);
 1276 
 1277         /* destroy leaf zaps, if any */
 1278         ASSERT3P(svr->svr_zaplist, !=, NULL);
 1279         for (nvpair_t *pair = nvlist_next_nvpair(svr->svr_zaplist, NULL);
 1280             pair != NULL;
 1281             pair = nvlist_next_nvpair(svr->svr_zaplist, pair)) {
 1282                 vdev_destroy_unlink_zap(vd, fnvpair_value_uint64(pair), tx);
 1283         }
 1284         fnvlist_free(svr->svr_zaplist);
 1285 
 1286         spa_finish_removal(dmu_tx_pool(tx)->dp_spa, DSS_FINISHED, tx);
 1287         /* vd->vdev_path is not available here */
 1288         spa_history_log_internal(spa, "vdev remove completed",  tx,
 1289             "%s vdev %llu", spa_name(spa), (u_longlong_t)vd->vdev_id);
 1290 }
 1291 
 1292 static void
 1293 vdev_remove_enlist_zaps(vdev_t *vd, nvlist_t *zlist)
 1294 {
 1295         ASSERT3P(zlist, !=, NULL);
 1296         ASSERT0(vdev_get_nparity(vd));
 1297 
 1298         if (vd->vdev_leaf_zap != 0) {
 1299                 char zkey[32];
 1300                 (void) snprintf(zkey, sizeof (zkey), "%s-%llu",
 1301                     VDEV_REMOVAL_ZAP_OBJS, (u_longlong_t)vd->vdev_leaf_zap);
 1302                 fnvlist_add_uint64(zlist, zkey, vd->vdev_leaf_zap);
 1303         }
 1304 
 1305         for (uint64_t id = 0; id < vd->vdev_children; id++) {
 1306                 vdev_remove_enlist_zaps(vd->vdev_child[id], zlist);
 1307         }
 1308 }
 1309 
 1310 static void
 1311 vdev_remove_replace_with_indirect(vdev_t *vd, uint64_t txg)
 1312 {
 1313         vdev_t *ivd;
 1314         dmu_tx_t *tx;
 1315         spa_t *spa = vd->vdev_spa;
 1316         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
 1317 
 1318         /*
 1319          * First, build a list of leaf zaps to be destroyed.
 1320          * This is passed to the sync context thread,
 1321          * which does the actual unlinking.
 1322          */
 1323         svr->svr_zaplist = fnvlist_alloc();
 1324         vdev_remove_enlist_zaps(vd, svr->svr_zaplist);
 1325 
 1326         ivd = vdev_add_parent(vd, &vdev_indirect_ops);
 1327         ivd->vdev_removing = 0;
 1328 
 1329         vd->vdev_leaf_zap = 0;
 1330 
 1331         vdev_remove_child(ivd, vd);
 1332         vdev_compact_children(ivd);
 1333 
 1334         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
 1335 
 1336         mutex_enter(&svr->svr_lock);
 1337         svr->svr_thread = NULL;
 1338         cv_broadcast(&svr->svr_cv);
 1339         mutex_exit(&svr->svr_lock);
 1340 
 1341         /* After this, we can not use svr. */
 1342         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
 1343         dsl_sync_task_nowait(spa->spa_dsl_pool,
 1344             vdev_remove_complete_sync, svr, tx);
 1345         dmu_tx_commit(tx);
 1346 }
 1347 
 1348 /*
 1349  * Complete the removal of a toplevel vdev. This is called in open
 1350  * context by the removal thread after we have copied all vdev's data.
 1351  */
 1352 static void
 1353 vdev_remove_complete(spa_t *spa)
 1354 {
 1355         uint64_t txg;
 1356 
 1357         /*
 1358          * Wait for any deferred frees to be synced before we call
 1359          * vdev_metaslab_fini()
 1360          */
 1361         txg_wait_synced(spa->spa_dsl_pool, 0);
 1362         txg = spa_vdev_enter(spa);
 1363         vdev_t *vd = vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id);
 1364         ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
 1365         ASSERT3P(vd->vdev_trim_thread, ==, NULL);
 1366         ASSERT3P(vd->vdev_autotrim_thread, ==, NULL);
 1367         vdev_rebuild_stop_wait(vd);
 1368         ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
 1369         uint64_t vdev_space = spa_deflate(spa) ?
 1370             vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
 1371 
 1372         sysevent_t *ev = spa_event_create(spa, vd, NULL,
 1373             ESC_ZFS_VDEV_REMOVE_DEV);
 1374 
 1375         zfs_dbgmsg("finishing device removal for vdev %llu in txg %llu",
 1376             (u_longlong_t)vd->vdev_id, (u_longlong_t)txg);
 1377 
 1378         ASSERT3U(0, !=, vdev_space);
 1379         ASSERT3U(spa->spa_nonallocating_dspace, >=, vdev_space);
 1380 
 1381         /* the vdev is no longer part of the dspace */
 1382         spa->spa_nonallocating_dspace -= vdev_space;
 1383 
 1384         /*
 1385          * Discard allocation state.
 1386          */
 1387         if (vd->vdev_mg != NULL) {
 1388                 vdev_metaslab_fini(vd);
 1389                 metaslab_group_destroy(vd->vdev_mg);
 1390                 vd->vdev_mg = NULL;
 1391         }
 1392         if (vd->vdev_log_mg != NULL) {
 1393                 ASSERT0(vd->vdev_ms_count);
 1394                 metaslab_group_destroy(vd->vdev_log_mg);
 1395                 vd->vdev_log_mg = NULL;
 1396         }
 1397         ASSERT0(vd->vdev_stat.vs_space);
 1398         ASSERT0(vd->vdev_stat.vs_dspace);
 1399 
 1400         vdev_remove_replace_with_indirect(vd, txg);
 1401 
 1402         /*
 1403          * We now release the locks, allowing spa_sync to run and finish the
 1404          * removal via vdev_remove_complete_sync in syncing context.
 1405          *
 1406          * Note that we hold on to the vdev_t that has been replaced.  Since
 1407          * it isn't part of the vdev tree any longer, it can't be concurrently
 1408          * manipulated, even while we don't have the config lock.
 1409          */
 1410         (void) spa_vdev_exit(spa, NULL, txg, 0);
 1411 
 1412         /*
 1413          * Top ZAP should have been transferred to the indirect vdev in
 1414          * vdev_remove_replace_with_indirect.
 1415          */
 1416         ASSERT0(vd->vdev_top_zap);
 1417 
 1418         /*
 1419          * Leaf ZAP should have been moved in vdev_remove_replace_with_indirect.
 1420          */
 1421         ASSERT0(vd->vdev_leaf_zap);
 1422 
 1423         txg = spa_vdev_enter(spa);
 1424         (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
 1425         /*
 1426          * Request to update the config and the config cachefile.
 1427          */
 1428         vdev_config_dirty(spa->spa_root_vdev);
 1429         (void) spa_vdev_exit(spa, vd, txg, 0);
 1430 
 1431         if (ev != NULL)
 1432                 spa_event_post(ev);
 1433 }
 1434 
 1435 /*
 1436  * Evacuates a segment of size at most max_alloc from the vdev
 1437  * via repeated calls to spa_vdev_copy_segment. If an allocation
 1438  * fails, the pool is probably too fragmented to handle such a
 1439  * large size, so decrease max_alloc so that the caller will not try
 1440  * this size again this txg.
 1441  */
 1442 static void
 1443 spa_vdev_copy_impl(vdev_t *vd, spa_vdev_removal_t *svr, vdev_copy_arg_t *vca,
 1444     uint64_t *max_alloc, dmu_tx_t *tx)
 1445 {
 1446         uint64_t txg = dmu_tx_get_txg(tx);
 1447         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
 1448 
 1449         mutex_enter(&svr->svr_lock);
 1450 
 1451         /*
 1452          * Determine how big of a chunk to copy.  We can allocate up
 1453          * to max_alloc bytes, and we can span up to vdev_removal_max_span
 1454          * bytes of unallocated space at a time.  "segs" will track the
 1455          * allocated segments that we are copying.  We may also be copying
 1456          * free segments (of up to vdev_removal_max_span bytes).
 1457          */
 1458         range_tree_t *segs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
 1459         for (;;) {
 1460                 range_tree_t *rt = svr->svr_allocd_segs;
 1461                 range_seg_t *rs = range_tree_first(rt);
 1462 
 1463                 if (rs == NULL)
 1464                         break;
 1465 
 1466                 uint64_t seg_length;
 1467 
 1468                 if (range_tree_is_empty(segs)) {
 1469                         /* need to truncate the first seg based on max_alloc */
 1470                         seg_length = MIN(rs_get_end(rs, rt) - rs_get_start(rs,
 1471                             rt), *max_alloc);
 1472                 } else {
 1473                         if (rs_get_start(rs, rt) - range_tree_max(segs) >
 1474                             vdev_removal_max_span) {
 1475                                 /*
 1476                                  * Including this segment would cause us to
 1477                                  * copy a larger unneeded chunk than is allowed.
 1478                                  */
 1479                                 break;
 1480                         } else if (rs_get_end(rs, rt) - range_tree_min(segs) >
 1481                             *max_alloc) {
 1482                                 /*
 1483                                  * This additional segment would extend past
 1484                                  * max_alloc. Rather than splitting this
 1485                                  * segment, leave it for the next mapping.
 1486                                  */
 1487                                 break;
 1488                         } else {
 1489                                 seg_length = rs_get_end(rs, rt) -
 1490                                     rs_get_start(rs, rt);
 1491                         }
 1492                 }
 1493 
 1494                 range_tree_add(segs, rs_get_start(rs, rt), seg_length);
 1495                 range_tree_remove(svr->svr_allocd_segs,
 1496                     rs_get_start(rs, rt), seg_length);
 1497         }
 1498 
 1499         if (range_tree_is_empty(segs)) {
 1500                 mutex_exit(&svr->svr_lock);
 1501                 range_tree_destroy(segs);
 1502                 return;
 1503         }
 1504 
 1505         if (svr->svr_max_offset_to_sync[txg & TXG_MASK] == 0) {
 1506                 dsl_sync_task_nowait(dmu_tx_pool(tx), vdev_mapping_sync,
 1507                     svr, tx);
 1508         }
 1509 
 1510         svr->svr_max_offset_to_sync[txg & TXG_MASK] = range_tree_max(segs);
 1511 
 1512         /*
 1513          * Note: this is the amount of *allocated* space
 1514          * that we are taking care of each txg.
 1515          */
 1516         svr->svr_bytes_done[txg & TXG_MASK] += range_tree_space(segs);
 1517 
 1518         mutex_exit(&svr->svr_lock);
 1519 
 1520         zio_alloc_list_t zal;
 1521         metaslab_trace_init(&zal);
 1522         uint64_t thismax = SPA_MAXBLOCKSIZE;
 1523         while (!range_tree_is_empty(segs)) {
 1524                 int error = spa_vdev_copy_segment(vd,
 1525                     segs, thismax, txg, vca, &zal);
 1526 
 1527                 if (error == ENOSPC) {
 1528                         /*
 1529                          * Cut our segment in half, and don't try this
 1530                          * segment size again this txg.  Note that the
 1531                          * allocation size must be aligned to the highest
 1532                          * ashift in the pool, so that the allocation will
 1533                          * not be padded out to a multiple of the ashift,
 1534                          * which could cause us to think that this mapping
 1535                          * is larger than we intended.
 1536                          */
 1537                         ASSERT3U(spa->spa_max_ashift, >=, SPA_MINBLOCKSHIFT);
 1538                         ASSERT3U(spa->spa_max_ashift, ==, spa->spa_min_ashift);
 1539                         uint64_t attempted =
 1540                             MIN(range_tree_span(segs), thismax);
 1541                         thismax = P2ROUNDUP(attempted / 2,
 1542                             1 << spa->spa_max_ashift);
 1543                         /*
 1544                          * The minimum-size allocation can not fail.
 1545                          */
 1546                         ASSERT3U(attempted, >, 1 << spa->spa_max_ashift);
 1547                         *max_alloc = attempted - (1 << spa->spa_max_ashift);
 1548                 } else {
 1549                         ASSERT0(error);
 1550 
 1551                         /*
 1552                          * We've performed an allocation, so reset the
 1553                          * alloc trace list.
 1554                          */
 1555                         metaslab_trace_fini(&zal);
 1556                         metaslab_trace_init(&zal);
 1557                 }
 1558         }
 1559         metaslab_trace_fini(&zal);
 1560         range_tree_destroy(segs);
 1561 }
 1562 
 1563 /*
 1564  * The size of each removal mapping is limited by the tunable
 1565  * zfs_remove_max_segment, but we must adjust this to be a multiple of the
 1566  * pool's ashift, so that we don't try to split individual sectors regardless
 1567  * of the tunable value.  (Note that device removal requires that all devices
 1568  * have the same ashift, so there's no difference between spa_min_ashift and
 1569  * spa_max_ashift.) The raw tunable should not be used elsewhere.
 1570  */
 1571 uint64_t
 1572 spa_remove_max_segment(spa_t *spa)
 1573 {
 1574         return (P2ROUNDUP(zfs_remove_max_segment, 1 << spa->spa_max_ashift));
 1575 }
 1576 
 1577 /*
 1578  * The removal thread operates in open context.  It iterates over all
 1579  * allocated space in the vdev, by loading each metaslab's spacemap.
 1580  * For each contiguous segment of allocated space (capping the segment
 1581  * size at SPA_MAXBLOCKSIZE), we:
 1582  *    - Allocate space for it on another vdev.
 1583  *    - Create a new mapping from the old location to the new location
 1584  *      (as a record in svr_new_segments).
 1585  *    - Initiate a physical read zio to get the data off the removing disk.
 1586  *    - In the read zio's done callback, initiate a physical write zio to
 1587  *      write it to the new vdev.
 1588  * Note that all of this will take effect when a particular TXG syncs.
 1589  * The sync thread ensures that all the phys reads and writes for the syncing
 1590  * TXG have completed (see spa_txg_zio) and writes the new mappings to disk
 1591  * (see vdev_mapping_sync()).
 1592  */
 1593 static __attribute__((noreturn)) void
 1594 spa_vdev_remove_thread(void *arg)
 1595 {
 1596         spa_t *spa = arg;
 1597         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
 1598         vdev_copy_arg_t vca;
 1599         uint64_t max_alloc = spa_remove_max_segment(spa);
 1600         uint64_t last_txg = 0;
 1601 
 1602         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
 1603         vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
 1604         vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
 1605         uint64_t start_offset = vdev_indirect_mapping_max_offset(vim);
 1606 
 1607         ASSERT3P(vd->vdev_ops, !=, &vdev_indirect_ops);
 1608         ASSERT(vdev_is_concrete(vd));
 1609         ASSERT(vd->vdev_removing);
 1610         ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
 1611         ASSERT(vim != NULL);
 1612 
 1613         mutex_init(&vca.vca_lock, NULL, MUTEX_DEFAULT, NULL);
 1614         cv_init(&vca.vca_cv, NULL, CV_DEFAULT, NULL);
 1615         vca.vca_outstanding_bytes = 0;
 1616         vca.vca_read_error_bytes = 0;
 1617         vca.vca_write_error_bytes = 0;
 1618 
 1619         mutex_enter(&svr->svr_lock);
 1620 
 1621         /*
 1622          * Start from vim_max_offset so we pick up where we left off
 1623          * if we are restarting the removal after opening the pool.
 1624          */
 1625         uint64_t msi;
 1626         for (msi = start_offset >> vd->vdev_ms_shift;
 1627             msi < vd->vdev_ms_count && !svr->svr_thread_exit; msi++) {
 1628                 metaslab_t *msp = vd->vdev_ms[msi];
 1629                 ASSERT3U(msi, <=, vd->vdev_ms_count);
 1630 
 1631                 ASSERT0(range_tree_space(svr->svr_allocd_segs));
 1632 
 1633                 mutex_enter(&msp->ms_sync_lock);
 1634                 mutex_enter(&msp->ms_lock);
 1635 
 1636                 /*
 1637                  * Assert nothing in flight -- ms_*tree is empty.
 1638                  */
 1639                 for (int i = 0; i < TXG_SIZE; i++) {
 1640                         ASSERT0(range_tree_space(msp->ms_allocating[i]));
 1641                 }
 1642 
 1643                 /*
 1644                  * If the metaslab has ever been allocated from (ms_sm!=NULL),
 1645                  * read the allocated segments from the space map object
 1646                  * into svr_allocd_segs. Since we do this while holding
 1647                  * svr_lock and ms_sync_lock, concurrent frees (which
 1648                  * would have modified the space map) will wait for us
 1649                  * to finish loading the spacemap, and then take the
 1650                  * appropriate action (see free_from_removing_vdev()).
 1651                  */
 1652                 if (msp->ms_sm != NULL) {
 1653                         VERIFY0(space_map_load(msp->ms_sm,
 1654                             svr->svr_allocd_segs, SM_ALLOC));
 1655 
 1656                         range_tree_walk(msp->ms_unflushed_allocs,
 1657                             range_tree_add, svr->svr_allocd_segs);
 1658                         range_tree_walk(msp->ms_unflushed_frees,
 1659                             range_tree_remove, svr->svr_allocd_segs);
 1660                         range_tree_walk(msp->ms_freeing,
 1661                             range_tree_remove, svr->svr_allocd_segs);
 1662 
 1663                         /*
 1664                          * When we are resuming from a paused removal (i.e.
 1665                          * when importing a pool with a removal in progress),
 1666                          * discard any state that we have already processed.
 1667                          */
 1668                         range_tree_clear(svr->svr_allocd_segs, 0, start_offset);
 1669                 }
 1670                 mutex_exit(&msp->ms_lock);
 1671                 mutex_exit(&msp->ms_sync_lock);
 1672 
 1673                 vca.vca_msp = msp;
 1674                 zfs_dbgmsg("copying %llu segments for metaslab %llu",
 1675                     (u_longlong_t)zfs_btree_numnodes(
 1676                     &svr->svr_allocd_segs->rt_root),
 1677                     (u_longlong_t)msp->ms_id);
 1678 
 1679                 while (!svr->svr_thread_exit &&
 1680                     !range_tree_is_empty(svr->svr_allocd_segs)) {
 1681 
 1682                         mutex_exit(&svr->svr_lock);
 1683 
 1684                         /*
 1685                          * We need to periodically drop the config lock so that
 1686                          * writers can get in.  Additionally, we can't wait
 1687                          * for a txg to sync while holding a config lock
 1688                          * (since a waiting writer could cause a 3-way deadlock
 1689                          * with the sync thread, which also gets a config
 1690                          * lock for reader).  So we can't hold the config lock
 1691                          * while calling dmu_tx_assign().
 1692                          */
 1693                         spa_config_exit(spa, SCL_CONFIG, FTAG);
 1694 
 1695                         /*
 1696                          * This delay will pause the removal around the point
 1697                          * specified by zfs_removal_suspend_progress. We do this
 1698                          * solely from the test suite or during debugging.
 1699                          */
 1700                         while (zfs_removal_suspend_progress &&
 1701                             !svr->svr_thread_exit)
 1702                                 delay(hz);
 1703 
 1704                         mutex_enter(&vca.vca_lock);
 1705                         while (vca.vca_outstanding_bytes >
 1706                             zfs_remove_max_copy_bytes) {
 1707                                 cv_wait(&vca.vca_cv, &vca.vca_lock);
 1708                         }
 1709                         mutex_exit(&vca.vca_lock);
 1710 
 1711                         dmu_tx_t *tx =
 1712                             dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
 1713 
 1714                         VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
 1715                         uint64_t txg = dmu_tx_get_txg(tx);
 1716 
 1717                         /*
 1718                          * Reacquire the vdev_config lock.  The vdev_t
 1719                          * that we're removing may have changed, e.g. due
 1720                          * to a vdev_attach or vdev_detach.
 1721                          */
 1722                         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
 1723                         vd = vdev_lookup_top(spa, svr->svr_vdev_id);
 1724 
 1725                         if (txg != last_txg)
 1726                                 max_alloc = spa_remove_max_segment(spa);
 1727                         last_txg = txg;
 1728 
 1729                         spa_vdev_copy_impl(vd, svr, &vca, &max_alloc, tx);
 1730 
 1731                         dmu_tx_commit(tx);
 1732                         mutex_enter(&svr->svr_lock);
 1733                 }
 1734 
 1735                 mutex_enter(&vca.vca_lock);
 1736                 if (zfs_removal_ignore_errors == 0 &&
 1737                     (vca.vca_read_error_bytes > 0 ||
 1738                     vca.vca_write_error_bytes > 0)) {
 1739                         svr->svr_thread_exit = B_TRUE;
 1740                 }
 1741                 mutex_exit(&vca.vca_lock);
 1742         }
 1743 
 1744         mutex_exit(&svr->svr_lock);
 1745 
 1746         spa_config_exit(spa, SCL_CONFIG, FTAG);
 1747 
 1748         /*
 1749          * Wait for all copies to finish before cleaning up the vca.
 1750          */
 1751         txg_wait_synced(spa->spa_dsl_pool, 0);
 1752         ASSERT0(vca.vca_outstanding_bytes);
 1753 
 1754         mutex_destroy(&vca.vca_lock);
 1755         cv_destroy(&vca.vca_cv);
 1756 
 1757         if (svr->svr_thread_exit) {
 1758                 mutex_enter(&svr->svr_lock);
 1759                 range_tree_vacate(svr->svr_allocd_segs, NULL, NULL);
 1760                 svr->svr_thread = NULL;
 1761                 cv_broadcast(&svr->svr_cv);
 1762                 mutex_exit(&svr->svr_lock);
 1763 
 1764                 /*
 1765                  * During the removal process an unrecoverable read or write
 1766                  * error was encountered.  The removal process must be
 1767                  * cancelled or this damage may become permanent.
 1768                  */
 1769                 if (zfs_removal_ignore_errors == 0 &&
 1770                     (vca.vca_read_error_bytes > 0 ||
 1771                     vca.vca_write_error_bytes > 0)) {
 1772                         zfs_dbgmsg("canceling removal due to IO errors: "
 1773                             "[read_error_bytes=%llu] [write_error_bytes=%llu]",
 1774                             (u_longlong_t)vca.vca_read_error_bytes,
 1775                             (u_longlong_t)vca.vca_write_error_bytes);
 1776                         spa_vdev_remove_cancel_impl(spa);
 1777                 }
 1778         } else {
 1779                 ASSERT0(range_tree_space(svr->svr_allocd_segs));
 1780                 vdev_remove_complete(spa);
 1781         }
 1782 
 1783         thread_exit();
 1784 }
 1785 
 1786 void
 1787 spa_vdev_remove_suspend(spa_t *spa)
 1788 {
 1789         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
 1790 
 1791         if (svr == NULL)
 1792                 return;
 1793 
 1794         mutex_enter(&svr->svr_lock);
 1795         svr->svr_thread_exit = B_TRUE;
 1796         while (svr->svr_thread != NULL)
 1797                 cv_wait(&svr->svr_cv, &svr->svr_lock);
 1798         svr->svr_thread_exit = B_FALSE;
 1799         mutex_exit(&svr->svr_lock);
 1800 }
 1801 
 1802 /*
 1803  * Return true if the "allocating" property has been set to "off"
 1804  */
 1805 static boolean_t
 1806 vdev_prop_allocating_off(vdev_t *vd)
 1807 {
 1808         uint64_t objid = vd->vdev_top_zap;
 1809         uint64_t allocating = 1;
 1810 
 1811         /* no vdev property object => no props */
 1812         if (objid != 0) {
 1813                 spa_t *spa = vd->vdev_spa;
 1814                 objset_t *mos = spa->spa_meta_objset;
 1815 
 1816                 mutex_enter(&spa->spa_props_lock);
 1817                 (void) zap_lookup(mos, objid, "allocating", sizeof (uint64_t),
 1818                     1, &allocating);
 1819                 mutex_exit(&spa->spa_props_lock);
 1820         }
 1821         return (allocating == 0);
 1822 }
 1823 
 1824 static int
 1825 spa_vdev_remove_cancel_check(void *arg, dmu_tx_t *tx)
 1826 {
 1827         (void) arg;
 1828         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
 1829 
 1830         if (spa->spa_vdev_removal == NULL)
 1831                 return (ENOTACTIVE);
 1832         return (0);
 1833 }
 1834 
 1835 /*
 1836  * Cancel a removal by freeing all entries from the partial mapping
 1837  * and marking the vdev as no longer being removing.
 1838  */
 1839 static void
 1840 spa_vdev_remove_cancel_sync(void *arg, dmu_tx_t *tx)
 1841 {
 1842         (void) arg;
 1843         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
 1844         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
 1845         vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
 1846         vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
 1847         vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
 1848         objset_t *mos = spa->spa_meta_objset;
 1849 
 1850         ASSERT3P(svr->svr_thread, ==, NULL);
 1851 
 1852         spa_feature_decr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
 1853 
 1854         boolean_t are_precise;
 1855         VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
 1856         if (are_precise) {
 1857                 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
 1858                 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
 1859                     VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, tx));
 1860         }
 1861 
 1862         uint64_t obsolete_sm_object;
 1863         VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
 1864         if (obsolete_sm_object != 0) {
 1865                 ASSERT(vd->vdev_obsolete_sm != NULL);
 1866                 ASSERT3U(obsolete_sm_object, ==,
 1867                     space_map_object(vd->vdev_obsolete_sm));
 1868 
 1869                 space_map_free(vd->vdev_obsolete_sm, tx);
 1870                 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
 1871                     VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx));
 1872                 space_map_close(vd->vdev_obsolete_sm);
 1873                 vd->vdev_obsolete_sm = NULL;
 1874                 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
 1875         }
 1876         for (int i = 0; i < TXG_SIZE; i++) {
 1877                 ASSERT(list_is_empty(&svr->svr_new_segments[i]));
 1878                 ASSERT3U(svr->svr_max_offset_to_sync[i], <=,
 1879                     vdev_indirect_mapping_max_offset(vim));
 1880         }
 1881 
 1882         for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) {
 1883                 metaslab_t *msp = vd->vdev_ms[msi];
 1884 
 1885                 if (msp->ms_start >= vdev_indirect_mapping_max_offset(vim))
 1886                         break;
 1887 
 1888                 ASSERT0(range_tree_space(svr->svr_allocd_segs));
 1889 
 1890                 mutex_enter(&msp->ms_lock);
 1891 
 1892                 /*
 1893                  * Assert nothing in flight -- ms_*tree is empty.
 1894                  */
 1895                 for (int i = 0; i < TXG_SIZE; i++)
 1896                         ASSERT0(range_tree_space(msp->ms_allocating[i]));
 1897                 for (int i = 0; i < TXG_DEFER_SIZE; i++)
 1898                         ASSERT0(range_tree_space(msp->ms_defer[i]));
 1899                 ASSERT0(range_tree_space(msp->ms_freed));
 1900 
 1901                 if (msp->ms_sm != NULL) {
 1902                         mutex_enter(&svr->svr_lock);
 1903                         VERIFY0(space_map_load(msp->ms_sm,
 1904                             svr->svr_allocd_segs, SM_ALLOC));
 1905 
 1906                         range_tree_walk(msp->ms_unflushed_allocs,
 1907                             range_tree_add, svr->svr_allocd_segs);
 1908                         range_tree_walk(msp->ms_unflushed_frees,
 1909                             range_tree_remove, svr->svr_allocd_segs);
 1910                         range_tree_walk(msp->ms_freeing,
 1911                             range_tree_remove, svr->svr_allocd_segs);
 1912 
 1913                         /*
 1914                          * Clear everything past what has been synced,
 1915                          * because we have not allocated mappings for it yet.
 1916                          */
 1917                         uint64_t syncd = vdev_indirect_mapping_max_offset(vim);
 1918                         uint64_t sm_end = msp->ms_sm->sm_start +
 1919                             msp->ms_sm->sm_size;
 1920                         if (sm_end > syncd)
 1921                                 range_tree_clear(svr->svr_allocd_segs,
 1922                                     syncd, sm_end - syncd);
 1923 
 1924                         mutex_exit(&svr->svr_lock);
 1925                 }
 1926                 mutex_exit(&msp->ms_lock);
 1927 
 1928                 mutex_enter(&svr->svr_lock);
 1929                 range_tree_vacate(svr->svr_allocd_segs,
 1930                     free_mapped_segment_cb, vd);
 1931                 mutex_exit(&svr->svr_lock);
 1932         }
 1933 
 1934         /*
 1935          * Note: this must happen after we invoke free_mapped_segment_cb,
 1936          * because it adds to the obsolete_segments.
 1937          */
 1938         range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL);
 1939 
 1940         ASSERT3U(vic->vic_mapping_object, ==,
 1941             vdev_indirect_mapping_object(vd->vdev_indirect_mapping));
 1942         vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
 1943         vd->vdev_indirect_mapping = NULL;
 1944         vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx);
 1945         vic->vic_mapping_object = 0;
 1946 
 1947         ASSERT3U(vic->vic_births_object, ==,
 1948             vdev_indirect_births_object(vd->vdev_indirect_births));
 1949         vdev_indirect_births_close(vd->vdev_indirect_births);
 1950         vd->vdev_indirect_births = NULL;
 1951         vdev_indirect_births_free(mos, vic->vic_births_object, tx);
 1952         vic->vic_births_object = 0;
 1953 
 1954         /*
 1955          * We may have processed some frees from the removing vdev in this
 1956          * txg, thus increasing svr_bytes_done; discard that here to
 1957          * satisfy the assertions in spa_vdev_removal_destroy().
 1958          * Note that future txg's can not have any bytes_done, because
 1959          * future TXG's are only modified from open context, and we have
 1960          * already shut down the copying thread.
 1961          */
 1962         svr->svr_bytes_done[dmu_tx_get_txg(tx) & TXG_MASK] = 0;
 1963         spa_finish_removal(spa, DSS_CANCELED, tx);
 1964 
 1965         vd->vdev_removing = B_FALSE;
 1966 
 1967         if (!vdev_prop_allocating_off(vd)) {
 1968                 spa_config_enter(spa, SCL_ALLOC | SCL_VDEV, FTAG, RW_WRITER);
 1969                 vdev_activate(vd);
 1970                 spa_config_exit(spa, SCL_ALLOC | SCL_VDEV, FTAG);
 1971         }
 1972 
 1973         vdev_config_dirty(vd);
 1974 
 1975         zfs_dbgmsg("canceled device removal for vdev %llu in %llu",
 1976             (u_longlong_t)vd->vdev_id, (u_longlong_t)dmu_tx_get_txg(tx));
 1977         spa_history_log_internal(spa, "vdev remove canceled", tx,
 1978             "%s vdev %llu %s", spa_name(spa),
 1979             (u_longlong_t)vd->vdev_id,
 1980             (vd->vdev_path != NULL) ? vd->vdev_path : "-");
 1981 }
 1982 
 1983 static int
 1984 spa_vdev_remove_cancel_impl(spa_t *spa)
 1985 {
 1986         int error = dsl_sync_task(spa->spa_name, spa_vdev_remove_cancel_check,
 1987             spa_vdev_remove_cancel_sync, NULL, 0,
 1988             ZFS_SPACE_CHECK_EXTRA_RESERVED);
 1989         return (error);
 1990 }
 1991 
 1992 int
 1993 spa_vdev_remove_cancel(spa_t *spa)
 1994 {
 1995         spa_vdev_remove_suspend(spa);
 1996 
 1997         if (spa->spa_vdev_removal == NULL)
 1998                 return (ENOTACTIVE);
 1999 
 2000         return (spa_vdev_remove_cancel_impl(spa));
 2001 }
 2002 
 2003 void
 2004 svr_sync(spa_t *spa, dmu_tx_t *tx)
 2005 {
 2006         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
 2007         int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
 2008 
 2009         if (svr == NULL)
 2010                 return;
 2011 
 2012         /*
 2013          * This check is necessary so that we do not dirty the
 2014          * DIRECTORY_OBJECT via spa_sync_removing_state() when there
 2015          * is nothing to do.  Dirtying it every time would prevent us
 2016          * from syncing-to-convergence.
 2017          */
 2018         if (svr->svr_bytes_done[txgoff] == 0)
 2019                 return;
 2020 
 2021         /*
 2022          * Update progress accounting.
 2023          */
 2024         spa->spa_removing_phys.sr_copied += svr->svr_bytes_done[txgoff];
 2025         svr->svr_bytes_done[txgoff] = 0;
 2026 
 2027         spa_sync_removing_state(spa, tx);
 2028 }
 2029 
 2030 static void
 2031 vdev_remove_make_hole_and_free(vdev_t *vd)
 2032 {
 2033         uint64_t id = vd->vdev_id;
 2034         spa_t *spa = vd->vdev_spa;
 2035         vdev_t *rvd = spa->spa_root_vdev;
 2036 
 2037         ASSERT(MUTEX_HELD(&spa_namespace_lock));
 2038         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
 2039 
 2040         vdev_free(vd);
 2041 
 2042         vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
 2043         vdev_add_child(rvd, vd);
 2044         vdev_config_dirty(rvd);
 2045 
 2046         /*
 2047          * Reassess the health of our root vdev.
 2048          */
 2049         vdev_reopen(rvd);
 2050 }
 2051 
 2052 /*
 2053  * Remove a log device.  The config lock is held for the specified TXG.
 2054  */
 2055 static int
 2056 spa_vdev_remove_log(vdev_t *vd, uint64_t *txg)
 2057 {
 2058         metaslab_group_t *mg = vd->vdev_mg;
 2059         spa_t *spa = vd->vdev_spa;
 2060         int error = 0;
 2061 
 2062         ASSERT(vd->vdev_islog);
 2063         ASSERT(vd == vd->vdev_top);
 2064         ASSERT3P(vd->vdev_log_mg, ==, NULL);
 2065         ASSERT(MUTEX_HELD(&spa_namespace_lock));
 2066 
 2067         /*
 2068          * Stop allocating from this vdev.
 2069          */
 2070         metaslab_group_passivate(mg);
 2071 
 2072         /*
 2073          * Wait for the youngest allocations and frees to sync,
 2074          * and then wait for the deferral of those frees to finish.
 2075          */
 2076         spa_vdev_config_exit(spa, NULL,
 2077             *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
 2078 
 2079         /*
 2080          * Cancel any initialize or TRIM which was in progress.
 2081          */
 2082         vdev_initialize_stop_all(vd, VDEV_INITIALIZE_CANCELED);
 2083         vdev_trim_stop_all(vd, VDEV_TRIM_CANCELED);
 2084         vdev_autotrim_stop_wait(vd);
 2085 
 2086         /*
 2087          * Evacuate the device.  We don't hold the config lock as
 2088          * writer since we need to do I/O but we do keep the
 2089          * spa_namespace_lock held.  Once this completes the device
 2090          * should no longer have any blocks allocated on it.
 2091          */
 2092         ASSERT(MUTEX_HELD(&spa_namespace_lock));
 2093         if (vd->vdev_stat.vs_alloc != 0)
 2094                 error = spa_reset_logs(spa);
 2095 
 2096         *txg = spa_vdev_config_enter(spa);
 2097 
 2098         if (error != 0) {
 2099                 metaslab_group_activate(mg);
 2100                 ASSERT3P(vd->vdev_log_mg, ==, NULL);
 2101                 return (error);
 2102         }
 2103         ASSERT0(vd->vdev_stat.vs_alloc);
 2104 
 2105         /*
 2106          * The evacuation succeeded.  Remove any remaining MOS metadata
 2107          * associated with this vdev, and wait for these changes to sync.
 2108          */
 2109         vd->vdev_removing = B_TRUE;
 2110 
 2111         vdev_dirty_leaves(vd, VDD_DTL, *txg);
 2112         vdev_config_dirty(vd);
 2113 
 2114         /*
 2115          * When the log space map feature is enabled we look at
 2116          * the vdev's top_zap to find the on-disk flush data of
 2117          * the metaslab we just flushed. Thus, while removing a
 2118          * log vdev we make sure to call vdev_metaslab_fini()
 2119          * first, which removes all metaslabs of this vdev from
 2120          * spa_metaslabs_by_flushed before vdev_remove_empty()
 2121          * destroys the top_zap of this log vdev.
 2122          *
 2123          * This avoids the scenario where we flush a metaslab
 2124          * from the log vdev being removed that doesn't have a
 2125          * top_zap and end up failing to lookup its on-disk flush
 2126          * data.
 2127          *
 2128          * We don't call metaslab_group_destroy() right away
 2129          * though (it will be called in vdev_free() later) as
 2130          * during metaslab_sync() of metaslabs from other vdevs
 2131          * we may touch the metaslab group of this vdev through
 2132          * metaslab_class_histogram_verify()
 2133          */
 2134         vdev_metaslab_fini(vd);
 2135 
 2136         spa_vdev_config_exit(spa, NULL, *txg, 0, FTAG);
 2137         *txg = spa_vdev_config_enter(spa);
 2138 
 2139         sysevent_t *ev = spa_event_create(spa, vd, NULL,
 2140             ESC_ZFS_VDEV_REMOVE_DEV);
 2141         ASSERT(MUTEX_HELD(&spa_namespace_lock));
 2142         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
 2143 
 2144         /* The top ZAP should have been destroyed by vdev_remove_empty. */
 2145         ASSERT0(vd->vdev_top_zap);
 2146         /* The leaf ZAP should have been destroyed by vdev_dtl_sync. */
 2147         ASSERT0(vd->vdev_leaf_zap);
 2148 
 2149         (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
 2150 
 2151         if (list_link_active(&vd->vdev_state_dirty_node))
 2152                 vdev_state_clean(vd);
 2153         if (list_link_active(&vd->vdev_config_dirty_node))
 2154                 vdev_config_clean(vd);
 2155 
 2156         ASSERT0(vd->vdev_stat.vs_alloc);
 2157 
 2158         /*
 2159          * Clean up the vdev namespace.
 2160          */
 2161         vdev_remove_make_hole_and_free(vd);
 2162 
 2163         if (ev != NULL)
 2164                 spa_event_post(ev);
 2165 
 2166         return (0);
 2167 }
 2168 
 2169 static int
 2170 spa_vdev_remove_top_check(vdev_t *vd)
 2171 {
 2172         spa_t *spa = vd->vdev_spa;
 2173 
 2174         if (vd != vd->vdev_top)
 2175                 return (SET_ERROR(ENOTSUP));
 2176 
 2177         if (!vdev_is_concrete(vd))
 2178                 return (SET_ERROR(ENOTSUP));
 2179 
 2180         if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REMOVAL))
 2181                 return (SET_ERROR(ENOTSUP));
 2182 
 2183         /*
 2184          * This device is already being removed
 2185          */
 2186         if (vd->vdev_removing)
 2187                 return (SET_ERROR(EALREADY));
 2188 
 2189         metaslab_class_t *mc = vd->vdev_mg->mg_class;
 2190         metaslab_class_t *normal = spa_normal_class(spa);
 2191         if (mc != normal) {
 2192                 /*
 2193                  * Space allocated from the special (or dedup) class is
 2194                  * included in the DMU's space usage, but it's not included
 2195                  * in spa_dspace (or dsl_pool_adjustedsize()).  Therefore
 2196                  * there is always at least as much free space in the normal
 2197                  * class, as is allocated from the special (and dedup) class.
 2198                  * As a backup check, we will return ENOSPC if this is
 2199                  * violated. See also spa_update_dspace().
 2200                  */
 2201                 uint64_t available = metaslab_class_get_space(normal) -
 2202                     metaslab_class_get_alloc(normal);
 2203                 ASSERT3U(available, >=, vd->vdev_stat.vs_alloc);
 2204                 if (available < vd->vdev_stat.vs_alloc)
 2205                         return (SET_ERROR(ENOSPC));
 2206         } else if (!vd->vdev_noalloc) {
 2207                 /* available space in the pool's normal class */
 2208                 uint64_t available = dsl_dir_space_available(
 2209                     spa->spa_dsl_pool->dp_root_dir, NULL, 0, B_TRUE);
 2210                 if (available < vd->vdev_stat.vs_dspace)
 2211                         return (SET_ERROR(ENOSPC));
 2212         }
 2213 
 2214         /*
 2215          * There can not be a removal in progress.
 2216          */
 2217         if (spa->spa_removing_phys.sr_state == DSS_SCANNING)
 2218                 return (SET_ERROR(EBUSY));
 2219 
 2220         /*
 2221          * The device must have all its data.
 2222          */
 2223         if (!vdev_dtl_empty(vd, DTL_MISSING) ||
 2224             !vdev_dtl_empty(vd, DTL_OUTAGE))
 2225                 return (SET_ERROR(EBUSY));
 2226 
 2227         /*
 2228          * The device must be healthy.
 2229          */
 2230         if (!vdev_readable(vd))
 2231                 return (SET_ERROR(EIO));
 2232 
 2233         /*
 2234          * All vdevs in normal class must have the same ashift.
 2235          */
 2236         if (spa->spa_max_ashift != spa->spa_min_ashift) {
 2237                 return (SET_ERROR(EINVAL));
 2238         }
 2239 
 2240         /*
 2241          * A removed special/dedup vdev must have same ashift as normal class.
 2242          */
 2243         ASSERT(!vd->vdev_islog);
 2244         if (vd->vdev_alloc_bias != VDEV_BIAS_NONE &&
 2245             vd->vdev_ashift != spa->spa_max_ashift) {
 2246                 return (SET_ERROR(EINVAL));
 2247         }
 2248 
 2249         /*
 2250          * All vdevs in normal class must have the same ashift
 2251          * and not be raidz or draid.
 2252          */
 2253         vdev_t *rvd = spa->spa_root_vdev;
 2254         for (uint64_t id = 0; id < rvd->vdev_children; id++) {
 2255                 vdev_t *cvd = rvd->vdev_child[id];
 2256 
 2257                 /*
 2258                  * A removed special/dedup vdev must have the same ashift
 2259                  * across all vdevs in its class.
 2260                  */
 2261                 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE &&
 2262                     cvd->vdev_alloc_bias == vd->vdev_alloc_bias &&
 2263                     cvd->vdev_ashift != vd->vdev_ashift) {
 2264                         return (SET_ERROR(EINVAL));
 2265                 }
 2266                 if (cvd->vdev_ashift != 0 &&
 2267                     cvd->vdev_alloc_bias == VDEV_BIAS_NONE)
 2268                         ASSERT3U(cvd->vdev_ashift, ==, spa->spa_max_ashift);
 2269                 if (!vdev_is_concrete(cvd))
 2270                         continue;
 2271                 if (vdev_get_nparity(cvd) != 0)
 2272                         return (SET_ERROR(EINVAL));
 2273                 /*
 2274                  * Need the mirror to be mirror of leaf vdevs only
 2275                  */
 2276                 if (cvd->vdev_ops == &vdev_mirror_ops) {
 2277                         for (uint64_t cid = 0;
 2278                             cid < cvd->vdev_children; cid++) {
 2279                                 if (!cvd->vdev_child[cid]->vdev_ops->
 2280                                     vdev_op_leaf)
 2281                                         return (SET_ERROR(EINVAL));
 2282                         }
 2283                 }
 2284         }
 2285 
 2286         return (0);
 2287 }
 2288 
 2289 /*
 2290  * Initiate removal of a top-level vdev, reducing the total space in the pool.
 2291  * The config lock is held for the specified TXG.  Once initiated,
 2292  * evacuation of all allocated space (copying it to other vdevs) happens
 2293  * in the background (see spa_vdev_remove_thread()), and can be canceled
 2294  * (see spa_vdev_remove_cancel()).  If successful, the vdev will
 2295  * be transformed to an indirect vdev (see spa_vdev_remove_complete()).
 2296  */
 2297 static int
 2298 spa_vdev_remove_top(vdev_t *vd, uint64_t *txg)
 2299 {
 2300         spa_t *spa = vd->vdev_spa;
 2301         boolean_t set_noalloc = B_FALSE;
 2302         int error;
 2303 
 2304         /*
 2305          * Check for errors up-front, so that we don't waste time
 2306          * passivating the metaslab group and clearing the ZIL if there
 2307          * are errors.
 2308          */
 2309         error = spa_vdev_remove_top_check(vd);
 2310 
 2311         /*
 2312          * Stop allocating from this vdev.  Note that we must check
 2313          * that this is not the only device in the pool before
 2314          * passivating, otherwise we will not be able to make
 2315          * progress because we can't allocate from any vdevs.
 2316          * The above check for sufficient free space serves this
 2317          * purpose.
 2318          */
 2319         if (error == 0 && !vd->vdev_noalloc) {
 2320                 set_noalloc = B_TRUE;
 2321                 error = vdev_passivate(vd, txg);
 2322         }
 2323 
 2324         if (error != 0)
 2325                 return (error);
 2326 
 2327         /*
 2328          * We stop any initializing and TRIM that is currently in progress
 2329          * but leave the state as "active". This will allow the process to
 2330          * resume if the removal is canceled sometime later.
 2331          */
 2332 
 2333         spa_vdev_config_exit(spa, NULL, *txg, 0, FTAG);
 2334 
 2335         vdev_initialize_stop_all(vd, VDEV_INITIALIZE_ACTIVE);
 2336         vdev_trim_stop_all(vd, VDEV_TRIM_ACTIVE);
 2337         vdev_autotrim_stop_wait(vd);
 2338 
 2339         *txg = spa_vdev_config_enter(spa);
 2340 
 2341         /*
 2342          * Things might have changed while the config lock was dropped
 2343          * (e.g. space usage).  Check for errors again.
 2344          */
 2345         error = spa_vdev_remove_top_check(vd);
 2346 
 2347         if (error != 0) {
 2348                 if (set_noalloc)
 2349                         vdev_activate(vd);
 2350                 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
 2351                 spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
 2352                 spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
 2353                 return (error);
 2354         }
 2355 
 2356         vd->vdev_removing = B_TRUE;
 2357 
 2358         vdev_dirty_leaves(vd, VDD_DTL, *txg);
 2359         vdev_config_dirty(vd);
 2360         dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, *txg);
 2361         dsl_sync_task_nowait(spa->spa_dsl_pool,
 2362             vdev_remove_initiate_sync, (void *)(uintptr_t)vd->vdev_id, tx);
 2363         dmu_tx_commit(tx);
 2364 
 2365         return (0);
 2366 }
 2367 
 2368 /*
 2369  * Remove a device from the pool.
 2370  *
 2371  * Removing a device from the vdev namespace requires several steps
 2372  * and can take a significant amount of time.  As a result we use
 2373  * the spa_vdev_config_[enter/exit] functions which allow us to
 2374  * grab and release the spa_config_lock while still holding the namespace
 2375  * lock.  During each step the configuration is synced out.
 2376  */
 2377 int
 2378 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
 2379 {
 2380         vdev_t *vd;
 2381         nvlist_t **spares, **l2cache, *nv;
 2382         uint64_t txg = 0;
 2383         uint_t nspares, nl2cache;
 2384         int error = 0, error_log;
 2385         boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
 2386         sysevent_t *ev = NULL;
 2387         const char *vd_type = NULL;
 2388         char *vd_path = NULL;
 2389 
 2390         ASSERT(spa_writeable(spa));
 2391 
 2392         if (!locked)
 2393                 txg = spa_vdev_enter(spa);
 2394 
 2395         ASSERT(MUTEX_HELD(&spa_namespace_lock));
 2396         if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
 2397                 error = (spa_has_checkpoint(spa)) ?
 2398                     ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
 2399 
 2400                 if (!locked)
 2401                         return (spa_vdev_exit(spa, NULL, txg, error));
 2402 
 2403                 return (error);
 2404         }
 2405 
 2406         vd = spa_lookup_by_guid(spa, guid, B_FALSE);
 2407 
 2408         if (spa->spa_spares.sav_vdevs != NULL &&
 2409             nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
 2410             ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
 2411             (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
 2412                 /*
 2413                  * Only remove the hot spare if it's not currently in use
 2414                  * in this pool.
 2415                  */
 2416                 if (vd == NULL || unspare) {
 2417                         char *type;
 2418                         boolean_t draid_spare = B_FALSE;
 2419 
 2420                         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type)
 2421                             == 0 && strcmp(type, VDEV_TYPE_DRAID_SPARE) == 0)
 2422                                 draid_spare = B_TRUE;
 2423 
 2424                         if (vd == NULL && draid_spare) {
 2425                                 error = SET_ERROR(ENOTSUP);
 2426                         } else {
 2427                                 if (vd == NULL)
 2428                                         vd = spa_lookup_by_guid(spa,
 2429                                             guid, B_TRUE);
 2430                                 ev = spa_event_create(spa, vd, NULL,
 2431                                     ESC_ZFS_VDEV_REMOVE_AUX);
 2432 
 2433                                 vd_type = VDEV_TYPE_SPARE;
 2434                                 vd_path = spa_strdup(fnvlist_lookup_string(
 2435                                     nv, ZPOOL_CONFIG_PATH));
 2436                                 spa_vdev_remove_aux(spa->spa_spares.sav_config,
 2437                                     ZPOOL_CONFIG_SPARES, spares, nspares, nv);
 2438                                 spa_load_spares(spa);
 2439                                 spa->spa_spares.sav_sync = B_TRUE;
 2440                         }
 2441                 } else {
 2442                         error = SET_ERROR(EBUSY);
 2443                 }
 2444         } else if (spa->spa_l2cache.sav_vdevs != NULL &&
 2445             nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
 2446             ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
 2447             (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
 2448                 vd_type = VDEV_TYPE_L2CACHE;
 2449                 vd_path = spa_strdup(fnvlist_lookup_string(
 2450                     nv, ZPOOL_CONFIG_PATH));
 2451                 /*
 2452                  * Cache devices can always be removed.
 2453                  */
 2454                 vd = spa_lookup_by_guid(spa, guid, B_TRUE);
 2455 
 2456                 /*
 2457                  * Stop trimming the cache device. We need to release the
 2458                  * config lock to allow the syncing of TRIM transactions
 2459                  * without releasing the spa_namespace_lock. The same
 2460                  * strategy is employed in spa_vdev_remove_top().
 2461                  */
 2462                 spa_vdev_config_exit(spa, NULL,
 2463                     txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
 2464                 mutex_enter(&vd->vdev_trim_lock);
 2465                 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL);
 2466                 mutex_exit(&vd->vdev_trim_lock);
 2467                 txg = spa_vdev_config_enter(spa);
 2468 
 2469                 ev = spa_event_create(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE_AUX);
 2470                 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
 2471                     ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
 2472                 spa_load_l2cache(spa);
 2473                 spa->spa_l2cache.sav_sync = B_TRUE;
 2474         } else if (vd != NULL && vd->vdev_islog) {
 2475                 ASSERT(!locked);
 2476                 vd_type = VDEV_TYPE_LOG;
 2477                 vd_path = spa_strdup((vd->vdev_path != NULL) ?
 2478                     vd->vdev_path : "-");
 2479                 error = spa_vdev_remove_log(vd, &txg);
 2480         } else if (vd != NULL) {
 2481                 ASSERT(!locked);
 2482                 error = spa_vdev_remove_top(vd, &txg);
 2483         } else {
 2484                 /*
 2485                  * There is no vdev of any kind with the specified guid.
 2486                  */
 2487                 error = SET_ERROR(ENOENT);
 2488         }
 2489 
 2490         error_log = error;
 2491 
 2492         if (!locked)
 2493                 error = spa_vdev_exit(spa, NULL, txg, error);
 2494 
 2495         /*
 2496          * Logging must be done outside the spa config lock. Otherwise,
 2497          * this code path could end up holding the spa config lock while
 2498          * waiting for a txg_sync so it can write to the internal log.
 2499          * Doing that would prevent the txg sync from actually happening,
 2500          * causing a deadlock.
 2501          */
 2502         if (error_log == 0 && vd_type != NULL && vd_path != NULL) {
 2503                 spa_history_log_internal(spa, "vdev remove", NULL,
 2504                     "%s vdev (%s) %s", spa_name(spa), vd_type, vd_path);
 2505         }
 2506         if (vd_path != NULL)
 2507                 spa_strfree(vd_path);
 2508 
 2509         if (ev != NULL)
 2510                 spa_event_post(ev);
 2511 
 2512         return (error);
 2513 }
 2514 
 2515 int
 2516 spa_removal_get_stats(spa_t *spa, pool_removal_stat_t *prs)
 2517 {
 2518         prs->prs_state = spa->spa_removing_phys.sr_state;
 2519 
 2520         if (prs->prs_state == DSS_NONE)
 2521                 return (SET_ERROR(ENOENT));
 2522 
 2523         prs->prs_removing_vdev = spa->spa_removing_phys.sr_removing_vdev;
 2524         prs->prs_start_time = spa->spa_removing_phys.sr_start_time;
 2525         prs->prs_end_time = spa->spa_removing_phys.sr_end_time;
 2526         prs->prs_to_copy = spa->spa_removing_phys.sr_to_copy;
 2527         prs->prs_copied = spa->spa_removing_phys.sr_copied;
 2528 
 2529         prs->prs_mapping_memory = 0;
 2530         uint64_t indirect_vdev_id =
 2531             spa->spa_removing_phys.sr_prev_indirect_vdev;
 2532         while (indirect_vdev_id != -1) {
 2533                 vdev_t *vd = spa->spa_root_vdev->vdev_child[indirect_vdev_id];
 2534                 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
 2535                 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
 2536 
 2537                 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
 2538                 prs->prs_mapping_memory += vdev_indirect_mapping_size(vim);
 2539                 indirect_vdev_id = vic->vic_prev_indirect_vdev;
 2540         }
 2541 
 2542         return (0);
 2543 }
 2544 
 2545 ZFS_MODULE_PARAM(zfs_vdev, zfs_, removal_ignore_errors, INT, ZMOD_RW,
 2546         "Ignore hard IO errors when removing device");
 2547 
 2548 ZFS_MODULE_PARAM(zfs_vdev, zfs_, remove_max_segment, UINT, ZMOD_RW,
 2549         "Largest contiguous segment to allocate when removing device");
 2550 
 2551 ZFS_MODULE_PARAM(zfs_vdev, vdev_, removal_max_span, UINT, ZMOD_RW,
 2552         "Largest span of free chunks a remap segment can span");
 2553 
 2554 /* BEGIN CSTYLED */
 2555 ZFS_MODULE_PARAM(zfs_vdev, zfs_, removal_suspend_progress, UINT, ZMOD_RW,
 2556         "Pause device removal after this many bytes are copied "
 2557         "(debug use only - causes removal to hang)");
 2558 /* END CSTYLED */
 2559 
 2560 EXPORT_SYMBOL(free_from_removing_vdev);
 2561 EXPORT_SYMBOL(spa_removal_get_stats);
 2562 EXPORT_SYMBOL(spa_remove_init);
 2563 EXPORT_SYMBOL(spa_restart_removal);
 2564 EXPORT_SYMBOL(spa_vdev_removal_destroy);
 2565 EXPORT_SYMBOL(spa_vdev_remove);
 2566 EXPORT_SYMBOL(spa_vdev_remove_cancel);
 2567 EXPORT_SYMBOL(spa_vdev_remove_suspend);
 2568 EXPORT_SYMBOL(svr_sync);

Cache object: 6eae6541299e9857bc6e3abadf1c6baf


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.