The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/contrib/openzfs/module/zfs/vdev_trim.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * CDDL HEADER START
    3  *
    4  * The contents of this file are subject to the terms of the
    5  * Common Development and Distribution License (the "License").
    6  * You may not use this file except in compliance with the License.
    7  *
    8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
    9  * or https://opensource.org/licenses/CDDL-1.0.
   10  * See the License for the specific language governing permissions
   11  * and limitations under the License.
   12  *
   13  * When distributing Covered Code, include this CDDL HEADER in each
   14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
   15  * If applicable, add the following below this CDDL HEADER, with the
   16  * fields enclosed by brackets "[]" replaced with your own identifying
   17  * information: Portions Copyright [yyyy] [name of copyright owner]
   18  *
   19  * CDDL HEADER END
   20  */
   21 
   22 /*
   23  * Copyright (c) 2016 by Delphix. All rights reserved.
   24  * Copyright (c) 2019 by Lawrence Livermore National Security, LLC.
   25  * Copyright (c) 2021 Hewlett Packard Enterprise Development LP
   26  */
   27 
   28 #include <sys/spa.h>
   29 #include <sys/spa_impl.h>
   30 #include <sys/txg.h>
   31 #include <sys/vdev_impl.h>
   32 #include <sys/vdev_trim.h>
   33 #include <sys/metaslab_impl.h>
   34 #include <sys/dsl_synctask.h>
   35 #include <sys/zap.h>
   36 #include <sys/dmu_tx.h>
   37 #include <sys/arc_impl.h>
   38 
   39 /*
   40  * TRIM is a feature which is used to notify a SSD that some previously
   41  * written space is no longer allocated by the pool.  This is useful because
   42  * writes to a SSD must be performed to blocks which have first been erased.
   43  * Ensuring the SSD always has a supply of erased blocks for new writes
   44  * helps prevent the performance from deteriorating.
   45  *
   46  * There are two supported TRIM methods; manual and automatic.
   47  *
   48  * Manual TRIM:
   49  *
   50  * A manual TRIM is initiated by running the 'zpool trim' command.  A single
   51  * 'vdev_trim' thread is created for each leaf vdev, and it is responsible for
   52  * managing that vdev TRIM process.  This involves iterating over all the
   53  * metaslabs, calculating the unallocated space ranges, and then issuing the
   54  * required TRIM I/Os.
   55  *
   56  * While a metaslab is being actively trimmed it is not eligible to perform
   57  * new allocations.  After traversing all of the metaslabs the thread is
   58  * terminated.  Finally, both the requested options and current progress of
   59  * the TRIM are regularly written to the pool.  This allows the TRIM to be
   60  * suspended and resumed as needed.
   61  *
   62  * Automatic TRIM:
   63  *
   64  * An automatic TRIM is enabled by setting the 'autotrim' pool property
   65  * to 'on'.  When enabled, a `vdev_autotrim' thread is created for each
   66  * top-level (not leaf) vdev in the pool.  These threads perform the same
   67  * core TRIM process as a manual TRIM, but with a few key differences.
   68  *
   69  * 1) Automatic TRIM happens continuously in the background and operates
   70  *    solely on recently freed blocks (ms_trim not ms_allocatable).
   71  *
   72  * 2) Each thread is associated with a top-level (not leaf) vdev.  This has
   73  *    the benefit of simplifying the threading model, it makes it easier
   74  *    to coordinate administrative commands, and it ensures only a single
   75  *    metaslab is disabled at a time.  Unlike manual TRIM, this means each
   76  *    'vdev_autotrim' thread is responsible for issuing TRIM I/Os for its
   77  *    children.
   78  *
   79  * 3) There is no automatic TRIM progress information stored on disk, nor
   80  *    is it reported by 'zpool status'.
   81  *
   82  * While the automatic TRIM process is highly effective it is more likely
   83  * than a manual TRIM to encounter tiny ranges.  Ranges less than or equal to
   84  * 'zfs_trim_extent_bytes_min' (32k) are considered too small to efficiently
   85  * TRIM and are skipped.  This means small amounts of freed space may not
   86  * be automatically trimmed.
   87  *
   88  * Furthermore, devices with attached hot spares and devices being actively
   89  * replaced are skipped.  This is done to avoid adding additional stress to
   90  * a potentially unhealthy device and to minimize the required rebuild time.
   91  *
   92  * For this reason it may be beneficial to occasionally manually TRIM a pool
   93  * even when automatic TRIM is enabled.
   94  */
   95 
   96 /*
   97  * Maximum size of TRIM I/O, ranges will be chunked in to 128MiB lengths.
   98  */
   99 static unsigned int zfs_trim_extent_bytes_max = 128 * 1024 * 1024;
  100 
  101 /*
  102  * Minimum size of TRIM I/O, extents smaller than 32Kib will be skipped.
  103  */
  104 static unsigned int zfs_trim_extent_bytes_min = 32 * 1024;
  105 
  106 /*
  107  * Skip uninitialized metaslabs during the TRIM process.  This option is
  108  * useful for pools constructed from large thinly-provisioned devices where
  109  * TRIM operations are slow.  As a pool ages an increasing fraction of
  110  * the pools metaslabs will be initialized progressively degrading the
  111  * usefulness of this option.  This setting is stored when starting a
  112  * manual TRIM and will persist for the duration of the requested TRIM.
  113  */
  114 unsigned int zfs_trim_metaslab_skip = 0;
  115 
  116 /*
  117  * Maximum number of queued TRIM I/Os per leaf vdev.  The number of
  118  * concurrent TRIM I/Os issued to the device is controlled by the
  119  * zfs_vdev_trim_min_active and zfs_vdev_trim_max_active module options.
  120  */
  121 static unsigned int zfs_trim_queue_limit = 10;
  122 
  123 /*
  124  * The minimum number of transaction groups between automatic trims of a
  125  * metaslab.  This setting represents a trade-off between issuing more
  126  * efficient TRIM operations, by allowing them to be aggregated longer,
  127  * and issuing them promptly so the trimmed space is available.  Note
  128  * that this value is a minimum; metaslabs can be trimmed less frequently
  129  * when there are a large number of ranges which need to be trimmed.
  130  *
  131  * Increasing this value will allow frees to be aggregated for a longer
  132  * time.  This can result is larger TRIM operations, and increased memory
  133  * usage in order to track the ranges to be trimmed.  Decreasing this value
  134  * has the opposite effect.  The default value of 32 was determined though
  135  * testing to be a reasonable compromise.
  136  */
  137 static unsigned int zfs_trim_txg_batch = 32;
  138 
  139 /*
  140  * The trim_args are a control structure which describe how a leaf vdev
  141  * should be trimmed.  The core elements are the vdev, the metaslab being
  142  * trimmed and a range tree containing the extents to TRIM.  All provided
  143  * ranges must be within the metaslab.
  144  */
  145 typedef struct trim_args {
  146         /*
  147          * These fields are set by the caller of vdev_trim_ranges().
  148          */
  149         vdev_t          *trim_vdev;             /* Leaf vdev to TRIM */
  150         metaslab_t      *trim_msp;              /* Disabled metaslab */
  151         range_tree_t    *trim_tree;             /* TRIM ranges (in metaslab) */
  152         trim_type_t     trim_type;              /* Manual or auto TRIM */
  153         uint64_t        trim_extent_bytes_max;  /* Maximum TRIM I/O size */
  154         uint64_t        trim_extent_bytes_min;  /* Minimum TRIM I/O size */
  155         enum trim_flag  trim_flags;             /* TRIM flags (secure) */
  156 
  157         /*
  158          * These fields are updated by vdev_trim_ranges().
  159          */
  160         hrtime_t        trim_start_time;        /* Start time */
  161         uint64_t        trim_bytes_done;        /* Bytes trimmed */
  162 } trim_args_t;
  163 
  164 /*
  165  * Determines whether a vdev_trim_thread() should be stopped.
  166  */
  167 static boolean_t
  168 vdev_trim_should_stop(vdev_t *vd)
  169 {
  170         return (vd->vdev_trim_exit_wanted || !vdev_writeable(vd) ||
  171             vd->vdev_detached || vd->vdev_top->vdev_removing);
  172 }
  173 
  174 /*
  175  * Determines whether a vdev_autotrim_thread() should be stopped.
  176  */
  177 static boolean_t
  178 vdev_autotrim_should_stop(vdev_t *tvd)
  179 {
  180         return (tvd->vdev_autotrim_exit_wanted ||
  181             !vdev_writeable(tvd) || tvd->vdev_removing ||
  182             spa_get_autotrim(tvd->vdev_spa) == SPA_AUTOTRIM_OFF);
  183 }
  184 
  185 /*
  186  * The sync task for updating the on-disk state of a manual TRIM.  This
  187  * is scheduled by vdev_trim_change_state().
  188  */
  189 static void
  190 vdev_trim_zap_update_sync(void *arg, dmu_tx_t *tx)
  191 {
  192         /*
  193          * We pass in the guid instead of the vdev_t since the vdev may
  194          * have been freed prior to the sync task being processed.  This
  195          * happens when a vdev is detached as we call spa_config_vdev_exit(),
  196          * stop the trimming thread, schedule the sync task, and free
  197          * the vdev. Later when the scheduled sync task is invoked, it would
  198          * find that the vdev has been freed.
  199          */
  200         uint64_t guid = *(uint64_t *)arg;
  201         uint64_t txg = dmu_tx_get_txg(tx);
  202         kmem_free(arg, sizeof (uint64_t));
  203 
  204         vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE);
  205         if (vd == NULL || vd->vdev_top->vdev_removing || !vdev_is_concrete(vd))
  206                 return;
  207 
  208         uint64_t last_offset = vd->vdev_trim_offset[txg & TXG_MASK];
  209         vd->vdev_trim_offset[txg & TXG_MASK] = 0;
  210 
  211         VERIFY3U(vd->vdev_leaf_zap, !=, 0);
  212 
  213         objset_t *mos = vd->vdev_spa->spa_meta_objset;
  214 
  215         if (last_offset > 0 || vd->vdev_trim_last_offset == UINT64_MAX) {
  216 
  217                 if (vd->vdev_trim_last_offset == UINT64_MAX)
  218                         last_offset = 0;
  219 
  220                 vd->vdev_trim_last_offset = last_offset;
  221                 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
  222                     VDEV_LEAF_ZAP_TRIM_LAST_OFFSET,
  223                     sizeof (last_offset), 1, &last_offset, tx));
  224         }
  225 
  226         if (vd->vdev_trim_action_time > 0) {
  227                 uint64_t val = (uint64_t)vd->vdev_trim_action_time;
  228                 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
  229                     VDEV_LEAF_ZAP_TRIM_ACTION_TIME, sizeof (val),
  230                     1, &val, tx));
  231         }
  232 
  233         if (vd->vdev_trim_rate > 0) {
  234                 uint64_t rate = (uint64_t)vd->vdev_trim_rate;
  235 
  236                 if (rate == UINT64_MAX)
  237                         rate = 0;
  238 
  239                 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
  240                     VDEV_LEAF_ZAP_TRIM_RATE, sizeof (rate), 1, &rate, tx));
  241         }
  242 
  243         uint64_t partial = vd->vdev_trim_partial;
  244         if (partial == UINT64_MAX)
  245                 partial = 0;
  246 
  247         VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_PARTIAL,
  248             sizeof (partial), 1, &partial, tx));
  249 
  250         uint64_t secure = vd->vdev_trim_secure;
  251         if (secure == UINT64_MAX)
  252                 secure = 0;
  253 
  254         VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_SECURE,
  255             sizeof (secure), 1, &secure, tx));
  256 
  257 
  258         uint64_t trim_state = vd->vdev_trim_state;
  259         VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_STATE,
  260             sizeof (trim_state), 1, &trim_state, tx));
  261 }
  262 
  263 /*
  264  * Update the on-disk state of a manual TRIM.  This is called to request
  265  * that a TRIM be started/suspended/canceled, or to change one of the
  266  * TRIM options (partial, secure, rate).
  267  */
  268 static void
  269 vdev_trim_change_state(vdev_t *vd, vdev_trim_state_t new_state,
  270     uint64_t rate, boolean_t partial, boolean_t secure)
  271 {
  272         ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
  273         spa_t *spa = vd->vdev_spa;
  274 
  275         if (new_state == vd->vdev_trim_state)
  276                 return;
  277 
  278         /*
  279          * Copy the vd's guid, this will be freed by the sync task.
  280          */
  281         uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
  282         *guid = vd->vdev_guid;
  283 
  284         /*
  285          * If we're suspending, then preserve the original start time.
  286          */
  287         if (vd->vdev_trim_state != VDEV_TRIM_SUSPENDED) {
  288                 vd->vdev_trim_action_time = gethrestime_sec();
  289         }
  290 
  291         /*
  292          * If we're activating, then preserve the requested rate and trim
  293          * method.  Setting the last offset and rate to UINT64_MAX is used
  294          * as a sentinel to indicate they should be reset to default values.
  295          */
  296         if (new_state == VDEV_TRIM_ACTIVE) {
  297                 if (vd->vdev_trim_state == VDEV_TRIM_COMPLETE ||
  298                     vd->vdev_trim_state == VDEV_TRIM_CANCELED) {
  299                         vd->vdev_trim_last_offset = UINT64_MAX;
  300                         vd->vdev_trim_rate = UINT64_MAX;
  301                         vd->vdev_trim_partial = UINT64_MAX;
  302                         vd->vdev_trim_secure = UINT64_MAX;
  303                 }
  304 
  305                 if (rate != 0)
  306                         vd->vdev_trim_rate = rate;
  307 
  308                 if (partial != 0)
  309                         vd->vdev_trim_partial = partial;
  310 
  311                 if (secure != 0)
  312                         vd->vdev_trim_secure = secure;
  313         }
  314 
  315         vdev_trim_state_t old_state = vd->vdev_trim_state;
  316         boolean_t resumed = (old_state == VDEV_TRIM_SUSPENDED);
  317         vd->vdev_trim_state = new_state;
  318 
  319         dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
  320         VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
  321         dsl_sync_task_nowait(spa_get_dsl(spa), vdev_trim_zap_update_sync,
  322             guid, tx);
  323 
  324         switch (new_state) {
  325         case VDEV_TRIM_ACTIVE:
  326                 spa_event_notify(spa, vd, NULL,
  327                     resumed ? ESC_ZFS_TRIM_RESUME : ESC_ZFS_TRIM_START);
  328                 spa_history_log_internal(spa, "trim", tx,
  329                     "vdev=%s activated", vd->vdev_path);
  330                 break;
  331         case VDEV_TRIM_SUSPENDED:
  332                 spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_SUSPEND);
  333                 spa_history_log_internal(spa, "trim", tx,
  334                     "vdev=%s suspended", vd->vdev_path);
  335                 break;
  336         case VDEV_TRIM_CANCELED:
  337                 if (old_state == VDEV_TRIM_ACTIVE ||
  338                     old_state == VDEV_TRIM_SUSPENDED) {
  339                         spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_CANCEL);
  340                         spa_history_log_internal(spa, "trim", tx,
  341                             "vdev=%s canceled", vd->vdev_path);
  342                 }
  343                 break;
  344         case VDEV_TRIM_COMPLETE:
  345                 spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_FINISH);
  346                 spa_history_log_internal(spa, "trim", tx,
  347                     "vdev=%s complete", vd->vdev_path);
  348                 break;
  349         default:
  350                 panic("invalid state %llu", (unsigned long long)new_state);
  351         }
  352 
  353         dmu_tx_commit(tx);
  354 
  355         if (new_state != VDEV_TRIM_ACTIVE)
  356                 spa_notify_waiters(spa);
  357 }
  358 
  359 /*
  360  * The zio_done_func_t done callback for each manual TRIM issued.  It is
  361  * responsible for updating the TRIM stats, reissuing failed TRIM I/Os,
  362  * and limiting the number of in flight TRIM I/Os.
  363  */
  364 static void
  365 vdev_trim_cb(zio_t *zio)
  366 {
  367         vdev_t *vd = zio->io_vd;
  368 
  369         mutex_enter(&vd->vdev_trim_io_lock);
  370         if (zio->io_error == ENXIO && !vdev_writeable(vd)) {
  371                 /*
  372                  * The I/O failed because the vdev was unavailable; roll the
  373                  * last offset back. (This works because spa_sync waits on
  374                  * spa_txg_zio before it runs sync tasks.)
  375                  */
  376                 uint64_t *offset =
  377                     &vd->vdev_trim_offset[zio->io_txg & TXG_MASK];
  378                 *offset = MIN(*offset, zio->io_offset);
  379         } else {
  380                 if (zio->io_error != 0) {
  381                         vd->vdev_stat.vs_trim_errors++;
  382                         spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_MANUAL,
  383                             0, 0, 0, 0, 1, zio->io_orig_size);
  384                 } else {
  385                         spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_MANUAL,
  386                             1, zio->io_orig_size, 0, 0, 0, 0);
  387                 }
  388 
  389                 vd->vdev_trim_bytes_done += zio->io_orig_size;
  390         }
  391 
  392         ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_MANUAL], >, 0);
  393         vd->vdev_trim_inflight[TRIM_TYPE_MANUAL]--;
  394         cv_broadcast(&vd->vdev_trim_io_cv);
  395         mutex_exit(&vd->vdev_trim_io_lock);
  396 
  397         spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
  398 }
  399 
  400 /*
  401  * The zio_done_func_t done callback for each automatic TRIM issued.  It
  402  * is responsible for updating the TRIM stats and limiting the number of
  403  * in flight TRIM I/Os.  Automatic TRIM I/Os are best effort and are
  404  * never reissued on failure.
  405  */
  406 static void
  407 vdev_autotrim_cb(zio_t *zio)
  408 {
  409         vdev_t *vd = zio->io_vd;
  410 
  411         mutex_enter(&vd->vdev_trim_io_lock);
  412 
  413         if (zio->io_error != 0) {
  414                 vd->vdev_stat.vs_trim_errors++;
  415                 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_AUTO,
  416                     0, 0, 0, 0, 1, zio->io_orig_size);
  417         } else {
  418                 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_AUTO,
  419                     1, zio->io_orig_size, 0, 0, 0, 0);
  420         }
  421 
  422         ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_AUTO], >, 0);
  423         vd->vdev_trim_inflight[TRIM_TYPE_AUTO]--;
  424         cv_broadcast(&vd->vdev_trim_io_cv);
  425         mutex_exit(&vd->vdev_trim_io_lock);
  426 
  427         spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
  428 }
  429 
  430 /*
  431  * The zio_done_func_t done callback for each TRIM issued via
  432  * vdev_trim_simple(). It is responsible for updating the TRIM stats and
  433  * limiting the number of in flight TRIM I/Os.  Simple TRIM I/Os are best
  434  * effort and are never reissued on failure.
  435  */
  436 static void
  437 vdev_trim_simple_cb(zio_t *zio)
  438 {
  439         vdev_t *vd = zio->io_vd;
  440 
  441         mutex_enter(&vd->vdev_trim_io_lock);
  442 
  443         if (zio->io_error != 0) {
  444                 vd->vdev_stat.vs_trim_errors++;
  445                 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_SIMPLE,
  446                     0, 0, 0, 0, 1, zio->io_orig_size);
  447         } else {
  448                 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_SIMPLE,
  449                     1, zio->io_orig_size, 0, 0, 0, 0);
  450         }
  451 
  452         ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE], >, 0);
  453         vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE]--;
  454         cv_broadcast(&vd->vdev_trim_io_cv);
  455         mutex_exit(&vd->vdev_trim_io_lock);
  456 
  457         spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
  458 }
  459 /*
  460  * Returns the average trim rate in bytes/sec for the ta->trim_vdev.
  461  */
  462 static uint64_t
  463 vdev_trim_calculate_rate(trim_args_t *ta)
  464 {
  465         return (ta->trim_bytes_done * 1000 /
  466             (NSEC2MSEC(gethrtime() - ta->trim_start_time) + 1));
  467 }
  468 
  469 /*
  470  * Issues a physical TRIM and takes care of rate limiting (bytes/sec)
  471  * and number of concurrent TRIM I/Os.
  472  */
  473 static int
  474 vdev_trim_range(trim_args_t *ta, uint64_t start, uint64_t size)
  475 {
  476         vdev_t *vd = ta->trim_vdev;
  477         spa_t *spa = vd->vdev_spa;
  478         void *cb;
  479 
  480         mutex_enter(&vd->vdev_trim_io_lock);
  481 
  482         /*
  483          * Limit manual TRIM I/Os to the requested rate.  This does not
  484          * apply to automatic TRIM since no per vdev rate can be specified.
  485          */
  486         if (ta->trim_type == TRIM_TYPE_MANUAL) {
  487                 while (vd->vdev_trim_rate != 0 && !vdev_trim_should_stop(vd) &&
  488                     vdev_trim_calculate_rate(ta) > vd->vdev_trim_rate) {
  489                         cv_timedwait_idle(&vd->vdev_trim_io_cv,
  490                             &vd->vdev_trim_io_lock, ddi_get_lbolt() +
  491                             MSEC_TO_TICK(10));
  492                 }
  493         }
  494         ta->trim_bytes_done += size;
  495 
  496         /* Limit in flight trimming I/Os */
  497         while (vd->vdev_trim_inflight[0] + vd->vdev_trim_inflight[1] +
  498             vd->vdev_trim_inflight[2] >= zfs_trim_queue_limit) {
  499                 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
  500         }
  501         vd->vdev_trim_inflight[ta->trim_type]++;
  502         mutex_exit(&vd->vdev_trim_io_lock);
  503 
  504         dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
  505         VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
  506         uint64_t txg = dmu_tx_get_txg(tx);
  507 
  508         spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER);
  509         mutex_enter(&vd->vdev_trim_lock);
  510 
  511         if (ta->trim_type == TRIM_TYPE_MANUAL &&
  512             vd->vdev_trim_offset[txg & TXG_MASK] == 0) {
  513                 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
  514                 *guid = vd->vdev_guid;
  515 
  516                 /* This is the first write of this txg. */
  517                 dsl_sync_task_nowait(spa_get_dsl(spa),
  518                     vdev_trim_zap_update_sync, guid, tx);
  519         }
  520 
  521         /*
  522          * We know the vdev_t will still be around since all consumers of
  523          * vdev_free must stop the trimming first.
  524          */
  525         if ((ta->trim_type == TRIM_TYPE_MANUAL &&
  526             vdev_trim_should_stop(vd)) ||
  527             (ta->trim_type == TRIM_TYPE_AUTO &&
  528             vdev_autotrim_should_stop(vd->vdev_top))) {
  529                 mutex_enter(&vd->vdev_trim_io_lock);
  530                 vd->vdev_trim_inflight[ta->trim_type]--;
  531                 mutex_exit(&vd->vdev_trim_io_lock);
  532                 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
  533                 mutex_exit(&vd->vdev_trim_lock);
  534                 dmu_tx_commit(tx);
  535                 return (SET_ERROR(EINTR));
  536         }
  537         mutex_exit(&vd->vdev_trim_lock);
  538 
  539         if (ta->trim_type == TRIM_TYPE_MANUAL)
  540                 vd->vdev_trim_offset[txg & TXG_MASK] = start + size;
  541 
  542         if (ta->trim_type == TRIM_TYPE_MANUAL) {
  543                 cb = vdev_trim_cb;
  544         } else if (ta->trim_type == TRIM_TYPE_AUTO) {
  545                 cb = vdev_autotrim_cb;
  546         } else {
  547                 cb = vdev_trim_simple_cb;
  548         }
  549 
  550         zio_nowait(zio_trim(spa->spa_txg_zio[txg & TXG_MASK], vd,
  551             start, size, cb, NULL, ZIO_PRIORITY_TRIM, ZIO_FLAG_CANFAIL,
  552             ta->trim_flags));
  553         /* vdev_trim_cb and vdev_autotrim_cb release SCL_STATE_ALL */
  554 
  555         dmu_tx_commit(tx);
  556 
  557         return (0);
  558 }
  559 
  560 /*
  561  * Issues TRIM I/Os for all ranges in the provided ta->trim_tree range tree.
  562  * Additional parameters describing how the TRIM should be performed must
  563  * be set in the trim_args structure.  See the trim_args definition for
  564  * additional information.
  565  */
  566 static int
  567 vdev_trim_ranges(trim_args_t *ta)
  568 {
  569         vdev_t *vd = ta->trim_vdev;
  570         zfs_btree_t *t = &ta->trim_tree->rt_root;
  571         zfs_btree_index_t idx;
  572         uint64_t extent_bytes_max = ta->trim_extent_bytes_max;
  573         uint64_t extent_bytes_min = ta->trim_extent_bytes_min;
  574         spa_t *spa = vd->vdev_spa;
  575 
  576         ta->trim_start_time = gethrtime();
  577         ta->trim_bytes_done = 0;
  578 
  579         for (range_seg_t *rs = zfs_btree_first(t, &idx); rs != NULL;
  580             rs = zfs_btree_next(t, &idx, &idx)) {
  581                 uint64_t size = rs_get_end(rs, ta->trim_tree) - rs_get_start(rs,
  582                     ta->trim_tree);
  583 
  584                 if (extent_bytes_min && size < extent_bytes_min) {
  585                         spa_iostats_trim_add(spa, ta->trim_type,
  586                             0, 0, 1, size, 0, 0);
  587                         continue;
  588                 }
  589 
  590                 /* Split range into legally-sized physical chunks */
  591                 uint64_t writes_required = ((size - 1) / extent_bytes_max) + 1;
  592 
  593                 for (uint64_t w = 0; w < writes_required; w++) {
  594                         int error;
  595 
  596                         error = vdev_trim_range(ta, VDEV_LABEL_START_SIZE +
  597                             rs_get_start(rs, ta->trim_tree) +
  598                             (w *extent_bytes_max), MIN(size -
  599                             (w * extent_bytes_max), extent_bytes_max));
  600                         if (error != 0) {
  601                                 return (error);
  602                         }
  603                 }
  604         }
  605 
  606         return (0);
  607 }
  608 
  609 static void
  610 vdev_trim_xlate_last_rs_end(void *arg, range_seg64_t *physical_rs)
  611 {
  612         uint64_t *last_rs_end = (uint64_t *)arg;
  613 
  614         if (physical_rs->rs_end > *last_rs_end)
  615                 *last_rs_end = physical_rs->rs_end;
  616 }
  617 
  618 static void
  619 vdev_trim_xlate_progress(void *arg, range_seg64_t *physical_rs)
  620 {
  621         vdev_t *vd = (vdev_t *)arg;
  622 
  623         uint64_t size = physical_rs->rs_end - physical_rs->rs_start;
  624         vd->vdev_trim_bytes_est += size;
  625 
  626         if (vd->vdev_trim_last_offset >= physical_rs->rs_end) {
  627                 vd->vdev_trim_bytes_done += size;
  628         } else if (vd->vdev_trim_last_offset > physical_rs->rs_start &&
  629             vd->vdev_trim_last_offset <= physical_rs->rs_end) {
  630                 vd->vdev_trim_bytes_done +=
  631                     vd->vdev_trim_last_offset - physical_rs->rs_start;
  632         }
  633 }
  634 
  635 /*
  636  * Calculates the completion percentage of a manual TRIM.
  637  */
  638 static void
  639 vdev_trim_calculate_progress(vdev_t *vd)
  640 {
  641         ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
  642             spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
  643         ASSERT(vd->vdev_leaf_zap != 0);
  644 
  645         vd->vdev_trim_bytes_est = 0;
  646         vd->vdev_trim_bytes_done = 0;
  647 
  648         for (uint64_t i = 0; i < vd->vdev_top->vdev_ms_count; i++) {
  649                 metaslab_t *msp = vd->vdev_top->vdev_ms[i];
  650                 mutex_enter(&msp->ms_lock);
  651 
  652                 uint64_t ms_free = (msp->ms_size -
  653                     metaslab_allocated_space(msp)) /
  654                     vdev_get_ndisks(vd->vdev_top);
  655 
  656                 /*
  657                  * Convert the metaslab range to a physical range
  658                  * on our vdev. We use this to determine if we are
  659                  * in the middle of this metaslab range.
  660                  */
  661                 range_seg64_t logical_rs, physical_rs, remain_rs;
  662                 logical_rs.rs_start = msp->ms_start;
  663                 logical_rs.rs_end = msp->ms_start + msp->ms_size;
  664 
  665                 /* Metaslab space after this offset has not been trimmed. */
  666                 vdev_xlate(vd, &logical_rs, &physical_rs, &remain_rs);
  667                 if (vd->vdev_trim_last_offset <= physical_rs.rs_start) {
  668                         vd->vdev_trim_bytes_est += ms_free;
  669                         mutex_exit(&msp->ms_lock);
  670                         continue;
  671                 }
  672 
  673                 /* Metaslab space before this offset has been trimmed */
  674                 uint64_t last_rs_end = physical_rs.rs_end;
  675                 if (!vdev_xlate_is_empty(&remain_rs)) {
  676                         vdev_xlate_walk(vd, &remain_rs,
  677                             vdev_trim_xlate_last_rs_end, &last_rs_end);
  678                 }
  679 
  680                 if (vd->vdev_trim_last_offset > last_rs_end) {
  681                         vd->vdev_trim_bytes_done += ms_free;
  682                         vd->vdev_trim_bytes_est += ms_free;
  683                         mutex_exit(&msp->ms_lock);
  684                         continue;
  685                 }
  686 
  687                 /*
  688                  * If we get here, we're in the middle of trimming this
  689                  * metaslab.  Load it and walk the free tree for more
  690                  * accurate progress estimation.
  691                  */
  692                 VERIFY0(metaslab_load(msp));
  693 
  694                 range_tree_t *rt = msp->ms_allocatable;
  695                 zfs_btree_t *bt = &rt->rt_root;
  696                 zfs_btree_index_t idx;
  697                 for (range_seg_t *rs = zfs_btree_first(bt, &idx);
  698                     rs != NULL; rs = zfs_btree_next(bt, &idx, &idx)) {
  699                         logical_rs.rs_start = rs_get_start(rs, rt);
  700                         logical_rs.rs_end = rs_get_end(rs, rt);
  701 
  702                         vdev_xlate_walk(vd, &logical_rs,
  703                             vdev_trim_xlate_progress, vd);
  704                 }
  705                 mutex_exit(&msp->ms_lock);
  706         }
  707 }
  708 
  709 /*
  710  * Load from disk the vdev's manual TRIM information.  This includes the
  711  * state, progress, and options provided when initiating the manual TRIM.
  712  */
  713 static int
  714 vdev_trim_load(vdev_t *vd)
  715 {
  716         int err = 0;
  717         ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
  718             spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
  719         ASSERT(vd->vdev_leaf_zap != 0);
  720 
  721         if (vd->vdev_trim_state == VDEV_TRIM_ACTIVE ||
  722             vd->vdev_trim_state == VDEV_TRIM_SUSPENDED) {
  723                 err = zap_lookup(vd->vdev_spa->spa_meta_objset,
  724                     vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_LAST_OFFSET,
  725                     sizeof (vd->vdev_trim_last_offset), 1,
  726                     &vd->vdev_trim_last_offset);
  727                 if (err == ENOENT) {
  728                         vd->vdev_trim_last_offset = 0;
  729                         err = 0;
  730                 }
  731 
  732                 if (err == 0) {
  733                         err = zap_lookup(vd->vdev_spa->spa_meta_objset,
  734                             vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_RATE,
  735                             sizeof (vd->vdev_trim_rate), 1,
  736                             &vd->vdev_trim_rate);
  737                         if (err == ENOENT) {
  738                                 vd->vdev_trim_rate = 0;
  739                                 err = 0;
  740                         }
  741                 }
  742 
  743                 if (err == 0) {
  744                         err = zap_lookup(vd->vdev_spa->spa_meta_objset,
  745                             vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_PARTIAL,
  746                             sizeof (vd->vdev_trim_partial), 1,
  747                             &vd->vdev_trim_partial);
  748                         if (err == ENOENT) {
  749                                 vd->vdev_trim_partial = 0;
  750                                 err = 0;
  751                         }
  752                 }
  753 
  754                 if (err == 0) {
  755                         err = zap_lookup(vd->vdev_spa->spa_meta_objset,
  756                             vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_SECURE,
  757                             sizeof (vd->vdev_trim_secure), 1,
  758                             &vd->vdev_trim_secure);
  759                         if (err == ENOENT) {
  760                                 vd->vdev_trim_secure = 0;
  761                                 err = 0;
  762                         }
  763                 }
  764         }
  765 
  766         vdev_trim_calculate_progress(vd);
  767 
  768         return (err);
  769 }
  770 
  771 static void
  772 vdev_trim_xlate_range_add(void *arg, range_seg64_t *physical_rs)
  773 {
  774         trim_args_t *ta = arg;
  775         vdev_t *vd = ta->trim_vdev;
  776 
  777         /*
  778          * Only a manual trim will be traversing the vdev sequentially.
  779          * For an auto trim all valid ranges should be added.
  780          */
  781         if (ta->trim_type == TRIM_TYPE_MANUAL) {
  782 
  783                 /* Only add segments that we have not visited yet */
  784                 if (physical_rs->rs_end <= vd->vdev_trim_last_offset)
  785                         return;
  786 
  787                 /* Pick up where we left off mid-range. */
  788                 if (vd->vdev_trim_last_offset > physical_rs->rs_start) {
  789                         ASSERT3U(physical_rs->rs_end, >,
  790                             vd->vdev_trim_last_offset);
  791                         physical_rs->rs_start = vd->vdev_trim_last_offset;
  792                 }
  793         }
  794 
  795         ASSERT3U(physical_rs->rs_end, >, physical_rs->rs_start);
  796 
  797         range_tree_add(ta->trim_tree, physical_rs->rs_start,
  798             physical_rs->rs_end - physical_rs->rs_start);
  799 }
  800 
  801 /*
  802  * Convert the logical range into physical ranges and add them to the
  803  * range tree passed in the trim_args_t.
  804  */
  805 static void
  806 vdev_trim_range_add(void *arg, uint64_t start, uint64_t size)
  807 {
  808         trim_args_t *ta = arg;
  809         vdev_t *vd = ta->trim_vdev;
  810         range_seg64_t logical_rs;
  811         logical_rs.rs_start = start;
  812         logical_rs.rs_end = start + size;
  813 
  814         /*
  815          * Every range to be trimmed must be part of ms_allocatable.
  816          * When ZFS_DEBUG_TRIM is set load the metaslab to verify this
  817          * is always the case.
  818          */
  819         if (zfs_flags & ZFS_DEBUG_TRIM) {
  820                 metaslab_t *msp = ta->trim_msp;
  821                 VERIFY0(metaslab_load(msp));
  822                 VERIFY3B(msp->ms_loaded, ==, B_TRUE);
  823                 VERIFY(range_tree_contains(msp->ms_allocatable, start, size));
  824         }
  825 
  826         ASSERT(vd->vdev_ops->vdev_op_leaf);
  827         vdev_xlate_walk(vd, &logical_rs, vdev_trim_xlate_range_add, arg);
  828 }
  829 
  830 /*
  831  * Each manual TRIM thread is responsible for trimming the unallocated
  832  * space for each leaf vdev.  This is accomplished by sequentially iterating
  833  * over its top-level metaslabs and issuing TRIM I/O for the space described
  834  * by its ms_allocatable.  While a metaslab is undergoing trimming it is
  835  * not eligible for new allocations.
  836  */
  837 static __attribute__((noreturn)) void
  838 vdev_trim_thread(void *arg)
  839 {
  840         vdev_t *vd = arg;
  841         spa_t *spa = vd->vdev_spa;
  842         trim_args_t ta;
  843         int error = 0;
  844 
  845         /*
  846          * The VDEV_LEAF_ZAP_TRIM_* entries may have been updated by
  847          * vdev_trim().  Wait for the updated values to be reflected
  848          * in the zap in order to start with the requested settings.
  849          */
  850         txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
  851 
  852         ASSERT(vdev_is_concrete(vd));
  853         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
  854 
  855         vd->vdev_trim_last_offset = 0;
  856         vd->vdev_trim_rate = 0;
  857         vd->vdev_trim_partial = 0;
  858         vd->vdev_trim_secure = 0;
  859 
  860         VERIFY0(vdev_trim_load(vd));
  861 
  862         ta.trim_vdev = vd;
  863         ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max;
  864         ta.trim_extent_bytes_min = zfs_trim_extent_bytes_min;
  865         ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
  866         ta.trim_type = TRIM_TYPE_MANUAL;
  867         ta.trim_flags = 0;
  868 
  869         /*
  870          * When a secure TRIM has been requested infer that the intent
  871          * is that everything must be trimmed.  Override the default
  872          * minimum TRIM size to prevent ranges from being skipped.
  873          */
  874         if (vd->vdev_trim_secure) {
  875                 ta.trim_flags |= ZIO_TRIM_SECURE;
  876                 ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE;
  877         }
  878 
  879         uint64_t ms_count = 0;
  880         for (uint64_t i = 0; !vd->vdev_detached &&
  881             i < vd->vdev_top->vdev_ms_count; i++) {
  882                 metaslab_t *msp = vd->vdev_top->vdev_ms[i];
  883 
  884                 /*
  885                  * If we've expanded the top-level vdev or it's our
  886                  * first pass, calculate our progress.
  887                  */
  888                 if (vd->vdev_top->vdev_ms_count != ms_count) {
  889                         vdev_trim_calculate_progress(vd);
  890                         ms_count = vd->vdev_top->vdev_ms_count;
  891                 }
  892 
  893                 spa_config_exit(spa, SCL_CONFIG, FTAG);
  894                 metaslab_disable(msp);
  895                 mutex_enter(&msp->ms_lock);
  896                 VERIFY0(metaslab_load(msp));
  897 
  898                 /*
  899                  * If a partial TRIM was requested skip metaslabs which have
  900                  * never been initialized and thus have never been written.
  901                  */
  902                 if (msp->ms_sm == NULL && vd->vdev_trim_partial) {
  903                         mutex_exit(&msp->ms_lock);
  904                         metaslab_enable(msp, B_FALSE, B_FALSE);
  905                         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
  906                         vdev_trim_calculate_progress(vd);
  907                         continue;
  908                 }
  909 
  910                 ta.trim_msp = msp;
  911                 range_tree_walk(msp->ms_allocatable, vdev_trim_range_add, &ta);
  912                 range_tree_vacate(msp->ms_trim, NULL, NULL);
  913                 mutex_exit(&msp->ms_lock);
  914 
  915                 error = vdev_trim_ranges(&ta);
  916                 metaslab_enable(msp, B_TRUE, B_FALSE);
  917                 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
  918 
  919                 range_tree_vacate(ta.trim_tree, NULL, NULL);
  920                 if (error != 0)
  921                         break;
  922         }
  923 
  924         spa_config_exit(spa, SCL_CONFIG, FTAG);
  925         mutex_enter(&vd->vdev_trim_io_lock);
  926         while (vd->vdev_trim_inflight[0] > 0) {
  927                 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
  928         }
  929         mutex_exit(&vd->vdev_trim_io_lock);
  930 
  931         range_tree_destroy(ta.trim_tree);
  932 
  933         mutex_enter(&vd->vdev_trim_lock);
  934         if (!vd->vdev_trim_exit_wanted) {
  935                 if (vdev_writeable(vd)) {
  936                         vdev_trim_change_state(vd, VDEV_TRIM_COMPLETE,
  937                             vd->vdev_trim_rate, vd->vdev_trim_partial,
  938                             vd->vdev_trim_secure);
  939                 } else if (vd->vdev_faulted) {
  940                         vdev_trim_change_state(vd, VDEV_TRIM_CANCELED,
  941                             vd->vdev_trim_rate, vd->vdev_trim_partial,
  942                             vd->vdev_trim_secure);
  943                 }
  944         }
  945         ASSERT(vd->vdev_trim_thread != NULL || vd->vdev_trim_inflight[0] == 0);
  946 
  947         /*
  948          * Drop the vdev_trim_lock while we sync out the txg since it's
  949          * possible that a device might be trying to come online and must
  950          * check to see if it needs to restart a trim. That thread will be
  951          * holding the spa_config_lock which would prevent the txg_wait_synced
  952          * from completing.
  953          */
  954         mutex_exit(&vd->vdev_trim_lock);
  955         txg_wait_synced(spa_get_dsl(spa), 0);
  956         mutex_enter(&vd->vdev_trim_lock);
  957 
  958         vd->vdev_trim_thread = NULL;
  959         cv_broadcast(&vd->vdev_trim_cv);
  960         mutex_exit(&vd->vdev_trim_lock);
  961 
  962         thread_exit();
  963 }
  964 
  965 /*
  966  * Initiates a manual TRIM for the vdev_t.  Callers must hold vdev_trim_lock,
  967  * the vdev_t must be a leaf and cannot already be manually trimming.
  968  */
  969 void
  970 vdev_trim(vdev_t *vd, uint64_t rate, boolean_t partial, boolean_t secure)
  971 {
  972         ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
  973         ASSERT(vd->vdev_ops->vdev_op_leaf);
  974         ASSERT(vdev_is_concrete(vd));
  975         ASSERT3P(vd->vdev_trim_thread, ==, NULL);
  976         ASSERT(!vd->vdev_detached);
  977         ASSERT(!vd->vdev_trim_exit_wanted);
  978         ASSERT(!vd->vdev_top->vdev_removing);
  979 
  980         vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, rate, partial, secure);
  981         vd->vdev_trim_thread = thread_create(NULL, 0,
  982             vdev_trim_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
  983 }
  984 
  985 /*
  986  * Wait for the trimming thread to be terminated (canceled or stopped).
  987  */
  988 static void
  989 vdev_trim_stop_wait_impl(vdev_t *vd)
  990 {
  991         ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
  992 
  993         while (vd->vdev_trim_thread != NULL)
  994                 cv_wait(&vd->vdev_trim_cv, &vd->vdev_trim_lock);
  995 
  996         ASSERT3P(vd->vdev_trim_thread, ==, NULL);
  997         vd->vdev_trim_exit_wanted = B_FALSE;
  998 }
  999 
 1000 /*
 1001  * Wait for vdev trim threads which were listed to cleanly exit.
 1002  */
 1003 void
 1004 vdev_trim_stop_wait(spa_t *spa, list_t *vd_list)
 1005 {
 1006         (void) spa;
 1007         vdev_t *vd;
 1008 
 1009         ASSERT(MUTEX_HELD(&spa_namespace_lock));
 1010 
 1011         while ((vd = list_remove_head(vd_list)) != NULL) {
 1012                 mutex_enter(&vd->vdev_trim_lock);
 1013                 vdev_trim_stop_wait_impl(vd);
 1014                 mutex_exit(&vd->vdev_trim_lock);
 1015         }
 1016 }
 1017 
 1018 /*
 1019  * Stop trimming a device, with the resultant trimming state being tgt_state.
 1020  * For blocking behavior pass NULL for vd_list.  Otherwise, when a list_t is
 1021  * provided the stopping vdev is inserted in to the list.  Callers are then
 1022  * required to call vdev_trim_stop_wait() to block for all the trim threads
 1023  * to exit.  The caller must hold vdev_trim_lock and must not be writing to
 1024  * the spa config, as the trimming thread may try to enter the config as a
 1025  * reader before exiting.
 1026  */
 1027 void
 1028 vdev_trim_stop(vdev_t *vd, vdev_trim_state_t tgt_state, list_t *vd_list)
 1029 {
 1030         ASSERT(!spa_config_held(vd->vdev_spa, SCL_CONFIG|SCL_STATE, RW_WRITER));
 1031         ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
 1032         ASSERT(vd->vdev_ops->vdev_op_leaf);
 1033         ASSERT(vdev_is_concrete(vd));
 1034 
 1035         /*
 1036          * Allow cancel requests to proceed even if the trim thread has
 1037          * stopped.
 1038          */
 1039         if (vd->vdev_trim_thread == NULL && tgt_state != VDEV_TRIM_CANCELED)
 1040                 return;
 1041 
 1042         vdev_trim_change_state(vd, tgt_state, 0, 0, 0);
 1043         vd->vdev_trim_exit_wanted = B_TRUE;
 1044 
 1045         if (vd_list == NULL) {
 1046                 vdev_trim_stop_wait_impl(vd);
 1047         } else {
 1048                 ASSERT(MUTEX_HELD(&spa_namespace_lock));
 1049                 list_insert_tail(vd_list, vd);
 1050         }
 1051 }
 1052 
 1053 /*
 1054  * Requests that all listed vdevs stop trimming.
 1055  */
 1056 static void
 1057 vdev_trim_stop_all_impl(vdev_t *vd, vdev_trim_state_t tgt_state,
 1058     list_t *vd_list)
 1059 {
 1060         if (vd->vdev_ops->vdev_op_leaf && vdev_is_concrete(vd)) {
 1061                 mutex_enter(&vd->vdev_trim_lock);
 1062                 vdev_trim_stop(vd, tgt_state, vd_list);
 1063                 mutex_exit(&vd->vdev_trim_lock);
 1064                 return;
 1065         }
 1066 
 1067         for (uint64_t i = 0; i < vd->vdev_children; i++) {
 1068                 vdev_trim_stop_all_impl(vd->vdev_child[i], tgt_state,
 1069                     vd_list);
 1070         }
 1071 }
 1072 
 1073 /*
 1074  * Convenience function to stop trimming of a vdev tree and set all trim
 1075  * thread pointers to NULL.
 1076  */
 1077 void
 1078 vdev_trim_stop_all(vdev_t *vd, vdev_trim_state_t tgt_state)
 1079 {
 1080         spa_t *spa = vd->vdev_spa;
 1081         list_t vd_list;
 1082         vdev_t *vd_l2cache;
 1083 
 1084         ASSERT(MUTEX_HELD(&spa_namespace_lock));
 1085 
 1086         list_create(&vd_list, sizeof (vdev_t),
 1087             offsetof(vdev_t, vdev_trim_node));
 1088 
 1089         vdev_trim_stop_all_impl(vd, tgt_state, &vd_list);
 1090 
 1091         /*
 1092          * Iterate over cache devices and request stop trimming the
 1093          * whole device in case we export the pool or remove the cache
 1094          * device prematurely.
 1095          */
 1096         for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
 1097                 vd_l2cache = spa->spa_l2cache.sav_vdevs[i];
 1098                 vdev_trim_stop_all_impl(vd_l2cache, tgt_state, &vd_list);
 1099         }
 1100 
 1101         vdev_trim_stop_wait(spa, &vd_list);
 1102 
 1103         if (vd->vdev_spa->spa_sync_on) {
 1104                 /* Make sure that our state has been synced to disk */
 1105                 txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
 1106         }
 1107 
 1108         list_destroy(&vd_list);
 1109 }
 1110 
 1111 /*
 1112  * Conditionally restarts a manual TRIM given its on-disk state.
 1113  */
 1114 void
 1115 vdev_trim_restart(vdev_t *vd)
 1116 {
 1117         ASSERT(MUTEX_HELD(&spa_namespace_lock));
 1118         ASSERT(!spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
 1119 
 1120         if (vd->vdev_leaf_zap != 0) {
 1121                 mutex_enter(&vd->vdev_trim_lock);
 1122                 uint64_t trim_state = VDEV_TRIM_NONE;
 1123                 int err = zap_lookup(vd->vdev_spa->spa_meta_objset,
 1124                     vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_STATE,
 1125                     sizeof (trim_state), 1, &trim_state);
 1126                 ASSERT(err == 0 || err == ENOENT);
 1127                 vd->vdev_trim_state = trim_state;
 1128 
 1129                 uint64_t timestamp = 0;
 1130                 err = zap_lookup(vd->vdev_spa->spa_meta_objset,
 1131                     vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_ACTION_TIME,
 1132                     sizeof (timestamp), 1, &timestamp);
 1133                 ASSERT(err == 0 || err == ENOENT);
 1134                 vd->vdev_trim_action_time = timestamp;
 1135 
 1136                 if (vd->vdev_trim_state == VDEV_TRIM_SUSPENDED ||
 1137                     vd->vdev_offline) {
 1138                         /* load progress for reporting, but don't resume */
 1139                         VERIFY0(vdev_trim_load(vd));
 1140                 } else if (vd->vdev_trim_state == VDEV_TRIM_ACTIVE &&
 1141                     vdev_writeable(vd) && !vd->vdev_top->vdev_removing &&
 1142                     vd->vdev_trim_thread == NULL) {
 1143                         VERIFY0(vdev_trim_load(vd));
 1144                         vdev_trim(vd, vd->vdev_trim_rate,
 1145                             vd->vdev_trim_partial, vd->vdev_trim_secure);
 1146                 }
 1147 
 1148                 mutex_exit(&vd->vdev_trim_lock);
 1149         }
 1150 
 1151         for (uint64_t i = 0; i < vd->vdev_children; i++) {
 1152                 vdev_trim_restart(vd->vdev_child[i]);
 1153         }
 1154 }
 1155 
 1156 /*
 1157  * Used by the automatic TRIM when ZFS_DEBUG_TRIM is set to verify that
 1158  * every TRIM range is contained within ms_allocatable.
 1159  */
 1160 static void
 1161 vdev_trim_range_verify(void *arg, uint64_t start, uint64_t size)
 1162 {
 1163         trim_args_t *ta = arg;
 1164         metaslab_t *msp = ta->trim_msp;
 1165 
 1166         VERIFY3B(msp->ms_loaded, ==, B_TRUE);
 1167         VERIFY3U(msp->ms_disabled, >, 0);
 1168         VERIFY(range_tree_contains(msp->ms_allocatable, start, size));
 1169 }
 1170 
 1171 /*
 1172  * Each automatic TRIM thread is responsible for managing the trimming of a
 1173  * top-level vdev in the pool.  No automatic TRIM state is maintained on-disk.
 1174  *
 1175  * N.B. This behavior is different from a manual TRIM where a thread
 1176  * is created for each leaf vdev, instead of each top-level vdev.
 1177  */
 1178 static __attribute__((noreturn)) void
 1179 vdev_autotrim_thread(void *arg)
 1180 {
 1181         vdev_t *vd = arg;
 1182         spa_t *spa = vd->vdev_spa;
 1183         int shift = 0;
 1184 
 1185         mutex_enter(&vd->vdev_autotrim_lock);
 1186         ASSERT3P(vd->vdev_top, ==, vd);
 1187         ASSERT3P(vd->vdev_autotrim_thread, !=, NULL);
 1188         mutex_exit(&vd->vdev_autotrim_lock);
 1189         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
 1190 
 1191         while (!vdev_autotrim_should_stop(vd)) {
 1192                 int txgs_per_trim = MAX(zfs_trim_txg_batch, 1);
 1193                 boolean_t issued_trim = B_FALSE;
 1194                 uint64_t extent_bytes_max = zfs_trim_extent_bytes_max;
 1195                 uint64_t extent_bytes_min = zfs_trim_extent_bytes_min;
 1196 
 1197                 /*
 1198                  * All of the metaslabs are divided in to groups of size
 1199                  * num_metaslabs / zfs_trim_txg_batch.  Each of these groups
 1200                  * is composed of metaslabs which are spread evenly over the
 1201                  * device.
 1202                  *
 1203                  * For example, when zfs_trim_txg_batch = 32 (default) then
 1204                  * group 0 will contain metaslabs 0, 32, 64, ...;
 1205                  * group 1 will contain metaslabs 1, 33, 65, ...;
 1206                  * group 2 will contain metaslabs 2, 34, 66, ...; and so on.
 1207                  *
 1208                  * On each pass through the while() loop one of these groups
 1209                  * is selected.  This is accomplished by using a shift value
 1210                  * to select the starting metaslab, then striding over the
 1211                  * metaslabs using the zfs_trim_txg_batch size.  This is
 1212                  * done to accomplish two things.
 1213                  *
 1214                  * 1) By dividing the metaslabs in to groups, and making sure
 1215                  *    that each group takes a minimum of one txg to process.
 1216                  *    Then zfs_trim_txg_batch controls the minimum number of
 1217                  *    txgs which must occur before a metaslab is revisited.
 1218                  *
 1219                  * 2) Selecting non-consecutive metaslabs distributes the
 1220                  *    TRIM commands for a group evenly over the entire device.
 1221                  *    This can be advantageous for certain types of devices.
 1222                  */
 1223                 for (uint64_t i = shift % txgs_per_trim; i < vd->vdev_ms_count;
 1224                     i += txgs_per_trim) {
 1225                         metaslab_t *msp = vd->vdev_ms[i];
 1226                         range_tree_t *trim_tree;
 1227 
 1228                         spa_config_exit(spa, SCL_CONFIG, FTAG);
 1229                         metaslab_disable(msp);
 1230                         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
 1231 
 1232                         mutex_enter(&msp->ms_lock);
 1233 
 1234                         /*
 1235                          * Skip the metaslab when it has never been allocated
 1236                          * or when there are no recent frees to trim.
 1237                          */
 1238                         if (msp->ms_sm == NULL ||
 1239                             range_tree_is_empty(msp->ms_trim)) {
 1240                                 mutex_exit(&msp->ms_lock);
 1241                                 metaslab_enable(msp, B_FALSE, B_FALSE);
 1242                                 continue;
 1243                         }
 1244 
 1245                         /*
 1246                          * Skip the metaslab when it has already been disabled.
 1247                          * This may happen when a manual TRIM or initialize
 1248                          * operation is running concurrently.  In the case
 1249                          * of a manual TRIM, the ms_trim tree will have been
 1250                          * vacated.  Only ranges added after the manual TRIM
 1251                          * disabled the metaslab will be included in the tree.
 1252                          * These will be processed when the automatic TRIM
 1253                          * next revisits this metaslab.
 1254                          */
 1255                         if (msp->ms_disabled > 1) {
 1256                                 mutex_exit(&msp->ms_lock);
 1257                                 metaslab_enable(msp, B_FALSE, B_FALSE);
 1258                                 continue;
 1259                         }
 1260 
 1261                         /*
 1262                          * Allocate an empty range tree which is swapped in
 1263                          * for the existing ms_trim tree while it is processed.
 1264                          */
 1265                         trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL,
 1266                             0, 0);
 1267                         range_tree_swap(&msp->ms_trim, &trim_tree);
 1268                         ASSERT(range_tree_is_empty(msp->ms_trim));
 1269 
 1270                         /*
 1271                          * There are two cases when constructing the per-vdev
 1272                          * trim trees for a metaslab.  If the top-level vdev
 1273                          * has no children then it is also a leaf and should
 1274                          * be trimmed.  Otherwise our children are the leaves
 1275                          * and a trim tree should be constructed for each.
 1276                          */
 1277                         trim_args_t *tap;
 1278                         uint64_t children = vd->vdev_children;
 1279                         if (children == 0) {
 1280                                 children = 1;
 1281                                 tap = kmem_zalloc(sizeof (trim_args_t) *
 1282                                     children, KM_SLEEP);
 1283                                 tap[0].trim_vdev = vd;
 1284                         } else {
 1285                                 tap = kmem_zalloc(sizeof (trim_args_t) *
 1286                                     children, KM_SLEEP);
 1287 
 1288                                 for (uint64_t c = 0; c < children; c++) {
 1289                                         tap[c].trim_vdev = vd->vdev_child[c];
 1290                                 }
 1291                         }
 1292 
 1293                         for (uint64_t c = 0; c < children; c++) {
 1294                                 trim_args_t *ta = &tap[c];
 1295                                 vdev_t *cvd = ta->trim_vdev;
 1296 
 1297                                 ta->trim_msp = msp;
 1298                                 ta->trim_extent_bytes_max = extent_bytes_max;
 1299                                 ta->trim_extent_bytes_min = extent_bytes_min;
 1300                                 ta->trim_type = TRIM_TYPE_AUTO;
 1301                                 ta->trim_flags = 0;
 1302 
 1303                                 if (cvd->vdev_detached ||
 1304                                     !vdev_writeable(cvd) ||
 1305                                     !cvd->vdev_has_trim ||
 1306                                     cvd->vdev_trim_thread != NULL) {
 1307                                         continue;
 1308                                 }
 1309 
 1310                                 /*
 1311                                  * When a device has an attached hot spare, or
 1312                                  * is being replaced it will not be trimmed.
 1313                                  * This is done to avoid adding additional
 1314                                  * stress to a potentially unhealthy device,
 1315                                  * and to minimize the required rebuild time.
 1316                                  */
 1317                                 if (!cvd->vdev_ops->vdev_op_leaf)
 1318                                         continue;
 1319 
 1320                                 ta->trim_tree = range_tree_create(NULL,
 1321                                     RANGE_SEG64, NULL, 0, 0);
 1322                                 range_tree_walk(trim_tree,
 1323                                     vdev_trim_range_add, ta);
 1324                         }
 1325 
 1326                         mutex_exit(&msp->ms_lock);
 1327                         spa_config_exit(spa, SCL_CONFIG, FTAG);
 1328 
 1329                         /*
 1330                          * Issue the TRIM I/Os for all ranges covered by the
 1331                          * TRIM trees.  These ranges are safe to TRIM because
 1332                          * no new allocations will be performed until the call
 1333                          * to metaslab_enabled() below.
 1334                          */
 1335                         for (uint64_t c = 0; c < children; c++) {
 1336                                 trim_args_t *ta = &tap[c];
 1337 
 1338                                 /*
 1339                                  * Always yield to a manual TRIM if one has
 1340                                  * been started for the child vdev.
 1341                                  */
 1342                                 if (ta->trim_tree == NULL ||
 1343                                     ta->trim_vdev->vdev_trim_thread != NULL) {
 1344                                         continue;
 1345                                 }
 1346 
 1347                                 /*
 1348                                  * After this point metaslab_enable() must be
 1349                                  * called with the sync flag set.  This is done
 1350                                  * here because vdev_trim_ranges() is allowed
 1351                                  * to be interrupted (EINTR) before issuing all
 1352                                  * of the required TRIM I/Os.
 1353                                  */
 1354                                 issued_trim = B_TRUE;
 1355 
 1356                                 int error = vdev_trim_ranges(ta);
 1357                                 if (error)
 1358                                         break;
 1359                         }
 1360 
 1361                         /*
 1362                          * Verify every range which was trimmed is still
 1363                          * contained within the ms_allocatable tree.
 1364                          */
 1365                         if (zfs_flags & ZFS_DEBUG_TRIM) {
 1366                                 mutex_enter(&msp->ms_lock);
 1367                                 VERIFY0(metaslab_load(msp));
 1368                                 VERIFY3P(tap[0].trim_msp, ==, msp);
 1369                                 range_tree_walk(trim_tree,
 1370                                     vdev_trim_range_verify, &tap[0]);
 1371                                 mutex_exit(&msp->ms_lock);
 1372                         }
 1373 
 1374                         range_tree_vacate(trim_tree, NULL, NULL);
 1375                         range_tree_destroy(trim_tree);
 1376 
 1377                         metaslab_enable(msp, issued_trim, B_FALSE);
 1378                         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
 1379 
 1380                         for (uint64_t c = 0; c < children; c++) {
 1381                                 trim_args_t *ta = &tap[c];
 1382 
 1383                                 if (ta->trim_tree == NULL)
 1384                                         continue;
 1385 
 1386                                 range_tree_vacate(ta->trim_tree, NULL, NULL);
 1387                                 range_tree_destroy(ta->trim_tree);
 1388                         }
 1389 
 1390                         kmem_free(tap, sizeof (trim_args_t) * children);
 1391                 }
 1392 
 1393                 spa_config_exit(spa, SCL_CONFIG, FTAG);
 1394 
 1395                 /*
 1396                  * After completing the group of metaslabs wait for the next
 1397                  * open txg.  This is done to make sure that a minimum of
 1398                  * zfs_trim_txg_batch txgs will occur before these metaslabs
 1399                  * are trimmed again.
 1400                  */
 1401                 txg_wait_open(spa_get_dsl(spa), 0, issued_trim);
 1402 
 1403                 shift++;
 1404                 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
 1405         }
 1406 
 1407         for (uint64_t c = 0; c < vd->vdev_children; c++) {
 1408                 vdev_t *cvd = vd->vdev_child[c];
 1409                 mutex_enter(&cvd->vdev_trim_io_lock);
 1410 
 1411                 while (cvd->vdev_trim_inflight[1] > 0) {
 1412                         cv_wait(&cvd->vdev_trim_io_cv,
 1413                             &cvd->vdev_trim_io_lock);
 1414                 }
 1415                 mutex_exit(&cvd->vdev_trim_io_lock);
 1416         }
 1417 
 1418         spa_config_exit(spa, SCL_CONFIG, FTAG);
 1419 
 1420         /*
 1421          * When exiting because the autotrim property was set to off, then
 1422          * abandon any unprocessed ms_trim ranges to reclaim the memory.
 1423          */
 1424         if (spa_get_autotrim(spa) == SPA_AUTOTRIM_OFF) {
 1425                 for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
 1426                         metaslab_t *msp = vd->vdev_ms[i];
 1427 
 1428                         mutex_enter(&msp->ms_lock);
 1429                         range_tree_vacate(msp->ms_trim, NULL, NULL);
 1430                         mutex_exit(&msp->ms_lock);
 1431                 }
 1432         }
 1433 
 1434         mutex_enter(&vd->vdev_autotrim_lock);
 1435         ASSERT(vd->vdev_autotrim_thread != NULL);
 1436         vd->vdev_autotrim_thread = NULL;
 1437         cv_broadcast(&vd->vdev_autotrim_cv);
 1438         mutex_exit(&vd->vdev_autotrim_lock);
 1439 
 1440         thread_exit();
 1441 }
 1442 
 1443 /*
 1444  * Starts an autotrim thread, if needed, for each top-level vdev which can be
 1445  * trimmed.  A top-level vdev which has been evacuated will never be trimmed.
 1446  */
 1447 void
 1448 vdev_autotrim(spa_t *spa)
 1449 {
 1450         vdev_t *root_vd = spa->spa_root_vdev;
 1451 
 1452         for (uint64_t i = 0; i < root_vd->vdev_children; i++) {
 1453                 vdev_t *tvd = root_vd->vdev_child[i];
 1454 
 1455                 mutex_enter(&tvd->vdev_autotrim_lock);
 1456                 if (vdev_writeable(tvd) && !tvd->vdev_removing &&
 1457                     tvd->vdev_autotrim_thread == NULL) {
 1458                         ASSERT3P(tvd->vdev_top, ==, tvd);
 1459 
 1460                         tvd->vdev_autotrim_thread = thread_create(NULL, 0,
 1461                             vdev_autotrim_thread, tvd, 0, &p0, TS_RUN,
 1462                             maxclsyspri);
 1463                         ASSERT(tvd->vdev_autotrim_thread != NULL);
 1464                 }
 1465                 mutex_exit(&tvd->vdev_autotrim_lock);
 1466         }
 1467 }
 1468 
 1469 /*
 1470  * Wait for the vdev_autotrim_thread associated with the passed top-level
 1471  * vdev to be terminated (canceled or stopped).
 1472  */
 1473 void
 1474 vdev_autotrim_stop_wait(vdev_t *tvd)
 1475 {
 1476         mutex_enter(&tvd->vdev_autotrim_lock);
 1477         if (tvd->vdev_autotrim_thread != NULL) {
 1478                 tvd->vdev_autotrim_exit_wanted = B_TRUE;
 1479 
 1480                 while (tvd->vdev_autotrim_thread != NULL) {
 1481                         cv_wait(&tvd->vdev_autotrim_cv,
 1482                             &tvd->vdev_autotrim_lock);
 1483                 }
 1484 
 1485                 ASSERT3P(tvd->vdev_autotrim_thread, ==, NULL);
 1486                 tvd->vdev_autotrim_exit_wanted = B_FALSE;
 1487         }
 1488         mutex_exit(&tvd->vdev_autotrim_lock);
 1489 }
 1490 
 1491 /*
 1492  * Wait for all of the vdev_autotrim_thread associated with the pool to
 1493  * be terminated (canceled or stopped).
 1494  */
 1495 void
 1496 vdev_autotrim_stop_all(spa_t *spa)
 1497 {
 1498         vdev_t *root_vd = spa->spa_root_vdev;
 1499 
 1500         for (uint64_t i = 0; i < root_vd->vdev_children; i++)
 1501                 vdev_autotrim_stop_wait(root_vd->vdev_child[i]);
 1502 }
 1503 
 1504 /*
 1505  * Conditionally restart all of the vdev_autotrim_thread's for the pool.
 1506  */
 1507 void
 1508 vdev_autotrim_restart(spa_t *spa)
 1509 {
 1510         ASSERT(MUTEX_HELD(&spa_namespace_lock));
 1511 
 1512         if (spa->spa_autotrim)
 1513                 vdev_autotrim(spa);
 1514 }
 1515 
 1516 static __attribute__((noreturn)) void
 1517 vdev_trim_l2arc_thread(void *arg)
 1518 {
 1519         vdev_t          *vd = arg;
 1520         spa_t           *spa = vd->vdev_spa;
 1521         l2arc_dev_t     *dev = l2arc_vdev_get(vd);
 1522         trim_args_t     ta = {0};
 1523         range_seg64_t   physical_rs;
 1524 
 1525         ASSERT(vdev_is_concrete(vd));
 1526         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
 1527 
 1528         vd->vdev_trim_last_offset = 0;
 1529         vd->vdev_trim_rate = 0;
 1530         vd->vdev_trim_partial = 0;
 1531         vd->vdev_trim_secure = 0;
 1532 
 1533         ta.trim_vdev = vd;
 1534         ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
 1535         ta.trim_type = TRIM_TYPE_MANUAL;
 1536         ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max;
 1537         ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE;
 1538         ta.trim_flags = 0;
 1539 
 1540         physical_rs.rs_start = vd->vdev_trim_bytes_done = 0;
 1541         physical_rs.rs_end = vd->vdev_trim_bytes_est =
 1542             vdev_get_min_asize(vd);
 1543 
 1544         range_tree_add(ta.trim_tree, physical_rs.rs_start,
 1545             physical_rs.rs_end - physical_rs.rs_start);
 1546 
 1547         mutex_enter(&vd->vdev_trim_lock);
 1548         vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, 0, 0, 0);
 1549         mutex_exit(&vd->vdev_trim_lock);
 1550 
 1551         (void) vdev_trim_ranges(&ta);
 1552 
 1553         spa_config_exit(spa, SCL_CONFIG, FTAG);
 1554         mutex_enter(&vd->vdev_trim_io_lock);
 1555         while (vd->vdev_trim_inflight[TRIM_TYPE_MANUAL] > 0) {
 1556                 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
 1557         }
 1558         mutex_exit(&vd->vdev_trim_io_lock);
 1559 
 1560         range_tree_vacate(ta.trim_tree, NULL, NULL);
 1561         range_tree_destroy(ta.trim_tree);
 1562 
 1563         mutex_enter(&vd->vdev_trim_lock);
 1564         if (!vd->vdev_trim_exit_wanted && vdev_writeable(vd)) {
 1565                 vdev_trim_change_state(vd, VDEV_TRIM_COMPLETE,
 1566                     vd->vdev_trim_rate, vd->vdev_trim_partial,
 1567                     vd->vdev_trim_secure);
 1568         }
 1569         ASSERT(vd->vdev_trim_thread != NULL ||
 1570             vd->vdev_trim_inflight[TRIM_TYPE_MANUAL] == 0);
 1571 
 1572         /*
 1573          * Drop the vdev_trim_lock while we sync out the txg since it's
 1574          * possible that a device might be trying to come online and
 1575          * must check to see if it needs to restart a trim. That thread
 1576          * will be holding the spa_config_lock which would prevent the
 1577          * txg_wait_synced from completing. Same strategy as in
 1578          * vdev_trim_thread().
 1579          */
 1580         mutex_exit(&vd->vdev_trim_lock);
 1581         txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
 1582         mutex_enter(&vd->vdev_trim_lock);
 1583 
 1584         /*
 1585          * Update the header of the cache device here, before
 1586          * broadcasting vdev_trim_cv which may lead to the removal
 1587          * of the device. The same applies for setting l2ad_trim_all to
 1588          * false.
 1589          */
 1590         spa_config_enter(vd->vdev_spa, SCL_L2ARC, vd,
 1591             RW_READER);
 1592         memset(dev->l2ad_dev_hdr, 0, dev->l2ad_dev_hdr_asize);
 1593         l2arc_dev_hdr_update(dev);
 1594         spa_config_exit(vd->vdev_spa, SCL_L2ARC, vd);
 1595 
 1596         vd->vdev_trim_thread = NULL;
 1597         if (vd->vdev_trim_state == VDEV_TRIM_COMPLETE)
 1598                 dev->l2ad_trim_all = B_FALSE;
 1599 
 1600         cv_broadcast(&vd->vdev_trim_cv);
 1601         mutex_exit(&vd->vdev_trim_lock);
 1602 
 1603         thread_exit();
 1604 }
 1605 
 1606 /*
 1607  * Punches out TRIM threads for the L2ARC devices in a spa and assigns them
 1608  * to vd->vdev_trim_thread variable. This facilitates the management of
 1609  * trimming the whole cache device using TRIM_TYPE_MANUAL upon addition
 1610  * to a pool or pool creation or when the header of the device is invalid.
 1611  */
 1612 void
 1613 vdev_trim_l2arc(spa_t *spa)
 1614 {
 1615         ASSERT(MUTEX_HELD(&spa_namespace_lock));
 1616 
 1617         /*
 1618          * Locate the spa's l2arc devices and kick off TRIM threads.
 1619          */
 1620         for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
 1621                 vdev_t *vd = spa->spa_l2cache.sav_vdevs[i];
 1622                 l2arc_dev_t *dev = l2arc_vdev_get(vd);
 1623 
 1624                 if (dev == NULL || !dev->l2ad_trim_all) {
 1625                         /*
 1626                          * Don't attempt TRIM if the vdev is UNAVAIL or if the
 1627                          * cache device was not marked for whole device TRIM
 1628                          * (ie l2arc_trim_ahead = 0, or the L2ARC device header
 1629                          * is valid with trim_state = VDEV_TRIM_COMPLETE and
 1630                          * l2ad_log_entries > 0).
 1631                          */
 1632                         continue;
 1633                 }
 1634 
 1635                 mutex_enter(&vd->vdev_trim_lock);
 1636                 ASSERT(vd->vdev_ops->vdev_op_leaf);
 1637                 ASSERT(vdev_is_concrete(vd));
 1638                 ASSERT3P(vd->vdev_trim_thread, ==, NULL);
 1639                 ASSERT(!vd->vdev_detached);
 1640                 ASSERT(!vd->vdev_trim_exit_wanted);
 1641                 ASSERT(!vd->vdev_top->vdev_removing);
 1642                 vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, 0, 0, 0);
 1643                 vd->vdev_trim_thread = thread_create(NULL, 0,
 1644                     vdev_trim_l2arc_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
 1645                 mutex_exit(&vd->vdev_trim_lock);
 1646         }
 1647 }
 1648 
 1649 /*
 1650  * A wrapper which calls vdev_trim_ranges(). It is intended to be called
 1651  * on leaf vdevs.
 1652  */
 1653 int
 1654 vdev_trim_simple(vdev_t *vd, uint64_t start, uint64_t size)
 1655 {
 1656         trim_args_t ta = {0};
 1657         range_seg64_t physical_rs;
 1658         int error;
 1659         physical_rs.rs_start = start;
 1660         physical_rs.rs_end = start + size;
 1661 
 1662         ASSERT(vdev_is_concrete(vd));
 1663         ASSERT(vd->vdev_ops->vdev_op_leaf);
 1664         ASSERT(!vd->vdev_detached);
 1665         ASSERT(!vd->vdev_top->vdev_removing);
 1666 
 1667         ta.trim_vdev = vd;
 1668         ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
 1669         ta.trim_type = TRIM_TYPE_SIMPLE;
 1670         ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max;
 1671         ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE;
 1672         ta.trim_flags = 0;
 1673 
 1674         ASSERT3U(physical_rs.rs_end, >=, physical_rs.rs_start);
 1675 
 1676         if (physical_rs.rs_end > physical_rs.rs_start) {
 1677                 range_tree_add(ta.trim_tree, physical_rs.rs_start,
 1678                     physical_rs.rs_end - physical_rs.rs_start);
 1679         } else {
 1680                 ASSERT3U(physical_rs.rs_end, ==, physical_rs.rs_start);
 1681         }
 1682 
 1683         error = vdev_trim_ranges(&ta);
 1684 
 1685         mutex_enter(&vd->vdev_trim_io_lock);
 1686         while (vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE] > 0) {
 1687                 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
 1688         }
 1689         mutex_exit(&vd->vdev_trim_io_lock);
 1690 
 1691         range_tree_vacate(ta.trim_tree, NULL, NULL);
 1692         range_tree_destroy(ta.trim_tree);
 1693 
 1694         return (error);
 1695 }
 1696 
 1697 EXPORT_SYMBOL(vdev_trim);
 1698 EXPORT_SYMBOL(vdev_trim_stop);
 1699 EXPORT_SYMBOL(vdev_trim_stop_all);
 1700 EXPORT_SYMBOL(vdev_trim_stop_wait);
 1701 EXPORT_SYMBOL(vdev_trim_restart);
 1702 EXPORT_SYMBOL(vdev_autotrim);
 1703 EXPORT_SYMBOL(vdev_autotrim_stop_all);
 1704 EXPORT_SYMBOL(vdev_autotrim_stop_wait);
 1705 EXPORT_SYMBOL(vdev_autotrim_restart);
 1706 EXPORT_SYMBOL(vdev_trim_l2arc);
 1707 EXPORT_SYMBOL(vdev_trim_simple);
 1708 
 1709 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, extent_bytes_max, UINT, ZMOD_RW,
 1710         "Max size of TRIM commands, larger will be split");
 1711 
 1712 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, extent_bytes_min, UINT, ZMOD_RW,
 1713         "Min size of TRIM commands, smaller will be skipped");
 1714 
 1715 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, metaslab_skip, UINT, ZMOD_RW,
 1716         "Skip metaslabs which have never been initialized");
 1717 
 1718 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, txg_batch, UINT, ZMOD_RW,
 1719         "Min number of txgs to aggregate frees before issuing TRIM");
 1720 
 1721 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, queue_limit, UINT, ZMOD_RW,
 1722         "Max queued TRIMs outstanding per leaf vdev");

Cache object: d71151d8ee014442cec96e2a2aec224a


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.