1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright 2017 Nexenta Systems, Inc.
27 */
28
29 #include <sys/zio.h>
30 #include <sys/spa.h>
31 #include <sys/dmu.h>
32 #include <sys/zfs_context.h>
33 #include <sys/zap.h>
34 #include <sys/zap_impl.h>
35 #include <sys/zap_leaf.h>
36 #include <sys/btree.h>
37 #include <sys/arc.h>
38 #include <sys/dmu_objset.h>
39
40 #ifdef _KERNEL
41 #include <sys/sunddi.h>
42 #endif
43
44 int zap_micro_max_size = MZAP_MAX_BLKSZ;
45
46 static int mzap_upgrade(zap_t **zapp,
47 const void *tag, dmu_tx_t *tx, zap_flags_t flags);
48
49 uint64_t
50 zap_getflags(zap_t *zap)
51 {
52 if (zap->zap_ismicro)
53 return (0);
54 return (zap_f_phys(zap)->zap_flags);
55 }
56
57 int
58 zap_hashbits(zap_t *zap)
59 {
60 if (zap_getflags(zap) & ZAP_FLAG_HASH64)
61 return (48);
62 else
63 return (28);
64 }
65
66 uint32_t
67 zap_maxcd(zap_t *zap)
68 {
69 if (zap_getflags(zap) & ZAP_FLAG_HASH64)
70 return ((1<<16)-1);
71 else
72 return (-1U);
73 }
74
75 static uint64_t
76 zap_hash(zap_name_t *zn)
77 {
78 zap_t *zap = zn->zn_zap;
79 uint64_t h = 0;
80
81 if (zap_getflags(zap) & ZAP_FLAG_PRE_HASHED_KEY) {
82 ASSERT(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY);
83 h = *(uint64_t *)zn->zn_key_orig;
84 } else {
85 h = zap->zap_salt;
86 ASSERT(h != 0);
87 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
88
89 if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) {
90 const uint64_t *wp = zn->zn_key_norm;
91
92 ASSERT(zn->zn_key_intlen == 8);
93 for (int i = 0; i < zn->zn_key_norm_numints;
94 wp++, i++) {
95 uint64_t word = *wp;
96
97 for (int j = 0; j < 8; j++) {
98 h = (h >> 8) ^
99 zfs_crc64_table[(h ^ word) & 0xFF];
100 word >>= NBBY;
101 }
102 }
103 } else {
104 const uint8_t *cp = zn->zn_key_norm;
105
106 /*
107 * We previously stored the terminating null on
108 * disk, but didn't hash it, so we need to
109 * continue to not hash it. (The
110 * zn_key_*_numints includes the terminating
111 * null for non-binary keys.)
112 */
113 int len = zn->zn_key_norm_numints - 1;
114
115 ASSERT(zn->zn_key_intlen == 1);
116 for (int i = 0; i < len; cp++, i++) {
117 h = (h >> 8) ^
118 zfs_crc64_table[(h ^ *cp) & 0xFF];
119 }
120 }
121 }
122 /*
123 * Don't use all 64 bits, since we need some in the cookie for
124 * the collision differentiator. We MUST use the high bits,
125 * since those are the ones that we first pay attention to when
126 * choosing the bucket.
127 */
128 h &= ~((1ULL << (64 - zap_hashbits(zap))) - 1);
129
130 return (h);
131 }
132
133 static int
134 zap_normalize(zap_t *zap, const char *name, char *namenorm, int normflags)
135 {
136 ASSERT(!(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY));
137
138 size_t inlen = strlen(name) + 1;
139 size_t outlen = ZAP_MAXNAMELEN;
140
141 int err = 0;
142 (void) u8_textprep_str((char *)name, &inlen, namenorm, &outlen,
143 normflags | U8_TEXTPREP_IGNORE_NULL | U8_TEXTPREP_IGNORE_INVALID,
144 U8_UNICODE_LATEST, &err);
145
146 return (err);
147 }
148
149 boolean_t
150 zap_match(zap_name_t *zn, const char *matchname)
151 {
152 ASSERT(!(zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY));
153
154 if (zn->zn_matchtype & MT_NORMALIZE) {
155 char norm[ZAP_MAXNAMELEN];
156
157 if (zap_normalize(zn->zn_zap, matchname, norm,
158 zn->zn_normflags) != 0)
159 return (B_FALSE);
160
161 return (strcmp(zn->zn_key_norm, norm) == 0);
162 } else {
163 return (strcmp(zn->zn_key_orig, matchname) == 0);
164 }
165 }
166
167 static zap_name_t *
168 zap_name_alloc(zap_t *zap)
169 {
170 zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
171 zn->zn_zap = zap;
172 return (zn);
173 }
174
175 void
176 zap_name_free(zap_name_t *zn)
177 {
178 kmem_free(zn, sizeof (zap_name_t));
179 }
180
181 static int
182 zap_name_init_str(zap_name_t *zn, const char *key, matchtype_t mt)
183 {
184 zap_t *zap = zn->zn_zap;
185
186 zn->zn_key_intlen = sizeof (*key);
187 zn->zn_key_orig = key;
188 zn->zn_key_orig_numints = strlen(zn->zn_key_orig) + 1;
189 zn->zn_matchtype = mt;
190 zn->zn_normflags = zap->zap_normflags;
191
192 /*
193 * If we're dealing with a case sensitive lookup on a mixed or
194 * insensitive fs, remove U8_TEXTPREP_TOUPPER or the lookup
195 * will fold case to all caps overriding the lookup request.
196 */
197 if (mt & MT_MATCH_CASE)
198 zn->zn_normflags &= ~U8_TEXTPREP_TOUPPER;
199
200 if (zap->zap_normflags) {
201 /*
202 * We *must* use zap_normflags because this normalization is
203 * what the hash is computed from.
204 */
205 if (zap_normalize(zap, key, zn->zn_normbuf,
206 zap->zap_normflags) != 0)
207 return (SET_ERROR(ENOTSUP));
208 zn->zn_key_norm = zn->zn_normbuf;
209 zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1;
210 } else {
211 if (mt != 0)
212 return (SET_ERROR(ENOTSUP));
213 zn->zn_key_norm = zn->zn_key_orig;
214 zn->zn_key_norm_numints = zn->zn_key_orig_numints;
215 }
216
217 zn->zn_hash = zap_hash(zn);
218
219 if (zap->zap_normflags != zn->zn_normflags) {
220 /*
221 * We *must* use zn_normflags because this normalization is
222 * what the matching is based on. (Not the hash!)
223 */
224 if (zap_normalize(zap, key, zn->zn_normbuf,
225 zn->zn_normflags) != 0)
226 return (SET_ERROR(ENOTSUP));
227 zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1;
228 }
229
230 return (0);
231 }
232
233 zap_name_t *
234 zap_name_alloc_str(zap_t *zap, const char *key, matchtype_t mt)
235 {
236 zap_name_t *zn = zap_name_alloc(zap);
237 if (zap_name_init_str(zn, key, mt) != 0) {
238 zap_name_free(zn);
239 return (NULL);
240 }
241 return (zn);
242 }
243
244 static zap_name_t *
245 zap_name_alloc_uint64(zap_t *zap, const uint64_t *key, int numints)
246 {
247 zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
248
249 ASSERT(zap->zap_normflags == 0);
250 zn->zn_zap = zap;
251 zn->zn_key_intlen = sizeof (*key);
252 zn->zn_key_orig = zn->zn_key_norm = key;
253 zn->zn_key_orig_numints = zn->zn_key_norm_numints = numints;
254 zn->zn_matchtype = 0;
255
256 zn->zn_hash = zap_hash(zn);
257 return (zn);
258 }
259
260 static void
261 mzap_byteswap(mzap_phys_t *buf, size_t size)
262 {
263 buf->mz_block_type = BSWAP_64(buf->mz_block_type);
264 buf->mz_salt = BSWAP_64(buf->mz_salt);
265 buf->mz_normflags = BSWAP_64(buf->mz_normflags);
266 int max = (size / MZAP_ENT_LEN) - 1;
267 for (int i = 0; i < max; i++) {
268 buf->mz_chunk[i].mze_value =
269 BSWAP_64(buf->mz_chunk[i].mze_value);
270 buf->mz_chunk[i].mze_cd =
271 BSWAP_32(buf->mz_chunk[i].mze_cd);
272 }
273 }
274
275 void
276 zap_byteswap(void *buf, size_t size)
277 {
278 uint64_t block_type = *(uint64_t *)buf;
279
280 if (block_type == ZBT_MICRO || block_type == BSWAP_64(ZBT_MICRO)) {
281 /* ASSERT(magic == ZAP_LEAF_MAGIC); */
282 mzap_byteswap(buf, size);
283 } else {
284 fzap_byteswap(buf, size);
285 }
286 }
287
288 static int
289 mze_compare(const void *arg1, const void *arg2)
290 {
291 const mzap_ent_t *mze1 = arg1;
292 const mzap_ent_t *mze2 = arg2;
293
294 return (TREE_CMP((uint64_t)(mze1->mze_hash) << 32 | mze1->mze_cd,
295 (uint64_t)(mze2->mze_hash) << 32 | mze2->mze_cd));
296 }
297
298 static void
299 mze_insert(zap_t *zap, uint16_t chunkid, uint64_t hash)
300 {
301 mzap_ent_t mze;
302
303 ASSERT(zap->zap_ismicro);
304 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
305
306 mze.mze_chunkid = chunkid;
307 ASSERT0(hash & 0xffffffff);
308 mze.mze_hash = hash >> 32;
309 ASSERT3U(MZE_PHYS(zap, &mze)->mze_cd, <=, 0xffff);
310 mze.mze_cd = (uint16_t)MZE_PHYS(zap, &mze)->mze_cd;
311 ASSERT(MZE_PHYS(zap, &mze)->mze_name[0] != 0);
312 zfs_btree_add(&zap->zap_m.zap_tree, &mze);
313 }
314
315 static mzap_ent_t *
316 mze_find(zap_name_t *zn, zfs_btree_index_t *idx)
317 {
318 mzap_ent_t mze_tofind;
319 mzap_ent_t *mze;
320 zfs_btree_t *tree = &zn->zn_zap->zap_m.zap_tree;
321
322 ASSERT(zn->zn_zap->zap_ismicro);
323 ASSERT(RW_LOCK_HELD(&zn->zn_zap->zap_rwlock));
324
325 ASSERT0(zn->zn_hash & 0xffffffff);
326 mze_tofind.mze_hash = zn->zn_hash >> 32;
327 mze_tofind.mze_cd = 0;
328
329 mze = zfs_btree_find(tree, &mze_tofind, idx);
330 if (mze == NULL)
331 mze = zfs_btree_next(tree, idx, idx);
332 for (; mze && mze->mze_hash == mze_tofind.mze_hash;
333 mze = zfs_btree_next(tree, idx, idx)) {
334 ASSERT3U(mze->mze_cd, ==, MZE_PHYS(zn->zn_zap, mze)->mze_cd);
335 if (zap_match(zn, MZE_PHYS(zn->zn_zap, mze)->mze_name))
336 return (mze);
337 }
338
339 return (NULL);
340 }
341
342 static uint32_t
343 mze_find_unused_cd(zap_t *zap, uint64_t hash)
344 {
345 mzap_ent_t mze_tofind;
346 zfs_btree_index_t idx;
347 zfs_btree_t *tree = &zap->zap_m.zap_tree;
348
349 ASSERT(zap->zap_ismicro);
350 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
351
352 ASSERT0(hash & 0xffffffff);
353 hash >>= 32;
354 mze_tofind.mze_hash = hash;
355 mze_tofind.mze_cd = 0;
356
357 uint32_t cd = 0;
358 for (mzap_ent_t *mze = zfs_btree_find(tree, &mze_tofind, &idx);
359 mze && mze->mze_hash == hash;
360 mze = zfs_btree_next(tree, &idx, &idx)) {
361 if (mze->mze_cd != cd)
362 break;
363 cd++;
364 }
365
366 return (cd);
367 }
368
369 /*
370 * Each mzap entry requires at max : 4 chunks
371 * 3 chunks for names + 1 chunk for value.
372 */
373 #define MZAP_ENT_CHUNKS (1 + ZAP_LEAF_ARRAY_NCHUNKS(MZAP_NAME_LEN) + \
374 ZAP_LEAF_ARRAY_NCHUNKS(sizeof (uint64_t)))
375
376 /*
377 * Check if the current entry keeps the colliding entries under the fatzap leaf
378 * size.
379 */
380 static boolean_t
381 mze_canfit_fzap_leaf(zap_name_t *zn, uint64_t hash)
382 {
383 zap_t *zap = zn->zn_zap;
384 mzap_ent_t mze_tofind;
385 zfs_btree_index_t idx;
386 zfs_btree_t *tree = &zap->zap_m.zap_tree;
387 uint32_t mzap_ents = 0;
388
389 ASSERT0(hash & 0xffffffff);
390 hash >>= 32;
391 mze_tofind.mze_hash = hash;
392 mze_tofind.mze_cd = 0;
393
394 for (mzap_ent_t *mze = zfs_btree_find(tree, &mze_tofind, &idx);
395 mze && mze->mze_hash == hash;
396 mze = zfs_btree_next(tree, &idx, &idx)) {
397 mzap_ents++;
398 }
399
400 /* Include the new entry being added */
401 mzap_ents++;
402
403 return (ZAP_LEAF_NUMCHUNKS_DEF > (mzap_ents * MZAP_ENT_CHUNKS));
404 }
405
406 static void
407 mze_destroy(zap_t *zap)
408 {
409 zfs_btree_clear(&zap->zap_m.zap_tree);
410 zfs_btree_destroy(&zap->zap_m.zap_tree);
411 }
412
413 static zap_t *
414 mzap_open(objset_t *os, uint64_t obj, dmu_buf_t *db)
415 {
416 zap_t *winner;
417 uint64_t *zap_hdr = (uint64_t *)db->db_data;
418 uint64_t zap_block_type = zap_hdr[0];
419 uint64_t zap_magic = zap_hdr[1];
420
421 ASSERT3U(MZAP_ENT_LEN, ==, sizeof (mzap_ent_phys_t));
422
423 zap_t *zap = kmem_zalloc(sizeof (zap_t), KM_SLEEP);
424 rw_init(&zap->zap_rwlock, NULL, RW_DEFAULT, NULL);
425 rw_enter(&zap->zap_rwlock, RW_WRITER);
426 zap->zap_objset = os;
427 zap->zap_object = obj;
428 zap->zap_dbuf = db;
429
430 if (zap_block_type != ZBT_MICRO) {
431 mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, MUTEX_DEFAULT,
432 0);
433 zap->zap_f.zap_block_shift = highbit64(db->db_size) - 1;
434 if (zap_block_type != ZBT_HEADER || zap_magic != ZAP_MAGIC) {
435 winner = NULL; /* No actual winner here... */
436 goto handle_winner;
437 }
438 } else {
439 zap->zap_ismicro = TRUE;
440 }
441
442 /*
443 * Make sure that zap_ismicro is set before we let others see
444 * it, because zap_lockdir() checks zap_ismicro without the lock
445 * held.
446 */
447 dmu_buf_init_user(&zap->zap_dbu, zap_evict_sync, NULL, &zap->zap_dbuf);
448 winner = dmu_buf_set_user(db, &zap->zap_dbu);
449
450 if (winner != NULL)
451 goto handle_winner;
452
453 if (zap->zap_ismicro) {
454 zap->zap_salt = zap_m_phys(zap)->mz_salt;
455 zap->zap_normflags = zap_m_phys(zap)->mz_normflags;
456 zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1;
457
458 /*
459 * Reduce B-tree leaf from 4KB to 512 bytes to reduce memmove()
460 * overhead on massive inserts below. It still allows to store
461 * 62 entries before we have to add 2KB B-tree core node.
462 */
463 zfs_btree_create_custom(&zap->zap_m.zap_tree, mze_compare,
464 sizeof (mzap_ent_t), 512);
465
466 zap_name_t *zn = zap_name_alloc(zap);
467 for (uint16_t i = 0; i < zap->zap_m.zap_num_chunks; i++) {
468 mzap_ent_phys_t *mze =
469 &zap_m_phys(zap)->mz_chunk[i];
470 if (mze->mze_name[0]) {
471 zap->zap_m.zap_num_entries++;
472 zap_name_init_str(zn, mze->mze_name, 0);
473 mze_insert(zap, i, zn->zn_hash);
474 }
475 }
476 zap_name_free(zn);
477 } else {
478 zap->zap_salt = zap_f_phys(zap)->zap_salt;
479 zap->zap_normflags = zap_f_phys(zap)->zap_normflags;
480
481 ASSERT3U(sizeof (struct zap_leaf_header), ==,
482 2*ZAP_LEAF_CHUNKSIZE);
483
484 /*
485 * The embedded pointer table should not overlap the
486 * other members.
487 */
488 ASSERT3P(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), >,
489 &zap_f_phys(zap)->zap_salt);
490
491 /*
492 * The embedded pointer table should end at the end of
493 * the block
494 */
495 ASSERT3U((uintptr_t)&ZAP_EMBEDDED_PTRTBL_ENT(zap,
496 1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)) -
497 (uintptr_t)zap_f_phys(zap), ==,
498 zap->zap_dbuf->db_size);
499 }
500 rw_exit(&zap->zap_rwlock);
501 return (zap);
502
503 handle_winner:
504 rw_exit(&zap->zap_rwlock);
505 rw_destroy(&zap->zap_rwlock);
506 if (!zap->zap_ismicro)
507 mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
508 kmem_free(zap, sizeof (zap_t));
509 return (winner);
510 }
511
512 /*
513 * This routine "consumes" the caller's hold on the dbuf, which must
514 * have the specified tag.
515 */
516 static int
517 zap_lockdir_impl(dmu_buf_t *db, const void *tag, dmu_tx_t *tx,
518 krw_t lti, boolean_t fatreader, boolean_t adding, zap_t **zapp)
519 {
520 ASSERT0(db->db_offset);
521 objset_t *os = dmu_buf_get_objset(db);
522 uint64_t obj = db->db_object;
523 dmu_object_info_t doi;
524
525 *zapp = NULL;
526
527 dmu_object_info_from_db(db, &doi);
528 if (DMU_OT_BYTESWAP(doi.doi_type) != DMU_BSWAP_ZAP)
529 return (SET_ERROR(EINVAL));
530
531 zap_t *zap = dmu_buf_get_user(db);
532 if (zap == NULL) {
533 zap = mzap_open(os, obj, db);
534 if (zap == NULL) {
535 /*
536 * mzap_open() didn't like what it saw on-disk.
537 * Check for corruption!
538 */
539 return (SET_ERROR(EIO));
540 }
541 }
542
543 /*
544 * We're checking zap_ismicro without the lock held, in order to
545 * tell what type of lock we want. Once we have some sort of
546 * lock, see if it really is the right type. In practice this
547 * can only be different if it was upgraded from micro to fat,
548 * and micro wanted WRITER but fat only needs READER.
549 */
550 krw_t lt = (!zap->zap_ismicro && fatreader) ? RW_READER : lti;
551 rw_enter(&zap->zap_rwlock, lt);
552 if (lt != ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)) {
553 /* it was upgraded, now we only need reader */
554 ASSERT(lt == RW_WRITER);
555 ASSERT(RW_READER ==
556 ((!zap->zap_ismicro && fatreader) ? RW_READER : lti));
557 rw_downgrade(&zap->zap_rwlock);
558 lt = RW_READER;
559 }
560
561 zap->zap_objset = os;
562
563 if (lt == RW_WRITER)
564 dmu_buf_will_dirty(db, tx);
565
566 ASSERT3P(zap->zap_dbuf, ==, db);
567
568 ASSERT(!zap->zap_ismicro ||
569 zap->zap_m.zap_num_entries <= zap->zap_m.zap_num_chunks);
570 if (zap->zap_ismicro && tx && adding &&
571 zap->zap_m.zap_num_entries == zap->zap_m.zap_num_chunks) {
572 uint64_t newsz = db->db_size + SPA_MINBLOCKSIZE;
573 if (newsz > zap_micro_max_size) {
574 dprintf("upgrading obj %llu: num_entries=%u\n",
575 (u_longlong_t)obj, zap->zap_m.zap_num_entries);
576 *zapp = zap;
577 int err = mzap_upgrade(zapp, tag, tx, 0);
578 if (err != 0)
579 rw_exit(&zap->zap_rwlock);
580 return (err);
581 }
582 VERIFY0(dmu_object_set_blocksize(os, obj, newsz, 0, tx));
583 zap->zap_m.zap_num_chunks =
584 db->db_size / MZAP_ENT_LEN - 1;
585 }
586
587 *zapp = zap;
588 return (0);
589 }
590
591 static int
592 zap_lockdir_by_dnode(dnode_t *dn, dmu_tx_t *tx,
593 krw_t lti, boolean_t fatreader, boolean_t adding, const void *tag,
594 zap_t **zapp)
595 {
596 dmu_buf_t *db;
597
598 int err = dmu_buf_hold_by_dnode(dn, 0, tag, &db, DMU_READ_NO_PREFETCH);
599 if (err != 0) {
600 return (err);
601 }
602 #ifdef ZFS_DEBUG
603 {
604 dmu_object_info_t doi;
605 dmu_object_info_from_db(db, &doi);
606 ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP);
607 }
608 #endif
609
610 err = zap_lockdir_impl(db, tag, tx, lti, fatreader, adding, zapp);
611 if (err != 0) {
612 dmu_buf_rele(db, tag);
613 }
614 return (err);
615 }
616
617 int
618 zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx,
619 krw_t lti, boolean_t fatreader, boolean_t adding, const void *tag,
620 zap_t **zapp)
621 {
622 dmu_buf_t *db;
623
624 int err = dmu_buf_hold(os, obj, 0, tag, &db, DMU_READ_NO_PREFETCH);
625 if (err != 0)
626 return (err);
627 #ifdef ZFS_DEBUG
628 {
629 dmu_object_info_t doi;
630 dmu_object_info_from_db(db, &doi);
631 ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP);
632 }
633 #endif
634 err = zap_lockdir_impl(db, tag, tx, lti, fatreader, adding, zapp);
635 if (err != 0)
636 dmu_buf_rele(db, tag);
637 return (err);
638 }
639
640 void
641 zap_unlockdir(zap_t *zap, const void *tag)
642 {
643 rw_exit(&zap->zap_rwlock);
644 dmu_buf_rele(zap->zap_dbuf, tag);
645 }
646
647 static int
648 mzap_upgrade(zap_t **zapp, const void *tag, dmu_tx_t *tx, zap_flags_t flags)
649 {
650 int err = 0;
651 zap_t *zap = *zapp;
652
653 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
654
655 int sz = zap->zap_dbuf->db_size;
656 mzap_phys_t *mzp = vmem_alloc(sz, KM_SLEEP);
657 memcpy(mzp, zap->zap_dbuf->db_data, sz);
658 int nchunks = zap->zap_m.zap_num_chunks;
659
660 if (!flags) {
661 err = dmu_object_set_blocksize(zap->zap_objset, zap->zap_object,
662 1ULL << fzap_default_block_shift, 0, tx);
663 if (err != 0) {
664 vmem_free(mzp, sz);
665 return (err);
666 }
667 }
668
669 dprintf("upgrading obj=%llu with %u chunks\n",
670 (u_longlong_t)zap->zap_object, nchunks);
671 /* XXX destroy the tree later, so we can use the stored hash value */
672 mze_destroy(zap);
673
674 fzap_upgrade(zap, tx, flags);
675
676 zap_name_t *zn = zap_name_alloc(zap);
677 for (int i = 0; i < nchunks; i++) {
678 mzap_ent_phys_t *mze = &mzp->mz_chunk[i];
679 if (mze->mze_name[0] == 0)
680 continue;
681 dprintf("adding %s=%llu\n",
682 mze->mze_name, (u_longlong_t)mze->mze_value);
683 zap_name_init_str(zn, mze->mze_name, 0);
684 /* If we fail here, we would end up losing entries */
685 VERIFY0(fzap_add_cd(zn, 8, 1, &mze->mze_value, mze->mze_cd,
686 tag, tx));
687 zap = zn->zn_zap; /* fzap_add_cd() may change zap */
688 }
689 zap_name_free(zn);
690 vmem_free(mzp, sz);
691 *zapp = zap;
692 return (0);
693 }
694
695 /*
696 * The "normflags" determine the behavior of the matchtype_t which is
697 * passed to zap_lookup_norm(). Names which have the same normalized
698 * version will be stored with the same hash value, and therefore we can
699 * perform normalization-insensitive lookups. We can be Unicode form-
700 * insensitive and/or case-insensitive. The following flags are valid for
701 * "normflags":
702 *
703 * U8_TEXTPREP_NFC
704 * U8_TEXTPREP_NFD
705 * U8_TEXTPREP_NFKC
706 * U8_TEXTPREP_NFKD
707 * U8_TEXTPREP_TOUPPER
708 *
709 * The *_NF* (Normalization Form) flags are mutually exclusive; at most one
710 * of them may be supplied.
711 */
712 void
713 mzap_create_impl(dnode_t *dn, int normflags, zap_flags_t flags, dmu_tx_t *tx)
714 {
715 dmu_buf_t *db;
716
717 VERIFY0(dmu_buf_hold_by_dnode(dn, 0, FTAG, &db, DMU_READ_NO_PREFETCH));
718
719 dmu_buf_will_dirty(db, tx);
720 mzap_phys_t *zp = db->db_data;
721 zp->mz_block_type = ZBT_MICRO;
722 zp->mz_salt =
723 ((uintptr_t)db ^ (uintptr_t)tx ^ (dn->dn_object << 1)) | 1ULL;
724 zp->mz_normflags = normflags;
725
726 if (flags != 0) {
727 zap_t *zap;
728 /* Only fat zap supports flags; upgrade immediately. */
729 VERIFY0(zap_lockdir_impl(db, FTAG, tx, RW_WRITER,
730 B_FALSE, B_FALSE, &zap));
731 VERIFY0(mzap_upgrade(&zap, FTAG, tx, flags));
732 zap_unlockdir(zap, FTAG);
733 } else {
734 dmu_buf_rele(db, FTAG);
735 }
736 }
737
738 static uint64_t
739 zap_create_impl(objset_t *os, int normflags, zap_flags_t flags,
740 dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
741 dmu_object_type_t bonustype, int bonuslen, int dnodesize,
742 dnode_t **allocated_dnode, const void *tag, dmu_tx_t *tx)
743 {
744 uint64_t obj;
745
746 ASSERT3U(DMU_OT_BYTESWAP(ot), ==, DMU_BSWAP_ZAP);
747
748 if (allocated_dnode == NULL) {
749 dnode_t *dn;
750 obj = dmu_object_alloc_hold(os, ot, 1ULL << leaf_blockshift,
751 indirect_blockshift, bonustype, bonuslen, dnodesize,
752 &dn, FTAG, tx);
753 mzap_create_impl(dn, normflags, flags, tx);
754 dnode_rele(dn, FTAG);
755 } else {
756 obj = dmu_object_alloc_hold(os, ot, 1ULL << leaf_blockshift,
757 indirect_blockshift, bonustype, bonuslen, dnodesize,
758 allocated_dnode, tag, tx);
759 mzap_create_impl(*allocated_dnode, normflags, flags, tx);
760 }
761
762 return (obj);
763 }
764
765 int
766 zap_create_claim(objset_t *os, uint64_t obj, dmu_object_type_t ot,
767 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
768 {
769 return (zap_create_claim_dnsize(os, obj, ot, bonustype, bonuslen,
770 0, tx));
771 }
772
773 int
774 zap_create_claim_dnsize(objset_t *os, uint64_t obj, dmu_object_type_t ot,
775 dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx)
776 {
777 return (zap_create_claim_norm_dnsize(os, obj,
778 0, ot, bonustype, bonuslen, dnodesize, tx));
779 }
780
781 int
782 zap_create_claim_norm(objset_t *os, uint64_t obj, int normflags,
783 dmu_object_type_t ot,
784 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
785 {
786 return (zap_create_claim_norm_dnsize(os, obj, normflags, ot, bonustype,
787 bonuslen, 0, tx));
788 }
789
790 int
791 zap_create_claim_norm_dnsize(objset_t *os, uint64_t obj, int normflags,
792 dmu_object_type_t ot, dmu_object_type_t bonustype, int bonuslen,
793 int dnodesize, dmu_tx_t *tx)
794 {
795 dnode_t *dn;
796 int error;
797
798 ASSERT3U(DMU_OT_BYTESWAP(ot), ==, DMU_BSWAP_ZAP);
799 error = dmu_object_claim_dnsize(os, obj, ot, 0, bonustype, bonuslen,
800 dnodesize, tx);
801 if (error != 0)
802 return (error);
803
804 error = dnode_hold(os, obj, FTAG, &dn);
805 if (error != 0)
806 return (error);
807
808 mzap_create_impl(dn, normflags, 0, tx);
809
810 dnode_rele(dn, FTAG);
811
812 return (0);
813 }
814
815 uint64_t
816 zap_create(objset_t *os, dmu_object_type_t ot,
817 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
818 {
819 return (zap_create_norm(os, 0, ot, bonustype, bonuslen, tx));
820 }
821
822 uint64_t
823 zap_create_dnsize(objset_t *os, dmu_object_type_t ot,
824 dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx)
825 {
826 return (zap_create_norm_dnsize(os, 0, ot, bonustype, bonuslen,
827 dnodesize, tx));
828 }
829
830 uint64_t
831 zap_create_norm(objset_t *os, int normflags, dmu_object_type_t ot,
832 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
833 {
834 return (zap_create_norm_dnsize(os, normflags, ot, bonustype, bonuslen,
835 0, tx));
836 }
837
838 uint64_t
839 zap_create_norm_dnsize(objset_t *os, int normflags, dmu_object_type_t ot,
840 dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx)
841 {
842 return (zap_create_impl(os, normflags, 0, ot, 0, 0,
843 bonustype, bonuslen, dnodesize, NULL, NULL, tx));
844 }
845
846 uint64_t
847 zap_create_flags(objset_t *os, int normflags, zap_flags_t flags,
848 dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
849 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
850 {
851 return (zap_create_flags_dnsize(os, normflags, flags, ot,
852 leaf_blockshift, indirect_blockshift, bonustype, bonuslen, 0, tx));
853 }
854
855 uint64_t
856 zap_create_flags_dnsize(objset_t *os, int normflags, zap_flags_t flags,
857 dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
858 dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx)
859 {
860 return (zap_create_impl(os, normflags, flags, ot, leaf_blockshift,
861 indirect_blockshift, bonustype, bonuslen, dnodesize, NULL, NULL,
862 tx));
863 }
864
865 /*
866 * Create a zap object and return a pointer to the newly allocated dnode via
867 * the allocated_dnode argument. The returned dnode will be held and the
868 * caller is responsible for releasing the hold by calling dnode_rele().
869 */
870 uint64_t
871 zap_create_hold(objset_t *os, int normflags, zap_flags_t flags,
872 dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
873 dmu_object_type_t bonustype, int bonuslen, int dnodesize,
874 dnode_t **allocated_dnode, const void *tag, dmu_tx_t *tx)
875 {
876 return (zap_create_impl(os, normflags, flags, ot, leaf_blockshift,
877 indirect_blockshift, bonustype, bonuslen, dnodesize,
878 allocated_dnode, tag, tx));
879 }
880
881 int
882 zap_destroy(objset_t *os, uint64_t zapobj, dmu_tx_t *tx)
883 {
884 /*
885 * dmu_object_free will free the object number and free the
886 * data. Freeing the data will cause our pageout function to be
887 * called, which will destroy our data (zap_leaf_t's and zap_t).
888 */
889
890 return (dmu_object_free(os, zapobj, tx));
891 }
892
893 void
894 zap_evict_sync(void *dbu)
895 {
896 zap_t *zap = dbu;
897
898 rw_destroy(&zap->zap_rwlock);
899
900 if (zap->zap_ismicro)
901 mze_destroy(zap);
902 else
903 mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
904
905 kmem_free(zap, sizeof (zap_t));
906 }
907
908 int
909 zap_count(objset_t *os, uint64_t zapobj, uint64_t *count)
910 {
911 zap_t *zap;
912
913 int err =
914 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
915 if (err != 0)
916 return (err);
917 if (!zap->zap_ismicro) {
918 err = fzap_count(zap, count);
919 } else {
920 *count = zap->zap_m.zap_num_entries;
921 }
922 zap_unlockdir(zap, FTAG);
923 return (err);
924 }
925
926 /*
927 * zn may be NULL; if not specified, it will be computed if needed.
928 * See also the comment above zap_entry_normalization_conflict().
929 */
930 static boolean_t
931 mzap_normalization_conflict(zap_t *zap, zap_name_t *zn, mzap_ent_t *mze,
932 zfs_btree_index_t *idx)
933 {
934 boolean_t allocdzn = B_FALSE;
935 mzap_ent_t *other;
936 zfs_btree_index_t oidx;
937
938 if (zap->zap_normflags == 0)
939 return (B_FALSE);
940
941 for (other = zfs_btree_prev(&zap->zap_m.zap_tree, idx, &oidx);
942 other && other->mze_hash == mze->mze_hash;
943 other = zfs_btree_prev(&zap->zap_m.zap_tree, &oidx, &oidx)) {
944
945 if (zn == NULL) {
946 zn = zap_name_alloc_str(zap,
947 MZE_PHYS(zap, mze)->mze_name, MT_NORMALIZE);
948 allocdzn = B_TRUE;
949 }
950 if (zap_match(zn, MZE_PHYS(zap, other)->mze_name)) {
951 if (allocdzn)
952 zap_name_free(zn);
953 return (B_TRUE);
954 }
955 }
956
957 for (other = zfs_btree_next(&zap->zap_m.zap_tree, idx, &oidx);
958 other && other->mze_hash == mze->mze_hash;
959 other = zfs_btree_next(&zap->zap_m.zap_tree, &oidx, &oidx)) {
960
961 if (zn == NULL) {
962 zn = zap_name_alloc_str(zap,
963 MZE_PHYS(zap, mze)->mze_name, MT_NORMALIZE);
964 allocdzn = B_TRUE;
965 }
966 if (zap_match(zn, MZE_PHYS(zap, other)->mze_name)) {
967 if (allocdzn)
968 zap_name_free(zn);
969 return (B_TRUE);
970 }
971 }
972
973 if (allocdzn)
974 zap_name_free(zn);
975 return (B_FALSE);
976 }
977
978 /*
979 * Routines for manipulating attributes.
980 */
981
982 int
983 zap_lookup(objset_t *os, uint64_t zapobj, const char *name,
984 uint64_t integer_size, uint64_t num_integers, void *buf)
985 {
986 return (zap_lookup_norm(os, zapobj, name, integer_size,
987 num_integers, buf, 0, NULL, 0, NULL));
988 }
989
990 static int
991 zap_lookup_impl(zap_t *zap, const char *name,
992 uint64_t integer_size, uint64_t num_integers, void *buf,
993 matchtype_t mt, char *realname, int rn_len,
994 boolean_t *ncp)
995 {
996 int err = 0;
997
998 zap_name_t *zn = zap_name_alloc_str(zap, name, mt);
999 if (zn == NULL)
1000 return (SET_ERROR(ENOTSUP));
1001
1002 if (!zap->zap_ismicro) {
1003 err = fzap_lookup(zn, integer_size, num_integers, buf,
1004 realname, rn_len, ncp);
1005 } else {
1006 zfs_btree_index_t idx;
1007 mzap_ent_t *mze = mze_find(zn, &idx);
1008 if (mze == NULL) {
1009 err = SET_ERROR(ENOENT);
1010 } else {
1011 if (num_integers < 1) {
1012 err = SET_ERROR(EOVERFLOW);
1013 } else if (integer_size != 8) {
1014 err = SET_ERROR(EINVAL);
1015 } else {
1016 *(uint64_t *)buf =
1017 MZE_PHYS(zap, mze)->mze_value;
1018 if (realname != NULL)
1019 (void) strlcpy(realname,
1020 MZE_PHYS(zap, mze)->mze_name,
1021 rn_len);
1022 if (ncp) {
1023 *ncp = mzap_normalization_conflict(zap,
1024 zn, mze, &idx);
1025 }
1026 }
1027 }
1028 }
1029 zap_name_free(zn);
1030 return (err);
1031 }
1032
1033 int
1034 zap_lookup_norm(objset_t *os, uint64_t zapobj, const char *name,
1035 uint64_t integer_size, uint64_t num_integers, void *buf,
1036 matchtype_t mt, char *realname, int rn_len,
1037 boolean_t *ncp)
1038 {
1039 zap_t *zap;
1040
1041 int err =
1042 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1043 if (err != 0)
1044 return (err);
1045 err = zap_lookup_impl(zap, name, integer_size,
1046 num_integers, buf, mt, realname, rn_len, ncp);
1047 zap_unlockdir(zap, FTAG);
1048 return (err);
1049 }
1050
1051 int
1052 zap_prefetch(objset_t *os, uint64_t zapobj, const char *name)
1053 {
1054 zap_t *zap;
1055 int err;
1056 zap_name_t *zn;
1057
1058 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1059 if (err)
1060 return (err);
1061 zn = zap_name_alloc_str(zap, name, 0);
1062 if (zn == NULL) {
1063 zap_unlockdir(zap, FTAG);
1064 return (SET_ERROR(ENOTSUP));
1065 }
1066
1067 fzap_prefetch(zn);
1068 zap_name_free(zn);
1069 zap_unlockdir(zap, FTAG);
1070 return (err);
1071 }
1072
1073 int
1074 zap_lookup_by_dnode(dnode_t *dn, const char *name,
1075 uint64_t integer_size, uint64_t num_integers, void *buf)
1076 {
1077 return (zap_lookup_norm_by_dnode(dn, name, integer_size,
1078 num_integers, buf, 0, NULL, 0, NULL));
1079 }
1080
1081 int
1082 zap_lookup_norm_by_dnode(dnode_t *dn, const char *name,
1083 uint64_t integer_size, uint64_t num_integers, void *buf,
1084 matchtype_t mt, char *realname, int rn_len,
1085 boolean_t *ncp)
1086 {
1087 zap_t *zap;
1088
1089 int err = zap_lockdir_by_dnode(dn, NULL, RW_READER, TRUE, FALSE,
1090 FTAG, &zap);
1091 if (err != 0)
1092 return (err);
1093 err = zap_lookup_impl(zap, name, integer_size,
1094 num_integers, buf, mt, realname, rn_len, ncp);
1095 zap_unlockdir(zap, FTAG);
1096 return (err);
1097 }
1098
1099 int
1100 zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1101 int key_numints)
1102 {
1103 zap_t *zap;
1104
1105 int err =
1106 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1107 if (err != 0)
1108 return (err);
1109 zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
1110 if (zn == NULL) {
1111 zap_unlockdir(zap, FTAG);
1112 return (SET_ERROR(ENOTSUP));
1113 }
1114
1115 fzap_prefetch(zn);
1116 zap_name_free(zn);
1117 zap_unlockdir(zap, FTAG);
1118 return (err);
1119 }
1120
1121 int
1122 zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1123 int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf)
1124 {
1125 zap_t *zap;
1126
1127 int err =
1128 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1129 if (err != 0)
1130 return (err);
1131 zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
1132 if (zn == NULL) {
1133 zap_unlockdir(zap, FTAG);
1134 return (SET_ERROR(ENOTSUP));
1135 }
1136
1137 err = fzap_lookup(zn, integer_size, num_integers, buf,
1138 NULL, 0, NULL);
1139 zap_name_free(zn);
1140 zap_unlockdir(zap, FTAG);
1141 return (err);
1142 }
1143
1144 int
1145 zap_contains(objset_t *os, uint64_t zapobj, const char *name)
1146 {
1147 int err = zap_lookup_norm(os, zapobj, name, 0,
1148 0, NULL, 0, NULL, 0, NULL);
1149 if (err == EOVERFLOW || err == EINVAL)
1150 err = 0; /* found, but skipped reading the value */
1151 return (err);
1152 }
1153
1154 int
1155 zap_length(objset_t *os, uint64_t zapobj, const char *name,
1156 uint64_t *integer_size, uint64_t *num_integers)
1157 {
1158 zap_t *zap;
1159
1160 int err =
1161 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1162 if (err != 0)
1163 return (err);
1164 zap_name_t *zn = zap_name_alloc_str(zap, name, 0);
1165 if (zn == NULL) {
1166 zap_unlockdir(zap, FTAG);
1167 return (SET_ERROR(ENOTSUP));
1168 }
1169 if (!zap->zap_ismicro) {
1170 err = fzap_length(zn, integer_size, num_integers);
1171 } else {
1172 zfs_btree_index_t idx;
1173 mzap_ent_t *mze = mze_find(zn, &idx);
1174 if (mze == NULL) {
1175 err = SET_ERROR(ENOENT);
1176 } else {
1177 if (integer_size)
1178 *integer_size = 8;
1179 if (num_integers)
1180 *num_integers = 1;
1181 }
1182 }
1183 zap_name_free(zn);
1184 zap_unlockdir(zap, FTAG);
1185 return (err);
1186 }
1187
1188 int
1189 zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1190 int key_numints, uint64_t *integer_size, uint64_t *num_integers)
1191 {
1192 zap_t *zap;
1193
1194 int err =
1195 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1196 if (err != 0)
1197 return (err);
1198 zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
1199 if (zn == NULL) {
1200 zap_unlockdir(zap, FTAG);
1201 return (SET_ERROR(ENOTSUP));
1202 }
1203 err = fzap_length(zn, integer_size, num_integers);
1204 zap_name_free(zn);
1205 zap_unlockdir(zap, FTAG);
1206 return (err);
1207 }
1208
1209 static void
1210 mzap_addent(zap_name_t *zn, uint64_t value)
1211 {
1212 zap_t *zap = zn->zn_zap;
1213 uint16_t start = zap->zap_m.zap_alloc_next;
1214
1215 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
1216
1217 #ifdef ZFS_DEBUG
1218 for (int i = 0; i < zap->zap_m.zap_num_chunks; i++) {
1219 mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i];
1220 ASSERT(strcmp(zn->zn_key_orig, mze->mze_name) != 0);
1221 }
1222 #endif
1223
1224 uint32_t cd = mze_find_unused_cd(zap, zn->zn_hash);
1225 /* given the limited size of the microzap, this can't happen */
1226 ASSERT(cd < zap_maxcd(zap));
1227
1228 again:
1229 for (uint16_t i = start; i < zap->zap_m.zap_num_chunks; i++) {
1230 mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i];
1231 if (mze->mze_name[0] == 0) {
1232 mze->mze_value = value;
1233 mze->mze_cd = cd;
1234 (void) strlcpy(mze->mze_name, zn->zn_key_orig,
1235 sizeof (mze->mze_name));
1236 zap->zap_m.zap_num_entries++;
1237 zap->zap_m.zap_alloc_next = i+1;
1238 if (zap->zap_m.zap_alloc_next ==
1239 zap->zap_m.zap_num_chunks)
1240 zap->zap_m.zap_alloc_next = 0;
1241 mze_insert(zap, i, zn->zn_hash);
1242 return;
1243 }
1244 }
1245 if (start != 0) {
1246 start = 0;
1247 goto again;
1248 }
1249 cmn_err(CE_PANIC, "out of entries!");
1250 }
1251
1252 static int
1253 zap_add_impl(zap_t *zap, const char *key,
1254 int integer_size, uint64_t num_integers,
1255 const void *val, dmu_tx_t *tx, const void *tag)
1256 {
1257 const uint64_t *intval = val;
1258 int err = 0;
1259
1260 zap_name_t *zn = zap_name_alloc_str(zap, key, 0);
1261 if (zn == NULL) {
1262 zap_unlockdir(zap, tag);
1263 return (SET_ERROR(ENOTSUP));
1264 }
1265 if (!zap->zap_ismicro) {
1266 err = fzap_add(zn, integer_size, num_integers, val, tag, tx);
1267 zap = zn->zn_zap; /* fzap_add() may change zap */
1268 } else if (integer_size != 8 || num_integers != 1 ||
1269 strlen(key) >= MZAP_NAME_LEN ||
1270 !mze_canfit_fzap_leaf(zn, zn->zn_hash)) {
1271 err = mzap_upgrade(&zn->zn_zap, tag, tx, 0);
1272 if (err == 0) {
1273 err = fzap_add(zn, integer_size, num_integers, val,
1274 tag, tx);
1275 }
1276 zap = zn->zn_zap; /* fzap_add() may change zap */
1277 } else {
1278 zfs_btree_index_t idx;
1279 if (mze_find(zn, &idx) != NULL) {
1280 err = SET_ERROR(EEXIST);
1281 } else {
1282 mzap_addent(zn, *intval);
1283 }
1284 }
1285 ASSERT(zap == zn->zn_zap);
1286 zap_name_free(zn);
1287 if (zap != NULL) /* may be NULL if fzap_add() failed */
1288 zap_unlockdir(zap, tag);
1289 return (err);
1290 }
1291
1292 int
1293 zap_add(objset_t *os, uint64_t zapobj, const char *key,
1294 int integer_size, uint64_t num_integers,
1295 const void *val, dmu_tx_t *tx)
1296 {
1297 zap_t *zap;
1298 int err;
1299
1300 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1301 if (err != 0)
1302 return (err);
1303 err = zap_add_impl(zap, key, integer_size, num_integers, val, tx, FTAG);
1304 /* zap_add_impl() calls zap_unlockdir() */
1305 return (err);
1306 }
1307
1308 int
1309 zap_add_by_dnode(dnode_t *dn, const char *key,
1310 int integer_size, uint64_t num_integers,
1311 const void *val, dmu_tx_t *tx)
1312 {
1313 zap_t *zap;
1314 int err;
1315
1316 err = zap_lockdir_by_dnode(dn, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1317 if (err != 0)
1318 return (err);
1319 err = zap_add_impl(zap, key, integer_size, num_integers, val, tx, FTAG);
1320 /* zap_add_impl() calls zap_unlockdir() */
1321 return (err);
1322 }
1323
1324 int
1325 zap_add_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1326 int key_numints, int integer_size, uint64_t num_integers,
1327 const void *val, dmu_tx_t *tx)
1328 {
1329 zap_t *zap;
1330
1331 int err =
1332 zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1333 if (err != 0)
1334 return (err);
1335 zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
1336 if (zn == NULL) {
1337 zap_unlockdir(zap, FTAG);
1338 return (SET_ERROR(ENOTSUP));
1339 }
1340 err = fzap_add(zn, integer_size, num_integers, val, FTAG, tx);
1341 zap = zn->zn_zap; /* fzap_add() may change zap */
1342 zap_name_free(zn);
1343 if (zap != NULL) /* may be NULL if fzap_add() failed */
1344 zap_unlockdir(zap, FTAG);
1345 return (err);
1346 }
1347
1348 int
1349 zap_update(objset_t *os, uint64_t zapobj, const char *name,
1350 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1351 {
1352 zap_t *zap;
1353 const uint64_t *intval = val;
1354
1355 int err =
1356 zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1357 if (err != 0)
1358 return (err);
1359 zap_name_t *zn = zap_name_alloc_str(zap, name, 0);
1360 if (zn == NULL) {
1361 zap_unlockdir(zap, FTAG);
1362 return (SET_ERROR(ENOTSUP));
1363 }
1364 if (!zap->zap_ismicro) {
1365 err = fzap_update(zn, integer_size, num_integers, val,
1366 FTAG, tx);
1367 zap = zn->zn_zap; /* fzap_update() may change zap */
1368 } else if (integer_size != 8 || num_integers != 1 ||
1369 strlen(name) >= MZAP_NAME_LEN) {
1370 dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n",
1371 (u_longlong_t)zapobj, integer_size,
1372 (u_longlong_t)num_integers, name);
1373 err = mzap_upgrade(&zn->zn_zap, FTAG, tx, 0);
1374 if (err == 0) {
1375 err = fzap_update(zn, integer_size, num_integers,
1376 val, FTAG, tx);
1377 }
1378 zap = zn->zn_zap; /* fzap_update() may change zap */
1379 } else {
1380 zfs_btree_index_t idx;
1381 mzap_ent_t *mze = mze_find(zn, &idx);
1382 if (mze != NULL) {
1383 MZE_PHYS(zap, mze)->mze_value = *intval;
1384 } else {
1385 mzap_addent(zn, *intval);
1386 }
1387 }
1388 ASSERT(zap == zn->zn_zap);
1389 zap_name_free(zn);
1390 if (zap != NULL) /* may be NULL if fzap_upgrade() failed */
1391 zap_unlockdir(zap, FTAG);
1392 return (err);
1393 }
1394
1395 int
1396 zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1397 int key_numints,
1398 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1399 {
1400 zap_t *zap;
1401
1402 int err =
1403 zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1404 if (err != 0)
1405 return (err);
1406 zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
1407 if (zn == NULL) {
1408 zap_unlockdir(zap, FTAG);
1409 return (SET_ERROR(ENOTSUP));
1410 }
1411 err = fzap_update(zn, integer_size, num_integers, val, FTAG, tx);
1412 zap = zn->zn_zap; /* fzap_update() may change zap */
1413 zap_name_free(zn);
1414 if (zap != NULL) /* may be NULL if fzap_upgrade() failed */
1415 zap_unlockdir(zap, FTAG);
1416 return (err);
1417 }
1418
1419 int
1420 zap_remove(objset_t *os, uint64_t zapobj, const char *name, dmu_tx_t *tx)
1421 {
1422 return (zap_remove_norm(os, zapobj, name, 0, tx));
1423 }
1424
1425 static int
1426 zap_remove_impl(zap_t *zap, const char *name,
1427 matchtype_t mt, dmu_tx_t *tx)
1428 {
1429 int err = 0;
1430
1431 zap_name_t *zn = zap_name_alloc_str(zap, name, mt);
1432 if (zn == NULL)
1433 return (SET_ERROR(ENOTSUP));
1434 if (!zap->zap_ismicro) {
1435 err = fzap_remove(zn, tx);
1436 } else {
1437 zfs_btree_index_t idx;
1438 mzap_ent_t *mze = mze_find(zn, &idx);
1439 if (mze == NULL) {
1440 err = SET_ERROR(ENOENT);
1441 } else {
1442 zap->zap_m.zap_num_entries--;
1443 memset(MZE_PHYS(zap, mze), 0, sizeof (mzap_ent_phys_t));
1444 zfs_btree_remove_idx(&zap->zap_m.zap_tree, &idx);
1445 }
1446 }
1447 zap_name_free(zn);
1448 return (err);
1449 }
1450
1451 int
1452 zap_remove_norm(objset_t *os, uint64_t zapobj, const char *name,
1453 matchtype_t mt, dmu_tx_t *tx)
1454 {
1455 zap_t *zap;
1456 int err;
1457
1458 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap);
1459 if (err)
1460 return (err);
1461 err = zap_remove_impl(zap, name, mt, tx);
1462 zap_unlockdir(zap, FTAG);
1463 return (err);
1464 }
1465
1466 int
1467 zap_remove_by_dnode(dnode_t *dn, const char *name, dmu_tx_t *tx)
1468 {
1469 zap_t *zap;
1470 int err;
1471
1472 err = zap_lockdir_by_dnode(dn, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap);
1473 if (err)
1474 return (err);
1475 err = zap_remove_impl(zap, name, 0, tx);
1476 zap_unlockdir(zap, FTAG);
1477 return (err);
1478 }
1479
1480 int
1481 zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1482 int key_numints, dmu_tx_t *tx)
1483 {
1484 zap_t *zap;
1485
1486 int err =
1487 zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap);
1488 if (err != 0)
1489 return (err);
1490 zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
1491 if (zn == NULL) {
1492 zap_unlockdir(zap, FTAG);
1493 return (SET_ERROR(ENOTSUP));
1494 }
1495 err = fzap_remove(zn, tx);
1496 zap_name_free(zn);
1497 zap_unlockdir(zap, FTAG);
1498 return (err);
1499 }
1500
1501 /*
1502 * Routines for iterating over the attributes.
1503 */
1504
1505 static void
1506 zap_cursor_init_impl(zap_cursor_t *zc, objset_t *os, uint64_t zapobj,
1507 uint64_t serialized, boolean_t prefetch)
1508 {
1509 zc->zc_objset = os;
1510 zc->zc_zap = NULL;
1511 zc->zc_leaf = NULL;
1512 zc->zc_zapobj = zapobj;
1513 zc->zc_serialized = serialized;
1514 zc->zc_hash = 0;
1515 zc->zc_cd = 0;
1516 zc->zc_prefetch = prefetch;
1517 }
1518 void
1519 zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *os, uint64_t zapobj,
1520 uint64_t serialized)
1521 {
1522 zap_cursor_init_impl(zc, os, zapobj, serialized, B_TRUE);
1523 }
1524
1525 /*
1526 * Initialize a cursor at the beginning of the ZAP object. The entire
1527 * ZAP object will be prefetched.
1528 */
1529 void
1530 zap_cursor_init(zap_cursor_t *zc, objset_t *os, uint64_t zapobj)
1531 {
1532 zap_cursor_init_impl(zc, os, zapobj, 0, B_TRUE);
1533 }
1534
1535 /*
1536 * Initialize a cursor at the beginning, but request that we not prefetch
1537 * the entire ZAP object.
1538 */
1539 void
1540 zap_cursor_init_noprefetch(zap_cursor_t *zc, objset_t *os, uint64_t zapobj)
1541 {
1542 zap_cursor_init_impl(zc, os, zapobj, 0, B_FALSE);
1543 }
1544
1545 void
1546 zap_cursor_fini(zap_cursor_t *zc)
1547 {
1548 if (zc->zc_zap) {
1549 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1550 zap_unlockdir(zc->zc_zap, NULL);
1551 zc->zc_zap = NULL;
1552 }
1553 if (zc->zc_leaf) {
1554 rw_enter(&zc->zc_leaf->l_rwlock, RW_READER);
1555 zap_put_leaf(zc->zc_leaf);
1556 zc->zc_leaf = NULL;
1557 }
1558 zc->zc_objset = NULL;
1559 }
1560
1561 uint64_t
1562 zap_cursor_serialize(zap_cursor_t *zc)
1563 {
1564 if (zc->zc_hash == -1ULL)
1565 return (-1ULL);
1566 if (zc->zc_zap == NULL)
1567 return (zc->zc_serialized);
1568 ASSERT((zc->zc_hash & zap_maxcd(zc->zc_zap)) == 0);
1569 ASSERT(zc->zc_cd < zap_maxcd(zc->zc_zap));
1570
1571 /*
1572 * We want to keep the high 32 bits of the cursor zero if we can, so
1573 * that 32-bit programs can access this. So usually use a small
1574 * (28-bit) hash value so we can fit 4 bits of cd into the low 32-bits
1575 * of the cursor.
1576 *
1577 * [ collision differentiator | zap_hashbits()-bit hash value ]
1578 */
1579 return ((zc->zc_hash >> (64 - zap_hashbits(zc->zc_zap))) |
1580 ((uint64_t)zc->zc_cd << zap_hashbits(zc->zc_zap)));
1581 }
1582
1583 int
1584 zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za)
1585 {
1586 int err;
1587
1588 if (zc->zc_hash == -1ULL)
1589 return (SET_ERROR(ENOENT));
1590
1591 if (zc->zc_zap == NULL) {
1592 int hb;
1593 err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL,
1594 RW_READER, TRUE, FALSE, NULL, &zc->zc_zap);
1595 if (err != 0)
1596 return (err);
1597
1598 /*
1599 * To support zap_cursor_init_serialized, advance, retrieve,
1600 * we must add to the existing zc_cd, which may already
1601 * be 1 due to the zap_cursor_advance.
1602 */
1603 ASSERT(zc->zc_hash == 0);
1604 hb = zap_hashbits(zc->zc_zap);
1605 zc->zc_hash = zc->zc_serialized << (64 - hb);
1606 zc->zc_cd += zc->zc_serialized >> hb;
1607 if (zc->zc_cd >= zap_maxcd(zc->zc_zap)) /* corrupt serialized */
1608 zc->zc_cd = 0;
1609 } else {
1610 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1611 }
1612 if (!zc->zc_zap->zap_ismicro) {
1613 err = fzap_cursor_retrieve(zc->zc_zap, zc, za);
1614 } else {
1615 zfs_btree_index_t idx;
1616 mzap_ent_t mze_tofind;
1617
1618 mze_tofind.mze_hash = zc->zc_hash >> 32;
1619 mze_tofind.mze_cd = zc->zc_cd;
1620
1621 mzap_ent_t *mze = zfs_btree_find(&zc->zc_zap->zap_m.zap_tree,
1622 &mze_tofind, &idx);
1623 if (mze == NULL) {
1624 mze = zfs_btree_next(&zc->zc_zap->zap_m.zap_tree,
1625 &idx, &idx);
1626 }
1627 if (mze) {
1628 mzap_ent_phys_t *mzep = MZE_PHYS(zc->zc_zap, mze);
1629 ASSERT3U(mze->mze_cd, ==, mzep->mze_cd);
1630 za->za_normalization_conflict =
1631 mzap_normalization_conflict(zc->zc_zap, NULL,
1632 mze, &idx);
1633 za->za_integer_length = 8;
1634 za->za_num_integers = 1;
1635 za->za_first_integer = mzep->mze_value;
1636 (void) strlcpy(za->za_name, mzep->mze_name,
1637 sizeof (za->za_name));
1638 zc->zc_hash = (uint64_t)mze->mze_hash << 32;
1639 zc->zc_cd = mze->mze_cd;
1640 err = 0;
1641 } else {
1642 zc->zc_hash = -1ULL;
1643 err = SET_ERROR(ENOENT);
1644 }
1645 }
1646 rw_exit(&zc->zc_zap->zap_rwlock);
1647 return (err);
1648 }
1649
1650 void
1651 zap_cursor_advance(zap_cursor_t *zc)
1652 {
1653 if (zc->zc_hash == -1ULL)
1654 return;
1655 zc->zc_cd++;
1656 }
1657
1658 int
1659 zap_get_stats(objset_t *os, uint64_t zapobj, zap_stats_t *zs)
1660 {
1661 zap_t *zap;
1662
1663 int err =
1664 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1665 if (err != 0)
1666 return (err);
1667
1668 memset(zs, 0, sizeof (zap_stats_t));
1669
1670 if (zap->zap_ismicro) {
1671 zs->zs_blocksize = zap->zap_dbuf->db_size;
1672 zs->zs_num_entries = zap->zap_m.zap_num_entries;
1673 zs->zs_num_blocks = 1;
1674 } else {
1675 fzap_get_stats(zap, zs);
1676 }
1677 zap_unlockdir(zap, FTAG);
1678 return (0);
1679 }
1680
1681 #if defined(_KERNEL)
1682 EXPORT_SYMBOL(zap_create);
1683 EXPORT_SYMBOL(zap_create_dnsize);
1684 EXPORT_SYMBOL(zap_create_norm);
1685 EXPORT_SYMBOL(zap_create_norm_dnsize);
1686 EXPORT_SYMBOL(zap_create_flags);
1687 EXPORT_SYMBOL(zap_create_flags_dnsize);
1688 EXPORT_SYMBOL(zap_create_claim);
1689 EXPORT_SYMBOL(zap_create_claim_norm);
1690 EXPORT_SYMBOL(zap_create_claim_norm_dnsize);
1691 EXPORT_SYMBOL(zap_create_hold);
1692 EXPORT_SYMBOL(zap_destroy);
1693 EXPORT_SYMBOL(zap_lookup);
1694 EXPORT_SYMBOL(zap_lookup_by_dnode);
1695 EXPORT_SYMBOL(zap_lookup_norm);
1696 EXPORT_SYMBOL(zap_lookup_uint64);
1697 EXPORT_SYMBOL(zap_contains);
1698 EXPORT_SYMBOL(zap_prefetch);
1699 EXPORT_SYMBOL(zap_prefetch_uint64);
1700 EXPORT_SYMBOL(zap_add);
1701 EXPORT_SYMBOL(zap_add_by_dnode);
1702 EXPORT_SYMBOL(zap_add_uint64);
1703 EXPORT_SYMBOL(zap_update);
1704 EXPORT_SYMBOL(zap_update_uint64);
1705 EXPORT_SYMBOL(zap_length);
1706 EXPORT_SYMBOL(zap_length_uint64);
1707 EXPORT_SYMBOL(zap_remove);
1708 EXPORT_SYMBOL(zap_remove_by_dnode);
1709 EXPORT_SYMBOL(zap_remove_norm);
1710 EXPORT_SYMBOL(zap_remove_uint64);
1711 EXPORT_SYMBOL(zap_count);
1712 EXPORT_SYMBOL(zap_value_search);
1713 EXPORT_SYMBOL(zap_join);
1714 EXPORT_SYMBOL(zap_join_increment);
1715 EXPORT_SYMBOL(zap_add_int);
1716 EXPORT_SYMBOL(zap_remove_int);
1717 EXPORT_SYMBOL(zap_lookup_int);
1718 EXPORT_SYMBOL(zap_increment_int);
1719 EXPORT_SYMBOL(zap_add_int_key);
1720 EXPORT_SYMBOL(zap_lookup_int_key);
1721 EXPORT_SYMBOL(zap_increment);
1722 EXPORT_SYMBOL(zap_cursor_init);
1723 EXPORT_SYMBOL(zap_cursor_fini);
1724 EXPORT_SYMBOL(zap_cursor_retrieve);
1725 EXPORT_SYMBOL(zap_cursor_advance);
1726 EXPORT_SYMBOL(zap_cursor_serialize);
1727 EXPORT_SYMBOL(zap_cursor_init_serialized);
1728 EXPORT_SYMBOL(zap_get_stats);
1729
1730 /* CSTYLED */
1731 ZFS_MODULE_PARAM(zfs, , zap_micro_max_size, INT, ZMOD_RW,
1732 "Maximum micro ZAP size, before converting to a fat ZAP, in bytes");
1733 #endif
Cache object: f6307689f507324d24d5be53c07bd4d0
|