The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/contrib/openzfs/module/zfs/zap_micro.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * CDDL HEADER START
    3  *
    4  * The contents of this file are subject to the terms of the
    5  * Common Development and Distribution License (the "License").
    6  * You may not use this file except in compliance with the License.
    7  *
    8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
    9  * or https://opensource.org/licenses/CDDL-1.0.
   10  * See the License for the specific language governing permissions
   11  * and limitations under the License.
   12  *
   13  * When distributing Covered Code, include this CDDL HEADER in each
   14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
   15  * If applicable, add the following below this CDDL HEADER, with the
   16  * fields enclosed by brackets "[]" replaced with your own identifying
   17  * information: Portions Copyright [yyyy] [name of copyright owner]
   18  *
   19  * CDDL HEADER END
   20  */
   21 
   22 /*
   23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
   24  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
   25  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
   26  * Copyright 2017 Nexenta Systems, Inc.
   27  */
   28 
   29 #include <sys/zio.h>
   30 #include <sys/spa.h>
   31 #include <sys/dmu.h>
   32 #include <sys/zfs_context.h>
   33 #include <sys/zap.h>
   34 #include <sys/zap_impl.h>
   35 #include <sys/zap_leaf.h>
   36 #include <sys/btree.h>
   37 #include <sys/arc.h>
   38 #include <sys/dmu_objset.h>
   39 
   40 #ifdef _KERNEL
   41 #include <sys/sunddi.h>
   42 #endif
   43 
   44 int zap_micro_max_size = MZAP_MAX_BLKSZ;
   45 
   46 static int mzap_upgrade(zap_t **zapp,
   47     const void *tag, dmu_tx_t *tx, zap_flags_t flags);
   48 
   49 uint64_t
   50 zap_getflags(zap_t *zap)
   51 {
   52         if (zap->zap_ismicro)
   53                 return (0);
   54         return (zap_f_phys(zap)->zap_flags);
   55 }
   56 
   57 int
   58 zap_hashbits(zap_t *zap)
   59 {
   60         if (zap_getflags(zap) & ZAP_FLAG_HASH64)
   61                 return (48);
   62         else
   63                 return (28);
   64 }
   65 
   66 uint32_t
   67 zap_maxcd(zap_t *zap)
   68 {
   69         if (zap_getflags(zap) & ZAP_FLAG_HASH64)
   70                 return ((1<<16)-1);
   71         else
   72                 return (-1U);
   73 }
   74 
   75 static uint64_t
   76 zap_hash(zap_name_t *zn)
   77 {
   78         zap_t *zap = zn->zn_zap;
   79         uint64_t h = 0;
   80 
   81         if (zap_getflags(zap) & ZAP_FLAG_PRE_HASHED_KEY) {
   82                 ASSERT(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY);
   83                 h = *(uint64_t *)zn->zn_key_orig;
   84         } else {
   85                 h = zap->zap_salt;
   86                 ASSERT(h != 0);
   87                 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
   88 
   89                 if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) {
   90                         const uint64_t *wp = zn->zn_key_norm;
   91 
   92                         ASSERT(zn->zn_key_intlen == 8);
   93                         for (int i = 0; i < zn->zn_key_norm_numints;
   94                             wp++, i++) {
   95                                 uint64_t word = *wp;
   96 
   97                                 for (int j = 0; j < 8; j++) {
   98                                         h = (h >> 8) ^
   99                                             zfs_crc64_table[(h ^ word) & 0xFF];
  100                                         word >>= NBBY;
  101                                 }
  102                         }
  103                 } else {
  104                         const uint8_t *cp = zn->zn_key_norm;
  105 
  106                         /*
  107                          * We previously stored the terminating null on
  108                          * disk, but didn't hash it, so we need to
  109                          * continue to not hash it.  (The
  110                          * zn_key_*_numints includes the terminating
  111                          * null for non-binary keys.)
  112                          */
  113                         int len = zn->zn_key_norm_numints - 1;
  114 
  115                         ASSERT(zn->zn_key_intlen == 1);
  116                         for (int i = 0; i < len; cp++, i++) {
  117                                 h = (h >> 8) ^
  118                                     zfs_crc64_table[(h ^ *cp) & 0xFF];
  119                         }
  120                 }
  121         }
  122         /*
  123          * Don't use all 64 bits, since we need some in the cookie for
  124          * the collision differentiator.  We MUST use the high bits,
  125          * since those are the ones that we first pay attention to when
  126          * choosing the bucket.
  127          */
  128         h &= ~((1ULL << (64 - zap_hashbits(zap))) - 1);
  129 
  130         return (h);
  131 }
  132 
  133 static int
  134 zap_normalize(zap_t *zap, const char *name, char *namenorm, int normflags)
  135 {
  136         ASSERT(!(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY));
  137 
  138         size_t inlen = strlen(name) + 1;
  139         size_t outlen = ZAP_MAXNAMELEN;
  140 
  141         int err = 0;
  142         (void) u8_textprep_str((char *)name, &inlen, namenorm, &outlen,
  143             normflags | U8_TEXTPREP_IGNORE_NULL | U8_TEXTPREP_IGNORE_INVALID,
  144             U8_UNICODE_LATEST, &err);
  145 
  146         return (err);
  147 }
  148 
  149 boolean_t
  150 zap_match(zap_name_t *zn, const char *matchname)
  151 {
  152         ASSERT(!(zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY));
  153 
  154         if (zn->zn_matchtype & MT_NORMALIZE) {
  155                 char norm[ZAP_MAXNAMELEN];
  156 
  157                 if (zap_normalize(zn->zn_zap, matchname, norm,
  158                     zn->zn_normflags) != 0)
  159                         return (B_FALSE);
  160 
  161                 return (strcmp(zn->zn_key_norm, norm) == 0);
  162         } else {
  163                 return (strcmp(zn->zn_key_orig, matchname) == 0);
  164         }
  165 }
  166 
  167 static zap_name_t *
  168 zap_name_alloc(zap_t *zap)
  169 {
  170         zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
  171         zn->zn_zap = zap;
  172         return (zn);
  173 }
  174 
  175 void
  176 zap_name_free(zap_name_t *zn)
  177 {
  178         kmem_free(zn, sizeof (zap_name_t));
  179 }
  180 
  181 static int
  182 zap_name_init_str(zap_name_t *zn, const char *key, matchtype_t mt)
  183 {
  184         zap_t *zap = zn->zn_zap;
  185 
  186         zn->zn_key_intlen = sizeof (*key);
  187         zn->zn_key_orig = key;
  188         zn->zn_key_orig_numints = strlen(zn->zn_key_orig) + 1;
  189         zn->zn_matchtype = mt;
  190         zn->zn_normflags = zap->zap_normflags;
  191 
  192         /*
  193          * If we're dealing with a case sensitive lookup on a mixed or
  194          * insensitive fs, remove U8_TEXTPREP_TOUPPER or the lookup
  195          * will fold case to all caps overriding the lookup request.
  196          */
  197         if (mt & MT_MATCH_CASE)
  198                 zn->zn_normflags &= ~U8_TEXTPREP_TOUPPER;
  199 
  200         if (zap->zap_normflags) {
  201                 /*
  202                  * We *must* use zap_normflags because this normalization is
  203                  * what the hash is computed from.
  204                  */
  205                 if (zap_normalize(zap, key, zn->zn_normbuf,
  206                     zap->zap_normflags) != 0)
  207                         return (SET_ERROR(ENOTSUP));
  208                 zn->zn_key_norm = zn->zn_normbuf;
  209                 zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1;
  210         } else {
  211                 if (mt != 0)
  212                         return (SET_ERROR(ENOTSUP));
  213                 zn->zn_key_norm = zn->zn_key_orig;
  214                 zn->zn_key_norm_numints = zn->zn_key_orig_numints;
  215         }
  216 
  217         zn->zn_hash = zap_hash(zn);
  218 
  219         if (zap->zap_normflags != zn->zn_normflags) {
  220                 /*
  221                  * We *must* use zn_normflags because this normalization is
  222                  * what the matching is based on.  (Not the hash!)
  223                  */
  224                 if (zap_normalize(zap, key, zn->zn_normbuf,
  225                     zn->zn_normflags) != 0)
  226                         return (SET_ERROR(ENOTSUP));
  227                 zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1;
  228         }
  229 
  230         return (0);
  231 }
  232 
  233 zap_name_t *
  234 zap_name_alloc_str(zap_t *zap, const char *key, matchtype_t mt)
  235 {
  236         zap_name_t *zn = zap_name_alloc(zap);
  237         if (zap_name_init_str(zn, key, mt) != 0) {
  238                 zap_name_free(zn);
  239                 return (NULL);
  240         }
  241         return (zn);
  242 }
  243 
  244 static zap_name_t *
  245 zap_name_alloc_uint64(zap_t *zap, const uint64_t *key, int numints)
  246 {
  247         zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
  248 
  249         ASSERT(zap->zap_normflags == 0);
  250         zn->zn_zap = zap;
  251         zn->zn_key_intlen = sizeof (*key);
  252         zn->zn_key_orig = zn->zn_key_norm = key;
  253         zn->zn_key_orig_numints = zn->zn_key_norm_numints = numints;
  254         zn->zn_matchtype = 0;
  255 
  256         zn->zn_hash = zap_hash(zn);
  257         return (zn);
  258 }
  259 
  260 static void
  261 mzap_byteswap(mzap_phys_t *buf, size_t size)
  262 {
  263         buf->mz_block_type = BSWAP_64(buf->mz_block_type);
  264         buf->mz_salt = BSWAP_64(buf->mz_salt);
  265         buf->mz_normflags = BSWAP_64(buf->mz_normflags);
  266         int max = (size / MZAP_ENT_LEN) - 1;
  267         for (int i = 0; i < max; i++) {
  268                 buf->mz_chunk[i].mze_value =
  269                     BSWAP_64(buf->mz_chunk[i].mze_value);
  270                 buf->mz_chunk[i].mze_cd =
  271                     BSWAP_32(buf->mz_chunk[i].mze_cd);
  272         }
  273 }
  274 
  275 void
  276 zap_byteswap(void *buf, size_t size)
  277 {
  278         uint64_t block_type = *(uint64_t *)buf;
  279 
  280         if (block_type == ZBT_MICRO || block_type == BSWAP_64(ZBT_MICRO)) {
  281                 /* ASSERT(magic == ZAP_LEAF_MAGIC); */
  282                 mzap_byteswap(buf, size);
  283         } else {
  284                 fzap_byteswap(buf, size);
  285         }
  286 }
  287 
  288 static int
  289 mze_compare(const void *arg1, const void *arg2)
  290 {
  291         const mzap_ent_t *mze1 = arg1;
  292         const mzap_ent_t *mze2 = arg2;
  293 
  294         return (TREE_CMP((uint64_t)(mze1->mze_hash) << 32 | mze1->mze_cd,
  295             (uint64_t)(mze2->mze_hash) << 32 | mze2->mze_cd));
  296 }
  297 
  298 static void
  299 mze_insert(zap_t *zap, uint16_t chunkid, uint64_t hash)
  300 {
  301         mzap_ent_t mze;
  302 
  303         ASSERT(zap->zap_ismicro);
  304         ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
  305 
  306         mze.mze_chunkid = chunkid;
  307         ASSERT0(hash & 0xffffffff);
  308         mze.mze_hash = hash >> 32;
  309         ASSERT3U(MZE_PHYS(zap, &mze)->mze_cd, <=, 0xffff);
  310         mze.mze_cd = (uint16_t)MZE_PHYS(zap, &mze)->mze_cd;
  311         ASSERT(MZE_PHYS(zap, &mze)->mze_name[0] != 0);
  312         zfs_btree_add(&zap->zap_m.zap_tree, &mze);
  313 }
  314 
  315 static mzap_ent_t *
  316 mze_find(zap_name_t *zn, zfs_btree_index_t *idx)
  317 {
  318         mzap_ent_t mze_tofind;
  319         mzap_ent_t *mze;
  320         zfs_btree_t *tree = &zn->zn_zap->zap_m.zap_tree;
  321 
  322         ASSERT(zn->zn_zap->zap_ismicro);
  323         ASSERT(RW_LOCK_HELD(&zn->zn_zap->zap_rwlock));
  324 
  325         ASSERT0(zn->zn_hash & 0xffffffff);
  326         mze_tofind.mze_hash = zn->zn_hash >> 32;
  327         mze_tofind.mze_cd = 0;
  328 
  329         mze = zfs_btree_find(tree, &mze_tofind, idx);
  330         if (mze == NULL)
  331                 mze = zfs_btree_next(tree, idx, idx);
  332         for (; mze && mze->mze_hash == mze_tofind.mze_hash;
  333             mze = zfs_btree_next(tree, idx, idx)) {
  334                 ASSERT3U(mze->mze_cd, ==, MZE_PHYS(zn->zn_zap, mze)->mze_cd);
  335                 if (zap_match(zn, MZE_PHYS(zn->zn_zap, mze)->mze_name))
  336                         return (mze);
  337         }
  338 
  339         return (NULL);
  340 }
  341 
  342 static uint32_t
  343 mze_find_unused_cd(zap_t *zap, uint64_t hash)
  344 {
  345         mzap_ent_t mze_tofind;
  346         zfs_btree_index_t idx;
  347         zfs_btree_t *tree = &zap->zap_m.zap_tree;
  348 
  349         ASSERT(zap->zap_ismicro);
  350         ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
  351 
  352         ASSERT0(hash & 0xffffffff);
  353         hash >>= 32;
  354         mze_tofind.mze_hash = hash;
  355         mze_tofind.mze_cd = 0;
  356 
  357         uint32_t cd = 0;
  358         for (mzap_ent_t *mze = zfs_btree_find(tree, &mze_tofind, &idx);
  359             mze && mze->mze_hash == hash;
  360             mze = zfs_btree_next(tree, &idx, &idx)) {
  361                 if (mze->mze_cd != cd)
  362                         break;
  363                 cd++;
  364         }
  365 
  366         return (cd);
  367 }
  368 
  369 /*
  370  * Each mzap entry requires at max : 4 chunks
  371  * 3 chunks for names + 1 chunk for value.
  372  */
  373 #define MZAP_ENT_CHUNKS (1 + ZAP_LEAF_ARRAY_NCHUNKS(MZAP_NAME_LEN) + \
  374         ZAP_LEAF_ARRAY_NCHUNKS(sizeof (uint64_t)))
  375 
  376 /*
  377  * Check if the current entry keeps the colliding entries under the fatzap leaf
  378  * size.
  379  */
  380 static boolean_t
  381 mze_canfit_fzap_leaf(zap_name_t *zn, uint64_t hash)
  382 {
  383         zap_t *zap = zn->zn_zap;
  384         mzap_ent_t mze_tofind;
  385         zfs_btree_index_t idx;
  386         zfs_btree_t *tree = &zap->zap_m.zap_tree;
  387         uint32_t mzap_ents = 0;
  388 
  389         ASSERT0(hash & 0xffffffff);
  390         hash >>= 32;
  391         mze_tofind.mze_hash = hash;
  392         mze_tofind.mze_cd = 0;
  393 
  394         for (mzap_ent_t *mze = zfs_btree_find(tree, &mze_tofind, &idx);
  395             mze && mze->mze_hash == hash;
  396             mze = zfs_btree_next(tree, &idx, &idx)) {
  397                 mzap_ents++;
  398         }
  399 
  400         /* Include the new entry being added */
  401         mzap_ents++;
  402 
  403         return (ZAP_LEAF_NUMCHUNKS_DEF > (mzap_ents * MZAP_ENT_CHUNKS));
  404 }
  405 
  406 static void
  407 mze_destroy(zap_t *zap)
  408 {
  409         zfs_btree_clear(&zap->zap_m.zap_tree);
  410         zfs_btree_destroy(&zap->zap_m.zap_tree);
  411 }
  412 
  413 static zap_t *
  414 mzap_open(objset_t *os, uint64_t obj, dmu_buf_t *db)
  415 {
  416         zap_t *winner;
  417         uint64_t *zap_hdr = (uint64_t *)db->db_data;
  418         uint64_t zap_block_type = zap_hdr[0];
  419         uint64_t zap_magic = zap_hdr[1];
  420 
  421         ASSERT3U(MZAP_ENT_LEN, ==, sizeof (mzap_ent_phys_t));
  422 
  423         zap_t *zap = kmem_zalloc(sizeof (zap_t), KM_SLEEP);
  424         rw_init(&zap->zap_rwlock, NULL, RW_DEFAULT, NULL);
  425         rw_enter(&zap->zap_rwlock, RW_WRITER);
  426         zap->zap_objset = os;
  427         zap->zap_object = obj;
  428         zap->zap_dbuf = db;
  429 
  430         if (zap_block_type != ZBT_MICRO) {
  431                 mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, MUTEX_DEFAULT,
  432                     0);
  433                 zap->zap_f.zap_block_shift = highbit64(db->db_size) - 1;
  434                 if (zap_block_type != ZBT_HEADER || zap_magic != ZAP_MAGIC) {
  435                         winner = NULL;  /* No actual winner here... */
  436                         goto handle_winner;
  437                 }
  438         } else {
  439                 zap->zap_ismicro = TRUE;
  440         }
  441 
  442         /*
  443          * Make sure that zap_ismicro is set before we let others see
  444          * it, because zap_lockdir() checks zap_ismicro without the lock
  445          * held.
  446          */
  447         dmu_buf_init_user(&zap->zap_dbu, zap_evict_sync, NULL, &zap->zap_dbuf);
  448         winner = dmu_buf_set_user(db, &zap->zap_dbu);
  449 
  450         if (winner != NULL)
  451                 goto handle_winner;
  452 
  453         if (zap->zap_ismicro) {
  454                 zap->zap_salt = zap_m_phys(zap)->mz_salt;
  455                 zap->zap_normflags = zap_m_phys(zap)->mz_normflags;
  456                 zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1;
  457 
  458                 /*
  459                  * Reduce B-tree leaf from 4KB to 512 bytes to reduce memmove()
  460                  * overhead on massive inserts below.  It still allows to store
  461                  * 62 entries before we have to add 2KB B-tree core node.
  462                  */
  463                 zfs_btree_create_custom(&zap->zap_m.zap_tree, mze_compare,
  464                     sizeof (mzap_ent_t), 512);
  465 
  466                 zap_name_t *zn = zap_name_alloc(zap);
  467                 for (uint16_t i = 0; i < zap->zap_m.zap_num_chunks; i++) {
  468                         mzap_ent_phys_t *mze =
  469                             &zap_m_phys(zap)->mz_chunk[i];
  470                         if (mze->mze_name[0]) {
  471                                 zap->zap_m.zap_num_entries++;
  472                                 zap_name_init_str(zn, mze->mze_name, 0);
  473                                 mze_insert(zap, i, zn->zn_hash);
  474                         }
  475                 }
  476                 zap_name_free(zn);
  477         } else {
  478                 zap->zap_salt = zap_f_phys(zap)->zap_salt;
  479                 zap->zap_normflags = zap_f_phys(zap)->zap_normflags;
  480 
  481                 ASSERT3U(sizeof (struct zap_leaf_header), ==,
  482                     2*ZAP_LEAF_CHUNKSIZE);
  483 
  484                 /*
  485                  * The embedded pointer table should not overlap the
  486                  * other members.
  487                  */
  488                 ASSERT3P(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), >,
  489                     &zap_f_phys(zap)->zap_salt);
  490 
  491                 /*
  492                  * The embedded pointer table should end at the end of
  493                  * the block
  494                  */
  495                 ASSERT3U((uintptr_t)&ZAP_EMBEDDED_PTRTBL_ENT(zap,
  496                     1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)) -
  497                     (uintptr_t)zap_f_phys(zap), ==,
  498                     zap->zap_dbuf->db_size);
  499         }
  500         rw_exit(&zap->zap_rwlock);
  501         return (zap);
  502 
  503 handle_winner:
  504         rw_exit(&zap->zap_rwlock);
  505         rw_destroy(&zap->zap_rwlock);
  506         if (!zap->zap_ismicro)
  507                 mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
  508         kmem_free(zap, sizeof (zap_t));
  509         return (winner);
  510 }
  511 
  512 /*
  513  * This routine "consumes" the caller's hold on the dbuf, which must
  514  * have the specified tag.
  515  */
  516 static int
  517 zap_lockdir_impl(dmu_buf_t *db, const void *tag, dmu_tx_t *tx,
  518     krw_t lti, boolean_t fatreader, boolean_t adding, zap_t **zapp)
  519 {
  520         ASSERT0(db->db_offset);
  521         objset_t *os = dmu_buf_get_objset(db);
  522         uint64_t obj = db->db_object;
  523         dmu_object_info_t doi;
  524 
  525         *zapp = NULL;
  526 
  527         dmu_object_info_from_db(db, &doi);
  528         if (DMU_OT_BYTESWAP(doi.doi_type) != DMU_BSWAP_ZAP)
  529                 return (SET_ERROR(EINVAL));
  530 
  531         zap_t *zap = dmu_buf_get_user(db);
  532         if (zap == NULL) {
  533                 zap = mzap_open(os, obj, db);
  534                 if (zap == NULL) {
  535                         /*
  536                          * mzap_open() didn't like what it saw on-disk.
  537                          * Check for corruption!
  538                          */
  539                         return (SET_ERROR(EIO));
  540                 }
  541         }
  542 
  543         /*
  544          * We're checking zap_ismicro without the lock held, in order to
  545          * tell what type of lock we want.  Once we have some sort of
  546          * lock, see if it really is the right type.  In practice this
  547          * can only be different if it was upgraded from micro to fat,
  548          * and micro wanted WRITER but fat only needs READER.
  549          */
  550         krw_t lt = (!zap->zap_ismicro && fatreader) ? RW_READER : lti;
  551         rw_enter(&zap->zap_rwlock, lt);
  552         if (lt != ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)) {
  553                 /* it was upgraded, now we only need reader */
  554                 ASSERT(lt == RW_WRITER);
  555                 ASSERT(RW_READER ==
  556                     ((!zap->zap_ismicro && fatreader) ? RW_READER : lti));
  557                 rw_downgrade(&zap->zap_rwlock);
  558                 lt = RW_READER;
  559         }
  560 
  561         zap->zap_objset = os;
  562 
  563         if (lt == RW_WRITER)
  564                 dmu_buf_will_dirty(db, tx);
  565 
  566         ASSERT3P(zap->zap_dbuf, ==, db);
  567 
  568         ASSERT(!zap->zap_ismicro ||
  569             zap->zap_m.zap_num_entries <= zap->zap_m.zap_num_chunks);
  570         if (zap->zap_ismicro && tx && adding &&
  571             zap->zap_m.zap_num_entries == zap->zap_m.zap_num_chunks) {
  572                 uint64_t newsz = db->db_size + SPA_MINBLOCKSIZE;
  573                 if (newsz > zap_micro_max_size) {
  574                         dprintf("upgrading obj %llu: num_entries=%u\n",
  575                             (u_longlong_t)obj, zap->zap_m.zap_num_entries);
  576                         *zapp = zap;
  577                         int err = mzap_upgrade(zapp, tag, tx, 0);
  578                         if (err != 0)
  579                                 rw_exit(&zap->zap_rwlock);
  580                         return (err);
  581                 }
  582                 VERIFY0(dmu_object_set_blocksize(os, obj, newsz, 0, tx));
  583                 zap->zap_m.zap_num_chunks =
  584                     db->db_size / MZAP_ENT_LEN - 1;
  585         }
  586 
  587         *zapp = zap;
  588         return (0);
  589 }
  590 
  591 static int
  592 zap_lockdir_by_dnode(dnode_t *dn, dmu_tx_t *tx,
  593     krw_t lti, boolean_t fatreader, boolean_t adding, const void *tag,
  594     zap_t **zapp)
  595 {
  596         dmu_buf_t *db;
  597 
  598         int err = dmu_buf_hold_by_dnode(dn, 0, tag, &db, DMU_READ_NO_PREFETCH);
  599         if (err != 0) {
  600                 return (err);
  601         }
  602 #ifdef ZFS_DEBUG
  603         {
  604                 dmu_object_info_t doi;
  605                 dmu_object_info_from_db(db, &doi);
  606                 ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP);
  607         }
  608 #endif
  609 
  610         err = zap_lockdir_impl(db, tag, tx, lti, fatreader, adding, zapp);
  611         if (err != 0) {
  612                 dmu_buf_rele(db, tag);
  613         }
  614         return (err);
  615 }
  616 
  617 int
  618 zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx,
  619     krw_t lti, boolean_t fatreader, boolean_t adding, const void *tag,
  620     zap_t **zapp)
  621 {
  622         dmu_buf_t *db;
  623 
  624         int err = dmu_buf_hold(os, obj, 0, tag, &db, DMU_READ_NO_PREFETCH);
  625         if (err != 0)
  626                 return (err);
  627 #ifdef ZFS_DEBUG
  628         {
  629                 dmu_object_info_t doi;
  630                 dmu_object_info_from_db(db, &doi);
  631                 ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP);
  632         }
  633 #endif
  634         err = zap_lockdir_impl(db, tag, tx, lti, fatreader, adding, zapp);
  635         if (err != 0)
  636                 dmu_buf_rele(db, tag);
  637         return (err);
  638 }
  639 
  640 void
  641 zap_unlockdir(zap_t *zap, const void *tag)
  642 {
  643         rw_exit(&zap->zap_rwlock);
  644         dmu_buf_rele(zap->zap_dbuf, tag);
  645 }
  646 
  647 static int
  648 mzap_upgrade(zap_t **zapp, const void *tag, dmu_tx_t *tx, zap_flags_t flags)
  649 {
  650         int err = 0;
  651         zap_t *zap = *zapp;
  652 
  653         ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
  654 
  655         int sz = zap->zap_dbuf->db_size;
  656         mzap_phys_t *mzp = vmem_alloc(sz, KM_SLEEP);
  657         memcpy(mzp, zap->zap_dbuf->db_data, sz);
  658         int nchunks = zap->zap_m.zap_num_chunks;
  659 
  660         if (!flags) {
  661                 err = dmu_object_set_blocksize(zap->zap_objset, zap->zap_object,
  662                     1ULL << fzap_default_block_shift, 0, tx);
  663                 if (err != 0) {
  664                         vmem_free(mzp, sz);
  665                         return (err);
  666                 }
  667         }
  668 
  669         dprintf("upgrading obj=%llu with %u chunks\n",
  670             (u_longlong_t)zap->zap_object, nchunks);
  671         /* XXX destroy the tree later, so we can use the stored hash value */
  672         mze_destroy(zap);
  673 
  674         fzap_upgrade(zap, tx, flags);
  675 
  676         zap_name_t *zn = zap_name_alloc(zap);
  677         for (int i = 0; i < nchunks; i++) {
  678                 mzap_ent_phys_t *mze = &mzp->mz_chunk[i];
  679                 if (mze->mze_name[0] == 0)
  680                         continue;
  681                 dprintf("adding %s=%llu\n",
  682                     mze->mze_name, (u_longlong_t)mze->mze_value);
  683                 zap_name_init_str(zn, mze->mze_name, 0);
  684                 /* If we fail here, we would end up losing entries */
  685                 VERIFY0(fzap_add_cd(zn, 8, 1, &mze->mze_value, mze->mze_cd,
  686                     tag, tx));
  687                 zap = zn->zn_zap;       /* fzap_add_cd() may change zap */
  688         }
  689         zap_name_free(zn);
  690         vmem_free(mzp, sz);
  691         *zapp = zap;
  692         return (0);
  693 }
  694 
  695 /*
  696  * The "normflags" determine the behavior of the matchtype_t which is
  697  * passed to zap_lookup_norm().  Names which have the same normalized
  698  * version will be stored with the same hash value, and therefore we can
  699  * perform normalization-insensitive lookups.  We can be Unicode form-
  700  * insensitive and/or case-insensitive.  The following flags are valid for
  701  * "normflags":
  702  *
  703  * U8_TEXTPREP_NFC
  704  * U8_TEXTPREP_NFD
  705  * U8_TEXTPREP_NFKC
  706  * U8_TEXTPREP_NFKD
  707  * U8_TEXTPREP_TOUPPER
  708  *
  709  * The *_NF* (Normalization Form) flags are mutually exclusive; at most one
  710  * of them may be supplied.
  711  */
  712 void
  713 mzap_create_impl(dnode_t *dn, int normflags, zap_flags_t flags, dmu_tx_t *tx)
  714 {
  715         dmu_buf_t *db;
  716 
  717         VERIFY0(dmu_buf_hold_by_dnode(dn, 0, FTAG, &db, DMU_READ_NO_PREFETCH));
  718 
  719         dmu_buf_will_dirty(db, tx);
  720         mzap_phys_t *zp = db->db_data;
  721         zp->mz_block_type = ZBT_MICRO;
  722         zp->mz_salt =
  723             ((uintptr_t)db ^ (uintptr_t)tx ^ (dn->dn_object << 1)) | 1ULL;
  724         zp->mz_normflags = normflags;
  725 
  726         if (flags != 0) {
  727                 zap_t *zap;
  728                 /* Only fat zap supports flags; upgrade immediately. */
  729                 VERIFY0(zap_lockdir_impl(db, FTAG, tx, RW_WRITER,
  730                     B_FALSE, B_FALSE, &zap));
  731                 VERIFY0(mzap_upgrade(&zap, FTAG, tx, flags));
  732                 zap_unlockdir(zap, FTAG);
  733         } else {
  734                 dmu_buf_rele(db, FTAG);
  735         }
  736 }
  737 
  738 static uint64_t
  739 zap_create_impl(objset_t *os, int normflags, zap_flags_t flags,
  740     dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
  741     dmu_object_type_t bonustype, int bonuslen, int dnodesize,
  742     dnode_t **allocated_dnode, const void *tag, dmu_tx_t *tx)
  743 {
  744         uint64_t obj;
  745 
  746         ASSERT3U(DMU_OT_BYTESWAP(ot), ==, DMU_BSWAP_ZAP);
  747 
  748         if (allocated_dnode == NULL) {
  749                 dnode_t *dn;
  750                 obj = dmu_object_alloc_hold(os, ot, 1ULL << leaf_blockshift,
  751                     indirect_blockshift, bonustype, bonuslen, dnodesize,
  752                     &dn, FTAG, tx);
  753                 mzap_create_impl(dn, normflags, flags, tx);
  754                 dnode_rele(dn, FTAG);
  755         } else {
  756                 obj = dmu_object_alloc_hold(os, ot, 1ULL << leaf_blockshift,
  757                     indirect_blockshift, bonustype, bonuslen, dnodesize,
  758                     allocated_dnode, tag, tx);
  759                 mzap_create_impl(*allocated_dnode, normflags, flags, tx);
  760         }
  761 
  762         return (obj);
  763 }
  764 
  765 int
  766 zap_create_claim(objset_t *os, uint64_t obj, dmu_object_type_t ot,
  767     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
  768 {
  769         return (zap_create_claim_dnsize(os, obj, ot, bonustype, bonuslen,
  770             0, tx));
  771 }
  772 
  773 int
  774 zap_create_claim_dnsize(objset_t *os, uint64_t obj, dmu_object_type_t ot,
  775     dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx)
  776 {
  777         return (zap_create_claim_norm_dnsize(os, obj,
  778             0, ot, bonustype, bonuslen, dnodesize, tx));
  779 }
  780 
  781 int
  782 zap_create_claim_norm(objset_t *os, uint64_t obj, int normflags,
  783     dmu_object_type_t ot,
  784     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
  785 {
  786         return (zap_create_claim_norm_dnsize(os, obj, normflags, ot, bonustype,
  787             bonuslen, 0, tx));
  788 }
  789 
  790 int
  791 zap_create_claim_norm_dnsize(objset_t *os, uint64_t obj, int normflags,
  792     dmu_object_type_t ot, dmu_object_type_t bonustype, int bonuslen,
  793     int dnodesize, dmu_tx_t *tx)
  794 {
  795         dnode_t *dn;
  796         int error;
  797 
  798         ASSERT3U(DMU_OT_BYTESWAP(ot), ==, DMU_BSWAP_ZAP);
  799         error = dmu_object_claim_dnsize(os, obj, ot, 0, bonustype, bonuslen,
  800             dnodesize, tx);
  801         if (error != 0)
  802                 return (error);
  803 
  804         error = dnode_hold(os, obj, FTAG, &dn);
  805         if (error != 0)
  806                 return (error);
  807 
  808         mzap_create_impl(dn, normflags, 0, tx);
  809 
  810         dnode_rele(dn, FTAG);
  811 
  812         return (0);
  813 }
  814 
  815 uint64_t
  816 zap_create(objset_t *os, dmu_object_type_t ot,
  817     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
  818 {
  819         return (zap_create_norm(os, 0, ot, bonustype, bonuslen, tx));
  820 }
  821 
  822 uint64_t
  823 zap_create_dnsize(objset_t *os, dmu_object_type_t ot,
  824     dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx)
  825 {
  826         return (zap_create_norm_dnsize(os, 0, ot, bonustype, bonuslen,
  827             dnodesize, tx));
  828 }
  829 
  830 uint64_t
  831 zap_create_norm(objset_t *os, int normflags, dmu_object_type_t ot,
  832     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
  833 {
  834         return (zap_create_norm_dnsize(os, normflags, ot, bonustype, bonuslen,
  835             0, tx));
  836 }
  837 
  838 uint64_t
  839 zap_create_norm_dnsize(objset_t *os, int normflags, dmu_object_type_t ot,
  840     dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx)
  841 {
  842         return (zap_create_impl(os, normflags, 0, ot, 0, 0,
  843             bonustype, bonuslen, dnodesize, NULL, NULL, tx));
  844 }
  845 
  846 uint64_t
  847 zap_create_flags(objset_t *os, int normflags, zap_flags_t flags,
  848     dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
  849     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
  850 {
  851         return (zap_create_flags_dnsize(os, normflags, flags, ot,
  852             leaf_blockshift, indirect_blockshift, bonustype, bonuslen, 0, tx));
  853 }
  854 
  855 uint64_t
  856 zap_create_flags_dnsize(objset_t *os, int normflags, zap_flags_t flags,
  857     dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
  858     dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx)
  859 {
  860         return (zap_create_impl(os, normflags, flags, ot, leaf_blockshift,
  861             indirect_blockshift, bonustype, bonuslen, dnodesize, NULL, NULL,
  862             tx));
  863 }
  864 
  865 /*
  866  * Create a zap object and return a pointer to the newly allocated dnode via
  867  * the allocated_dnode argument.  The returned dnode will be held and the
  868  * caller is responsible for releasing the hold by calling dnode_rele().
  869  */
  870 uint64_t
  871 zap_create_hold(objset_t *os, int normflags, zap_flags_t flags,
  872     dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
  873     dmu_object_type_t bonustype, int bonuslen, int dnodesize,
  874     dnode_t **allocated_dnode, const void *tag, dmu_tx_t *tx)
  875 {
  876         return (zap_create_impl(os, normflags, flags, ot, leaf_blockshift,
  877             indirect_blockshift, bonustype, bonuslen, dnodesize,
  878             allocated_dnode, tag, tx));
  879 }
  880 
  881 int
  882 zap_destroy(objset_t *os, uint64_t zapobj, dmu_tx_t *tx)
  883 {
  884         /*
  885          * dmu_object_free will free the object number and free the
  886          * data.  Freeing the data will cause our pageout function to be
  887          * called, which will destroy our data (zap_leaf_t's and zap_t).
  888          */
  889 
  890         return (dmu_object_free(os, zapobj, tx));
  891 }
  892 
  893 void
  894 zap_evict_sync(void *dbu)
  895 {
  896         zap_t *zap = dbu;
  897 
  898         rw_destroy(&zap->zap_rwlock);
  899 
  900         if (zap->zap_ismicro)
  901                 mze_destroy(zap);
  902         else
  903                 mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
  904 
  905         kmem_free(zap, sizeof (zap_t));
  906 }
  907 
  908 int
  909 zap_count(objset_t *os, uint64_t zapobj, uint64_t *count)
  910 {
  911         zap_t *zap;
  912 
  913         int err =
  914             zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
  915         if (err != 0)
  916                 return (err);
  917         if (!zap->zap_ismicro) {
  918                 err = fzap_count(zap, count);
  919         } else {
  920                 *count = zap->zap_m.zap_num_entries;
  921         }
  922         zap_unlockdir(zap, FTAG);
  923         return (err);
  924 }
  925 
  926 /*
  927  * zn may be NULL; if not specified, it will be computed if needed.
  928  * See also the comment above zap_entry_normalization_conflict().
  929  */
  930 static boolean_t
  931 mzap_normalization_conflict(zap_t *zap, zap_name_t *zn, mzap_ent_t *mze,
  932     zfs_btree_index_t *idx)
  933 {
  934         boolean_t allocdzn = B_FALSE;
  935         mzap_ent_t *other;
  936         zfs_btree_index_t oidx;
  937 
  938         if (zap->zap_normflags == 0)
  939                 return (B_FALSE);
  940 
  941         for (other = zfs_btree_prev(&zap->zap_m.zap_tree, idx, &oidx);
  942             other && other->mze_hash == mze->mze_hash;
  943             other = zfs_btree_prev(&zap->zap_m.zap_tree, &oidx, &oidx)) {
  944 
  945                 if (zn == NULL) {
  946                         zn = zap_name_alloc_str(zap,
  947                             MZE_PHYS(zap, mze)->mze_name, MT_NORMALIZE);
  948                         allocdzn = B_TRUE;
  949                 }
  950                 if (zap_match(zn, MZE_PHYS(zap, other)->mze_name)) {
  951                         if (allocdzn)
  952                                 zap_name_free(zn);
  953                         return (B_TRUE);
  954                 }
  955         }
  956 
  957         for (other = zfs_btree_next(&zap->zap_m.zap_tree, idx, &oidx);
  958             other && other->mze_hash == mze->mze_hash;
  959             other = zfs_btree_next(&zap->zap_m.zap_tree, &oidx, &oidx)) {
  960 
  961                 if (zn == NULL) {
  962                         zn = zap_name_alloc_str(zap,
  963                             MZE_PHYS(zap, mze)->mze_name, MT_NORMALIZE);
  964                         allocdzn = B_TRUE;
  965                 }
  966                 if (zap_match(zn, MZE_PHYS(zap, other)->mze_name)) {
  967                         if (allocdzn)
  968                                 zap_name_free(zn);
  969                         return (B_TRUE);
  970                 }
  971         }
  972 
  973         if (allocdzn)
  974                 zap_name_free(zn);
  975         return (B_FALSE);
  976 }
  977 
  978 /*
  979  * Routines for manipulating attributes.
  980  */
  981 
  982 int
  983 zap_lookup(objset_t *os, uint64_t zapobj, const char *name,
  984     uint64_t integer_size, uint64_t num_integers, void *buf)
  985 {
  986         return (zap_lookup_norm(os, zapobj, name, integer_size,
  987             num_integers, buf, 0, NULL, 0, NULL));
  988 }
  989 
  990 static int
  991 zap_lookup_impl(zap_t *zap, const char *name,
  992     uint64_t integer_size, uint64_t num_integers, void *buf,
  993     matchtype_t mt, char *realname, int rn_len,
  994     boolean_t *ncp)
  995 {
  996         int err = 0;
  997 
  998         zap_name_t *zn = zap_name_alloc_str(zap, name, mt);
  999         if (zn == NULL)
 1000                 return (SET_ERROR(ENOTSUP));
 1001 
 1002         if (!zap->zap_ismicro) {
 1003                 err = fzap_lookup(zn, integer_size, num_integers, buf,
 1004                     realname, rn_len, ncp);
 1005         } else {
 1006                 zfs_btree_index_t idx;
 1007                 mzap_ent_t *mze = mze_find(zn, &idx);
 1008                 if (mze == NULL) {
 1009                         err = SET_ERROR(ENOENT);
 1010                 } else {
 1011                         if (num_integers < 1) {
 1012                                 err = SET_ERROR(EOVERFLOW);
 1013                         } else if (integer_size != 8) {
 1014                                 err = SET_ERROR(EINVAL);
 1015                         } else {
 1016                                 *(uint64_t *)buf =
 1017                                     MZE_PHYS(zap, mze)->mze_value;
 1018                                 if (realname != NULL)
 1019                                         (void) strlcpy(realname,
 1020                                             MZE_PHYS(zap, mze)->mze_name,
 1021                                             rn_len);
 1022                                 if (ncp) {
 1023                                         *ncp = mzap_normalization_conflict(zap,
 1024                                             zn, mze, &idx);
 1025                                 }
 1026                         }
 1027                 }
 1028         }
 1029         zap_name_free(zn);
 1030         return (err);
 1031 }
 1032 
 1033 int
 1034 zap_lookup_norm(objset_t *os, uint64_t zapobj, const char *name,
 1035     uint64_t integer_size, uint64_t num_integers, void *buf,
 1036     matchtype_t mt, char *realname, int rn_len,
 1037     boolean_t *ncp)
 1038 {
 1039         zap_t *zap;
 1040 
 1041         int err =
 1042             zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
 1043         if (err != 0)
 1044                 return (err);
 1045         err = zap_lookup_impl(zap, name, integer_size,
 1046             num_integers, buf, mt, realname, rn_len, ncp);
 1047         zap_unlockdir(zap, FTAG);
 1048         return (err);
 1049 }
 1050 
 1051 int
 1052 zap_prefetch(objset_t *os, uint64_t zapobj, const char *name)
 1053 {
 1054         zap_t *zap;
 1055         int err;
 1056         zap_name_t *zn;
 1057 
 1058         err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
 1059         if (err)
 1060                 return (err);
 1061         zn = zap_name_alloc_str(zap, name, 0);
 1062         if (zn == NULL) {
 1063                 zap_unlockdir(zap, FTAG);
 1064                 return (SET_ERROR(ENOTSUP));
 1065         }
 1066 
 1067         fzap_prefetch(zn);
 1068         zap_name_free(zn);
 1069         zap_unlockdir(zap, FTAG);
 1070         return (err);
 1071 }
 1072 
 1073 int
 1074 zap_lookup_by_dnode(dnode_t *dn, const char *name,
 1075     uint64_t integer_size, uint64_t num_integers, void *buf)
 1076 {
 1077         return (zap_lookup_norm_by_dnode(dn, name, integer_size,
 1078             num_integers, buf, 0, NULL, 0, NULL));
 1079 }
 1080 
 1081 int
 1082 zap_lookup_norm_by_dnode(dnode_t *dn, const char *name,
 1083     uint64_t integer_size, uint64_t num_integers, void *buf,
 1084     matchtype_t mt, char *realname, int rn_len,
 1085     boolean_t *ncp)
 1086 {
 1087         zap_t *zap;
 1088 
 1089         int err = zap_lockdir_by_dnode(dn, NULL, RW_READER, TRUE, FALSE,
 1090             FTAG, &zap);
 1091         if (err != 0)
 1092                 return (err);
 1093         err = zap_lookup_impl(zap, name, integer_size,
 1094             num_integers, buf, mt, realname, rn_len, ncp);
 1095         zap_unlockdir(zap, FTAG);
 1096         return (err);
 1097 }
 1098 
 1099 int
 1100 zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
 1101     int key_numints)
 1102 {
 1103         zap_t *zap;
 1104 
 1105         int err =
 1106             zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
 1107         if (err != 0)
 1108                 return (err);
 1109         zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
 1110         if (zn == NULL) {
 1111                 zap_unlockdir(zap, FTAG);
 1112                 return (SET_ERROR(ENOTSUP));
 1113         }
 1114 
 1115         fzap_prefetch(zn);
 1116         zap_name_free(zn);
 1117         zap_unlockdir(zap, FTAG);
 1118         return (err);
 1119 }
 1120 
 1121 int
 1122 zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
 1123     int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf)
 1124 {
 1125         zap_t *zap;
 1126 
 1127         int err =
 1128             zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
 1129         if (err != 0)
 1130                 return (err);
 1131         zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
 1132         if (zn == NULL) {
 1133                 zap_unlockdir(zap, FTAG);
 1134                 return (SET_ERROR(ENOTSUP));
 1135         }
 1136 
 1137         err = fzap_lookup(zn, integer_size, num_integers, buf,
 1138             NULL, 0, NULL);
 1139         zap_name_free(zn);
 1140         zap_unlockdir(zap, FTAG);
 1141         return (err);
 1142 }
 1143 
 1144 int
 1145 zap_contains(objset_t *os, uint64_t zapobj, const char *name)
 1146 {
 1147         int err = zap_lookup_norm(os, zapobj, name, 0,
 1148             0, NULL, 0, NULL, 0, NULL);
 1149         if (err == EOVERFLOW || err == EINVAL)
 1150                 err = 0; /* found, but skipped reading the value */
 1151         return (err);
 1152 }
 1153 
 1154 int
 1155 zap_length(objset_t *os, uint64_t zapobj, const char *name,
 1156     uint64_t *integer_size, uint64_t *num_integers)
 1157 {
 1158         zap_t *zap;
 1159 
 1160         int err =
 1161             zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
 1162         if (err != 0)
 1163                 return (err);
 1164         zap_name_t *zn = zap_name_alloc_str(zap, name, 0);
 1165         if (zn == NULL) {
 1166                 zap_unlockdir(zap, FTAG);
 1167                 return (SET_ERROR(ENOTSUP));
 1168         }
 1169         if (!zap->zap_ismicro) {
 1170                 err = fzap_length(zn, integer_size, num_integers);
 1171         } else {
 1172                 zfs_btree_index_t idx;
 1173                 mzap_ent_t *mze = mze_find(zn, &idx);
 1174                 if (mze == NULL) {
 1175                         err = SET_ERROR(ENOENT);
 1176                 } else {
 1177                         if (integer_size)
 1178                                 *integer_size = 8;
 1179                         if (num_integers)
 1180                                 *num_integers = 1;
 1181                 }
 1182         }
 1183         zap_name_free(zn);
 1184         zap_unlockdir(zap, FTAG);
 1185         return (err);
 1186 }
 1187 
 1188 int
 1189 zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
 1190     int key_numints, uint64_t *integer_size, uint64_t *num_integers)
 1191 {
 1192         zap_t *zap;
 1193 
 1194         int err =
 1195             zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
 1196         if (err != 0)
 1197                 return (err);
 1198         zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
 1199         if (zn == NULL) {
 1200                 zap_unlockdir(zap, FTAG);
 1201                 return (SET_ERROR(ENOTSUP));
 1202         }
 1203         err = fzap_length(zn, integer_size, num_integers);
 1204         zap_name_free(zn);
 1205         zap_unlockdir(zap, FTAG);
 1206         return (err);
 1207 }
 1208 
 1209 static void
 1210 mzap_addent(zap_name_t *zn, uint64_t value)
 1211 {
 1212         zap_t *zap = zn->zn_zap;
 1213         uint16_t start = zap->zap_m.zap_alloc_next;
 1214 
 1215         ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
 1216 
 1217 #ifdef ZFS_DEBUG
 1218         for (int i = 0; i < zap->zap_m.zap_num_chunks; i++) {
 1219                 mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i];
 1220                 ASSERT(strcmp(zn->zn_key_orig, mze->mze_name) != 0);
 1221         }
 1222 #endif
 1223 
 1224         uint32_t cd = mze_find_unused_cd(zap, zn->zn_hash);
 1225         /* given the limited size of the microzap, this can't happen */
 1226         ASSERT(cd < zap_maxcd(zap));
 1227 
 1228 again:
 1229         for (uint16_t i = start; i < zap->zap_m.zap_num_chunks; i++) {
 1230                 mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i];
 1231                 if (mze->mze_name[0] == 0) {
 1232                         mze->mze_value = value;
 1233                         mze->mze_cd = cd;
 1234                         (void) strlcpy(mze->mze_name, zn->zn_key_orig,
 1235                             sizeof (mze->mze_name));
 1236                         zap->zap_m.zap_num_entries++;
 1237                         zap->zap_m.zap_alloc_next = i+1;
 1238                         if (zap->zap_m.zap_alloc_next ==
 1239                             zap->zap_m.zap_num_chunks)
 1240                                 zap->zap_m.zap_alloc_next = 0;
 1241                         mze_insert(zap, i, zn->zn_hash);
 1242                         return;
 1243                 }
 1244         }
 1245         if (start != 0) {
 1246                 start = 0;
 1247                 goto again;
 1248         }
 1249         cmn_err(CE_PANIC, "out of entries!");
 1250 }
 1251 
 1252 static int
 1253 zap_add_impl(zap_t *zap, const char *key,
 1254     int integer_size, uint64_t num_integers,
 1255     const void *val, dmu_tx_t *tx, const void *tag)
 1256 {
 1257         const uint64_t *intval = val;
 1258         int err = 0;
 1259 
 1260         zap_name_t *zn = zap_name_alloc_str(zap, key, 0);
 1261         if (zn == NULL) {
 1262                 zap_unlockdir(zap, tag);
 1263                 return (SET_ERROR(ENOTSUP));
 1264         }
 1265         if (!zap->zap_ismicro) {
 1266                 err = fzap_add(zn, integer_size, num_integers, val, tag, tx);
 1267                 zap = zn->zn_zap;       /* fzap_add() may change zap */
 1268         } else if (integer_size != 8 || num_integers != 1 ||
 1269             strlen(key) >= MZAP_NAME_LEN ||
 1270             !mze_canfit_fzap_leaf(zn, zn->zn_hash)) {
 1271                 err = mzap_upgrade(&zn->zn_zap, tag, tx, 0);
 1272                 if (err == 0) {
 1273                         err = fzap_add(zn, integer_size, num_integers, val,
 1274                             tag, tx);
 1275                 }
 1276                 zap = zn->zn_zap;       /* fzap_add() may change zap */
 1277         } else {
 1278                 zfs_btree_index_t idx;
 1279                 if (mze_find(zn, &idx) != NULL) {
 1280                         err = SET_ERROR(EEXIST);
 1281                 } else {
 1282                         mzap_addent(zn, *intval);
 1283                 }
 1284         }
 1285         ASSERT(zap == zn->zn_zap);
 1286         zap_name_free(zn);
 1287         if (zap != NULL)        /* may be NULL if fzap_add() failed */
 1288                 zap_unlockdir(zap, tag);
 1289         return (err);
 1290 }
 1291 
 1292 int
 1293 zap_add(objset_t *os, uint64_t zapobj, const char *key,
 1294     int integer_size, uint64_t num_integers,
 1295     const void *val, dmu_tx_t *tx)
 1296 {
 1297         zap_t *zap;
 1298         int err;
 1299 
 1300         err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
 1301         if (err != 0)
 1302                 return (err);
 1303         err = zap_add_impl(zap, key, integer_size, num_integers, val, tx, FTAG);
 1304         /* zap_add_impl() calls zap_unlockdir() */
 1305         return (err);
 1306 }
 1307 
 1308 int
 1309 zap_add_by_dnode(dnode_t *dn, const char *key,
 1310     int integer_size, uint64_t num_integers,
 1311     const void *val, dmu_tx_t *tx)
 1312 {
 1313         zap_t *zap;
 1314         int err;
 1315 
 1316         err = zap_lockdir_by_dnode(dn, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
 1317         if (err != 0)
 1318                 return (err);
 1319         err = zap_add_impl(zap, key, integer_size, num_integers, val, tx, FTAG);
 1320         /* zap_add_impl() calls zap_unlockdir() */
 1321         return (err);
 1322 }
 1323 
 1324 int
 1325 zap_add_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
 1326     int key_numints, int integer_size, uint64_t num_integers,
 1327     const void *val, dmu_tx_t *tx)
 1328 {
 1329         zap_t *zap;
 1330 
 1331         int err =
 1332             zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
 1333         if (err != 0)
 1334                 return (err);
 1335         zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
 1336         if (zn == NULL) {
 1337                 zap_unlockdir(zap, FTAG);
 1338                 return (SET_ERROR(ENOTSUP));
 1339         }
 1340         err = fzap_add(zn, integer_size, num_integers, val, FTAG, tx);
 1341         zap = zn->zn_zap;       /* fzap_add() may change zap */
 1342         zap_name_free(zn);
 1343         if (zap != NULL)        /* may be NULL if fzap_add() failed */
 1344                 zap_unlockdir(zap, FTAG);
 1345         return (err);
 1346 }
 1347 
 1348 int
 1349 zap_update(objset_t *os, uint64_t zapobj, const char *name,
 1350     int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
 1351 {
 1352         zap_t *zap;
 1353         const uint64_t *intval = val;
 1354 
 1355         int err =
 1356             zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
 1357         if (err != 0)
 1358                 return (err);
 1359         zap_name_t *zn = zap_name_alloc_str(zap, name, 0);
 1360         if (zn == NULL) {
 1361                 zap_unlockdir(zap, FTAG);
 1362                 return (SET_ERROR(ENOTSUP));
 1363         }
 1364         if (!zap->zap_ismicro) {
 1365                 err = fzap_update(zn, integer_size, num_integers, val,
 1366                     FTAG, tx);
 1367                 zap = zn->zn_zap;       /* fzap_update() may change zap */
 1368         } else if (integer_size != 8 || num_integers != 1 ||
 1369             strlen(name) >= MZAP_NAME_LEN) {
 1370                 dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n",
 1371                     (u_longlong_t)zapobj, integer_size,
 1372                     (u_longlong_t)num_integers, name);
 1373                 err = mzap_upgrade(&zn->zn_zap, FTAG, tx, 0);
 1374                 if (err == 0) {
 1375                         err = fzap_update(zn, integer_size, num_integers,
 1376                             val, FTAG, tx);
 1377                 }
 1378                 zap = zn->zn_zap;       /* fzap_update() may change zap */
 1379         } else {
 1380                 zfs_btree_index_t idx;
 1381                 mzap_ent_t *mze = mze_find(zn, &idx);
 1382                 if (mze != NULL) {
 1383                         MZE_PHYS(zap, mze)->mze_value = *intval;
 1384                 } else {
 1385                         mzap_addent(zn, *intval);
 1386                 }
 1387         }
 1388         ASSERT(zap == zn->zn_zap);
 1389         zap_name_free(zn);
 1390         if (zap != NULL)        /* may be NULL if fzap_upgrade() failed */
 1391                 zap_unlockdir(zap, FTAG);
 1392         return (err);
 1393 }
 1394 
 1395 int
 1396 zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
 1397     int key_numints,
 1398     int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
 1399 {
 1400         zap_t *zap;
 1401 
 1402         int err =
 1403             zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
 1404         if (err != 0)
 1405                 return (err);
 1406         zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
 1407         if (zn == NULL) {
 1408                 zap_unlockdir(zap, FTAG);
 1409                 return (SET_ERROR(ENOTSUP));
 1410         }
 1411         err = fzap_update(zn, integer_size, num_integers, val, FTAG, tx);
 1412         zap = zn->zn_zap;       /* fzap_update() may change zap */
 1413         zap_name_free(zn);
 1414         if (zap != NULL)        /* may be NULL if fzap_upgrade() failed */
 1415                 zap_unlockdir(zap, FTAG);
 1416         return (err);
 1417 }
 1418 
 1419 int
 1420 zap_remove(objset_t *os, uint64_t zapobj, const char *name, dmu_tx_t *tx)
 1421 {
 1422         return (zap_remove_norm(os, zapobj, name, 0, tx));
 1423 }
 1424 
 1425 static int
 1426 zap_remove_impl(zap_t *zap, const char *name,
 1427     matchtype_t mt, dmu_tx_t *tx)
 1428 {
 1429         int err = 0;
 1430 
 1431         zap_name_t *zn = zap_name_alloc_str(zap, name, mt);
 1432         if (zn == NULL)
 1433                 return (SET_ERROR(ENOTSUP));
 1434         if (!zap->zap_ismicro) {
 1435                 err = fzap_remove(zn, tx);
 1436         } else {
 1437                 zfs_btree_index_t idx;
 1438                 mzap_ent_t *mze = mze_find(zn, &idx);
 1439                 if (mze == NULL) {
 1440                         err = SET_ERROR(ENOENT);
 1441                 } else {
 1442                         zap->zap_m.zap_num_entries--;
 1443                         memset(MZE_PHYS(zap, mze), 0, sizeof (mzap_ent_phys_t));
 1444                         zfs_btree_remove_idx(&zap->zap_m.zap_tree, &idx);
 1445                 }
 1446         }
 1447         zap_name_free(zn);
 1448         return (err);
 1449 }
 1450 
 1451 int
 1452 zap_remove_norm(objset_t *os, uint64_t zapobj, const char *name,
 1453     matchtype_t mt, dmu_tx_t *tx)
 1454 {
 1455         zap_t *zap;
 1456         int err;
 1457 
 1458         err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap);
 1459         if (err)
 1460                 return (err);
 1461         err = zap_remove_impl(zap, name, mt, tx);
 1462         zap_unlockdir(zap, FTAG);
 1463         return (err);
 1464 }
 1465 
 1466 int
 1467 zap_remove_by_dnode(dnode_t *dn, const char *name, dmu_tx_t *tx)
 1468 {
 1469         zap_t *zap;
 1470         int err;
 1471 
 1472         err = zap_lockdir_by_dnode(dn, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap);
 1473         if (err)
 1474                 return (err);
 1475         err = zap_remove_impl(zap, name, 0, tx);
 1476         zap_unlockdir(zap, FTAG);
 1477         return (err);
 1478 }
 1479 
 1480 int
 1481 zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
 1482     int key_numints, dmu_tx_t *tx)
 1483 {
 1484         zap_t *zap;
 1485 
 1486         int err =
 1487             zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap);
 1488         if (err != 0)
 1489                 return (err);
 1490         zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
 1491         if (zn == NULL) {
 1492                 zap_unlockdir(zap, FTAG);
 1493                 return (SET_ERROR(ENOTSUP));
 1494         }
 1495         err = fzap_remove(zn, tx);
 1496         zap_name_free(zn);
 1497         zap_unlockdir(zap, FTAG);
 1498         return (err);
 1499 }
 1500 
 1501 /*
 1502  * Routines for iterating over the attributes.
 1503  */
 1504 
 1505 static void
 1506 zap_cursor_init_impl(zap_cursor_t *zc, objset_t *os, uint64_t zapobj,
 1507     uint64_t serialized, boolean_t prefetch)
 1508 {
 1509         zc->zc_objset = os;
 1510         zc->zc_zap = NULL;
 1511         zc->zc_leaf = NULL;
 1512         zc->zc_zapobj = zapobj;
 1513         zc->zc_serialized = serialized;
 1514         zc->zc_hash = 0;
 1515         zc->zc_cd = 0;
 1516         zc->zc_prefetch = prefetch;
 1517 }
 1518 void
 1519 zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *os, uint64_t zapobj,
 1520     uint64_t serialized)
 1521 {
 1522         zap_cursor_init_impl(zc, os, zapobj, serialized, B_TRUE);
 1523 }
 1524 
 1525 /*
 1526  * Initialize a cursor at the beginning of the ZAP object.  The entire
 1527  * ZAP object will be prefetched.
 1528  */
 1529 void
 1530 zap_cursor_init(zap_cursor_t *zc, objset_t *os, uint64_t zapobj)
 1531 {
 1532         zap_cursor_init_impl(zc, os, zapobj, 0, B_TRUE);
 1533 }
 1534 
 1535 /*
 1536  * Initialize a cursor at the beginning, but request that we not prefetch
 1537  * the entire ZAP object.
 1538  */
 1539 void
 1540 zap_cursor_init_noprefetch(zap_cursor_t *zc, objset_t *os, uint64_t zapobj)
 1541 {
 1542         zap_cursor_init_impl(zc, os, zapobj, 0, B_FALSE);
 1543 }
 1544 
 1545 void
 1546 zap_cursor_fini(zap_cursor_t *zc)
 1547 {
 1548         if (zc->zc_zap) {
 1549                 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
 1550                 zap_unlockdir(zc->zc_zap, NULL);
 1551                 zc->zc_zap = NULL;
 1552         }
 1553         if (zc->zc_leaf) {
 1554                 rw_enter(&zc->zc_leaf->l_rwlock, RW_READER);
 1555                 zap_put_leaf(zc->zc_leaf);
 1556                 zc->zc_leaf = NULL;
 1557         }
 1558         zc->zc_objset = NULL;
 1559 }
 1560 
 1561 uint64_t
 1562 zap_cursor_serialize(zap_cursor_t *zc)
 1563 {
 1564         if (zc->zc_hash == -1ULL)
 1565                 return (-1ULL);
 1566         if (zc->zc_zap == NULL)
 1567                 return (zc->zc_serialized);
 1568         ASSERT((zc->zc_hash & zap_maxcd(zc->zc_zap)) == 0);
 1569         ASSERT(zc->zc_cd < zap_maxcd(zc->zc_zap));
 1570 
 1571         /*
 1572          * We want to keep the high 32 bits of the cursor zero if we can, so
 1573          * that 32-bit programs can access this.  So usually use a small
 1574          * (28-bit) hash value so we can fit 4 bits of cd into the low 32-bits
 1575          * of the cursor.
 1576          *
 1577          * [ collision differentiator | zap_hashbits()-bit hash value ]
 1578          */
 1579         return ((zc->zc_hash >> (64 - zap_hashbits(zc->zc_zap))) |
 1580             ((uint64_t)zc->zc_cd << zap_hashbits(zc->zc_zap)));
 1581 }
 1582 
 1583 int
 1584 zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za)
 1585 {
 1586         int err;
 1587 
 1588         if (zc->zc_hash == -1ULL)
 1589                 return (SET_ERROR(ENOENT));
 1590 
 1591         if (zc->zc_zap == NULL) {
 1592                 int hb;
 1593                 err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL,
 1594                     RW_READER, TRUE, FALSE, NULL, &zc->zc_zap);
 1595                 if (err != 0)
 1596                         return (err);
 1597 
 1598                 /*
 1599                  * To support zap_cursor_init_serialized, advance, retrieve,
 1600                  * we must add to the existing zc_cd, which may already
 1601                  * be 1 due to the zap_cursor_advance.
 1602                  */
 1603                 ASSERT(zc->zc_hash == 0);
 1604                 hb = zap_hashbits(zc->zc_zap);
 1605                 zc->zc_hash = zc->zc_serialized << (64 - hb);
 1606                 zc->zc_cd += zc->zc_serialized >> hb;
 1607                 if (zc->zc_cd >= zap_maxcd(zc->zc_zap)) /* corrupt serialized */
 1608                         zc->zc_cd = 0;
 1609         } else {
 1610                 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
 1611         }
 1612         if (!zc->zc_zap->zap_ismicro) {
 1613                 err = fzap_cursor_retrieve(zc->zc_zap, zc, za);
 1614         } else {
 1615                 zfs_btree_index_t idx;
 1616                 mzap_ent_t mze_tofind;
 1617 
 1618                 mze_tofind.mze_hash = zc->zc_hash >> 32;
 1619                 mze_tofind.mze_cd = zc->zc_cd;
 1620 
 1621                 mzap_ent_t *mze = zfs_btree_find(&zc->zc_zap->zap_m.zap_tree,
 1622                     &mze_tofind, &idx);
 1623                 if (mze == NULL) {
 1624                         mze = zfs_btree_next(&zc->zc_zap->zap_m.zap_tree,
 1625                             &idx, &idx);
 1626                 }
 1627                 if (mze) {
 1628                         mzap_ent_phys_t *mzep = MZE_PHYS(zc->zc_zap, mze);
 1629                         ASSERT3U(mze->mze_cd, ==, mzep->mze_cd);
 1630                         za->za_normalization_conflict =
 1631                             mzap_normalization_conflict(zc->zc_zap, NULL,
 1632                             mze, &idx);
 1633                         za->za_integer_length = 8;
 1634                         za->za_num_integers = 1;
 1635                         za->za_first_integer = mzep->mze_value;
 1636                         (void) strlcpy(za->za_name, mzep->mze_name,
 1637                             sizeof (za->za_name));
 1638                         zc->zc_hash = (uint64_t)mze->mze_hash << 32;
 1639                         zc->zc_cd = mze->mze_cd;
 1640                         err = 0;
 1641                 } else {
 1642                         zc->zc_hash = -1ULL;
 1643                         err = SET_ERROR(ENOENT);
 1644                 }
 1645         }
 1646         rw_exit(&zc->zc_zap->zap_rwlock);
 1647         return (err);
 1648 }
 1649 
 1650 void
 1651 zap_cursor_advance(zap_cursor_t *zc)
 1652 {
 1653         if (zc->zc_hash == -1ULL)
 1654                 return;
 1655         zc->zc_cd++;
 1656 }
 1657 
 1658 int
 1659 zap_get_stats(objset_t *os, uint64_t zapobj, zap_stats_t *zs)
 1660 {
 1661         zap_t *zap;
 1662 
 1663         int err =
 1664             zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
 1665         if (err != 0)
 1666                 return (err);
 1667 
 1668         memset(zs, 0, sizeof (zap_stats_t));
 1669 
 1670         if (zap->zap_ismicro) {
 1671                 zs->zs_blocksize = zap->zap_dbuf->db_size;
 1672                 zs->zs_num_entries = zap->zap_m.zap_num_entries;
 1673                 zs->zs_num_blocks = 1;
 1674         } else {
 1675                 fzap_get_stats(zap, zs);
 1676         }
 1677         zap_unlockdir(zap, FTAG);
 1678         return (0);
 1679 }
 1680 
 1681 #if defined(_KERNEL)
 1682 EXPORT_SYMBOL(zap_create);
 1683 EXPORT_SYMBOL(zap_create_dnsize);
 1684 EXPORT_SYMBOL(zap_create_norm);
 1685 EXPORT_SYMBOL(zap_create_norm_dnsize);
 1686 EXPORT_SYMBOL(zap_create_flags);
 1687 EXPORT_SYMBOL(zap_create_flags_dnsize);
 1688 EXPORT_SYMBOL(zap_create_claim);
 1689 EXPORT_SYMBOL(zap_create_claim_norm);
 1690 EXPORT_SYMBOL(zap_create_claim_norm_dnsize);
 1691 EXPORT_SYMBOL(zap_create_hold);
 1692 EXPORT_SYMBOL(zap_destroy);
 1693 EXPORT_SYMBOL(zap_lookup);
 1694 EXPORT_SYMBOL(zap_lookup_by_dnode);
 1695 EXPORT_SYMBOL(zap_lookup_norm);
 1696 EXPORT_SYMBOL(zap_lookup_uint64);
 1697 EXPORT_SYMBOL(zap_contains);
 1698 EXPORT_SYMBOL(zap_prefetch);
 1699 EXPORT_SYMBOL(zap_prefetch_uint64);
 1700 EXPORT_SYMBOL(zap_add);
 1701 EXPORT_SYMBOL(zap_add_by_dnode);
 1702 EXPORT_SYMBOL(zap_add_uint64);
 1703 EXPORT_SYMBOL(zap_update);
 1704 EXPORT_SYMBOL(zap_update_uint64);
 1705 EXPORT_SYMBOL(zap_length);
 1706 EXPORT_SYMBOL(zap_length_uint64);
 1707 EXPORT_SYMBOL(zap_remove);
 1708 EXPORT_SYMBOL(zap_remove_by_dnode);
 1709 EXPORT_SYMBOL(zap_remove_norm);
 1710 EXPORT_SYMBOL(zap_remove_uint64);
 1711 EXPORT_SYMBOL(zap_count);
 1712 EXPORT_SYMBOL(zap_value_search);
 1713 EXPORT_SYMBOL(zap_join);
 1714 EXPORT_SYMBOL(zap_join_increment);
 1715 EXPORT_SYMBOL(zap_add_int);
 1716 EXPORT_SYMBOL(zap_remove_int);
 1717 EXPORT_SYMBOL(zap_lookup_int);
 1718 EXPORT_SYMBOL(zap_increment_int);
 1719 EXPORT_SYMBOL(zap_add_int_key);
 1720 EXPORT_SYMBOL(zap_lookup_int_key);
 1721 EXPORT_SYMBOL(zap_increment);
 1722 EXPORT_SYMBOL(zap_cursor_init);
 1723 EXPORT_SYMBOL(zap_cursor_fini);
 1724 EXPORT_SYMBOL(zap_cursor_retrieve);
 1725 EXPORT_SYMBOL(zap_cursor_advance);
 1726 EXPORT_SYMBOL(zap_cursor_serialize);
 1727 EXPORT_SYMBOL(zap_cursor_init_serialized);
 1728 EXPORT_SYMBOL(zap_get_stats);
 1729 
 1730 /* CSTYLED */
 1731 ZFS_MODULE_PARAM(zfs, , zap_micro_max_size, INT, ZMOD_RW,
 1732         "Maximum micro ZAP size, before converting to a fat ZAP, in bytes");
 1733 #endif

Cache object: f6307689f507324d24d5be53c07bd4d0


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.