The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/contrib/openzfs/module/zfs/zcp.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * CDDL HEADER START
    3  *
    4  * This file and its contents are supplied under the terms of the
    5  * Common Development and Distribution License ("CDDL"), version 1.0.
    6  * You may only use this file in accordance with the terms of version
    7  * 1.0 of the CDDL.
    8  *
    9  * A full copy of the text of the CDDL should have accompanied this
   10  * source.  A copy of the CDDL is also available via the Internet at
   11  * http://www.illumos.org/license/CDDL.
   12  *
   13  * CDDL HEADER END
   14  */
   15 
   16 /*
   17  * Copyright (c) 2016, 2018 by Delphix. All rights reserved.
   18  */
   19 
   20 /*
   21  * ZFS Channel Programs (ZCP)
   22  *
   23  * The ZCP interface allows various ZFS commands and operations ZFS
   24  * administrative operations (e.g. creating and destroying snapshots, typically
   25  * performed via an ioctl to /dev/zfs by the zfs(8) command and
   26  * libzfs/libzfs_core) to be run * programmatically as a Lua script.  A ZCP
   27  * script is run as a dsl_sync_task and fully executed during one transaction
   28  * group sync.  This ensures that no other changes can be written concurrently
   29  * with a running Lua script.  Combining multiple calls to the exposed ZFS
   30  * functions into one script gives a number of benefits:
   31  *
   32  * 1. Atomicity.  For some compound or iterative operations, it's useful to be
   33  * able to guarantee that the state of a pool has not changed between calls to
   34  * ZFS.
   35  *
   36  * 2. Performance.  If a large number of changes need to be made (e.g. deleting
   37  * many filesystems), there can be a significant performance penalty as a
   38  * result of the need to wait for a transaction group sync to pass for every
   39  * single operation.  When expressed as a single ZCP script, all these changes
   40  * can be performed at once in one txg sync.
   41  *
   42  * A modified version of the Lua 5.2 interpreter is used to run channel program
   43  * scripts. The Lua 5.2 manual can be found at:
   44  *
   45  *      http://www.lua.org/manual/5.2/
   46  *
   47  * If being run by a user (via an ioctl syscall), executing a ZCP script
   48  * requires root privileges in the global zone.
   49  *
   50  * Scripts are passed to zcp_eval() as a string, then run in a synctask by
   51  * zcp_eval_sync().  Arguments can be passed into the Lua script as an nvlist,
   52  * which will be converted to a Lua table.  Similarly, values returned from
   53  * a ZCP script will be converted to an nvlist.  See zcp_lua_to_nvlist_impl()
   54  * for details on exact allowed types and conversion.
   55  *
   56  * ZFS functionality is exposed to a ZCP script as a library of function calls.
   57  * These calls are sorted into submodules, such as zfs.list and zfs.sync, for
   58  * iterators and synctasks, respectively.  Each of these submodules resides in
   59  * its own source file, with a zcp_*_info structure describing each library
   60  * call in the submodule.
   61  *
   62  * Error handling in ZCP scripts is handled by a number of different methods
   63  * based on severity:
   64  *
   65  * 1. Memory and time limits are in place to prevent a channel program from
   66  * consuming excessive system or running forever.  If one of these limits is
   67  * hit, the channel program will be stopped immediately and return from
   68  * zcp_eval() with an error code. No attempt will be made to roll back or undo
   69  * any changes made by the channel program before the error occurred.
   70  * Consumers invoking zcp_eval() from elsewhere in the kernel may pass a time
   71  * limit of 0, disabling the time limit.
   72  *
   73  * 2. Internal Lua errors can occur as a result of a syntax error, calling a
   74  * library function with incorrect arguments, invoking the error() function,
   75  * failing an assert(), or other runtime errors.  In these cases the channel
   76  * program will stop executing and return from zcp_eval() with an error code.
   77  * In place of a return value, an error message will also be returned in the
   78  * 'result' nvlist containing information about the error. No attempt will be
   79  * made to roll back or undo any changes made by the channel program before the
   80  * error occurred.
   81  *
   82  * 3. If an error occurs inside a ZFS library call which returns an error code,
   83  * the error is returned to the Lua script to be handled as desired.
   84  *
   85  * In the first two cases, Lua's error-throwing mechanism is used, which
   86  * longjumps out of the script execution with luaL_error() and returns with the
   87  * error.
   88  *
   89  * See zfs-program(8) for more information on high level usage.
   90  */
   91 
   92 #include <sys/lua/lua.h>
   93 #include <sys/lua/lualib.h>
   94 #include <sys/lua/lauxlib.h>
   95 
   96 #include <sys/dsl_prop.h>
   97 #include <sys/dsl_synctask.h>
   98 #include <sys/dsl_dataset.h>
   99 #include <sys/zcp.h>
  100 #include <sys/zcp_iter.h>
  101 #include <sys/zcp_prop.h>
  102 #include <sys/zcp_global.h>
  103 #include <sys/zvol.h>
  104 
  105 #ifndef KM_NORMALPRI
  106 #define KM_NORMALPRI    0
  107 #endif
  108 
  109 #define ZCP_NVLIST_MAX_DEPTH 20
  110 
  111 static const uint64_t zfs_lua_check_instrlimit_interval = 100;
  112 uint64_t zfs_lua_max_instrlimit = ZCP_MAX_INSTRLIMIT;
  113 uint64_t zfs_lua_max_memlimit = ZCP_MAX_MEMLIMIT;
  114 
  115 /*
  116  * Forward declarations for mutually recursive functions
  117  */
  118 static int zcp_nvpair_value_to_lua(lua_State *, nvpair_t *, char *, int);
  119 static int zcp_lua_to_nvlist_impl(lua_State *, int, nvlist_t *, const char *,
  120     int);
  121 
  122 /*
  123  * The outer-most error callback handler for use with lua_pcall(). On
  124  * error Lua will call this callback with a single argument that
  125  * represents the error value. In most cases this will be a string
  126  * containing an error message, but channel programs can use Lua's
  127  * error() function to return arbitrary objects as errors. This callback
  128  * returns (on the Lua stack) the original error object along with a traceback.
  129  *
  130  * Fatal Lua errors can occur while resources are held, so we also call any
  131  * registered cleanup function here.
  132  */
  133 static int
  134 zcp_error_handler(lua_State *state)
  135 {
  136         const char *msg;
  137 
  138         zcp_cleanup(state);
  139 
  140         VERIFY3U(1, ==, lua_gettop(state));
  141         msg = lua_tostring(state, 1);
  142         luaL_traceback(state, state, msg, 1);
  143         return (1);
  144 }
  145 
  146 int
  147 zcp_argerror(lua_State *state, int narg, const char *msg, ...)
  148 {
  149         va_list alist;
  150 
  151         va_start(alist, msg);
  152         const char *buf = lua_pushvfstring(state, msg, alist);
  153         va_end(alist);
  154 
  155         return (luaL_argerror(state, narg, buf));
  156 }
  157 
  158 /*
  159  * Install a new cleanup function, which will be invoked with the given
  160  * opaque argument if a fatal error causes the Lua interpreter to longjump out
  161  * of a function call.
  162  *
  163  * If an error occurs, the cleanup function will be invoked exactly once and
  164  * then unregistered.
  165  *
  166  * Returns the registered cleanup handler so the caller can deregister it
  167  * if no error occurs.
  168  */
  169 zcp_cleanup_handler_t *
  170 zcp_register_cleanup(lua_State *state, zcp_cleanup_t cleanfunc, void *cleanarg)
  171 {
  172         zcp_run_info_t *ri = zcp_run_info(state);
  173 
  174         zcp_cleanup_handler_t *zch = kmem_alloc(sizeof (*zch), KM_SLEEP);
  175         zch->zch_cleanup_func = cleanfunc;
  176         zch->zch_cleanup_arg = cleanarg;
  177         list_insert_head(&ri->zri_cleanup_handlers, zch);
  178 
  179         return (zch);
  180 }
  181 
  182 void
  183 zcp_deregister_cleanup(lua_State *state, zcp_cleanup_handler_t *zch)
  184 {
  185         zcp_run_info_t *ri = zcp_run_info(state);
  186         list_remove(&ri->zri_cleanup_handlers, zch);
  187         kmem_free(zch, sizeof (*zch));
  188 }
  189 
  190 /*
  191  * Execute the currently registered cleanup handlers then free them and
  192  * destroy the handler list.
  193  */
  194 void
  195 zcp_cleanup(lua_State *state)
  196 {
  197         zcp_run_info_t *ri = zcp_run_info(state);
  198 
  199         for (zcp_cleanup_handler_t *zch =
  200             list_remove_head(&ri->zri_cleanup_handlers); zch != NULL;
  201             zch = list_remove_head(&ri->zri_cleanup_handlers)) {
  202                 zch->zch_cleanup_func(zch->zch_cleanup_arg);
  203                 kmem_free(zch, sizeof (*zch));
  204         }
  205 }
  206 
  207 /*
  208  * Convert the lua table at the given index on the Lua stack to an nvlist
  209  * and return it.
  210  *
  211  * If the table can not be converted for any reason, NULL is returned and
  212  * an error message is pushed onto the Lua stack.
  213  */
  214 static nvlist_t *
  215 zcp_table_to_nvlist(lua_State *state, int index, int depth)
  216 {
  217         nvlist_t *nvl;
  218         /*
  219          * Converting a Lua table to an nvlist with key uniqueness checking is
  220          * O(n^2) in the number of keys in the nvlist, which can take a long
  221          * time when we return a large table from a channel program.
  222          * Furthermore, Lua's table interface *almost* guarantees unique keys
  223          * on its own (details below). Therefore, we don't use fnvlist_alloc()
  224          * here to avoid the built-in uniqueness checking.
  225          *
  226          * The *almost* is because it's possible to have key collisions between
  227          * e.g. the string "1" and the number 1, or the string "true" and the
  228          * boolean true, so we explicitly check that when we're looking at a
  229          * key which is an integer / boolean or a string that can be parsed as
  230          * one of those types. In the worst case this could still devolve into
  231          * O(n^2), so we only start doing these checks on boolean/integer keys
  232          * once we've seen a string key which fits this weird usage pattern.
  233          *
  234          * Ultimately, we still want callers to know that the keys in this
  235          * nvlist are unique, so before we return this we set the nvlist's
  236          * flags to reflect that.
  237          */
  238         VERIFY0(nvlist_alloc(&nvl, 0, KM_SLEEP));
  239 
  240         /*
  241          * Push an empty stack slot where lua_next() will store each
  242          * table key.
  243          */
  244         lua_pushnil(state);
  245         boolean_t saw_str_could_collide = B_FALSE;
  246         while (lua_next(state, index) != 0) {
  247                 /*
  248                  * The next key-value pair from the table at index is
  249                  * now on the stack, with the key at stack slot -2 and
  250                  * the value at slot -1.
  251                  */
  252                 int err = 0;
  253                 char buf[32];
  254                 const char *key = NULL;
  255                 boolean_t key_could_collide = B_FALSE;
  256 
  257                 switch (lua_type(state, -2)) {
  258                 case LUA_TSTRING:
  259                         key = lua_tostring(state, -2);
  260 
  261                         /* check if this could collide with a number or bool */
  262                         long long tmp;
  263                         int parselen;
  264                         if ((sscanf(key, "%lld%n", &tmp, &parselen) > 0 &&
  265                             parselen == strlen(key)) ||
  266                             strcmp(key, "true") == 0 ||
  267                             strcmp(key, "false") == 0) {
  268                                 key_could_collide = B_TRUE;
  269                                 saw_str_could_collide = B_TRUE;
  270                         }
  271                         break;
  272                 case LUA_TBOOLEAN:
  273                         key = (lua_toboolean(state, -2) == B_TRUE ?
  274                             "true" : "false");
  275                         if (saw_str_could_collide) {
  276                                 key_could_collide = B_TRUE;
  277                         }
  278                         break;
  279                 case LUA_TNUMBER:
  280                         (void) snprintf(buf, sizeof (buf), "%lld",
  281                             (longlong_t)lua_tonumber(state, -2));
  282 
  283                         key = buf;
  284                         if (saw_str_could_collide) {
  285                                 key_could_collide = B_TRUE;
  286                         }
  287                         break;
  288                 default:
  289                         fnvlist_free(nvl);
  290                         (void) lua_pushfstring(state, "Invalid key "
  291                             "type '%s' in table",
  292                             lua_typename(state, lua_type(state, -2)));
  293                         return (NULL);
  294                 }
  295                 /*
  296                  * Check for type-mismatched key collisions, and throw an error.
  297                  */
  298                 if (key_could_collide && nvlist_exists(nvl, key)) {
  299                         fnvlist_free(nvl);
  300                         (void) lua_pushfstring(state, "Collision of "
  301                             "key '%s' in table", key);
  302                         return (NULL);
  303                 }
  304                 /*
  305                  * Recursively convert the table value and insert into
  306                  * the new nvlist with the parsed key.  To prevent
  307                  * stack overflow on circular or heavily nested tables,
  308                  * we track the current nvlist depth.
  309                  */
  310                 if (depth >= ZCP_NVLIST_MAX_DEPTH) {
  311                         fnvlist_free(nvl);
  312                         (void) lua_pushfstring(state, "Maximum table "
  313                             "depth (%d) exceeded for table",
  314                             ZCP_NVLIST_MAX_DEPTH);
  315                         return (NULL);
  316                 }
  317                 err = zcp_lua_to_nvlist_impl(state, -1, nvl, key,
  318                     depth + 1);
  319                 if (err != 0) {
  320                         fnvlist_free(nvl);
  321                         /*
  322                          * Error message has been pushed to the lua
  323                          * stack by the recursive call.
  324                          */
  325                         return (NULL);
  326                 }
  327                 /*
  328                  * Pop the value pushed by lua_next().
  329                  */
  330                 lua_pop(state, 1);
  331         }
  332 
  333         /*
  334          * Mark the nvlist as having unique keys. This is a little ugly, but we
  335          * ensured above that there are no duplicate keys in the nvlist.
  336          */
  337         nvl->nvl_nvflag |= NV_UNIQUE_NAME;
  338 
  339         return (nvl);
  340 }
  341 
  342 /*
  343  * Convert a value from the given index into the lua stack to an nvpair, adding
  344  * it to an nvlist with the given key.
  345  *
  346  * Values are converted as follows:
  347  *
  348  *   string -> string
  349  *   number -> int64
  350  *   boolean -> boolean
  351  *   nil -> boolean (no value)
  352  *
  353  * Lua tables are converted to nvlists and then inserted. The table's keys
  354  * are converted to strings then used as keys in the nvlist to store each table
  355  * element.  Keys are converted as follows:
  356  *
  357  *   string -> no change
  358  *   number -> "%lld"
  359  *   boolean -> "true" | "false"
  360  *   nil -> error
  361  *
  362  * In the case of a key collision, an error is thrown.
  363  *
  364  * If an error is encountered, a nonzero error code is returned, and an error
  365  * string will be pushed onto the Lua stack.
  366  */
  367 static int
  368 zcp_lua_to_nvlist_impl(lua_State *state, int index, nvlist_t *nvl,
  369     const char *key, int depth)
  370 {
  371         /*
  372          * Verify that we have enough remaining space in the lua stack to parse
  373          * a key-value pair and push an error.
  374          */
  375         if (!lua_checkstack(state, 3)) {
  376                 (void) lua_pushstring(state, "Lua stack overflow");
  377                 return (1);
  378         }
  379 
  380         index = lua_absindex(state, index);
  381 
  382         switch (lua_type(state, index)) {
  383         case LUA_TNIL:
  384                 fnvlist_add_boolean(nvl, key);
  385                 break;
  386         case LUA_TBOOLEAN:
  387                 fnvlist_add_boolean_value(nvl, key,
  388                     lua_toboolean(state, index));
  389                 break;
  390         case LUA_TNUMBER:
  391                 fnvlist_add_int64(nvl, key, lua_tonumber(state, index));
  392                 break;
  393         case LUA_TSTRING:
  394                 fnvlist_add_string(nvl, key, lua_tostring(state, index));
  395                 break;
  396         case LUA_TTABLE: {
  397                 nvlist_t *value_nvl = zcp_table_to_nvlist(state, index, depth);
  398                 if (value_nvl == NULL)
  399                         return (SET_ERROR(EINVAL));
  400 
  401                 fnvlist_add_nvlist(nvl, key, value_nvl);
  402                 fnvlist_free(value_nvl);
  403                 break;
  404         }
  405         default:
  406                 (void) lua_pushfstring(state,
  407                     "Invalid value type '%s' for key '%s'",
  408                     lua_typename(state, lua_type(state, index)), key);
  409                 return (SET_ERROR(EINVAL));
  410         }
  411 
  412         return (0);
  413 }
  414 
  415 /*
  416  * Convert a lua value to an nvpair, adding it to an nvlist with the given key.
  417  */
  418 static void
  419 zcp_lua_to_nvlist(lua_State *state, int index, nvlist_t *nvl, const char *key)
  420 {
  421         /*
  422          * On error, zcp_lua_to_nvlist_impl pushes an error string onto the Lua
  423          * stack before returning with a nonzero error code. If an error is
  424          * returned, throw a fatal lua error with the given string.
  425          */
  426         if (zcp_lua_to_nvlist_impl(state, index, nvl, key, 0) != 0)
  427                 (void) lua_error(state);
  428 }
  429 
  430 static int
  431 zcp_lua_to_nvlist_helper(lua_State *state)
  432 {
  433         nvlist_t *nv = (nvlist_t *)lua_touserdata(state, 2);
  434         const char *key = (const char *)lua_touserdata(state, 1);
  435         zcp_lua_to_nvlist(state, 3, nv, key);
  436         return (0);
  437 }
  438 
  439 static void
  440 zcp_convert_return_values(lua_State *state, nvlist_t *nvl,
  441     const char *key, int *result)
  442 {
  443         int err;
  444         VERIFY3U(1, ==, lua_gettop(state));
  445         lua_pushcfunction(state, zcp_lua_to_nvlist_helper);
  446         lua_pushlightuserdata(state, (char *)key);
  447         lua_pushlightuserdata(state, nvl);
  448         lua_pushvalue(state, 1);
  449         lua_remove(state, 1);
  450         err = lua_pcall(state, 3, 0, 0); /* zcp_lua_to_nvlist_helper */
  451         if (err != 0) {
  452                 zcp_lua_to_nvlist(state, 1, nvl, ZCP_RET_ERROR);
  453                 *result = SET_ERROR(ECHRNG);
  454         }
  455 }
  456 
  457 /*
  458  * Push a Lua table representing nvl onto the stack.  If it can't be
  459  * converted, return EINVAL, fill in errbuf, and push nothing. errbuf may
  460  * be specified as NULL, in which case no error string will be output.
  461  *
  462  * Most nvlists are converted as simple key->value Lua tables, but we make
  463  * an exception for the case where all nvlist entries are BOOLEANs (a string
  464  * key without a value). In Lua, a table key pointing to a value of Nil
  465  * (no value) is equivalent to the key not existing, so a BOOLEAN nvlist
  466  * entry can't be directly converted to a Lua table entry. Nvlists of entirely
  467  * BOOLEAN entries are frequently used to pass around lists of datasets, so for
  468  * convenience we check for this case, and convert it to a simple Lua array of
  469  * strings.
  470  */
  471 int
  472 zcp_nvlist_to_lua(lua_State *state, nvlist_t *nvl,
  473     char *errbuf, int errbuf_len)
  474 {
  475         nvpair_t *pair;
  476         lua_newtable(state);
  477         boolean_t has_values = B_FALSE;
  478         /*
  479          * If the list doesn't have any values, just convert it to a string
  480          * array.
  481          */
  482         for (pair = nvlist_next_nvpair(nvl, NULL);
  483             pair != NULL; pair = nvlist_next_nvpair(nvl, pair)) {
  484                 if (nvpair_type(pair) != DATA_TYPE_BOOLEAN) {
  485                         has_values = B_TRUE;
  486                         break;
  487                 }
  488         }
  489         if (!has_values) {
  490                 int i = 1;
  491                 for (pair = nvlist_next_nvpair(nvl, NULL);
  492                     pair != NULL; pair = nvlist_next_nvpair(nvl, pair)) {
  493                         (void) lua_pushinteger(state, i);
  494                         (void) lua_pushstring(state, nvpair_name(pair));
  495                         (void) lua_settable(state, -3);
  496                         i++;
  497                 }
  498         } else {
  499                 for (pair = nvlist_next_nvpair(nvl, NULL);
  500                     pair != NULL; pair = nvlist_next_nvpair(nvl, pair)) {
  501                         int err = zcp_nvpair_value_to_lua(state, pair,
  502                             errbuf, errbuf_len);
  503                         if (err != 0) {
  504                                 lua_pop(state, 1);
  505                                 return (err);
  506                         }
  507                         (void) lua_setfield(state, -2, nvpair_name(pair));
  508                 }
  509         }
  510         return (0);
  511 }
  512 
  513 /*
  514  * Push a Lua object representing the value of "pair" onto the stack.
  515  *
  516  * Only understands boolean_value, string, int64, nvlist,
  517  * string_array, and int64_array type values.  For other
  518  * types, returns EINVAL, fills in errbuf, and pushes nothing.
  519  */
  520 static int
  521 zcp_nvpair_value_to_lua(lua_State *state, nvpair_t *pair,
  522     char *errbuf, int errbuf_len)
  523 {
  524         int err = 0;
  525 
  526         if (pair == NULL) {
  527                 lua_pushnil(state);
  528                 return (0);
  529         }
  530 
  531         switch (nvpair_type(pair)) {
  532         case DATA_TYPE_BOOLEAN_VALUE:
  533                 (void) lua_pushboolean(state,
  534                     fnvpair_value_boolean_value(pair));
  535                 break;
  536         case DATA_TYPE_STRING:
  537                 (void) lua_pushstring(state, fnvpair_value_string(pair));
  538                 break;
  539         case DATA_TYPE_INT64:
  540                 (void) lua_pushinteger(state, fnvpair_value_int64(pair));
  541                 break;
  542         case DATA_TYPE_NVLIST:
  543                 err = zcp_nvlist_to_lua(state,
  544                     fnvpair_value_nvlist(pair), errbuf, errbuf_len);
  545                 break;
  546         case DATA_TYPE_STRING_ARRAY: {
  547                 char **strarr;
  548                 uint_t nelem;
  549                 (void) nvpair_value_string_array(pair, &strarr, &nelem);
  550                 lua_newtable(state);
  551                 for (int i = 0; i < nelem; i++) {
  552                         (void) lua_pushinteger(state, i + 1);
  553                         (void) lua_pushstring(state, strarr[i]);
  554                         (void) lua_settable(state, -3);
  555                 }
  556                 break;
  557         }
  558         case DATA_TYPE_UINT64_ARRAY: {
  559                 uint64_t *intarr;
  560                 uint_t nelem;
  561                 (void) nvpair_value_uint64_array(pair, &intarr, &nelem);
  562                 lua_newtable(state);
  563                 for (int i = 0; i < nelem; i++) {
  564                         (void) lua_pushinteger(state, i + 1);
  565                         (void) lua_pushinteger(state, intarr[i]);
  566                         (void) lua_settable(state, -3);
  567                 }
  568                 break;
  569         }
  570         case DATA_TYPE_INT64_ARRAY: {
  571                 int64_t *intarr;
  572                 uint_t nelem;
  573                 (void) nvpair_value_int64_array(pair, &intarr, &nelem);
  574                 lua_newtable(state);
  575                 for (int i = 0; i < nelem; i++) {
  576                         (void) lua_pushinteger(state, i + 1);
  577                         (void) lua_pushinteger(state, intarr[i]);
  578                         (void) lua_settable(state, -3);
  579                 }
  580                 break;
  581         }
  582         default: {
  583                 if (errbuf != NULL) {
  584                         (void) snprintf(errbuf, errbuf_len,
  585                             "Unhandled nvpair type %d for key '%s'",
  586                             nvpair_type(pair), nvpair_name(pair));
  587                 }
  588                 return (SET_ERROR(EINVAL));
  589         }
  590         }
  591         return (err);
  592 }
  593 
  594 int
  595 zcp_dataset_hold_error(lua_State *state, dsl_pool_t *dp, const char *dsname,
  596     int error)
  597 {
  598         if (error == ENOENT) {
  599                 (void) zcp_argerror(state, 1, "no such dataset '%s'", dsname);
  600                 return (0); /* not reached; zcp_argerror will longjmp */
  601         } else if (error == EXDEV) {
  602                 (void) zcp_argerror(state, 1,
  603                     "dataset '%s' is not in the target pool '%s'",
  604                     dsname, spa_name(dp->dp_spa));
  605                 return (0); /* not reached; zcp_argerror will longjmp */
  606         } else if (error == EIO) {
  607                 (void) luaL_error(state,
  608                     "I/O error while accessing dataset '%s'", dsname);
  609                 return (0); /* not reached; luaL_error will longjmp */
  610         } else if (error != 0) {
  611                 (void) luaL_error(state,
  612                     "unexpected error %d while accessing dataset '%s'",
  613                     error, dsname);
  614                 return (0); /* not reached; luaL_error will longjmp */
  615         }
  616         return (0);
  617 }
  618 
  619 /*
  620  * Note: will longjmp (via lua_error()) on error.
  621  * Assumes that the dsname is argument #1 (for error reporting purposes).
  622  */
  623 dsl_dataset_t *
  624 zcp_dataset_hold(lua_State *state, dsl_pool_t *dp, const char *dsname,
  625     const void *tag)
  626 {
  627         dsl_dataset_t *ds;
  628         int error = dsl_dataset_hold(dp, dsname, tag, &ds);
  629         (void) zcp_dataset_hold_error(state, dp, dsname, error);
  630         return (ds);
  631 }
  632 
  633 static int zcp_debug(lua_State *);
  634 static const zcp_lib_info_t zcp_debug_info = {
  635         .name = "debug",
  636         .func = zcp_debug,
  637         .pargs = {
  638             { .za_name = "debug string", .za_lua_type = LUA_TSTRING },
  639             {NULL, 0}
  640         },
  641         .kwargs = {
  642             {NULL, 0}
  643         }
  644 };
  645 
  646 static int
  647 zcp_debug(lua_State *state)
  648 {
  649         const char *dbgstring;
  650         zcp_run_info_t *ri = zcp_run_info(state);
  651         const zcp_lib_info_t *libinfo = &zcp_debug_info;
  652 
  653         zcp_parse_args(state, libinfo->name, libinfo->pargs, libinfo->kwargs);
  654 
  655         dbgstring = lua_tostring(state, 1);
  656 
  657         zfs_dbgmsg("txg %lld ZCP: %s", (longlong_t)ri->zri_tx->tx_txg,
  658             dbgstring);
  659 
  660         return (0);
  661 }
  662 
  663 static int zcp_exists(lua_State *);
  664 static const zcp_lib_info_t zcp_exists_info = {
  665         .name = "exists",
  666         .func = zcp_exists,
  667         .pargs = {
  668             { .za_name = "dataset", .za_lua_type = LUA_TSTRING },
  669             {NULL, 0}
  670         },
  671         .kwargs = {
  672             {NULL, 0}
  673         }
  674 };
  675 
  676 static int
  677 zcp_exists(lua_State *state)
  678 {
  679         zcp_run_info_t *ri = zcp_run_info(state);
  680         dsl_pool_t *dp = ri->zri_pool;
  681         const zcp_lib_info_t *libinfo = &zcp_exists_info;
  682 
  683         zcp_parse_args(state, libinfo->name, libinfo->pargs, libinfo->kwargs);
  684 
  685         const char *dsname = lua_tostring(state, 1);
  686 
  687         dsl_dataset_t *ds;
  688         int error = dsl_dataset_hold(dp, dsname, FTAG, &ds);
  689         if (error == 0) {
  690                 dsl_dataset_rele(ds, FTAG);
  691                 lua_pushboolean(state, B_TRUE);
  692         } else if (error == ENOENT) {
  693                 lua_pushboolean(state, B_FALSE);
  694         } else if (error == EXDEV) {
  695                 return (luaL_error(state, "dataset '%s' is not in the "
  696                     "target pool", dsname));
  697         } else if (error == EIO) {
  698                 return (luaL_error(state, "I/O error opening dataset '%s'",
  699                     dsname));
  700         } else if (error != 0) {
  701                 return (luaL_error(state, "unexpected error %d", error));
  702         }
  703 
  704         return (1);
  705 }
  706 
  707 /*
  708  * Allocate/realloc/free a buffer for the lua interpreter.
  709  *
  710  * When nsize is 0, behaves as free() and returns NULL.
  711  *
  712  * If ptr is NULL, behaves as malloc() and returns an allocated buffer of size
  713  * at least nsize.
  714  *
  715  * Otherwise, behaves as realloc(), changing the allocation from osize to nsize.
  716  * Shrinking the buffer size never fails.
  717  *
  718  * The original allocated buffer size is stored as a uint64 at the beginning of
  719  * the buffer to avoid actually reallocating when shrinking a buffer, since lua
  720  * requires that this operation never fail.
  721  */
  722 static void *
  723 zcp_lua_alloc(void *ud, void *ptr, size_t osize, size_t nsize)
  724 {
  725         zcp_alloc_arg_t *allocargs = ud;
  726 
  727         if (nsize == 0) {
  728                 if (ptr != NULL) {
  729                         int64_t *allocbuf = (int64_t *)ptr - 1;
  730                         int64_t allocsize = *allocbuf;
  731                         ASSERT3S(allocsize, >, 0);
  732                         ASSERT3S(allocargs->aa_alloc_remaining + allocsize, <=,
  733                             allocargs->aa_alloc_limit);
  734                         allocargs->aa_alloc_remaining += allocsize;
  735                         vmem_free(allocbuf, allocsize);
  736                 }
  737                 return (NULL);
  738         } else if (ptr == NULL) {
  739                 int64_t *allocbuf;
  740                 int64_t allocsize = nsize + sizeof (int64_t);
  741 
  742                 if (!allocargs->aa_must_succeed &&
  743                     (allocsize <= 0 ||
  744                     allocsize > allocargs->aa_alloc_remaining)) {
  745                         return (NULL);
  746                 }
  747 
  748                 allocbuf = vmem_alloc(allocsize, KM_SLEEP);
  749                 allocargs->aa_alloc_remaining -= allocsize;
  750 
  751                 *allocbuf = allocsize;
  752                 return (allocbuf + 1);
  753         } else if (nsize <= osize) {
  754                 /*
  755                  * If shrinking the buffer, lua requires that the reallocation
  756                  * never fail.
  757                  */
  758                 return (ptr);
  759         } else {
  760                 ASSERT3U(nsize, >, osize);
  761 
  762                 uint64_t *luabuf = zcp_lua_alloc(ud, NULL, 0, nsize);
  763                 if (luabuf == NULL) {
  764                         return (NULL);
  765                 }
  766                 (void) memcpy(luabuf, ptr, osize);
  767                 VERIFY3P(zcp_lua_alloc(ud, ptr, osize, 0), ==, NULL);
  768                 return (luabuf);
  769         }
  770 }
  771 
  772 static void
  773 zcp_lua_counthook(lua_State *state, lua_Debug *ar)
  774 {
  775         (void) ar;
  776         lua_getfield(state, LUA_REGISTRYINDEX, ZCP_RUN_INFO_KEY);
  777         zcp_run_info_t *ri = lua_touserdata(state, -1);
  778 
  779         /*
  780          * Check if we were canceled while waiting for the
  781          * txg to sync or from our open context thread
  782          */
  783         if (ri->zri_canceled ||
  784             (!ri->zri_sync && issig(JUSTLOOKING) && issig(FORREAL))) {
  785                 ri->zri_canceled = B_TRUE;
  786                 (void) lua_pushstring(state, "Channel program was canceled.");
  787                 (void) lua_error(state);
  788                 /* Unreachable */
  789         }
  790 
  791         /*
  792          * Check how many instructions the channel program has
  793          * executed so far, and compare against the limit.
  794          */
  795         ri->zri_curinstrs += zfs_lua_check_instrlimit_interval;
  796         if (ri->zri_maxinstrs != 0 && ri->zri_curinstrs > ri->zri_maxinstrs) {
  797                 ri->zri_timed_out = B_TRUE;
  798                 (void) lua_pushstring(state,
  799                     "Channel program timed out.");
  800                 (void) lua_error(state);
  801                 /* Unreachable */
  802         }
  803 }
  804 
  805 static int
  806 zcp_panic_cb(lua_State *state)
  807 {
  808         panic("unprotected error in call to Lua API (%s)\n",
  809             lua_tostring(state, -1));
  810         return (0);
  811 }
  812 
  813 static void
  814 zcp_eval_impl(dmu_tx_t *tx, zcp_run_info_t *ri)
  815 {
  816         int err;
  817         lua_State *state = ri->zri_state;
  818 
  819         VERIFY3U(3, ==, lua_gettop(state));
  820 
  821         /* finish initializing our runtime state */
  822         ri->zri_pool = dmu_tx_pool(tx);
  823         ri->zri_tx = tx;
  824         list_create(&ri->zri_cleanup_handlers, sizeof (zcp_cleanup_handler_t),
  825             offsetof(zcp_cleanup_handler_t, zch_node));
  826 
  827         /*
  828          * Store the zcp_run_info_t struct for this run in the Lua registry.
  829          * Registry entries are not directly accessible by the Lua scripts but
  830          * can be accessed by our callbacks.
  831          */
  832         lua_pushlightuserdata(state, ri);
  833         lua_setfield(state, LUA_REGISTRYINDEX, ZCP_RUN_INFO_KEY);
  834         VERIFY3U(3, ==, lua_gettop(state));
  835 
  836         /*
  837          * Tell the Lua interpreter to call our handler every count
  838          * instructions. Channel programs that execute too many instructions
  839          * should die with ETIME.
  840          */
  841         (void) lua_sethook(state, zcp_lua_counthook, LUA_MASKCOUNT,
  842             zfs_lua_check_instrlimit_interval);
  843 
  844         /*
  845          * Tell the Lua memory allocator to stop using KM_SLEEP before handing
  846          * off control to the channel program. Channel programs that use too
  847          * much memory should die with ENOSPC.
  848          */
  849         ri->zri_allocargs->aa_must_succeed = B_FALSE;
  850 
  851         /*
  852          * Call the Lua function that open-context passed us. This pops the
  853          * function and its input from the stack and pushes any return
  854          * or error values.
  855          */
  856         err = lua_pcall(state, 1, LUA_MULTRET, 1);
  857 
  858         /*
  859          * Let Lua use KM_SLEEP while we interpret the return values.
  860          */
  861         ri->zri_allocargs->aa_must_succeed = B_TRUE;
  862 
  863         /*
  864          * Remove the error handler callback from the stack. At this point,
  865          * there shouldn't be any cleanup handler registered in the handler
  866          * list (zri_cleanup_handlers), regardless of whether it ran or not.
  867          */
  868         list_destroy(&ri->zri_cleanup_handlers);
  869         lua_remove(state, 1);
  870 
  871         switch (err) {
  872         case LUA_OK: {
  873                 /*
  874                  * Lua supports returning multiple values in a single return
  875                  * statement.  Return values will have been pushed onto the
  876                  * stack:
  877                  * 1: Return value 1
  878                  * 2: Return value 2
  879                  * 3: etc...
  880                  * To simplify the process of retrieving a return value from a
  881                  * channel program, we disallow returning more than one value
  882                  * to ZFS from the Lua script, yielding a singleton return
  883                  * nvlist of the form { "return": Return value 1 }.
  884                  */
  885                 int return_count = lua_gettop(state);
  886 
  887                 if (return_count == 1) {
  888                         ri->zri_result = 0;
  889                         zcp_convert_return_values(state, ri->zri_outnvl,
  890                             ZCP_RET_RETURN, &ri->zri_result);
  891                 } else if (return_count > 1) {
  892                         ri->zri_result = SET_ERROR(ECHRNG);
  893                         lua_settop(state, 0);
  894                         (void) lua_pushfstring(state, "Multiple return "
  895                             "values not supported");
  896                         zcp_convert_return_values(state, ri->zri_outnvl,
  897                             ZCP_RET_ERROR, &ri->zri_result);
  898                 }
  899                 break;
  900         }
  901         case LUA_ERRRUN:
  902         case LUA_ERRGCMM: {
  903                 /*
  904                  * The channel program encountered a fatal error within the
  905                  * script, such as failing an assertion, or calling a function
  906                  * with incompatible arguments. The error value and the
  907                  * traceback generated by zcp_error_handler() should be on the
  908                  * stack.
  909                  */
  910                 VERIFY3U(1, ==, lua_gettop(state));
  911                 if (ri->zri_timed_out) {
  912                         ri->zri_result = SET_ERROR(ETIME);
  913                 } else if (ri->zri_canceled) {
  914                         ri->zri_result = SET_ERROR(EINTR);
  915                 } else {
  916                         ri->zri_result = SET_ERROR(ECHRNG);
  917                 }
  918 
  919                 zcp_convert_return_values(state, ri->zri_outnvl,
  920                     ZCP_RET_ERROR, &ri->zri_result);
  921 
  922                 if (ri->zri_result == ETIME && ri->zri_outnvl != NULL) {
  923                         (void) nvlist_add_uint64(ri->zri_outnvl,
  924                             ZCP_ARG_INSTRLIMIT, ri->zri_curinstrs);
  925                 }
  926                 break;
  927         }
  928         case LUA_ERRERR: {
  929                 /*
  930                  * The channel program encountered a fatal error within the
  931                  * script, and we encountered another error while trying to
  932                  * compute the traceback in zcp_error_handler(). We can only
  933                  * return the error message.
  934                  */
  935                 VERIFY3U(1, ==, lua_gettop(state));
  936                 if (ri->zri_timed_out) {
  937                         ri->zri_result = SET_ERROR(ETIME);
  938                 } else if (ri->zri_canceled) {
  939                         ri->zri_result = SET_ERROR(EINTR);
  940                 } else {
  941                         ri->zri_result = SET_ERROR(ECHRNG);
  942                 }
  943 
  944                 zcp_convert_return_values(state, ri->zri_outnvl,
  945                     ZCP_RET_ERROR, &ri->zri_result);
  946                 break;
  947         }
  948         case LUA_ERRMEM:
  949                 /*
  950                  * Lua ran out of memory while running the channel program.
  951                  * There's not much we can do.
  952                  */
  953                 ri->zri_result = SET_ERROR(ENOSPC);
  954                 break;
  955         default:
  956                 VERIFY0(err);
  957         }
  958 }
  959 
  960 static void
  961 zcp_pool_error(zcp_run_info_t *ri, const char *poolname, int error)
  962 {
  963         ri->zri_result = SET_ERROR(ECHRNG);
  964         lua_settop(ri->zri_state, 0);
  965         (void) lua_pushfstring(ri->zri_state, "Could not open pool: %s "
  966             "errno: %d", poolname, error);
  967         zcp_convert_return_values(ri->zri_state, ri->zri_outnvl,
  968             ZCP_RET_ERROR, &ri->zri_result);
  969 
  970 }
  971 
  972 /*
  973  * This callback is called when txg_wait_synced_sig encountered a signal.
  974  * The txg_wait_synced_sig will continue to wait for the txg to complete
  975  * after calling this callback.
  976  */
  977 static void
  978 zcp_eval_sig(void *arg, dmu_tx_t *tx)
  979 {
  980         (void) tx;
  981         zcp_run_info_t *ri = arg;
  982 
  983         ri->zri_canceled = B_TRUE;
  984 }
  985 
  986 static void
  987 zcp_eval_sync(void *arg, dmu_tx_t *tx)
  988 {
  989         zcp_run_info_t *ri = arg;
  990 
  991         /*
  992          * Open context should have setup the stack to contain:
  993          * 1: Error handler callback
  994          * 2: Script to run (converted to a Lua function)
  995          * 3: nvlist input to function (converted to Lua table or nil)
  996          */
  997         VERIFY3U(3, ==, lua_gettop(ri->zri_state));
  998 
  999         zcp_eval_impl(tx, ri);
 1000 }
 1001 
 1002 static void
 1003 zcp_eval_open(zcp_run_info_t *ri, const char *poolname)
 1004 {
 1005         int error;
 1006         dsl_pool_t *dp;
 1007         dmu_tx_t *tx;
 1008 
 1009         /*
 1010          * See comment from the same assertion in zcp_eval_sync().
 1011          */
 1012         VERIFY3U(3, ==, lua_gettop(ri->zri_state));
 1013 
 1014         error = dsl_pool_hold(poolname, FTAG, &dp);
 1015         if (error != 0) {
 1016                 zcp_pool_error(ri, poolname, error);
 1017                 return;
 1018         }
 1019 
 1020         /*
 1021          * As we are running in open-context, we have no transaction associated
 1022          * with the channel program. At the same time, functions from the
 1023          * zfs.check submodule need to be associated with a transaction as
 1024          * they are basically dry-runs of their counterparts in the zfs.sync
 1025          * submodule. These functions should be able to run in open-context.
 1026          * Therefore we create a new transaction that we later abort once
 1027          * the channel program has been evaluated.
 1028          */
 1029         tx = dmu_tx_create_dd(dp->dp_mos_dir);
 1030 
 1031         zcp_eval_impl(tx, ri);
 1032 
 1033         dmu_tx_abort(tx);
 1034 
 1035         dsl_pool_rele(dp, FTAG);
 1036 }
 1037 
 1038 int
 1039 zcp_eval(const char *poolname, const char *program, boolean_t sync,
 1040     uint64_t instrlimit, uint64_t memlimit, nvpair_t *nvarg, nvlist_t *outnvl)
 1041 {
 1042         int err;
 1043         lua_State *state;
 1044         zcp_run_info_t runinfo;
 1045 
 1046         if (instrlimit > zfs_lua_max_instrlimit)
 1047                 return (SET_ERROR(EINVAL));
 1048         if (memlimit == 0 || memlimit > zfs_lua_max_memlimit)
 1049                 return (SET_ERROR(EINVAL));
 1050 
 1051         zcp_alloc_arg_t allocargs = {
 1052                 .aa_must_succeed = B_TRUE,
 1053                 .aa_alloc_remaining = (int64_t)memlimit,
 1054                 .aa_alloc_limit = (int64_t)memlimit,
 1055         };
 1056 
 1057         /*
 1058          * Creates a Lua state with a memory allocator that uses KM_SLEEP.
 1059          * This should never fail.
 1060          */
 1061         state = lua_newstate(zcp_lua_alloc, &allocargs);
 1062         VERIFY(state != NULL);
 1063         (void) lua_atpanic(state, zcp_panic_cb);
 1064 
 1065         /*
 1066          * Load core Lua libraries we want access to.
 1067          */
 1068         VERIFY3U(1, ==, luaopen_base(state));
 1069         lua_pop(state, 1);
 1070         VERIFY3U(1, ==, luaopen_coroutine(state));
 1071         lua_setglobal(state, LUA_COLIBNAME);
 1072         VERIFY0(lua_gettop(state));
 1073         VERIFY3U(1, ==, luaopen_string(state));
 1074         lua_setglobal(state, LUA_STRLIBNAME);
 1075         VERIFY0(lua_gettop(state));
 1076         VERIFY3U(1, ==, luaopen_table(state));
 1077         lua_setglobal(state, LUA_TABLIBNAME);
 1078         VERIFY0(lua_gettop(state));
 1079 
 1080         /*
 1081          * Load globally visible variables such as errno aliases.
 1082          */
 1083         zcp_load_globals(state);
 1084         VERIFY0(lua_gettop(state));
 1085 
 1086         /*
 1087          * Load ZFS-specific modules.
 1088          */
 1089         lua_newtable(state);
 1090         VERIFY3U(1, ==, zcp_load_list_lib(state));
 1091         lua_setfield(state, -2, "list");
 1092         VERIFY3U(1, ==, zcp_load_synctask_lib(state, B_FALSE));
 1093         lua_setfield(state, -2, "check");
 1094         VERIFY3U(1, ==, zcp_load_synctask_lib(state, B_TRUE));
 1095         lua_setfield(state, -2, "sync");
 1096         VERIFY3U(1, ==, zcp_load_get_lib(state));
 1097         lua_pushcclosure(state, zcp_debug_info.func, 0);
 1098         lua_setfield(state, -2, zcp_debug_info.name);
 1099         lua_pushcclosure(state, zcp_exists_info.func, 0);
 1100         lua_setfield(state, -2, zcp_exists_info.name);
 1101         lua_setglobal(state, "zfs");
 1102         VERIFY0(lua_gettop(state));
 1103 
 1104         /*
 1105          * Push the error-callback that calculates Lua stack traces on
 1106          * unexpected failures.
 1107          */
 1108         lua_pushcfunction(state, zcp_error_handler);
 1109         VERIFY3U(1, ==, lua_gettop(state));
 1110 
 1111         /*
 1112          * Load the actual script as a function onto the stack as text ("t").
 1113          * The only valid error condition is a syntax error in the script.
 1114          * ERRMEM should not be possible because our allocator is using
 1115          * KM_SLEEP.  ERRGCMM should not be possible because we have not added
 1116          * any objects with __gc metamethods to the interpreter that could
 1117          * fail.
 1118          */
 1119         err = luaL_loadbufferx(state, program, strlen(program),
 1120             "channel program", "t");
 1121         if (err == LUA_ERRSYNTAX) {
 1122                 fnvlist_add_string(outnvl, ZCP_RET_ERROR,
 1123                     lua_tostring(state, -1));
 1124                 lua_close(state);
 1125                 return (SET_ERROR(EINVAL));
 1126         }
 1127         VERIFY0(err);
 1128         VERIFY3U(2, ==, lua_gettop(state));
 1129 
 1130         /*
 1131          * Convert the input nvlist to a Lua object and put it on top of the
 1132          * stack.
 1133          */
 1134         char errmsg[128];
 1135         err = zcp_nvpair_value_to_lua(state, nvarg,
 1136             errmsg, sizeof (errmsg));
 1137         if (err != 0) {
 1138                 fnvlist_add_string(outnvl, ZCP_RET_ERROR, errmsg);
 1139                 lua_close(state);
 1140                 return (SET_ERROR(EINVAL));
 1141         }
 1142         VERIFY3U(3, ==, lua_gettop(state));
 1143 
 1144         runinfo.zri_state = state;
 1145         runinfo.zri_allocargs = &allocargs;
 1146         runinfo.zri_outnvl = outnvl;
 1147         runinfo.zri_result = 0;
 1148         runinfo.zri_cred = CRED();
 1149         runinfo.zri_proc = curproc;
 1150         runinfo.zri_timed_out = B_FALSE;
 1151         runinfo.zri_canceled = B_FALSE;
 1152         runinfo.zri_sync = sync;
 1153         runinfo.zri_space_used = 0;
 1154         runinfo.zri_curinstrs = 0;
 1155         runinfo.zri_maxinstrs = instrlimit;
 1156         runinfo.zri_new_zvols = fnvlist_alloc();
 1157 
 1158         if (sync) {
 1159                 err = dsl_sync_task_sig(poolname, NULL, zcp_eval_sync,
 1160                     zcp_eval_sig, &runinfo, 0, ZFS_SPACE_CHECK_ZCP_EVAL);
 1161                 if (err != 0)
 1162                         zcp_pool_error(&runinfo, poolname, err);
 1163         } else {
 1164                 zcp_eval_open(&runinfo, poolname);
 1165         }
 1166         lua_close(state);
 1167 
 1168         /*
 1169          * Create device minor nodes for any new zvols.
 1170          */
 1171         for (nvpair_t *pair = nvlist_next_nvpair(runinfo.zri_new_zvols, NULL);
 1172             pair != NULL;
 1173             pair = nvlist_next_nvpair(runinfo.zri_new_zvols, pair)) {
 1174                 zvol_create_minor(nvpair_name(pair));
 1175         }
 1176         fnvlist_free(runinfo.zri_new_zvols);
 1177 
 1178         return (runinfo.zri_result);
 1179 }
 1180 
 1181 /*
 1182  * Retrieve metadata about the currently running channel program.
 1183  */
 1184 zcp_run_info_t *
 1185 zcp_run_info(lua_State *state)
 1186 {
 1187         zcp_run_info_t *ri;
 1188 
 1189         lua_getfield(state, LUA_REGISTRYINDEX, ZCP_RUN_INFO_KEY);
 1190         ri = lua_touserdata(state, -1);
 1191         lua_pop(state, 1);
 1192         return (ri);
 1193 }
 1194 
 1195 /*
 1196  * Argument Parsing
 1197  * ================
 1198  *
 1199  * The Lua language allows methods to be called with any number
 1200  * of arguments of any type. When calling back into ZFS we need to sanitize
 1201  * arguments from channel programs to make sure unexpected arguments or
 1202  * arguments of the wrong type result in clear error messages. To do this
 1203  * in a uniform way all callbacks from channel programs should use the
 1204  * zcp_parse_args() function to interpret inputs.
 1205  *
 1206  * Positional vs Keyword Arguments
 1207  * ===============================
 1208  *
 1209  * Every callback function takes a fixed set of required positional arguments
 1210  * and optional keyword arguments. For example, the destroy function takes
 1211  * a single positional string argument (the name of the dataset to destroy)
 1212  * and an optional "defer" keyword boolean argument. When calling lua functions
 1213  * with parentheses, only positional arguments can be used:
 1214  *
 1215  *     zfs.sync.snapshot("rpool@snap")
 1216  *
 1217  * To use keyword arguments functions should be called with a single argument
 1218  * that is a lua table containing mappings of integer -> positional arguments
 1219  * and string -> keyword arguments:
 1220  *
 1221  *     zfs.sync.snapshot({1="rpool@snap", defer=true})
 1222  *
 1223  * The lua language allows curly braces to be used in place of parenthesis as
 1224  * syntactic sugar for this calling convention:
 1225  *
 1226  *     zfs.sync.snapshot{"rpool@snap", defer=true}
 1227  */
 1228 
 1229 /*
 1230  * Throw an error and print the given arguments.  If there are too many
 1231  * arguments to fit in the output buffer, only the error format string is
 1232  * output.
 1233  */
 1234 static void
 1235 zcp_args_error(lua_State *state, const char *fname, const zcp_arg_t *pargs,
 1236     const zcp_arg_t *kwargs, const char *fmt, ...)
 1237 {
 1238         int i;
 1239         char errmsg[512];
 1240         size_t len = sizeof (errmsg);
 1241         size_t msglen = 0;
 1242         va_list argp;
 1243 
 1244         va_start(argp, fmt);
 1245         VERIFY3U(len, >, vsnprintf(errmsg, len, fmt, argp));
 1246         va_end(argp);
 1247 
 1248         /*
 1249          * Calculate the total length of the final string, including extra
 1250          * formatting characters. If the argument dump would be too large,
 1251          * only print the error string.
 1252          */
 1253         msglen = strlen(errmsg);
 1254         msglen += strlen(fname) + 4; /* : + {} + null terminator */
 1255         for (i = 0; pargs[i].za_name != NULL; i++) {
 1256                 msglen += strlen(pargs[i].za_name);
 1257                 msglen += strlen(lua_typename(state, pargs[i].za_lua_type));
 1258                 if (pargs[i + 1].za_name != NULL || kwargs[0].za_name != NULL)
 1259                         msglen += 5; /* < + ( + )> + , */
 1260                 else
 1261                         msglen += 4; /* < + ( + )> */
 1262         }
 1263         for (i = 0; kwargs[i].za_name != NULL; i++) {
 1264                 msglen += strlen(kwargs[i].za_name);
 1265                 msglen += strlen(lua_typename(state, kwargs[i].za_lua_type));
 1266                 if (kwargs[i + 1].za_name != NULL)
 1267                         msglen += 4; /* =( + ) + , */
 1268                 else
 1269                         msglen += 3; /* =( + ) */
 1270         }
 1271 
 1272         if (msglen >= len)
 1273                 (void) luaL_error(state, errmsg);
 1274 
 1275         VERIFY3U(len, >, strlcat(errmsg, ": ", len));
 1276         VERIFY3U(len, >, strlcat(errmsg, fname, len));
 1277         VERIFY3U(len, >, strlcat(errmsg, "{", len));
 1278         for (i = 0; pargs[i].za_name != NULL; i++) {
 1279                 VERIFY3U(len, >, strlcat(errmsg, "<", len));
 1280                 VERIFY3U(len, >, strlcat(errmsg, pargs[i].za_name, len));
 1281                 VERIFY3U(len, >, strlcat(errmsg, "(", len));
 1282                 VERIFY3U(len, >, strlcat(errmsg,
 1283                     lua_typename(state, pargs[i].za_lua_type), len));
 1284                 VERIFY3U(len, >, strlcat(errmsg, ")>", len));
 1285                 if (pargs[i + 1].za_name != NULL || kwargs[0].za_name != NULL) {
 1286                         VERIFY3U(len, >, strlcat(errmsg, ", ", len));
 1287                 }
 1288         }
 1289         for (i = 0; kwargs[i].za_name != NULL; i++) {
 1290                 VERIFY3U(len, >, strlcat(errmsg, kwargs[i].za_name, len));
 1291                 VERIFY3U(len, >, strlcat(errmsg, "=(", len));
 1292                 VERIFY3U(len, >, strlcat(errmsg,
 1293                     lua_typename(state, kwargs[i].za_lua_type), len));
 1294                 VERIFY3U(len, >, strlcat(errmsg, ")", len));
 1295                 if (kwargs[i + 1].za_name != NULL) {
 1296                         VERIFY3U(len, >, strlcat(errmsg, ", ", len));
 1297                 }
 1298         }
 1299         VERIFY3U(len, >, strlcat(errmsg, "}", len));
 1300 
 1301         (void) luaL_error(state, errmsg);
 1302         panic("unreachable code");
 1303 }
 1304 
 1305 static void
 1306 zcp_parse_table_args(lua_State *state, const char *fname,
 1307     const zcp_arg_t *pargs, const zcp_arg_t *kwargs)
 1308 {
 1309         int i;
 1310         int type;
 1311 
 1312         for (i = 0; pargs[i].za_name != NULL; i++) {
 1313                 /*
 1314                  * Check the table for this positional argument, leaving it
 1315                  * on the top of the stack once we finish validating it.
 1316                  */
 1317                 lua_pushinteger(state, i + 1);
 1318                 lua_gettable(state, 1);
 1319 
 1320                 type = lua_type(state, -1);
 1321                 if (type == LUA_TNIL) {
 1322                         zcp_args_error(state, fname, pargs, kwargs,
 1323                             "too few arguments");
 1324                         panic("unreachable code");
 1325                 } else if (type != pargs[i].za_lua_type) {
 1326                         zcp_args_error(state, fname, pargs, kwargs,
 1327                             "arg %d wrong type (is '%s', expected '%s')",
 1328                             i + 1, lua_typename(state, type),
 1329                             lua_typename(state, pargs[i].za_lua_type));
 1330                         panic("unreachable code");
 1331                 }
 1332 
 1333                 /*
 1334                  * Remove the positional argument from the table.
 1335                  */
 1336                 lua_pushinteger(state, i + 1);
 1337                 lua_pushnil(state);
 1338                 lua_settable(state, 1);
 1339         }
 1340 
 1341         for (i = 0; kwargs[i].za_name != NULL; i++) {
 1342                 /*
 1343                  * Check the table for this keyword argument, which may be
 1344                  * nil if it was omitted. Leave the value on the top of
 1345                  * the stack after validating it.
 1346                  */
 1347                 lua_getfield(state, 1, kwargs[i].za_name);
 1348 
 1349                 type = lua_type(state, -1);
 1350                 if (type != LUA_TNIL && type != kwargs[i].za_lua_type) {
 1351                         zcp_args_error(state, fname, pargs, kwargs,
 1352                             "kwarg '%s' wrong type (is '%s', expected '%s')",
 1353                             kwargs[i].za_name, lua_typename(state, type),
 1354                             lua_typename(state, kwargs[i].za_lua_type));
 1355                         panic("unreachable code");
 1356                 }
 1357 
 1358                 /*
 1359                  * Remove the keyword argument from the table.
 1360                  */
 1361                 lua_pushnil(state);
 1362                 lua_setfield(state, 1, kwargs[i].za_name);
 1363         }
 1364 
 1365         /*
 1366          * Any entries remaining in the table are invalid inputs, print
 1367          * an error message based on what the entry is.
 1368          */
 1369         lua_pushnil(state);
 1370         if (lua_next(state, 1)) {
 1371                 if (lua_isnumber(state, -2) && lua_tointeger(state, -2) > 0) {
 1372                         zcp_args_error(state, fname, pargs, kwargs,
 1373                             "too many positional arguments");
 1374                 } else if (lua_isstring(state, -2)) {
 1375                         zcp_args_error(state, fname, pargs, kwargs,
 1376                             "invalid kwarg '%s'", lua_tostring(state, -2));
 1377                 } else {
 1378                         zcp_args_error(state, fname, pargs, kwargs,
 1379                             "kwarg keys must be strings");
 1380                 }
 1381                 panic("unreachable code");
 1382         }
 1383 
 1384         lua_remove(state, 1);
 1385 }
 1386 
 1387 static void
 1388 zcp_parse_pos_args(lua_State *state, const char *fname, const zcp_arg_t *pargs,
 1389     const zcp_arg_t *kwargs)
 1390 {
 1391         int i;
 1392         int type;
 1393 
 1394         for (i = 0; pargs[i].za_name != NULL; i++) {
 1395                 type = lua_type(state, i + 1);
 1396                 if (type == LUA_TNONE) {
 1397                         zcp_args_error(state, fname, pargs, kwargs,
 1398                             "too few arguments");
 1399                         panic("unreachable code");
 1400                 } else if (type != pargs[i].za_lua_type) {
 1401                         zcp_args_error(state, fname, pargs, kwargs,
 1402                             "arg %d wrong type (is '%s', expected '%s')",
 1403                             i + 1, lua_typename(state, type),
 1404                             lua_typename(state, pargs[i].za_lua_type));
 1405                         panic("unreachable code");
 1406                 }
 1407         }
 1408         if (lua_gettop(state) != i) {
 1409                 zcp_args_error(state, fname, pargs, kwargs,
 1410                     "too many positional arguments");
 1411                 panic("unreachable code");
 1412         }
 1413 
 1414         for (i = 0; kwargs[i].za_name != NULL; i++) {
 1415                 lua_pushnil(state);
 1416         }
 1417 }
 1418 
 1419 /*
 1420  * Checks the current Lua stack against an expected set of positional and
 1421  * keyword arguments. If the stack does not match the expected arguments
 1422  * aborts the current channel program with a useful error message, otherwise
 1423  * it re-arranges the stack so that it contains the positional arguments
 1424  * followed by the keyword argument values in declaration order. Any missing
 1425  * keyword argument will be represented by a nil value on the stack.
 1426  *
 1427  * If the stack contains exactly one argument of type LUA_TTABLE the curly
 1428  * braces calling convention is assumed, otherwise the stack is parsed for
 1429  * positional arguments only.
 1430  *
 1431  * This function should be used by every function callback. It should be called
 1432  * before the callback manipulates the Lua stack as it assumes the stack
 1433  * represents the function arguments.
 1434  */
 1435 void
 1436 zcp_parse_args(lua_State *state, const char *fname, const zcp_arg_t *pargs,
 1437     const zcp_arg_t *kwargs)
 1438 {
 1439         if (lua_gettop(state) == 1 && lua_istable(state, 1)) {
 1440                 zcp_parse_table_args(state, fname, pargs, kwargs);
 1441         } else {
 1442                 zcp_parse_pos_args(state, fname, pargs, kwargs);
 1443         }
 1444 }
 1445 
 1446 ZFS_MODULE_PARAM(zfs_lua, zfs_lua_, max_instrlimit, U64, ZMOD_RW,
 1447         "Max instruction limit that can be specified for a channel program");
 1448 
 1449 ZFS_MODULE_PARAM(zfs_lua, zfs_lua_, max_memlimit, U64, ZMOD_RW,
 1450         "Max memory limit that can be specified for a channel program");

Cache object: 338033f7ae284a8b025174f50847ccb4


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.