The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/contrib/openzfs/module/zfs/zfs_vnops.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * CDDL HEADER START
    3  *
    4  * The contents of this file are subject to the terms of the
    5  * Common Development and Distribution License (the "License").
    6  * You may not use this file except in compliance with the License.
    7  *
    8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
    9  * or https://opensource.org/licenses/CDDL-1.0.
   10  * See the License for the specific language governing permissions
   11  * and limitations under the License.
   12  *
   13  * When distributing Covered Code, include this CDDL HEADER in each
   14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
   15  * If applicable, add the following below this CDDL HEADER, with the
   16  * fields enclosed by brackets "[]" replaced with your own identifying
   17  * information: Portions Copyright [yyyy] [name of copyright owner]
   18  *
   19  * CDDL HEADER END
   20  */
   21 
   22 /*
   23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
   24  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
   25  * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
   26  * Copyright 2017 Nexenta Systems, Inc.
   27  */
   28 
   29 /* Portions Copyright 2007 Jeremy Teo */
   30 /* Portions Copyright 2010 Robert Milkowski */
   31 
   32 #include <sys/types.h>
   33 #include <sys/param.h>
   34 #include <sys/time.h>
   35 #include <sys/sysmacros.h>
   36 #include <sys/vfs.h>
   37 #include <sys/uio_impl.h>
   38 #include <sys/file.h>
   39 #include <sys/stat.h>
   40 #include <sys/kmem.h>
   41 #include <sys/cmn_err.h>
   42 #include <sys/errno.h>
   43 #include <sys/zfs_dir.h>
   44 #include <sys/zfs_acl.h>
   45 #include <sys/zfs_ioctl.h>
   46 #include <sys/fs/zfs.h>
   47 #include <sys/dmu.h>
   48 #include <sys/dmu_objset.h>
   49 #include <sys/spa.h>
   50 #include <sys/txg.h>
   51 #include <sys/dbuf.h>
   52 #include <sys/policy.h>
   53 #include <sys/zfs_vnops.h>
   54 #include <sys/zfs_quota.h>
   55 #include <sys/zfs_vfsops.h>
   56 #include <sys/zfs_znode.h>
   57 
   58 
   59 static ulong_t zfs_fsync_sync_cnt = 4;
   60 
   61 int
   62 zfs_fsync(znode_t *zp, int syncflag, cred_t *cr)
   63 {
   64         int error = 0;
   65         zfsvfs_t *zfsvfs = ZTOZSB(zp);
   66 
   67         (void) tsd_set(zfs_fsyncer_key, (void *)(uintptr_t)zfs_fsync_sync_cnt);
   68 
   69         if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
   70                 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
   71                         goto out;
   72                 atomic_inc_32(&zp->z_sync_writes_cnt);
   73                 zil_commit(zfsvfs->z_log, zp->z_id);
   74                 atomic_dec_32(&zp->z_sync_writes_cnt);
   75                 zfs_exit(zfsvfs, FTAG);
   76         }
   77 out:
   78         tsd_set(zfs_fsyncer_key, NULL);
   79 
   80         return (error);
   81 }
   82 
   83 
   84 #if defined(SEEK_HOLE) && defined(SEEK_DATA)
   85 /*
   86  * Lseek support for finding holes (cmd == SEEK_HOLE) and
   87  * data (cmd == SEEK_DATA). "off" is an in/out parameter.
   88  */
   89 static int
   90 zfs_holey_common(znode_t *zp, ulong_t cmd, loff_t *off)
   91 {
   92         zfs_locked_range_t *lr;
   93         uint64_t noff = (uint64_t)*off; /* new offset */
   94         uint64_t file_sz;
   95         int error;
   96         boolean_t hole;
   97 
   98         file_sz = zp->z_size;
   99         if (noff >= file_sz)  {
  100                 return (SET_ERROR(ENXIO));
  101         }
  102 
  103         if (cmd == F_SEEK_HOLE)
  104                 hole = B_TRUE;
  105         else
  106                 hole = B_FALSE;
  107 
  108         /* Flush any mmap()'d data to disk */
  109         if (zn_has_cached_data(zp))
  110                 zn_flush_cached_data(zp, B_FALSE);
  111 
  112         lr = zfs_rangelock_enter(&zp->z_rangelock, 0, file_sz, RL_READER);
  113         error = dmu_offset_next(ZTOZSB(zp)->z_os, zp->z_id, hole, &noff);
  114         zfs_rangelock_exit(lr);
  115 
  116         if (error == ESRCH)
  117                 return (SET_ERROR(ENXIO));
  118 
  119         /* File was dirty, so fall back to using generic logic */
  120         if (error == EBUSY) {
  121                 if (hole)
  122                         *off = file_sz;
  123 
  124                 return (0);
  125         }
  126 
  127         /*
  128          * We could find a hole that begins after the logical end-of-file,
  129          * because dmu_offset_next() only works on whole blocks.  If the
  130          * EOF falls mid-block, then indicate that the "virtual hole"
  131          * at the end of the file begins at the logical EOF, rather than
  132          * at the end of the last block.
  133          */
  134         if (noff > file_sz) {
  135                 ASSERT(hole);
  136                 noff = file_sz;
  137         }
  138 
  139         if (noff < *off)
  140                 return (error);
  141         *off = noff;
  142         return (error);
  143 }
  144 
  145 int
  146 zfs_holey(znode_t *zp, ulong_t cmd, loff_t *off)
  147 {
  148         zfsvfs_t *zfsvfs = ZTOZSB(zp);
  149         int error;
  150 
  151         if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
  152                 return (error);
  153 
  154         error = zfs_holey_common(zp, cmd, off);
  155 
  156         zfs_exit(zfsvfs, FTAG);
  157         return (error);
  158 }
  159 #endif /* SEEK_HOLE && SEEK_DATA */
  160 
  161 int
  162 zfs_access(znode_t *zp, int mode, int flag, cred_t *cr)
  163 {
  164         zfsvfs_t *zfsvfs = ZTOZSB(zp);
  165         int error;
  166 
  167         if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
  168                 return (error);
  169 
  170         if (flag & V_ACE_MASK)
  171 #if defined(__linux__)
  172                 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr,
  173                     kcred->user_ns);
  174 #else
  175                 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr,
  176                     NULL);
  177 #endif
  178         else
  179 #if defined(__linux__)
  180                 error = zfs_zaccess_rwx(zp, mode, flag, cr, kcred->user_ns);
  181 #else
  182                 error = zfs_zaccess_rwx(zp, mode, flag, cr, NULL);
  183 #endif
  184 
  185         zfs_exit(zfsvfs, FTAG);
  186         return (error);
  187 }
  188 
  189 static uint64_t zfs_vnops_read_chunk_size = 1024 * 1024; /* Tunable */
  190 
  191 /*
  192  * Read bytes from specified file into supplied buffer.
  193  *
  194  *      IN:     zp      - inode of file to be read from.
  195  *              uio     - structure supplying read location, range info,
  196  *                        and return buffer.
  197  *              ioflag  - O_SYNC flags; used to provide FRSYNC semantics.
  198  *                        O_DIRECT flag; used to bypass page cache.
  199  *              cr      - credentials of caller.
  200  *
  201  *      OUT:    uio     - updated offset and range, buffer filled.
  202  *
  203  *      RETURN: 0 on success, error code on failure.
  204  *
  205  * Side Effects:
  206  *      inode - atime updated if byte count > 0
  207  */
  208 int
  209 zfs_read(struct znode *zp, zfs_uio_t *uio, int ioflag, cred_t *cr)
  210 {
  211         (void) cr;
  212         int error = 0;
  213         boolean_t frsync = B_FALSE;
  214 
  215         zfsvfs_t *zfsvfs = ZTOZSB(zp);
  216         if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
  217                 return (error);
  218 
  219         if (zp->z_pflags & ZFS_AV_QUARANTINED) {
  220                 zfs_exit(zfsvfs, FTAG);
  221                 return (SET_ERROR(EACCES));
  222         }
  223 
  224         /* We don't copy out anything useful for directories. */
  225         if (Z_ISDIR(ZTOTYPE(zp))) {
  226                 zfs_exit(zfsvfs, FTAG);
  227                 return (SET_ERROR(EISDIR));
  228         }
  229 
  230         /*
  231          * Validate file offset
  232          */
  233         if (zfs_uio_offset(uio) < (offset_t)0) {
  234                 zfs_exit(zfsvfs, FTAG);
  235                 return (SET_ERROR(EINVAL));
  236         }
  237 
  238         /*
  239          * Fasttrack empty reads
  240          */
  241         if (zfs_uio_resid(uio) == 0) {
  242                 zfs_exit(zfsvfs, FTAG);
  243                 return (0);
  244         }
  245 
  246 #ifdef FRSYNC
  247         /*
  248          * If we're in FRSYNC mode, sync out this znode before reading it.
  249          * Only do this for non-snapshots.
  250          *
  251          * Some platforms do not support FRSYNC and instead map it
  252          * to O_SYNC, which results in unnecessary calls to zil_commit. We
  253          * only honor FRSYNC requests on platforms which support it.
  254          */
  255         frsync = !!(ioflag & FRSYNC);
  256 #endif
  257         if (zfsvfs->z_log &&
  258             (frsync || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS))
  259                 zil_commit(zfsvfs->z_log, zp->z_id);
  260 
  261         /*
  262          * Lock the range against changes.
  263          */
  264         zfs_locked_range_t *lr = zfs_rangelock_enter(&zp->z_rangelock,
  265             zfs_uio_offset(uio), zfs_uio_resid(uio), RL_READER);
  266 
  267         /*
  268          * If we are reading past end-of-file we can skip
  269          * to the end; but we might still need to set atime.
  270          */
  271         if (zfs_uio_offset(uio) >= zp->z_size) {
  272                 error = 0;
  273                 goto out;
  274         }
  275 
  276         ASSERT(zfs_uio_offset(uio) < zp->z_size);
  277 #if defined(__linux__)
  278         ssize_t start_offset = zfs_uio_offset(uio);
  279 #endif
  280         ssize_t n = MIN(zfs_uio_resid(uio), zp->z_size - zfs_uio_offset(uio));
  281         ssize_t start_resid = n;
  282 
  283         while (n > 0) {
  284                 ssize_t nbytes = MIN(n, zfs_vnops_read_chunk_size -
  285                     P2PHASE(zfs_uio_offset(uio), zfs_vnops_read_chunk_size));
  286 #ifdef UIO_NOCOPY
  287                 if (zfs_uio_segflg(uio) == UIO_NOCOPY)
  288                         error = mappedread_sf(zp, nbytes, uio);
  289                 else
  290 #endif
  291                 if (zn_has_cached_data(zp) && !(ioflag & O_DIRECT)) {
  292                         error = mappedread(zp, nbytes, uio);
  293                 } else {
  294                         error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
  295                             uio, nbytes);
  296                 }
  297 
  298                 if (error) {
  299                         /* convert checksum errors into IO errors */
  300                         if (error == ECKSUM)
  301                                 error = SET_ERROR(EIO);
  302 
  303 #if defined(__linux__)
  304                         /*
  305                          * if we actually read some bytes, bubbling EFAULT
  306                          * up to become EAGAIN isn't what we want here...
  307                          *
  308                          * ...on Linux, at least. On FBSD, doing this breaks.
  309                          */
  310                         if (error == EFAULT &&
  311                             (zfs_uio_offset(uio) - start_offset) != 0)
  312                                 error = 0;
  313 #endif
  314                         break;
  315                 }
  316 
  317                 n -= nbytes;
  318         }
  319 
  320         int64_t nread = start_resid - n;
  321         dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, nread);
  322         task_io_account_read(nread);
  323 out:
  324         zfs_rangelock_exit(lr);
  325 
  326         ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
  327         zfs_exit(zfsvfs, FTAG);
  328         return (error);
  329 }
  330 
  331 static void
  332 zfs_clear_setid_bits_if_necessary(zfsvfs_t *zfsvfs, znode_t *zp, cred_t *cr,
  333     uint64_t *clear_setid_bits_txgp, dmu_tx_t *tx)
  334 {
  335         zilog_t *zilog = zfsvfs->z_log;
  336         const uint64_t uid = KUID_TO_SUID(ZTOUID(zp));
  337 
  338         ASSERT(clear_setid_bits_txgp != NULL);
  339         ASSERT(tx != NULL);
  340 
  341         /*
  342          * Clear Set-UID/Set-GID bits on successful write if not
  343          * privileged and at least one of the execute bits is set.
  344          *
  345          * It would be nice to do this after all writes have
  346          * been done, but that would still expose the ISUID/ISGID
  347          * to another app after the partial write is committed.
  348          *
  349          * Note: we don't call zfs_fuid_map_id() here because
  350          * user 0 is not an ephemeral uid.
  351          */
  352         mutex_enter(&zp->z_acl_lock);
  353         if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | (S_IXUSR >> 6))) != 0 &&
  354             (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
  355             secpolicy_vnode_setid_retain(zp, cr,
  356             ((zp->z_mode & S_ISUID) != 0 && uid == 0)) != 0) {
  357                 uint64_t newmode;
  358 
  359                 zp->z_mode &= ~(S_ISUID | S_ISGID);
  360                 newmode = zp->z_mode;
  361                 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
  362                     (void *)&newmode, sizeof (uint64_t), tx);
  363 
  364                 mutex_exit(&zp->z_acl_lock);
  365 
  366                 /*
  367                  * Make sure SUID/SGID bits will be removed when we replay the
  368                  * log. If the setid bits are keep coming back, don't log more
  369                  * than one TX_SETATTR per transaction group.
  370                  */
  371                 if (*clear_setid_bits_txgp != dmu_tx_get_txg(tx)) {
  372                         vattr_t va = {0};
  373 
  374                         va.va_mask = ATTR_MODE;
  375                         va.va_nodeid = zp->z_id;
  376                         va.va_mode = newmode;
  377                         zfs_log_setattr(zilog, tx, TX_SETATTR, zp, &va,
  378                             ATTR_MODE, NULL);
  379                         *clear_setid_bits_txgp = dmu_tx_get_txg(tx);
  380                 }
  381         } else {
  382                 mutex_exit(&zp->z_acl_lock);
  383         }
  384 }
  385 
  386 /*
  387  * Write the bytes to a file.
  388  *
  389  *      IN:     zp      - znode of file to be written to.
  390  *              uio     - structure supplying write location, range info,
  391  *                        and data buffer.
  392  *              ioflag  - O_APPEND flag set if in append mode.
  393  *                        O_DIRECT flag; used to bypass page cache.
  394  *              cr      - credentials of caller.
  395  *
  396  *      OUT:    uio     - updated offset and range.
  397  *
  398  *      RETURN: 0 if success
  399  *              error code if failure
  400  *
  401  * Timestamps:
  402  *      ip - ctime|mtime updated if byte count > 0
  403  */
  404 int
  405 zfs_write(znode_t *zp, zfs_uio_t *uio, int ioflag, cred_t *cr)
  406 {
  407         int error = 0, error1;
  408         ssize_t start_resid = zfs_uio_resid(uio);
  409         uint64_t clear_setid_bits_txg = 0;
  410 
  411         /*
  412          * Fasttrack empty write
  413          */
  414         ssize_t n = start_resid;
  415         if (n == 0)
  416                 return (0);
  417 
  418         zfsvfs_t *zfsvfs = ZTOZSB(zp);
  419         if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
  420                 return (error);
  421 
  422         sa_bulk_attr_t bulk[4];
  423         int count = 0;
  424         uint64_t mtime[2], ctime[2];
  425         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
  426         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
  427         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
  428             &zp->z_size, 8);
  429         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
  430             &zp->z_pflags, 8);
  431 
  432         /*
  433          * Callers might not be able to detect properly that we are read-only,
  434          * so check it explicitly here.
  435          */
  436         if (zfs_is_readonly(zfsvfs)) {
  437                 zfs_exit(zfsvfs, FTAG);
  438                 return (SET_ERROR(EROFS));
  439         }
  440 
  441         /*
  442          * If immutable or not appending then return EPERM.
  443          * Intentionally allow ZFS_READONLY through here.
  444          * See zfs_zaccess_common()
  445          */
  446         if ((zp->z_pflags & ZFS_IMMUTABLE) ||
  447             ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & O_APPEND) &&
  448             (zfs_uio_offset(uio) < zp->z_size))) {
  449                 zfs_exit(zfsvfs, FTAG);
  450                 return (SET_ERROR(EPERM));
  451         }
  452 
  453         /*
  454          * Validate file offset
  455          */
  456         offset_t woff = ioflag & O_APPEND ? zp->z_size : zfs_uio_offset(uio);
  457         if (woff < 0) {
  458                 zfs_exit(zfsvfs, FTAG);
  459                 return (SET_ERROR(EINVAL));
  460         }
  461 
  462         const uint64_t max_blksz = zfsvfs->z_max_blksz;
  463 
  464         /*
  465          * Pre-fault the pages to ensure slow (eg NFS) pages
  466          * don't hold up txg.
  467          * Skip this if uio contains loaned arc_buf.
  468          */
  469         if (zfs_uio_prefaultpages(MIN(n, max_blksz), uio)) {
  470                 zfs_exit(zfsvfs, FTAG);
  471                 return (SET_ERROR(EFAULT));
  472         }
  473 
  474         /*
  475          * If in append mode, set the io offset pointer to eof.
  476          */
  477         zfs_locked_range_t *lr;
  478         if (ioflag & O_APPEND) {
  479                 /*
  480                  * Obtain an appending range lock to guarantee file append
  481                  * semantics.  We reset the write offset once we have the lock.
  482                  */
  483                 lr = zfs_rangelock_enter(&zp->z_rangelock, 0, n, RL_APPEND);
  484                 woff = lr->lr_offset;
  485                 if (lr->lr_length == UINT64_MAX) {
  486                         /*
  487                          * We overlocked the file because this write will cause
  488                          * the file block size to increase.
  489                          * Note that zp_size cannot change with this lock held.
  490                          */
  491                         woff = zp->z_size;
  492                 }
  493                 zfs_uio_setoffset(uio, woff);
  494         } else {
  495                 /*
  496                  * Note that if the file block size will change as a result of
  497                  * this write, then this range lock will lock the entire file
  498                  * so that we can re-write the block safely.
  499                  */
  500                 lr = zfs_rangelock_enter(&zp->z_rangelock, woff, n, RL_WRITER);
  501         }
  502 
  503         if (zn_rlimit_fsize(zp, uio)) {
  504                 zfs_rangelock_exit(lr);
  505                 zfs_exit(zfsvfs, FTAG);
  506                 return (SET_ERROR(EFBIG));
  507         }
  508 
  509         const rlim64_t limit = MAXOFFSET_T;
  510 
  511         if (woff >= limit) {
  512                 zfs_rangelock_exit(lr);
  513                 zfs_exit(zfsvfs, FTAG);
  514                 return (SET_ERROR(EFBIG));
  515         }
  516 
  517         if (n > limit - woff)
  518                 n = limit - woff;
  519 
  520         uint64_t end_size = MAX(zp->z_size, woff + n);
  521         zilog_t *zilog = zfsvfs->z_log;
  522 
  523         const uint64_t uid = KUID_TO_SUID(ZTOUID(zp));
  524         const uint64_t gid = KGID_TO_SGID(ZTOGID(zp));
  525         const uint64_t projid = zp->z_projid;
  526 
  527         /*
  528          * Write the file in reasonable size chunks.  Each chunk is written
  529          * in a separate transaction; this keeps the intent log records small
  530          * and allows us to do more fine-grained space accounting.
  531          */
  532         while (n > 0) {
  533                 woff = zfs_uio_offset(uio);
  534 
  535                 if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT, uid) ||
  536                     zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT, gid) ||
  537                     (projid != ZFS_DEFAULT_PROJID &&
  538                     zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT,
  539                     projid))) {
  540                         error = SET_ERROR(EDQUOT);
  541                         break;
  542                 }
  543 
  544                 arc_buf_t *abuf = NULL;
  545                 if (n >= max_blksz && woff >= zp->z_size &&
  546                     P2PHASE(woff, max_blksz) == 0 &&
  547                     zp->z_blksz == max_blksz) {
  548                         /*
  549                          * This write covers a full block.  "Borrow" a buffer
  550                          * from the dmu so that we can fill it before we enter
  551                          * a transaction.  This avoids the possibility of
  552                          * holding up the transaction if the data copy hangs
  553                          * up on a pagefault (e.g., from an NFS server mapping).
  554                          */
  555                         size_t cbytes;
  556 
  557                         abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
  558                             max_blksz);
  559                         ASSERT(abuf != NULL);
  560                         ASSERT(arc_buf_size(abuf) == max_blksz);
  561                         if ((error = zfs_uiocopy(abuf->b_data, max_blksz,
  562                             UIO_WRITE, uio, &cbytes))) {
  563                                 dmu_return_arcbuf(abuf);
  564                                 break;
  565                         }
  566                         ASSERT3S(cbytes, ==, max_blksz);
  567                 }
  568 
  569                 /*
  570                  * Start a transaction.
  571                  */
  572                 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
  573                 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
  574                 dmu_buf_impl_t *db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl);
  575                 DB_DNODE_ENTER(db);
  576                 dmu_tx_hold_write_by_dnode(tx, DB_DNODE(db), woff,
  577                     MIN(n, max_blksz));
  578                 DB_DNODE_EXIT(db);
  579                 zfs_sa_upgrade_txholds(tx, zp);
  580                 error = dmu_tx_assign(tx, TXG_WAIT);
  581                 if (error) {
  582                         dmu_tx_abort(tx);
  583                         if (abuf != NULL)
  584                                 dmu_return_arcbuf(abuf);
  585                         break;
  586                 }
  587 
  588                 /*
  589                  * NB: We must call zfs_clear_setid_bits_if_necessary before
  590                  * committing the transaction!
  591                  */
  592 
  593                 /*
  594                  * If rangelock_enter() over-locked we grow the blocksize
  595                  * and then reduce the lock range.  This will only happen
  596                  * on the first iteration since rangelock_reduce() will
  597                  * shrink down lr_length to the appropriate size.
  598                  */
  599                 if (lr->lr_length == UINT64_MAX) {
  600                         uint64_t new_blksz;
  601 
  602                         if (zp->z_blksz > max_blksz) {
  603                                 /*
  604                                  * File's blocksize is already larger than the
  605                                  * "recordsize" property.  Only let it grow to
  606                                  * the next power of 2.
  607                                  */
  608                                 ASSERT(!ISP2(zp->z_blksz));
  609                                 new_blksz = MIN(end_size,
  610                                     1 << highbit64(zp->z_blksz));
  611                         } else {
  612                                 new_blksz = MIN(end_size, max_blksz);
  613                         }
  614                         zfs_grow_blocksize(zp, new_blksz, tx);
  615                         zfs_rangelock_reduce(lr, woff, n);
  616                 }
  617 
  618                 /*
  619                  * XXX - should we really limit each write to z_max_blksz?
  620                  * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
  621                  */
  622                 const ssize_t nbytes =
  623                     MIN(n, max_blksz - P2PHASE(woff, max_blksz));
  624 
  625                 ssize_t tx_bytes;
  626                 if (abuf == NULL) {
  627                         tx_bytes = zfs_uio_resid(uio);
  628                         zfs_uio_fault_disable(uio, B_TRUE);
  629                         error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
  630                             uio, nbytes, tx);
  631                         zfs_uio_fault_disable(uio, B_FALSE);
  632 #ifdef __linux__
  633                         if (error == EFAULT) {
  634                                 zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
  635                                     cr, &clear_setid_bits_txg, tx);
  636                                 dmu_tx_commit(tx);
  637                                 /*
  638                                  * Account for partial writes before
  639                                  * continuing the loop.
  640                                  * Update needs to occur before the next
  641                                  * zfs_uio_prefaultpages, or prefaultpages may
  642                                  * error, and we may break the loop early.
  643                                  */
  644                                 if (tx_bytes != zfs_uio_resid(uio))
  645                                         n -= tx_bytes - zfs_uio_resid(uio);
  646                                 if (zfs_uio_prefaultpages(MIN(n, max_blksz),
  647                                     uio)) {
  648                                         break;
  649                                 }
  650                                 continue;
  651                         }
  652 #endif
  653                         /*
  654                          * On FreeBSD, EFAULT should be propagated back to the
  655                          * VFS, which will handle faulting and will retry.
  656                          */
  657                         if (error != 0 && error != EFAULT) {
  658                                 zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
  659                                     cr, &clear_setid_bits_txg, tx);
  660                                 dmu_tx_commit(tx);
  661                                 break;
  662                         }
  663                         tx_bytes -= zfs_uio_resid(uio);
  664                 } else {
  665                         /* Implied by abuf != NULL: */
  666                         ASSERT3S(n, >=, max_blksz);
  667                         ASSERT0(P2PHASE(woff, max_blksz));
  668                         /*
  669                          * We can simplify nbytes to MIN(n, max_blksz) since
  670                          * P2PHASE(woff, max_blksz) is 0, and knowing
  671                          * n >= max_blksz lets us simplify further:
  672                          */
  673                         ASSERT3S(nbytes, ==, max_blksz);
  674                         /*
  675                          * Thus, we're writing a full block at a block-aligned
  676                          * offset and extending the file past EOF.
  677                          *
  678                          * dmu_assign_arcbuf_by_dbuf() will directly assign the
  679                          * arc buffer to a dbuf.
  680                          */
  681                         error = dmu_assign_arcbuf_by_dbuf(
  682                             sa_get_db(zp->z_sa_hdl), woff, abuf, tx);
  683                         if (error != 0) {
  684                                 /*
  685                                  * XXX This might not be necessary if
  686                                  * dmu_assign_arcbuf_by_dbuf is guaranteed
  687                                  * to be atomic.
  688                                  */
  689                                 zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
  690                                     cr, &clear_setid_bits_txg, tx);
  691                                 dmu_return_arcbuf(abuf);
  692                                 dmu_tx_commit(tx);
  693                                 break;
  694                         }
  695                         ASSERT3S(nbytes, <=, zfs_uio_resid(uio));
  696                         zfs_uioskip(uio, nbytes);
  697                         tx_bytes = nbytes;
  698                 }
  699                 if (tx_bytes && zn_has_cached_data(zp) &&
  700                     !(ioflag & O_DIRECT)) {
  701                         update_pages(zp, woff, tx_bytes, zfsvfs->z_os);
  702                 }
  703 
  704                 /*
  705                  * If we made no progress, we're done.  If we made even
  706                  * partial progress, update the znode and ZIL accordingly.
  707                  */
  708                 if (tx_bytes == 0) {
  709                         (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
  710                             (void *)&zp->z_size, sizeof (uint64_t), tx);
  711                         dmu_tx_commit(tx);
  712                         ASSERT(error != 0);
  713                         break;
  714                 }
  715 
  716                 zfs_clear_setid_bits_if_necessary(zfsvfs, zp, cr,
  717                     &clear_setid_bits_txg, tx);
  718 
  719                 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
  720 
  721                 /*
  722                  * Update the file size (zp_size) if it has changed;
  723                  * account for possible concurrent updates.
  724                  */
  725                 while ((end_size = zp->z_size) < zfs_uio_offset(uio)) {
  726                         (void) atomic_cas_64(&zp->z_size, end_size,
  727                             zfs_uio_offset(uio));
  728                         ASSERT(error == 0 || error == EFAULT);
  729                 }
  730                 /*
  731                  * If we are replaying and eof is non zero then force
  732                  * the file size to the specified eof. Note, there's no
  733                  * concurrency during replay.
  734                  */
  735                 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
  736                         zp->z_size = zfsvfs->z_replay_eof;
  737 
  738                 error1 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
  739                 if (error1 != 0)
  740                         /* Avoid clobbering EFAULT. */
  741                         error = error1;
  742 
  743                 /*
  744                  * NB: During replay, the TX_SETATTR record logged by
  745                  * zfs_clear_setid_bits_if_necessary must precede any of
  746                  * the TX_WRITE records logged here.
  747                  */
  748                 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag,
  749                     NULL, NULL);
  750 
  751                 dmu_tx_commit(tx);
  752 
  753                 if (error != 0)
  754                         break;
  755                 ASSERT3S(tx_bytes, ==, nbytes);
  756                 n -= nbytes;
  757 
  758                 if (n > 0) {
  759                         if (zfs_uio_prefaultpages(MIN(n, max_blksz), uio)) {
  760                                 error = SET_ERROR(EFAULT);
  761                                 break;
  762                         }
  763                 }
  764         }
  765 
  766         zfs_znode_update_vfs(zp);
  767         zfs_rangelock_exit(lr);
  768 
  769         /*
  770          * If we're in replay mode, or we made no progress, or the
  771          * uio data is inaccessible return an error.  Otherwise, it's
  772          * at least a partial write, so it's successful.
  773          */
  774         if (zfsvfs->z_replay || zfs_uio_resid(uio) == start_resid ||
  775             error == EFAULT) {
  776                 zfs_exit(zfsvfs, FTAG);
  777                 return (error);
  778         }
  779 
  780         if (ioflag & (O_SYNC | O_DSYNC) ||
  781             zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
  782                 zil_commit(zilog, zp->z_id);
  783 
  784         const int64_t nwritten = start_resid - zfs_uio_resid(uio);
  785         dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, nwritten);
  786         task_io_account_write(nwritten);
  787 
  788         zfs_exit(zfsvfs, FTAG);
  789         return (0);
  790 }
  791 
  792 int
  793 zfs_getsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr)
  794 {
  795         zfsvfs_t *zfsvfs = ZTOZSB(zp);
  796         int error;
  797         boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
  798 
  799         if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
  800                 return (error);
  801         error = zfs_getacl(zp, vsecp, skipaclchk, cr);
  802         zfs_exit(zfsvfs, FTAG);
  803 
  804         return (error);
  805 }
  806 
  807 int
  808 zfs_setsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr)
  809 {
  810         zfsvfs_t *zfsvfs = ZTOZSB(zp);
  811         int error;
  812         boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
  813         zilog_t *zilog = zfsvfs->z_log;
  814 
  815         if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
  816                 return (error);
  817 
  818         error = zfs_setacl(zp, vsecp, skipaclchk, cr);
  819 
  820         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
  821                 zil_commit(zilog, 0);
  822 
  823         zfs_exit(zfsvfs, FTAG);
  824         return (error);
  825 }
  826 
  827 #ifdef ZFS_DEBUG
  828 static int zil_fault_io = 0;
  829 #endif
  830 
  831 static void zfs_get_done(zgd_t *zgd, int error);
  832 
  833 /*
  834  * Get data to generate a TX_WRITE intent log record.
  835  */
  836 int
  837 zfs_get_data(void *arg, uint64_t gen, lr_write_t *lr, char *buf,
  838     struct lwb *lwb, zio_t *zio)
  839 {
  840         zfsvfs_t *zfsvfs = arg;
  841         objset_t *os = zfsvfs->z_os;
  842         znode_t *zp;
  843         uint64_t object = lr->lr_foid;
  844         uint64_t offset = lr->lr_offset;
  845         uint64_t size = lr->lr_length;
  846         dmu_buf_t *db;
  847         zgd_t *zgd;
  848         int error = 0;
  849         uint64_t zp_gen;
  850 
  851         ASSERT3P(lwb, !=, NULL);
  852         ASSERT3P(zio, !=, NULL);
  853         ASSERT3U(size, !=, 0);
  854 
  855         /*
  856          * Nothing to do if the file has been removed
  857          */
  858         if (zfs_zget(zfsvfs, object, &zp) != 0)
  859                 return (SET_ERROR(ENOENT));
  860         if (zp->z_unlinked) {
  861                 /*
  862                  * Release the vnode asynchronously as we currently have the
  863                  * txg stopped from syncing.
  864                  */
  865                 zfs_zrele_async(zp);
  866                 return (SET_ERROR(ENOENT));
  867         }
  868         /* check if generation number matches */
  869         if (sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
  870             sizeof (zp_gen)) != 0) {
  871                 zfs_zrele_async(zp);
  872                 return (SET_ERROR(EIO));
  873         }
  874         if (zp_gen != gen) {
  875                 zfs_zrele_async(zp);
  876                 return (SET_ERROR(ENOENT));
  877         }
  878 
  879         zgd = kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
  880         zgd->zgd_lwb = lwb;
  881         zgd->zgd_private = zp;
  882 
  883         /*
  884          * Write records come in two flavors: immediate and indirect.
  885          * For small writes it's cheaper to store the data with the
  886          * log record (immediate); for large writes it's cheaper to
  887          * sync the data and get a pointer to it (indirect) so that
  888          * we don't have to write the data twice.
  889          */
  890         if (buf != NULL) { /* immediate write */
  891                 zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock,
  892                     offset, size, RL_READER);
  893                 /* test for truncation needs to be done while range locked */
  894                 if (offset >= zp->z_size) {
  895                         error = SET_ERROR(ENOENT);
  896                 } else {
  897                         error = dmu_read(os, object, offset, size, buf,
  898                             DMU_READ_NO_PREFETCH);
  899                 }
  900                 ASSERT(error == 0 || error == ENOENT);
  901         } else { /* indirect write */
  902                 /*
  903                  * Have to lock the whole block to ensure when it's
  904                  * written out and its checksum is being calculated
  905                  * that no one can change the data. We need to re-check
  906                  * blocksize after we get the lock in case it's changed!
  907                  */
  908                 for (;;) {
  909                         uint64_t blkoff;
  910                         size = zp->z_blksz;
  911                         blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
  912                         offset -= blkoff;
  913                         zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock,
  914                             offset, size, RL_READER);
  915                         if (zp->z_blksz == size)
  916                                 break;
  917                         offset += blkoff;
  918                         zfs_rangelock_exit(zgd->zgd_lr);
  919                 }
  920                 /* test for truncation needs to be done while range locked */
  921                 if (lr->lr_offset >= zp->z_size)
  922                         error = SET_ERROR(ENOENT);
  923 #ifdef ZFS_DEBUG
  924                 if (zil_fault_io) {
  925                         error = SET_ERROR(EIO);
  926                         zil_fault_io = 0;
  927                 }
  928 #endif
  929                 if (error == 0)
  930                         error = dmu_buf_hold(os, object, offset, zgd, &db,
  931                             DMU_READ_NO_PREFETCH);
  932 
  933                 if (error == 0) {
  934                         blkptr_t *bp = &lr->lr_blkptr;
  935 
  936                         zgd->zgd_db = db;
  937                         zgd->zgd_bp = bp;
  938 
  939                         ASSERT(db->db_offset == offset);
  940                         ASSERT(db->db_size == size);
  941 
  942                         error = dmu_sync(zio, lr->lr_common.lrc_txg,
  943                             zfs_get_done, zgd);
  944                         ASSERT(error || lr->lr_length <= size);
  945 
  946                         /*
  947                          * On success, we need to wait for the write I/O
  948                          * initiated by dmu_sync() to complete before we can
  949                          * release this dbuf.  We will finish everything up
  950                          * in the zfs_get_done() callback.
  951                          */
  952                         if (error == 0)
  953                                 return (0);
  954 
  955                         if (error == EALREADY) {
  956                                 lr->lr_common.lrc_txtype = TX_WRITE2;
  957                                 /*
  958                                  * TX_WRITE2 relies on the data previously
  959                                  * written by the TX_WRITE that caused
  960                                  * EALREADY.  We zero out the BP because
  961                                  * it is the old, currently-on-disk BP.
  962                                  */
  963                                 zgd->zgd_bp = NULL;
  964                                 BP_ZERO(bp);
  965                                 error = 0;
  966                         }
  967                 }
  968         }
  969 
  970         zfs_get_done(zgd, error);
  971 
  972         return (error);
  973 }
  974 
  975 
  976 static void
  977 zfs_get_done(zgd_t *zgd, int error)
  978 {
  979         (void) error;
  980         znode_t *zp = zgd->zgd_private;
  981 
  982         if (zgd->zgd_db)
  983                 dmu_buf_rele(zgd->zgd_db, zgd);
  984 
  985         zfs_rangelock_exit(zgd->zgd_lr);
  986 
  987         /*
  988          * Release the vnode asynchronously as we currently have the
  989          * txg stopped from syncing.
  990          */
  991         zfs_zrele_async(zp);
  992 
  993         kmem_free(zgd, sizeof (zgd_t));
  994 }
  995 
  996 EXPORT_SYMBOL(zfs_access);
  997 EXPORT_SYMBOL(zfs_fsync);
  998 EXPORT_SYMBOL(zfs_holey);
  999 EXPORT_SYMBOL(zfs_read);
 1000 EXPORT_SYMBOL(zfs_write);
 1001 EXPORT_SYMBOL(zfs_getsecattr);
 1002 EXPORT_SYMBOL(zfs_setsecattr);
 1003 
 1004 ZFS_MODULE_PARAM(zfs_vnops, zfs_vnops_, read_chunk_size, U64, ZMOD_RW,
 1005         "Bytes to read per chunk");

Cache object: 439a691cb6ae81d26eb8598ac7ebe3ab


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.