1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24 * Copyright (c) 2014 Integros [integros.com]
25 * Copyright (c) 2018 Datto Inc.
26 */
27
28 /* Portions Copyright 2010 Robert Milkowski */
29
30 #include <sys/zfs_context.h>
31 #include <sys/spa.h>
32 #include <sys/spa_impl.h>
33 #include <sys/dmu.h>
34 #include <sys/zap.h>
35 #include <sys/arc.h>
36 #include <sys/stat.h>
37 #include <sys/zil.h>
38 #include <sys/zil_impl.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/vdev_impl.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/dsl_pool.h>
43 #include <sys/metaslab.h>
44 #include <sys/trace_zfs.h>
45 #include <sys/abd.h>
46 #include <sys/wmsum.h>
47
48 /*
49 * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system
50 * calls that change the file system. Each itx has enough information to
51 * be able to replay them after a system crash, power loss, or
52 * equivalent failure mode. These are stored in memory until either:
53 *
54 * 1. they are committed to the pool by the DMU transaction group
55 * (txg), at which point they can be discarded; or
56 * 2. they are committed to the on-disk ZIL for the dataset being
57 * modified (e.g. due to an fsync, O_DSYNC, or other synchronous
58 * requirement).
59 *
60 * In the event of a crash or power loss, the itxs contained by each
61 * dataset's on-disk ZIL will be replayed when that dataset is first
62 * instantiated (e.g. if the dataset is a normal filesystem, when it is
63 * first mounted).
64 *
65 * As hinted at above, there is one ZIL per dataset (both the in-memory
66 * representation, and the on-disk representation). The on-disk format
67 * consists of 3 parts:
68 *
69 * - a single, per-dataset, ZIL header; which points to a chain of
70 * - zero or more ZIL blocks; each of which contains
71 * - zero or more ZIL records
72 *
73 * A ZIL record holds the information necessary to replay a single
74 * system call transaction. A ZIL block can hold many ZIL records, and
75 * the blocks are chained together, similarly to a singly linked list.
76 *
77 * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL
78 * block in the chain, and the ZIL header points to the first block in
79 * the chain.
80 *
81 * Note, there is not a fixed place in the pool to hold these ZIL
82 * blocks; they are dynamically allocated and freed as needed from the
83 * blocks available on the pool, though they can be preferentially
84 * allocated from a dedicated "log" vdev.
85 */
86
87 /*
88 * This controls the amount of time that a ZIL block (lwb) will remain
89 * "open" when it isn't "full", and it has a thread waiting for it to be
90 * committed to stable storage. Please refer to the zil_commit_waiter()
91 * function (and the comments within it) for more details.
92 */
93 static uint_t zfs_commit_timeout_pct = 5;
94
95 /*
96 * Minimal time we care to delay commit waiting for more ZIL records.
97 * At least FreeBSD kernel can't sleep for less than 2us at its best.
98 * So requests to sleep for less then 5us is a waste of CPU time with
99 * a risk of significant log latency increase due to oversleep.
100 */
101 static uint64_t zil_min_commit_timeout = 5000;
102
103 /*
104 * See zil.h for more information about these fields.
105 */
106 static zil_kstat_values_t zil_stats = {
107 { "zil_commit_count", KSTAT_DATA_UINT64 },
108 { "zil_commit_writer_count", KSTAT_DATA_UINT64 },
109 { "zil_itx_count", KSTAT_DATA_UINT64 },
110 { "zil_itx_indirect_count", KSTAT_DATA_UINT64 },
111 { "zil_itx_indirect_bytes", KSTAT_DATA_UINT64 },
112 { "zil_itx_copied_count", KSTAT_DATA_UINT64 },
113 { "zil_itx_copied_bytes", KSTAT_DATA_UINT64 },
114 { "zil_itx_needcopy_count", KSTAT_DATA_UINT64 },
115 { "zil_itx_needcopy_bytes", KSTAT_DATA_UINT64 },
116 { "zil_itx_metaslab_normal_count", KSTAT_DATA_UINT64 },
117 { "zil_itx_metaslab_normal_bytes", KSTAT_DATA_UINT64 },
118 { "zil_itx_metaslab_slog_count", KSTAT_DATA_UINT64 },
119 { "zil_itx_metaslab_slog_bytes", KSTAT_DATA_UINT64 },
120 };
121
122 static zil_sums_t zil_sums_global;
123 static kstat_t *zil_kstats_global;
124
125 /*
126 * Disable intent logging replay. This global ZIL switch affects all pools.
127 */
128 int zil_replay_disable = 0;
129
130 /*
131 * Disable the DKIOCFLUSHWRITECACHE commands that are normally sent to
132 * the disk(s) by the ZIL after an LWB write has completed. Setting this
133 * will cause ZIL corruption on power loss if a volatile out-of-order
134 * write cache is enabled.
135 */
136 static int zil_nocacheflush = 0;
137
138 /*
139 * Limit SLOG write size per commit executed with synchronous priority.
140 * Any writes above that will be executed with lower (asynchronous) priority
141 * to limit potential SLOG device abuse by single active ZIL writer.
142 */
143 static uint64_t zil_slog_bulk = 768 * 1024;
144
145 static kmem_cache_t *zil_lwb_cache;
146 static kmem_cache_t *zil_zcw_cache;
147
148 #define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
149 sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
150
151 static int
152 zil_bp_compare(const void *x1, const void *x2)
153 {
154 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
155 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
156
157 int cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2));
158 if (likely(cmp))
159 return (cmp);
160
161 return (TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)));
162 }
163
164 static void
165 zil_bp_tree_init(zilog_t *zilog)
166 {
167 avl_create(&zilog->zl_bp_tree, zil_bp_compare,
168 sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
169 }
170
171 static void
172 zil_bp_tree_fini(zilog_t *zilog)
173 {
174 avl_tree_t *t = &zilog->zl_bp_tree;
175 zil_bp_node_t *zn;
176 void *cookie = NULL;
177
178 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
179 kmem_free(zn, sizeof (zil_bp_node_t));
180
181 avl_destroy(t);
182 }
183
184 int
185 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
186 {
187 avl_tree_t *t = &zilog->zl_bp_tree;
188 const dva_t *dva;
189 zil_bp_node_t *zn;
190 avl_index_t where;
191
192 if (BP_IS_EMBEDDED(bp))
193 return (0);
194
195 dva = BP_IDENTITY(bp);
196
197 if (avl_find(t, dva, &where) != NULL)
198 return (SET_ERROR(EEXIST));
199
200 zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
201 zn->zn_dva = *dva;
202 avl_insert(t, zn, where);
203
204 return (0);
205 }
206
207 static zil_header_t *
208 zil_header_in_syncing_context(zilog_t *zilog)
209 {
210 return ((zil_header_t *)zilog->zl_header);
211 }
212
213 static void
214 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
215 {
216 zio_cksum_t *zc = &bp->blk_cksum;
217
218 (void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_0],
219 sizeof (zc->zc_word[ZIL_ZC_GUID_0]));
220 (void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_1],
221 sizeof (zc->zc_word[ZIL_ZC_GUID_1]));
222 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
223 zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
224 }
225
226 static int
227 zil_kstats_global_update(kstat_t *ksp, int rw)
228 {
229 zil_kstat_values_t *zs = ksp->ks_data;
230 ASSERT3P(&zil_stats, ==, zs);
231
232 if (rw == KSTAT_WRITE) {
233 return (SET_ERROR(EACCES));
234 }
235
236 zil_kstat_values_update(zs, &zil_sums_global);
237
238 return (0);
239 }
240
241 /*
242 * Read a log block and make sure it's valid.
243 */
244 static int
245 zil_read_log_block(zilog_t *zilog, boolean_t decrypt, const blkptr_t *bp,
246 blkptr_t *nbp, void *dst, char **end)
247 {
248 zio_flag_t zio_flags = ZIO_FLAG_CANFAIL;
249 arc_flags_t aflags = ARC_FLAG_WAIT;
250 arc_buf_t *abuf = NULL;
251 zbookmark_phys_t zb;
252 int error;
253
254 if (zilog->zl_header->zh_claim_txg == 0)
255 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
256
257 if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
258 zio_flags |= ZIO_FLAG_SPECULATIVE;
259
260 if (!decrypt)
261 zio_flags |= ZIO_FLAG_RAW;
262
263 SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
264 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
265
266 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func,
267 &abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
268
269 if (error == 0) {
270 zio_cksum_t cksum = bp->blk_cksum;
271
272 /*
273 * Validate the checksummed log block.
274 *
275 * Sequence numbers should be... sequential. The checksum
276 * verifier for the next block should be bp's checksum plus 1.
277 *
278 * Also check the log chain linkage and size used.
279 */
280 cksum.zc_word[ZIL_ZC_SEQ]++;
281
282 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
283 zil_chain_t *zilc = abuf->b_data;
284 char *lr = (char *)(zilc + 1);
285 uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
286
287 if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
288 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
289 error = SET_ERROR(ECKSUM);
290 } else {
291 ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
292 memcpy(dst, lr, len);
293 *end = (char *)dst + len;
294 *nbp = zilc->zc_next_blk;
295 }
296 } else {
297 char *lr = abuf->b_data;
298 uint64_t size = BP_GET_LSIZE(bp);
299 zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
300
301 if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
302 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
303 (zilc->zc_nused > (size - sizeof (*zilc)))) {
304 error = SET_ERROR(ECKSUM);
305 } else {
306 ASSERT3U(zilc->zc_nused, <=,
307 SPA_OLD_MAXBLOCKSIZE);
308 memcpy(dst, lr, zilc->zc_nused);
309 *end = (char *)dst + zilc->zc_nused;
310 *nbp = zilc->zc_next_blk;
311 }
312 }
313
314 arc_buf_destroy(abuf, &abuf);
315 }
316
317 return (error);
318 }
319
320 /*
321 * Read a TX_WRITE log data block.
322 */
323 static int
324 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
325 {
326 zio_flag_t zio_flags = ZIO_FLAG_CANFAIL;
327 const blkptr_t *bp = &lr->lr_blkptr;
328 arc_flags_t aflags = ARC_FLAG_WAIT;
329 arc_buf_t *abuf = NULL;
330 zbookmark_phys_t zb;
331 int error;
332
333 if (BP_IS_HOLE(bp)) {
334 if (wbuf != NULL)
335 memset(wbuf, 0, MAX(BP_GET_LSIZE(bp), lr->lr_length));
336 return (0);
337 }
338
339 if (zilog->zl_header->zh_claim_txg == 0)
340 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
341
342 /*
343 * If we are not using the resulting data, we are just checking that
344 * it hasn't been corrupted so we don't need to waste CPU time
345 * decompressing and decrypting it.
346 */
347 if (wbuf == NULL)
348 zio_flags |= ZIO_FLAG_RAW;
349
350 ASSERT3U(BP_GET_LSIZE(bp), !=, 0);
351 SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
352 ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
353
354 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
355 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
356
357 if (error == 0) {
358 if (wbuf != NULL)
359 memcpy(wbuf, abuf->b_data, arc_buf_size(abuf));
360 arc_buf_destroy(abuf, &abuf);
361 }
362
363 return (error);
364 }
365
366 void
367 zil_sums_init(zil_sums_t *zs)
368 {
369 wmsum_init(&zs->zil_commit_count, 0);
370 wmsum_init(&zs->zil_commit_writer_count, 0);
371 wmsum_init(&zs->zil_itx_count, 0);
372 wmsum_init(&zs->zil_itx_indirect_count, 0);
373 wmsum_init(&zs->zil_itx_indirect_bytes, 0);
374 wmsum_init(&zs->zil_itx_copied_count, 0);
375 wmsum_init(&zs->zil_itx_copied_bytes, 0);
376 wmsum_init(&zs->zil_itx_needcopy_count, 0);
377 wmsum_init(&zs->zil_itx_needcopy_bytes, 0);
378 wmsum_init(&zs->zil_itx_metaslab_normal_count, 0);
379 wmsum_init(&zs->zil_itx_metaslab_normal_bytes, 0);
380 wmsum_init(&zs->zil_itx_metaslab_slog_count, 0);
381 wmsum_init(&zs->zil_itx_metaslab_slog_bytes, 0);
382 }
383
384 void
385 zil_sums_fini(zil_sums_t *zs)
386 {
387 wmsum_fini(&zs->zil_commit_count);
388 wmsum_fini(&zs->zil_commit_writer_count);
389 wmsum_fini(&zs->zil_itx_count);
390 wmsum_fini(&zs->zil_itx_indirect_count);
391 wmsum_fini(&zs->zil_itx_indirect_bytes);
392 wmsum_fini(&zs->zil_itx_copied_count);
393 wmsum_fini(&zs->zil_itx_copied_bytes);
394 wmsum_fini(&zs->zil_itx_needcopy_count);
395 wmsum_fini(&zs->zil_itx_needcopy_bytes);
396 wmsum_fini(&zs->zil_itx_metaslab_normal_count);
397 wmsum_fini(&zs->zil_itx_metaslab_normal_bytes);
398 wmsum_fini(&zs->zil_itx_metaslab_slog_count);
399 wmsum_fini(&zs->zil_itx_metaslab_slog_bytes);
400 }
401
402 void
403 zil_kstat_values_update(zil_kstat_values_t *zs, zil_sums_t *zil_sums)
404 {
405 zs->zil_commit_count.value.ui64 =
406 wmsum_value(&zil_sums->zil_commit_count);
407 zs->zil_commit_writer_count.value.ui64 =
408 wmsum_value(&zil_sums->zil_commit_writer_count);
409 zs->zil_itx_count.value.ui64 =
410 wmsum_value(&zil_sums->zil_itx_count);
411 zs->zil_itx_indirect_count.value.ui64 =
412 wmsum_value(&zil_sums->zil_itx_indirect_count);
413 zs->zil_itx_indirect_bytes.value.ui64 =
414 wmsum_value(&zil_sums->zil_itx_indirect_bytes);
415 zs->zil_itx_copied_count.value.ui64 =
416 wmsum_value(&zil_sums->zil_itx_copied_count);
417 zs->zil_itx_copied_bytes.value.ui64 =
418 wmsum_value(&zil_sums->zil_itx_copied_bytes);
419 zs->zil_itx_needcopy_count.value.ui64 =
420 wmsum_value(&zil_sums->zil_itx_needcopy_count);
421 zs->zil_itx_needcopy_bytes.value.ui64 =
422 wmsum_value(&zil_sums->zil_itx_needcopy_bytes);
423 zs->zil_itx_metaslab_normal_count.value.ui64 =
424 wmsum_value(&zil_sums->zil_itx_metaslab_normal_count);
425 zs->zil_itx_metaslab_normal_bytes.value.ui64 =
426 wmsum_value(&zil_sums->zil_itx_metaslab_normal_bytes);
427 zs->zil_itx_metaslab_slog_count.value.ui64 =
428 wmsum_value(&zil_sums->zil_itx_metaslab_slog_count);
429 zs->zil_itx_metaslab_slog_bytes.value.ui64 =
430 wmsum_value(&zil_sums->zil_itx_metaslab_slog_bytes);
431 }
432
433 /*
434 * Parse the intent log, and call parse_func for each valid record within.
435 */
436 int
437 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
438 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg,
439 boolean_t decrypt)
440 {
441 const zil_header_t *zh = zilog->zl_header;
442 boolean_t claimed = !!zh->zh_claim_txg;
443 uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
444 uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
445 uint64_t max_blk_seq = 0;
446 uint64_t max_lr_seq = 0;
447 uint64_t blk_count = 0;
448 uint64_t lr_count = 0;
449 blkptr_t blk, next_blk = {{{{0}}}};
450 char *lrbuf, *lrp;
451 int error = 0;
452
453 /*
454 * Old logs didn't record the maximum zh_claim_lr_seq.
455 */
456 if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
457 claim_lr_seq = UINT64_MAX;
458
459 /*
460 * Starting at the block pointed to by zh_log we read the log chain.
461 * For each block in the chain we strongly check that block to
462 * ensure its validity. We stop when an invalid block is found.
463 * For each block pointer in the chain we call parse_blk_func().
464 * For each record in each valid block we call parse_lr_func().
465 * If the log has been claimed, stop if we encounter a sequence
466 * number greater than the highest claimed sequence number.
467 */
468 lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
469 zil_bp_tree_init(zilog);
470
471 for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
472 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
473 int reclen;
474 char *end = NULL;
475
476 if (blk_seq > claim_blk_seq)
477 break;
478
479 error = parse_blk_func(zilog, &blk, arg, txg);
480 if (error != 0)
481 break;
482 ASSERT3U(max_blk_seq, <, blk_seq);
483 max_blk_seq = blk_seq;
484 blk_count++;
485
486 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
487 break;
488
489 error = zil_read_log_block(zilog, decrypt, &blk, &next_blk,
490 lrbuf, &end);
491 if (error != 0) {
492 if (claimed) {
493 char name[ZFS_MAX_DATASET_NAME_LEN];
494
495 dmu_objset_name(zilog->zl_os, name);
496
497 cmn_err(CE_WARN, "ZFS read log block error %d, "
498 "dataset %s, seq 0x%llx\n", error, name,
499 (u_longlong_t)blk_seq);
500 }
501 break;
502 }
503
504 for (lrp = lrbuf; lrp < end; lrp += reclen) {
505 lr_t *lr = (lr_t *)lrp;
506 reclen = lr->lrc_reclen;
507 ASSERT3U(reclen, >=, sizeof (lr_t));
508 if (lr->lrc_seq > claim_lr_seq)
509 goto done;
510
511 error = parse_lr_func(zilog, lr, arg, txg);
512 if (error != 0)
513 goto done;
514 ASSERT3U(max_lr_seq, <, lr->lrc_seq);
515 max_lr_seq = lr->lrc_seq;
516 lr_count++;
517 }
518 }
519 done:
520 zilog->zl_parse_error = error;
521 zilog->zl_parse_blk_seq = max_blk_seq;
522 zilog->zl_parse_lr_seq = max_lr_seq;
523 zilog->zl_parse_blk_count = blk_count;
524 zilog->zl_parse_lr_count = lr_count;
525
526 zil_bp_tree_fini(zilog);
527 zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
528
529 return (error);
530 }
531
532 static int
533 zil_clear_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
534 uint64_t first_txg)
535 {
536 (void) tx;
537 ASSERT(!BP_IS_HOLE(bp));
538
539 /*
540 * As we call this function from the context of a rewind to a
541 * checkpoint, each ZIL block whose txg is later than the txg
542 * that we rewind to is invalid. Thus, we return -1 so
543 * zil_parse() doesn't attempt to read it.
544 */
545 if (bp->blk_birth >= first_txg)
546 return (-1);
547
548 if (zil_bp_tree_add(zilog, bp) != 0)
549 return (0);
550
551 zio_free(zilog->zl_spa, first_txg, bp);
552 return (0);
553 }
554
555 static int
556 zil_noop_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
557 uint64_t first_txg)
558 {
559 (void) zilog, (void) lrc, (void) tx, (void) first_txg;
560 return (0);
561 }
562
563 static int
564 zil_claim_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
565 uint64_t first_txg)
566 {
567 /*
568 * Claim log block if not already committed and not already claimed.
569 * If tx == NULL, just verify that the block is claimable.
570 */
571 if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
572 zil_bp_tree_add(zilog, bp) != 0)
573 return (0);
574
575 return (zio_wait(zio_claim(NULL, zilog->zl_spa,
576 tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
577 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
578 }
579
580 static int
581 zil_claim_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
582 uint64_t first_txg)
583 {
584 lr_write_t *lr = (lr_write_t *)lrc;
585 int error;
586
587 if (lrc->lrc_txtype != TX_WRITE)
588 return (0);
589
590 /*
591 * If the block is not readable, don't claim it. This can happen
592 * in normal operation when a log block is written to disk before
593 * some of the dmu_sync() blocks it points to. In this case, the
594 * transaction cannot have been committed to anyone (we would have
595 * waited for all writes to be stable first), so it is semantically
596 * correct to declare this the end of the log.
597 */
598 if (lr->lr_blkptr.blk_birth >= first_txg) {
599 error = zil_read_log_data(zilog, lr, NULL);
600 if (error != 0)
601 return (error);
602 }
603
604 return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
605 }
606
607 static int
608 zil_free_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
609 uint64_t claim_txg)
610 {
611 (void) claim_txg;
612
613 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
614
615 return (0);
616 }
617
618 static int
619 zil_free_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
620 uint64_t claim_txg)
621 {
622 lr_write_t *lr = (lr_write_t *)lrc;
623 blkptr_t *bp = &lr->lr_blkptr;
624
625 /*
626 * If we previously claimed it, we need to free it.
627 */
628 if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
629 bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
630 !BP_IS_HOLE(bp))
631 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
632
633 return (0);
634 }
635
636 static int
637 zil_lwb_vdev_compare(const void *x1, const void *x2)
638 {
639 const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
640 const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
641
642 return (TREE_CMP(v1, v2));
643 }
644
645 static lwb_t *
646 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg,
647 boolean_t fastwrite)
648 {
649 lwb_t *lwb;
650
651 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
652 lwb->lwb_zilog = zilog;
653 lwb->lwb_blk = *bp;
654 lwb->lwb_fastwrite = fastwrite;
655 lwb->lwb_slog = slog;
656 lwb->lwb_state = LWB_STATE_CLOSED;
657 lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
658 lwb->lwb_max_txg = txg;
659 lwb->lwb_write_zio = NULL;
660 lwb->lwb_root_zio = NULL;
661 lwb->lwb_issued_timestamp = 0;
662 lwb->lwb_issued_txg = 0;
663 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
664 lwb->lwb_nused = sizeof (zil_chain_t);
665 lwb->lwb_sz = BP_GET_LSIZE(bp);
666 } else {
667 lwb->lwb_nused = 0;
668 lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
669 }
670
671 mutex_enter(&zilog->zl_lock);
672 list_insert_tail(&zilog->zl_lwb_list, lwb);
673 mutex_exit(&zilog->zl_lock);
674
675 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
676 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
677 VERIFY(list_is_empty(&lwb->lwb_waiters));
678 VERIFY(list_is_empty(&lwb->lwb_itxs));
679
680 return (lwb);
681 }
682
683 static void
684 zil_free_lwb(zilog_t *zilog, lwb_t *lwb)
685 {
686 ASSERT(MUTEX_HELD(&zilog->zl_lock));
687 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
688 VERIFY(list_is_empty(&lwb->lwb_waiters));
689 VERIFY(list_is_empty(&lwb->lwb_itxs));
690 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
691 ASSERT3P(lwb->lwb_write_zio, ==, NULL);
692 ASSERT3P(lwb->lwb_root_zio, ==, NULL);
693 ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa));
694 ASSERT(lwb->lwb_state == LWB_STATE_CLOSED ||
695 lwb->lwb_state == LWB_STATE_FLUSH_DONE);
696
697 /*
698 * Clear the zilog's field to indicate this lwb is no longer
699 * valid, and prevent use-after-free errors.
700 */
701 if (zilog->zl_last_lwb_opened == lwb)
702 zilog->zl_last_lwb_opened = NULL;
703
704 kmem_cache_free(zil_lwb_cache, lwb);
705 }
706
707 /*
708 * Called when we create in-memory log transactions so that we know
709 * to cleanup the itxs at the end of spa_sync().
710 */
711 static void
712 zilog_dirty(zilog_t *zilog, uint64_t txg)
713 {
714 dsl_pool_t *dp = zilog->zl_dmu_pool;
715 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
716
717 ASSERT(spa_writeable(zilog->zl_spa));
718
719 if (ds->ds_is_snapshot)
720 panic("dirtying snapshot!");
721
722 if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
723 /* up the hold count until we can be written out */
724 dmu_buf_add_ref(ds->ds_dbuf, zilog);
725
726 zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg);
727 }
728 }
729
730 /*
731 * Determine if the zil is dirty in the specified txg. Callers wanting to
732 * ensure that the dirty state does not change must hold the itxg_lock for
733 * the specified txg. Holding the lock will ensure that the zil cannot be
734 * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
735 * state.
736 */
737 static boolean_t __maybe_unused
738 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
739 {
740 dsl_pool_t *dp = zilog->zl_dmu_pool;
741
742 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
743 return (B_TRUE);
744 return (B_FALSE);
745 }
746
747 /*
748 * Determine if the zil is dirty. The zil is considered dirty if it has
749 * any pending itx records that have not been cleaned by zil_clean().
750 */
751 static boolean_t
752 zilog_is_dirty(zilog_t *zilog)
753 {
754 dsl_pool_t *dp = zilog->zl_dmu_pool;
755
756 for (int t = 0; t < TXG_SIZE; t++) {
757 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
758 return (B_TRUE);
759 }
760 return (B_FALSE);
761 }
762
763 /*
764 * Its called in zil_commit context (zil_process_commit_list()/zil_create()).
765 * It activates SPA_FEATURE_ZILSAXATTR feature, if its enabled.
766 * Check dsl_dataset_feature_is_active to avoid txg_wait_synced() on every
767 * zil_commit.
768 */
769 static void
770 zil_commit_activate_saxattr_feature(zilog_t *zilog)
771 {
772 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
773 uint64_t txg = 0;
774 dmu_tx_t *tx = NULL;
775
776 if (spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) &&
777 dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL &&
778 !dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR)) {
779 tx = dmu_tx_create(zilog->zl_os);
780 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
781 dsl_dataset_dirty(ds, tx);
782 txg = dmu_tx_get_txg(tx);
783
784 mutex_enter(&ds->ds_lock);
785 ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] =
786 (void *)B_TRUE;
787 mutex_exit(&ds->ds_lock);
788 dmu_tx_commit(tx);
789 txg_wait_synced(zilog->zl_dmu_pool, txg);
790 }
791 }
792
793 /*
794 * Create an on-disk intent log.
795 */
796 static lwb_t *
797 zil_create(zilog_t *zilog)
798 {
799 const zil_header_t *zh = zilog->zl_header;
800 lwb_t *lwb = NULL;
801 uint64_t txg = 0;
802 dmu_tx_t *tx = NULL;
803 blkptr_t blk;
804 int error = 0;
805 boolean_t fastwrite = FALSE;
806 boolean_t slog = FALSE;
807 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
808
809
810 /*
811 * Wait for any previous destroy to complete.
812 */
813 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
814
815 ASSERT(zh->zh_claim_txg == 0);
816 ASSERT(zh->zh_replay_seq == 0);
817
818 blk = zh->zh_log;
819
820 /*
821 * Allocate an initial log block if:
822 * - there isn't one already
823 * - the existing block is the wrong endianness
824 */
825 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
826 tx = dmu_tx_create(zilog->zl_os);
827 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
828 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
829 txg = dmu_tx_get_txg(tx);
830
831 if (!BP_IS_HOLE(&blk)) {
832 zio_free(zilog->zl_spa, txg, &blk);
833 BP_ZERO(&blk);
834 }
835
836 error = zio_alloc_zil(zilog->zl_spa, zilog->zl_os, txg, &blk,
837 ZIL_MIN_BLKSZ, &slog);
838 fastwrite = TRUE;
839
840 if (error == 0)
841 zil_init_log_chain(zilog, &blk);
842 }
843
844 /*
845 * Allocate a log write block (lwb) for the first log block.
846 */
847 if (error == 0)
848 lwb = zil_alloc_lwb(zilog, &blk, slog, txg, fastwrite);
849
850 /*
851 * If we just allocated the first log block, commit our transaction
852 * and wait for zil_sync() to stuff the block pointer into zh_log.
853 * (zh is part of the MOS, so we cannot modify it in open context.)
854 */
855 if (tx != NULL) {
856 /*
857 * If "zilsaxattr" feature is enabled on zpool, then activate
858 * it now when we're creating the ZIL chain. We can't wait with
859 * this until we write the first xattr log record because we
860 * need to wait for the feature activation to sync out.
861 */
862 if (spa_feature_is_enabled(zilog->zl_spa,
863 SPA_FEATURE_ZILSAXATTR) && dmu_objset_type(zilog->zl_os) !=
864 DMU_OST_ZVOL) {
865 mutex_enter(&ds->ds_lock);
866 ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] =
867 (void *)B_TRUE;
868 mutex_exit(&ds->ds_lock);
869 }
870
871 dmu_tx_commit(tx);
872 txg_wait_synced(zilog->zl_dmu_pool, txg);
873 } else {
874 /*
875 * This branch covers the case where we enable the feature on a
876 * zpool that has existing ZIL headers.
877 */
878 zil_commit_activate_saxattr_feature(zilog);
879 }
880 IMPLY(spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) &&
881 dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL,
882 dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR));
883
884 ASSERT(error != 0 || memcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
885 IMPLY(error == 0, lwb != NULL);
886
887 return (lwb);
888 }
889
890 /*
891 * In one tx, free all log blocks and clear the log header. If keep_first
892 * is set, then we're replaying a log with no content. We want to keep the
893 * first block, however, so that the first synchronous transaction doesn't
894 * require a txg_wait_synced() in zil_create(). We don't need to
895 * txg_wait_synced() here either when keep_first is set, because both
896 * zil_create() and zil_destroy() will wait for any in-progress destroys
897 * to complete.
898 * Return B_TRUE if there were any entries to replay.
899 */
900 boolean_t
901 zil_destroy(zilog_t *zilog, boolean_t keep_first)
902 {
903 const zil_header_t *zh = zilog->zl_header;
904 lwb_t *lwb;
905 dmu_tx_t *tx;
906 uint64_t txg;
907
908 /*
909 * Wait for any previous destroy to complete.
910 */
911 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
912
913 zilog->zl_old_header = *zh; /* debugging aid */
914
915 if (BP_IS_HOLE(&zh->zh_log))
916 return (B_FALSE);
917
918 tx = dmu_tx_create(zilog->zl_os);
919 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
920 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
921 txg = dmu_tx_get_txg(tx);
922
923 mutex_enter(&zilog->zl_lock);
924
925 ASSERT3U(zilog->zl_destroy_txg, <, txg);
926 zilog->zl_destroy_txg = txg;
927 zilog->zl_keep_first = keep_first;
928
929 if (!list_is_empty(&zilog->zl_lwb_list)) {
930 ASSERT(zh->zh_claim_txg == 0);
931 VERIFY(!keep_first);
932 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
933 if (lwb->lwb_fastwrite)
934 metaslab_fastwrite_unmark(zilog->zl_spa,
935 &lwb->lwb_blk);
936
937 list_remove(&zilog->zl_lwb_list, lwb);
938 if (lwb->lwb_buf != NULL)
939 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
940 zio_free(zilog->zl_spa, txg, &lwb->lwb_blk);
941 zil_free_lwb(zilog, lwb);
942 }
943 } else if (!keep_first) {
944 zil_destroy_sync(zilog, tx);
945 }
946 mutex_exit(&zilog->zl_lock);
947
948 dmu_tx_commit(tx);
949
950 return (B_TRUE);
951 }
952
953 void
954 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
955 {
956 ASSERT(list_is_empty(&zilog->zl_lwb_list));
957 (void) zil_parse(zilog, zil_free_log_block,
958 zil_free_log_record, tx, zilog->zl_header->zh_claim_txg, B_FALSE);
959 }
960
961 int
962 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
963 {
964 dmu_tx_t *tx = txarg;
965 zilog_t *zilog;
966 uint64_t first_txg;
967 zil_header_t *zh;
968 objset_t *os;
969 int error;
970
971 error = dmu_objset_own_obj(dp, ds->ds_object,
972 DMU_OST_ANY, B_FALSE, B_FALSE, FTAG, &os);
973 if (error != 0) {
974 /*
975 * EBUSY indicates that the objset is inconsistent, in which
976 * case it can not have a ZIL.
977 */
978 if (error != EBUSY) {
979 cmn_err(CE_WARN, "can't open objset for %llu, error %u",
980 (unsigned long long)ds->ds_object, error);
981 }
982
983 return (0);
984 }
985
986 zilog = dmu_objset_zil(os);
987 zh = zil_header_in_syncing_context(zilog);
988 ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa));
989 first_txg = spa_min_claim_txg(zilog->zl_spa);
990
991 /*
992 * If the spa_log_state is not set to be cleared, check whether
993 * the current uberblock is a checkpoint one and if the current
994 * header has been claimed before moving on.
995 *
996 * If the current uberblock is a checkpointed uberblock then
997 * one of the following scenarios took place:
998 *
999 * 1] We are currently rewinding to the checkpoint of the pool.
1000 * 2] We crashed in the middle of a checkpoint rewind but we
1001 * did manage to write the checkpointed uberblock to the
1002 * vdev labels, so when we tried to import the pool again
1003 * the checkpointed uberblock was selected from the import
1004 * procedure.
1005 *
1006 * In both cases we want to zero out all the ZIL blocks, except
1007 * the ones that have been claimed at the time of the checkpoint
1008 * (their zh_claim_txg != 0). The reason is that these blocks
1009 * may be corrupted since we may have reused their locations on
1010 * disk after we took the checkpoint.
1011 *
1012 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier
1013 * when we first figure out whether the current uberblock is
1014 * checkpointed or not. Unfortunately, that would discard all
1015 * the logs, including the ones that are claimed, and we would
1016 * leak space.
1017 */
1018 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR ||
1019 (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
1020 zh->zh_claim_txg == 0)) {
1021 if (!BP_IS_HOLE(&zh->zh_log)) {
1022 (void) zil_parse(zilog, zil_clear_log_block,
1023 zil_noop_log_record, tx, first_txg, B_FALSE);
1024 }
1025 BP_ZERO(&zh->zh_log);
1026 if (os->os_encrypted)
1027 os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
1028 dsl_dataset_dirty(dmu_objset_ds(os), tx);
1029 dmu_objset_disown(os, B_FALSE, FTAG);
1030 return (0);
1031 }
1032
1033 /*
1034 * If we are not rewinding and opening the pool normally, then
1035 * the min_claim_txg should be equal to the first txg of the pool.
1036 */
1037 ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa));
1038
1039 /*
1040 * Claim all log blocks if we haven't already done so, and remember
1041 * the highest claimed sequence number. This ensures that if we can
1042 * read only part of the log now (e.g. due to a missing device),
1043 * but we can read the entire log later, we will not try to replay
1044 * or destroy beyond the last block we successfully claimed.
1045 */
1046 ASSERT3U(zh->zh_claim_txg, <=, first_txg);
1047 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
1048 (void) zil_parse(zilog, zil_claim_log_block,
1049 zil_claim_log_record, tx, first_txg, B_FALSE);
1050 zh->zh_claim_txg = first_txg;
1051 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
1052 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
1053 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
1054 zh->zh_flags |= ZIL_REPLAY_NEEDED;
1055 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
1056 if (os->os_encrypted)
1057 os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
1058 dsl_dataset_dirty(dmu_objset_ds(os), tx);
1059 }
1060
1061 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
1062 dmu_objset_disown(os, B_FALSE, FTAG);
1063 return (0);
1064 }
1065
1066 /*
1067 * Check the log by walking the log chain.
1068 * Checksum errors are ok as they indicate the end of the chain.
1069 * Any other error (no device or read failure) returns an error.
1070 */
1071 int
1072 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
1073 {
1074 (void) dp;
1075 zilog_t *zilog;
1076 objset_t *os;
1077 blkptr_t *bp;
1078 int error;
1079
1080 ASSERT(tx == NULL);
1081
1082 error = dmu_objset_from_ds(ds, &os);
1083 if (error != 0) {
1084 cmn_err(CE_WARN, "can't open objset %llu, error %d",
1085 (unsigned long long)ds->ds_object, error);
1086 return (0);
1087 }
1088
1089 zilog = dmu_objset_zil(os);
1090 bp = (blkptr_t *)&zilog->zl_header->zh_log;
1091
1092 if (!BP_IS_HOLE(bp)) {
1093 vdev_t *vd;
1094 boolean_t valid = B_TRUE;
1095
1096 /*
1097 * Check the first block and determine if it's on a log device
1098 * which may have been removed or faulted prior to loading this
1099 * pool. If so, there's no point in checking the rest of the
1100 * log as its content should have already been synced to the
1101 * pool.
1102 */
1103 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
1104 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
1105 if (vd->vdev_islog && vdev_is_dead(vd))
1106 valid = vdev_log_state_valid(vd);
1107 spa_config_exit(os->os_spa, SCL_STATE, FTAG);
1108
1109 if (!valid)
1110 return (0);
1111
1112 /*
1113 * Check whether the current uberblock is checkpointed (e.g.
1114 * we are rewinding) and whether the current header has been
1115 * claimed or not. If it hasn't then skip verifying it. We
1116 * do this because its ZIL blocks may be part of the pool's
1117 * state before the rewind, which is no longer valid.
1118 */
1119 zil_header_t *zh = zil_header_in_syncing_context(zilog);
1120 if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
1121 zh->zh_claim_txg == 0)
1122 return (0);
1123 }
1124
1125 /*
1126 * Because tx == NULL, zil_claim_log_block() will not actually claim
1127 * any blocks, but just determine whether it is possible to do so.
1128 * In addition to checking the log chain, zil_claim_log_block()
1129 * will invoke zio_claim() with a done func of spa_claim_notify(),
1130 * which will update spa_max_claim_txg. See spa_load() for details.
1131 */
1132 error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
1133 zilog->zl_header->zh_claim_txg ? -1ULL :
1134 spa_min_claim_txg(os->os_spa), B_FALSE);
1135
1136 return ((error == ECKSUM || error == ENOENT) ? 0 : error);
1137 }
1138
1139 /*
1140 * When an itx is "skipped", this function is used to properly mark the
1141 * waiter as "done, and signal any thread(s) waiting on it. An itx can
1142 * be skipped (and not committed to an lwb) for a variety of reasons,
1143 * one of them being that the itx was committed via spa_sync(), prior to
1144 * it being committed to an lwb; this can happen if a thread calling
1145 * zil_commit() is racing with spa_sync().
1146 */
1147 static void
1148 zil_commit_waiter_skip(zil_commit_waiter_t *zcw)
1149 {
1150 mutex_enter(&zcw->zcw_lock);
1151 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1152 zcw->zcw_done = B_TRUE;
1153 cv_broadcast(&zcw->zcw_cv);
1154 mutex_exit(&zcw->zcw_lock);
1155 }
1156
1157 /*
1158 * This function is used when the given waiter is to be linked into an
1159 * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb.
1160 * At this point, the waiter will no longer be referenced by the itx,
1161 * and instead, will be referenced by the lwb.
1162 */
1163 static void
1164 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb)
1165 {
1166 /*
1167 * The lwb_waiters field of the lwb is protected by the zilog's
1168 * zl_lock, thus it must be held when calling this function.
1169 */
1170 ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_lock));
1171
1172 mutex_enter(&zcw->zcw_lock);
1173 ASSERT(!list_link_active(&zcw->zcw_node));
1174 ASSERT3P(zcw->zcw_lwb, ==, NULL);
1175 ASSERT3P(lwb, !=, NULL);
1176 ASSERT(lwb->lwb_state == LWB_STATE_OPENED ||
1177 lwb->lwb_state == LWB_STATE_ISSUED ||
1178 lwb->lwb_state == LWB_STATE_WRITE_DONE);
1179
1180 list_insert_tail(&lwb->lwb_waiters, zcw);
1181 zcw->zcw_lwb = lwb;
1182 mutex_exit(&zcw->zcw_lock);
1183 }
1184
1185 /*
1186 * This function is used when zio_alloc_zil() fails to allocate a ZIL
1187 * block, and the given waiter must be linked to the "nolwb waiters"
1188 * list inside of zil_process_commit_list().
1189 */
1190 static void
1191 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb)
1192 {
1193 mutex_enter(&zcw->zcw_lock);
1194 ASSERT(!list_link_active(&zcw->zcw_node));
1195 ASSERT3P(zcw->zcw_lwb, ==, NULL);
1196 list_insert_tail(nolwb, zcw);
1197 mutex_exit(&zcw->zcw_lock);
1198 }
1199
1200 void
1201 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp)
1202 {
1203 avl_tree_t *t = &lwb->lwb_vdev_tree;
1204 avl_index_t where;
1205 zil_vdev_node_t *zv, zvsearch;
1206 int ndvas = BP_GET_NDVAS(bp);
1207 int i;
1208
1209 if (zil_nocacheflush)
1210 return;
1211
1212 mutex_enter(&lwb->lwb_vdev_lock);
1213 for (i = 0; i < ndvas; i++) {
1214 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
1215 if (avl_find(t, &zvsearch, &where) == NULL) {
1216 zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
1217 zv->zv_vdev = zvsearch.zv_vdev;
1218 avl_insert(t, zv, where);
1219 }
1220 }
1221 mutex_exit(&lwb->lwb_vdev_lock);
1222 }
1223
1224 static void
1225 zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb)
1226 {
1227 avl_tree_t *src = &lwb->lwb_vdev_tree;
1228 avl_tree_t *dst = &nlwb->lwb_vdev_tree;
1229 void *cookie = NULL;
1230 zil_vdev_node_t *zv;
1231
1232 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1233 ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
1234 ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1235
1236 /*
1237 * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does
1238 * not need the protection of lwb_vdev_lock (it will only be modified
1239 * while holding zilog->zl_lock) as its writes and those of its
1240 * children have all completed. The younger 'nlwb' may be waiting on
1241 * future writes to additional vdevs.
1242 */
1243 mutex_enter(&nlwb->lwb_vdev_lock);
1244 /*
1245 * Tear down the 'lwb' vdev tree, ensuring that entries which do not
1246 * exist in 'nlwb' are moved to it, freeing any would-be duplicates.
1247 */
1248 while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) {
1249 avl_index_t where;
1250
1251 if (avl_find(dst, zv, &where) == NULL) {
1252 avl_insert(dst, zv, where);
1253 } else {
1254 kmem_free(zv, sizeof (*zv));
1255 }
1256 }
1257 mutex_exit(&nlwb->lwb_vdev_lock);
1258 }
1259
1260 void
1261 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg)
1262 {
1263 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1264 }
1265
1266 /*
1267 * This function is a called after all vdevs associated with a given lwb
1268 * write have completed their DKIOCFLUSHWRITECACHE command; or as soon
1269 * as the lwb write completes, if "zil_nocacheflush" is set. Further,
1270 * all "previous" lwb's will have completed before this function is
1271 * called; i.e. this function is called for all previous lwbs before
1272 * it's called for "this" lwb (enforced via zio the dependencies
1273 * configured in zil_lwb_set_zio_dependency()).
1274 *
1275 * The intention is for this function to be called as soon as the
1276 * contents of an lwb are considered "stable" on disk, and will survive
1277 * any sudden loss of power. At this point, any threads waiting for the
1278 * lwb to reach this state are signalled, and the "waiter" structures
1279 * are marked "done".
1280 */
1281 static void
1282 zil_lwb_flush_vdevs_done(zio_t *zio)
1283 {
1284 lwb_t *lwb = zio->io_private;
1285 zilog_t *zilog = lwb->lwb_zilog;
1286 zil_commit_waiter_t *zcw;
1287 itx_t *itx;
1288 uint64_t txg;
1289
1290 spa_config_exit(zilog->zl_spa, SCL_STATE, lwb);
1291
1292 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1293
1294 mutex_enter(&zilog->zl_lock);
1295
1296 /*
1297 * If we have had an allocation failure and the txg is
1298 * waiting to sync then we want zil_sync() to remove the lwb so
1299 * that it's not picked up as the next new one in
1300 * zil_process_commit_list(). zil_sync() will only remove the
1301 * lwb if lwb_buf is null.
1302 */
1303 lwb->lwb_buf = NULL;
1304
1305 ASSERT3U(lwb->lwb_issued_timestamp, >, 0);
1306 zilog->zl_last_lwb_latency = (zilog->zl_last_lwb_latency * 3 +
1307 gethrtime() - lwb->lwb_issued_timestamp) / 4;
1308
1309 lwb->lwb_root_zio = NULL;
1310
1311 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1312 lwb->lwb_state = LWB_STATE_FLUSH_DONE;
1313
1314 if (zilog->zl_last_lwb_opened == lwb) {
1315 /*
1316 * Remember the highest committed log sequence number
1317 * for ztest. We only update this value when all the log
1318 * writes succeeded, because ztest wants to ASSERT that
1319 * it got the whole log chain.
1320 */
1321 zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1322 }
1323
1324 while ((itx = list_head(&lwb->lwb_itxs)) != NULL) {
1325 list_remove(&lwb->lwb_itxs, itx);
1326 zil_itx_destroy(itx);
1327 }
1328
1329 while ((zcw = list_head(&lwb->lwb_waiters)) != NULL) {
1330 mutex_enter(&zcw->zcw_lock);
1331
1332 ASSERT(list_link_active(&zcw->zcw_node));
1333 list_remove(&lwb->lwb_waiters, zcw);
1334
1335 ASSERT3P(zcw->zcw_lwb, ==, lwb);
1336 zcw->zcw_lwb = NULL;
1337 /*
1338 * We expect any ZIO errors from child ZIOs to have been
1339 * propagated "up" to this specific LWB's root ZIO, in
1340 * order for this error handling to work correctly. This
1341 * includes ZIO errors from either this LWB's write or
1342 * flush, as well as any errors from other dependent LWBs
1343 * (e.g. a root LWB ZIO that might be a child of this LWB).
1344 *
1345 * With that said, it's important to note that LWB flush
1346 * errors are not propagated up to the LWB root ZIO.
1347 * This is incorrect behavior, and results in VDEV flush
1348 * errors not being handled correctly here. See the
1349 * comment above the call to "zio_flush" for details.
1350 */
1351
1352 zcw->zcw_zio_error = zio->io_error;
1353
1354 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1355 zcw->zcw_done = B_TRUE;
1356 cv_broadcast(&zcw->zcw_cv);
1357
1358 mutex_exit(&zcw->zcw_lock);
1359 }
1360
1361 mutex_exit(&zilog->zl_lock);
1362
1363 mutex_enter(&zilog->zl_lwb_io_lock);
1364 txg = lwb->lwb_issued_txg;
1365 ASSERT3U(zilog->zl_lwb_inflight[txg & TXG_MASK], >, 0);
1366 zilog->zl_lwb_inflight[txg & TXG_MASK]--;
1367 if (zilog->zl_lwb_inflight[txg & TXG_MASK] == 0)
1368 cv_broadcast(&zilog->zl_lwb_io_cv);
1369 mutex_exit(&zilog->zl_lwb_io_lock);
1370 }
1371
1372 /*
1373 * Wait for the completion of all issued write/flush of that txg provided.
1374 * It guarantees zil_lwb_flush_vdevs_done() is called and returned.
1375 */
1376 static void
1377 zil_lwb_flush_wait_all(zilog_t *zilog, uint64_t txg)
1378 {
1379 ASSERT3U(txg, ==, spa_syncing_txg(zilog->zl_spa));
1380
1381 mutex_enter(&zilog->zl_lwb_io_lock);
1382 while (zilog->zl_lwb_inflight[txg & TXG_MASK] > 0)
1383 cv_wait(&zilog->zl_lwb_io_cv, &zilog->zl_lwb_io_lock);
1384 mutex_exit(&zilog->zl_lwb_io_lock);
1385
1386 #ifdef ZFS_DEBUG
1387 mutex_enter(&zilog->zl_lock);
1388 mutex_enter(&zilog->zl_lwb_io_lock);
1389 lwb_t *lwb = list_head(&zilog->zl_lwb_list);
1390 while (lwb != NULL && lwb->lwb_max_txg <= txg) {
1391 if (lwb->lwb_issued_txg <= txg) {
1392 ASSERT(lwb->lwb_state != LWB_STATE_ISSUED);
1393 ASSERT(lwb->lwb_state != LWB_STATE_WRITE_DONE);
1394 IMPLY(lwb->lwb_issued_txg > 0,
1395 lwb->lwb_state == LWB_STATE_FLUSH_DONE);
1396 }
1397 IMPLY(lwb->lwb_state == LWB_STATE_FLUSH_DONE,
1398 lwb->lwb_buf == NULL);
1399 lwb = list_next(&zilog->zl_lwb_list, lwb);
1400 }
1401 mutex_exit(&zilog->zl_lwb_io_lock);
1402 mutex_exit(&zilog->zl_lock);
1403 #endif
1404 }
1405
1406 /*
1407 * This is called when an lwb's write zio completes. The callback's
1408 * purpose is to issue the DKIOCFLUSHWRITECACHE commands for the vdevs
1409 * in the lwb's lwb_vdev_tree. The tree will contain the vdevs involved
1410 * in writing out this specific lwb's data, and in the case that cache
1411 * flushes have been deferred, vdevs involved in writing the data for
1412 * previous lwbs. The writes corresponding to all the vdevs in the
1413 * lwb_vdev_tree will have completed by the time this is called, due to
1414 * the zio dependencies configured in zil_lwb_set_zio_dependency(),
1415 * which takes deferred flushes into account. The lwb will be "done"
1416 * once zil_lwb_flush_vdevs_done() is called, which occurs in the zio
1417 * completion callback for the lwb's root zio.
1418 */
1419 static void
1420 zil_lwb_write_done(zio_t *zio)
1421 {
1422 lwb_t *lwb = zio->io_private;
1423 spa_t *spa = zio->io_spa;
1424 zilog_t *zilog = lwb->lwb_zilog;
1425 avl_tree_t *t = &lwb->lwb_vdev_tree;
1426 void *cookie = NULL;
1427 zil_vdev_node_t *zv;
1428 lwb_t *nlwb;
1429
1430 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0);
1431
1432 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1433 ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
1434 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
1435 ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
1436 ASSERT(!BP_IS_GANG(zio->io_bp));
1437 ASSERT(!BP_IS_HOLE(zio->io_bp));
1438 ASSERT(BP_GET_FILL(zio->io_bp) == 0);
1439
1440 abd_free(zio->io_abd);
1441
1442 mutex_enter(&zilog->zl_lock);
1443 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED);
1444 lwb->lwb_state = LWB_STATE_WRITE_DONE;
1445 lwb->lwb_write_zio = NULL;
1446 lwb->lwb_fastwrite = FALSE;
1447 nlwb = list_next(&zilog->zl_lwb_list, lwb);
1448 mutex_exit(&zilog->zl_lock);
1449
1450 if (avl_numnodes(t) == 0)
1451 return;
1452
1453 /*
1454 * If there was an IO error, we're not going to call zio_flush()
1455 * on these vdevs, so we simply empty the tree and free the
1456 * nodes. We avoid calling zio_flush() since there isn't any
1457 * good reason for doing so, after the lwb block failed to be
1458 * written out.
1459 *
1460 * Additionally, we don't perform any further error handling at
1461 * this point (e.g. setting "zcw_zio_error" appropriately), as
1462 * we expect that to occur in "zil_lwb_flush_vdevs_done" (thus,
1463 * we expect any error seen here, to have been propagated to
1464 * that function).
1465 */
1466 if (zio->io_error != 0) {
1467 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
1468 kmem_free(zv, sizeof (*zv));
1469 return;
1470 }
1471
1472 /*
1473 * If this lwb does not have any threads waiting for it to
1474 * complete, we want to defer issuing the DKIOCFLUSHWRITECACHE
1475 * command to the vdevs written to by "this" lwb, and instead
1476 * rely on the "next" lwb to handle the DKIOCFLUSHWRITECACHE
1477 * command for those vdevs. Thus, we merge the vdev tree of
1478 * "this" lwb with the vdev tree of the "next" lwb in the list,
1479 * and assume the "next" lwb will handle flushing the vdevs (or
1480 * deferring the flush(s) again).
1481 *
1482 * This is a useful performance optimization, especially for
1483 * workloads with lots of async write activity and few sync
1484 * write and/or fsync activity, as it has the potential to
1485 * coalesce multiple flush commands to a vdev into one.
1486 */
1487 if (list_head(&lwb->lwb_waiters) == NULL && nlwb != NULL) {
1488 zil_lwb_flush_defer(lwb, nlwb);
1489 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
1490 return;
1491 }
1492
1493 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
1494 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
1495 if (vd != NULL) {
1496 /*
1497 * The "ZIO_FLAG_DONT_PROPAGATE" is currently
1498 * always used within "zio_flush". This means,
1499 * any errors when flushing the vdev(s), will
1500 * (unfortunately) not be handled correctly,
1501 * since these "zio_flush" errors will not be
1502 * propagated up to "zil_lwb_flush_vdevs_done".
1503 */
1504 zio_flush(lwb->lwb_root_zio, vd);
1505 }
1506 kmem_free(zv, sizeof (*zv));
1507 }
1508 }
1509
1510 static void
1511 zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb)
1512 {
1513 lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened;
1514
1515 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1516 ASSERT(MUTEX_HELD(&zilog->zl_lock));
1517
1518 /*
1519 * The zilog's "zl_last_lwb_opened" field is used to build the
1520 * lwb/zio dependency chain, which is used to preserve the
1521 * ordering of lwb completions that is required by the semantics
1522 * of the ZIL. Each new lwb zio becomes a parent of the
1523 * "previous" lwb zio, such that the new lwb's zio cannot
1524 * complete until the "previous" lwb's zio completes.
1525 *
1526 * This is required by the semantics of zil_commit(); the commit
1527 * waiters attached to the lwbs will be woken in the lwb zio's
1528 * completion callback, so this zio dependency graph ensures the
1529 * waiters are woken in the correct order (the same order the
1530 * lwbs were created).
1531 */
1532 if (last_lwb_opened != NULL &&
1533 last_lwb_opened->lwb_state != LWB_STATE_FLUSH_DONE) {
1534 ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1535 last_lwb_opened->lwb_state == LWB_STATE_ISSUED ||
1536 last_lwb_opened->lwb_state == LWB_STATE_WRITE_DONE);
1537
1538 ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL);
1539 zio_add_child(lwb->lwb_root_zio,
1540 last_lwb_opened->lwb_root_zio);
1541
1542 /*
1543 * If the previous lwb's write hasn't already completed,
1544 * we also want to order the completion of the lwb write
1545 * zios (above, we only order the completion of the lwb
1546 * root zios). This is required because of how we can
1547 * defer the DKIOCFLUSHWRITECACHE commands for each lwb.
1548 *
1549 * When the DKIOCFLUSHWRITECACHE commands are deferred,
1550 * the previous lwb will rely on this lwb to flush the
1551 * vdevs written to by that previous lwb. Thus, we need
1552 * to ensure this lwb doesn't issue the flush until
1553 * after the previous lwb's write completes. We ensure
1554 * this ordering by setting the zio parent/child
1555 * relationship here.
1556 *
1557 * Without this relationship on the lwb's write zio,
1558 * it's possible for this lwb's write to complete prior
1559 * to the previous lwb's write completing; and thus, the
1560 * vdevs for the previous lwb would be flushed prior to
1561 * that lwb's data being written to those vdevs (the
1562 * vdevs are flushed in the lwb write zio's completion
1563 * handler, zil_lwb_write_done()).
1564 */
1565 if (last_lwb_opened->lwb_state != LWB_STATE_WRITE_DONE) {
1566 ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1567 last_lwb_opened->lwb_state == LWB_STATE_ISSUED);
1568
1569 ASSERT3P(last_lwb_opened->lwb_write_zio, !=, NULL);
1570 zio_add_child(lwb->lwb_write_zio,
1571 last_lwb_opened->lwb_write_zio);
1572 }
1573 }
1574 }
1575
1576
1577 /*
1578 * This function's purpose is to "open" an lwb such that it is ready to
1579 * accept new itxs being committed to it. To do this, the lwb's zio
1580 * structures are created, and linked to the lwb. This function is
1581 * idempotent; if the passed in lwb has already been opened, this
1582 * function is essentially a no-op.
1583 */
1584 static void
1585 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb)
1586 {
1587 zbookmark_phys_t zb;
1588 zio_priority_t prio;
1589
1590 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1591 ASSERT3P(lwb, !=, NULL);
1592 EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED);
1593 EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED);
1594
1595 SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1596 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
1597 lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
1598
1599 /* Lock so zil_sync() doesn't fastwrite_unmark after zio is created */
1600 mutex_enter(&zilog->zl_lock);
1601 if (lwb->lwb_root_zio == NULL) {
1602 abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf,
1603 BP_GET_LSIZE(&lwb->lwb_blk));
1604
1605 if (!lwb->lwb_fastwrite) {
1606 metaslab_fastwrite_mark(zilog->zl_spa, &lwb->lwb_blk);
1607 lwb->lwb_fastwrite = 1;
1608 }
1609
1610 if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk)
1611 prio = ZIO_PRIORITY_SYNC_WRITE;
1612 else
1613 prio = ZIO_PRIORITY_ASYNC_WRITE;
1614
1615 lwb->lwb_root_zio = zio_root(zilog->zl_spa,
1616 zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL);
1617 ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1618
1619 lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio,
1620 zilog->zl_spa, 0, &lwb->lwb_blk, lwb_abd,
1621 BP_GET_LSIZE(&lwb->lwb_blk), zil_lwb_write_done, lwb,
1622 prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_FASTWRITE, &zb);
1623 ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1624
1625 lwb->lwb_state = LWB_STATE_OPENED;
1626
1627 zil_lwb_set_zio_dependency(zilog, lwb);
1628 zilog->zl_last_lwb_opened = lwb;
1629 }
1630 mutex_exit(&zilog->zl_lock);
1631
1632 ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1633 ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1634 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1635 }
1636
1637 /*
1638 * Define a limited set of intent log block sizes.
1639 *
1640 * These must be a multiple of 4KB. Note only the amount used (again
1641 * aligned to 4KB) actually gets written. However, we can't always just
1642 * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
1643 */
1644 static const struct {
1645 uint64_t limit;
1646 uint64_t blksz;
1647 } zil_block_buckets[] = {
1648 { 4096, 4096 }, /* non TX_WRITE */
1649 { 8192 + 4096, 8192 + 4096 }, /* database */
1650 { 32768 + 4096, 32768 + 4096 }, /* NFS writes */
1651 { 65536 + 4096, 65536 + 4096 }, /* 64KB writes */
1652 { 131072, 131072 }, /* < 128KB writes */
1653 { 131072 +4096, 65536 + 4096 }, /* 128KB writes */
1654 { UINT64_MAX, SPA_OLD_MAXBLOCKSIZE}, /* > 128KB writes */
1655 };
1656
1657 /*
1658 * Maximum block size used by the ZIL. This is picked up when the ZIL is
1659 * initialized. Otherwise this should not be used directly; see
1660 * zl_max_block_size instead.
1661 */
1662 static uint_t zil_maxblocksize = SPA_OLD_MAXBLOCKSIZE;
1663
1664 /*
1665 * Start a log block write and advance to the next log block.
1666 * Calls are serialized.
1667 */
1668 static lwb_t *
1669 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb)
1670 {
1671 lwb_t *nlwb = NULL;
1672 zil_chain_t *zilc;
1673 spa_t *spa = zilog->zl_spa;
1674 blkptr_t *bp;
1675 dmu_tx_t *tx;
1676 uint64_t txg;
1677 uint64_t zil_blksz, wsz;
1678 int i, error;
1679 boolean_t slog;
1680
1681 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1682 ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1683 ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1684 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1685
1686 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1687 zilc = (zil_chain_t *)lwb->lwb_buf;
1688 bp = &zilc->zc_next_blk;
1689 } else {
1690 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
1691 bp = &zilc->zc_next_blk;
1692 }
1693
1694 ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
1695
1696 /*
1697 * Allocate the next block and save its address in this block
1698 * before writing it in order to establish the log chain.
1699 */
1700
1701 tx = dmu_tx_create(zilog->zl_os);
1702
1703 /*
1704 * Since we are not going to create any new dirty data, and we
1705 * can even help with clearing the existing dirty data, we
1706 * should not be subject to the dirty data based delays. We
1707 * use TXG_NOTHROTTLE to bypass the delay mechanism.
1708 */
1709 VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
1710
1711 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1712 txg = dmu_tx_get_txg(tx);
1713
1714 mutex_enter(&zilog->zl_lwb_io_lock);
1715 lwb->lwb_issued_txg = txg;
1716 zilog->zl_lwb_inflight[txg & TXG_MASK]++;
1717 zilog->zl_lwb_max_issued_txg = MAX(txg, zilog->zl_lwb_max_issued_txg);
1718 mutex_exit(&zilog->zl_lwb_io_lock);
1719
1720 /*
1721 * Log blocks are pre-allocated. Here we select the size of the next
1722 * block, based on size used in the last block.
1723 * - first find the smallest bucket that will fit the block from a
1724 * limited set of block sizes. This is because it's faster to write
1725 * blocks allocated from the same metaslab as they are adjacent or
1726 * close.
1727 * - next find the maximum from the new suggested size and an array of
1728 * previous sizes. This lessens a picket fence effect of wrongly
1729 * guessing the size if we have a stream of say 2k, 64k, 2k, 64k
1730 * requests.
1731 *
1732 * Note we only write what is used, but we can't just allocate
1733 * the maximum block size because we can exhaust the available
1734 * pool log space.
1735 */
1736 zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1737 for (i = 0; zil_blksz > zil_block_buckets[i].limit; i++)
1738 continue;
1739 zil_blksz = MIN(zil_block_buckets[i].blksz, zilog->zl_max_block_size);
1740 zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1741 for (i = 0; i < ZIL_PREV_BLKS; i++)
1742 zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1743 zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1744
1745 BP_ZERO(bp);
1746 error = zio_alloc_zil(spa, zilog->zl_os, txg, bp, zil_blksz, &slog);
1747 if (slog) {
1748 ZIL_STAT_BUMP(zilog, zil_itx_metaslab_slog_count);
1749 ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_bytes,
1750 lwb->lwb_nused);
1751 } else {
1752 ZIL_STAT_BUMP(zilog, zil_itx_metaslab_normal_count);
1753 ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_bytes,
1754 lwb->lwb_nused);
1755 }
1756 if (error == 0) {
1757 ASSERT3U(bp->blk_birth, ==, txg);
1758 bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1759 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1760
1761 /*
1762 * Allocate a new log write block (lwb).
1763 */
1764 nlwb = zil_alloc_lwb(zilog, bp, slog, txg, TRUE);
1765 }
1766
1767 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1768 /* For Slim ZIL only write what is used. */
1769 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1770 ASSERT3U(wsz, <=, lwb->lwb_sz);
1771 zio_shrink(lwb->lwb_write_zio, wsz);
1772
1773 } else {
1774 wsz = lwb->lwb_sz;
1775 }
1776
1777 zilc->zc_pad = 0;
1778 zilc->zc_nused = lwb->lwb_nused;
1779 zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1780
1781 /*
1782 * clear unused data for security
1783 */
1784 memset(lwb->lwb_buf + lwb->lwb_nused, 0, wsz - lwb->lwb_nused);
1785
1786 spa_config_enter(zilog->zl_spa, SCL_STATE, lwb, RW_READER);
1787
1788 zil_lwb_add_block(lwb, &lwb->lwb_blk);
1789 lwb->lwb_issued_timestamp = gethrtime();
1790 lwb->lwb_state = LWB_STATE_ISSUED;
1791
1792 zio_nowait(lwb->lwb_root_zio);
1793 zio_nowait(lwb->lwb_write_zio);
1794
1795 dmu_tx_commit(tx);
1796
1797 /*
1798 * If there was an allocation failure then nlwb will be null which
1799 * forces a txg_wait_synced().
1800 */
1801 return (nlwb);
1802 }
1803
1804 /*
1805 * Maximum amount of write data that can be put into single log block.
1806 */
1807 uint64_t
1808 zil_max_log_data(zilog_t *zilog)
1809 {
1810 return (zilog->zl_max_block_size -
1811 sizeof (zil_chain_t) - sizeof (lr_write_t));
1812 }
1813
1814 /*
1815 * Maximum amount of log space we agree to waste to reduce number of
1816 * WR_NEED_COPY chunks to reduce zl_get_data() overhead (~12%).
1817 */
1818 static inline uint64_t
1819 zil_max_waste_space(zilog_t *zilog)
1820 {
1821 return (zil_max_log_data(zilog) / 8);
1822 }
1823
1824 /*
1825 * Maximum amount of write data for WR_COPIED. For correctness, consumers
1826 * must fall back to WR_NEED_COPY if we can't fit the entire record into one
1827 * maximum sized log block, because each WR_COPIED record must fit in a
1828 * single log block. For space efficiency, we want to fit two records into a
1829 * max-sized log block.
1830 */
1831 uint64_t
1832 zil_max_copied_data(zilog_t *zilog)
1833 {
1834 return ((zilog->zl_max_block_size - sizeof (zil_chain_t)) / 2 -
1835 sizeof (lr_write_t));
1836 }
1837
1838 static lwb_t *
1839 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1840 {
1841 lr_t *lrcb, *lrc;
1842 lr_write_t *lrwb, *lrw;
1843 char *lr_buf;
1844 uint64_t dlen, dnow, dpad, lwb_sp, reclen, txg, max_log_data;
1845
1846 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1847 ASSERT3P(lwb, !=, NULL);
1848 ASSERT3P(lwb->lwb_buf, !=, NULL);
1849
1850 zil_lwb_write_open(zilog, lwb);
1851
1852 lrc = &itx->itx_lr;
1853 lrw = (lr_write_t *)lrc;
1854
1855 /*
1856 * A commit itx doesn't represent any on-disk state; instead
1857 * it's simply used as a place holder on the commit list, and
1858 * provides a mechanism for attaching a "commit waiter" onto the
1859 * correct lwb (such that the waiter can be signalled upon
1860 * completion of that lwb). Thus, we don't process this itx's
1861 * log record if it's a commit itx (these itx's don't have log
1862 * records), and instead link the itx's waiter onto the lwb's
1863 * list of waiters.
1864 *
1865 * For more details, see the comment above zil_commit().
1866 */
1867 if (lrc->lrc_txtype == TX_COMMIT) {
1868 mutex_enter(&zilog->zl_lock);
1869 zil_commit_waiter_link_lwb(itx->itx_private, lwb);
1870 itx->itx_private = NULL;
1871 mutex_exit(&zilog->zl_lock);
1872 return (lwb);
1873 }
1874
1875 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
1876 dlen = P2ROUNDUP_TYPED(
1877 lrw->lr_length, sizeof (uint64_t), uint64_t);
1878 dpad = dlen - lrw->lr_length;
1879 } else {
1880 dlen = dpad = 0;
1881 }
1882 reclen = lrc->lrc_reclen;
1883 zilog->zl_cur_used += (reclen + dlen);
1884 txg = lrc->lrc_txg;
1885
1886 ASSERT3U(zilog->zl_cur_used, <, UINT64_MAX - (reclen + dlen));
1887
1888 cont:
1889 /*
1890 * If this record won't fit in the current log block, start a new one.
1891 * For WR_NEED_COPY optimize layout for minimal number of chunks.
1892 */
1893 lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1894 max_log_data = zil_max_log_data(zilog);
1895 if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
1896 lwb_sp < zil_max_waste_space(zilog) &&
1897 (dlen % max_log_data == 0 ||
1898 lwb_sp < reclen + dlen % max_log_data))) {
1899 lwb = zil_lwb_write_issue(zilog, lwb);
1900 if (lwb == NULL)
1901 return (NULL);
1902 zil_lwb_write_open(zilog, lwb);
1903 ASSERT(LWB_EMPTY(lwb));
1904 lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1905
1906 /*
1907 * There must be enough space in the new, empty log block to
1908 * hold reclen. For WR_COPIED, we need to fit the whole
1909 * record in one block, and reclen is the header size + the
1910 * data size. For WR_NEED_COPY, we can create multiple
1911 * records, splitting the data into multiple blocks, so we
1912 * only need to fit one word of data per block; in this case
1913 * reclen is just the header size (no data).
1914 */
1915 ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
1916 }
1917
1918 dnow = MIN(dlen, lwb_sp - reclen);
1919 lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1920 memcpy(lr_buf, lrc, reclen);
1921 lrcb = (lr_t *)lr_buf; /* Like lrc, but inside lwb. */
1922 lrwb = (lr_write_t *)lrcb; /* Like lrw, but inside lwb. */
1923
1924 ZIL_STAT_BUMP(zilog, zil_itx_count);
1925
1926 /*
1927 * If it's a write, fetch the data or get its blkptr as appropriate.
1928 */
1929 if (lrc->lrc_txtype == TX_WRITE) {
1930 if (txg > spa_freeze_txg(zilog->zl_spa))
1931 txg_wait_synced(zilog->zl_dmu_pool, txg);
1932 if (itx->itx_wr_state == WR_COPIED) {
1933 ZIL_STAT_BUMP(zilog, zil_itx_copied_count);
1934 ZIL_STAT_INCR(zilog, zil_itx_copied_bytes,
1935 lrw->lr_length);
1936 } else {
1937 char *dbuf;
1938 int error;
1939
1940 if (itx->itx_wr_state == WR_NEED_COPY) {
1941 dbuf = lr_buf + reclen;
1942 lrcb->lrc_reclen += dnow;
1943 if (lrwb->lr_length > dnow)
1944 lrwb->lr_length = dnow;
1945 lrw->lr_offset += dnow;
1946 lrw->lr_length -= dnow;
1947 ZIL_STAT_BUMP(zilog, zil_itx_needcopy_count);
1948 ZIL_STAT_INCR(zilog, zil_itx_needcopy_bytes,
1949 dnow);
1950 } else {
1951 ASSERT3S(itx->itx_wr_state, ==, WR_INDIRECT);
1952 dbuf = NULL;
1953 ZIL_STAT_BUMP(zilog, zil_itx_indirect_count);
1954 ZIL_STAT_INCR(zilog, zil_itx_indirect_bytes,
1955 lrw->lr_length);
1956 }
1957
1958 /*
1959 * We pass in the "lwb_write_zio" rather than
1960 * "lwb_root_zio" so that the "lwb_write_zio"
1961 * becomes the parent of any zio's created by
1962 * the "zl_get_data" callback. The vdevs are
1963 * flushed after the "lwb_write_zio" completes,
1964 * so we want to make sure that completion
1965 * callback waits for these additional zio's,
1966 * such that the vdevs used by those zio's will
1967 * be included in the lwb's vdev tree, and those
1968 * vdevs will be properly flushed. If we passed
1969 * in "lwb_root_zio" here, then these additional
1970 * vdevs may not be flushed; e.g. if these zio's
1971 * completed after "lwb_write_zio" completed.
1972 */
1973 error = zilog->zl_get_data(itx->itx_private,
1974 itx->itx_gen, lrwb, dbuf, lwb,
1975 lwb->lwb_write_zio);
1976 if (dbuf != NULL && error == 0 && dnow == dlen)
1977 /* Zero any padding bytes in the last block. */
1978 memset((char *)dbuf + lrwb->lr_length, 0, dpad);
1979
1980 if (error == EIO) {
1981 txg_wait_synced(zilog->zl_dmu_pool, txg);
1982 return (lwb);
1983 }
1984 if (error != 0) {
1985 ASSERT(error == ENOENT || error == EEXIST ||
1986 error == EALREADY);
1987 return (lwb);
1988 }
1989 }
1990 }
1991
1992 /*
1993 * We're actually making an entry, so update lrc_seq to be the
1994 * log record sequence number. Note that this is generally not
1995 * equal to the itx sequence number because not all transactions
1996 * are synchronous, and sometimes spa_sync() gets there first.
1997 */
1998 lrcb->lrc_seq = ++zilog->zl_lr_seq;
1999 lwb->lwb_nused += reclen + dnow;
2000
2001 zil_lwb_add_txg(lwb, txg);
2002
2003 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
2004 ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
2005
2006 dlen -= dnow;
2007 if (dlen > 0) {
2008 zilog->zl_cur_used += reclen;
2009 goto cont;
2010 }
2011
2012 return (lwb);
2013 }
2014
2015 itx_t *
2016 zil_itx_create(uint64_t txtype, size_t olrsize)
2017 {
2018 size_t itxsize, lrsize;
2019 itx_t *itx;
2020
2021 lrsize = P2ROUNDUP_TYPED(olrsize, sizeof (uint64_t), size_t);
2022 itxsize = offsetof(itx_t, itx_lr) + lrsize;
2023
2024 itx = zio_data_buf_alloc(itxsize);
2025 itx->itx_lr.lrc_txtype = txtype;
2026 itx->itx_lr.lrc_reclen = lrsize;
2027 itx->itx_lr.lrc_seq = 0; /* defensive */
2028 memset((char *)&itx->itx_lr + olrsize, 0, lrsize - olrsize);
2029 itx->itx_sync = B_TRUE; /* default is synchronous */
2030 itx->itx_callback = NULL;
2031 itx->itx_callback_data = NULL;
2032 itx->itx_size = itxsize;
2033
2034 return (itx);
2035 }
2036
2037 void
2038 zil_itx_destroy(itx_t *itx)
2039 {
2040 IMPLY(itx->itx_lr.lrc_txtype == TX_COMMIT, itx->itx_callback == NULL);
2041 IMPLY(itx->itx_callback != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
2042
2043 if (itx->itx_callback != NULL)
2044 itx->itx_callback(itx->itx_callback_data);
2045
2046 zio_data_buf_free(itx, itx->itx_size);
2047 }
2048
2049 /*
2050 * Free up the sync and async itxs. The itxs_t has already been detached
2051 * so no locks are needed.
2052 */
2053 static void
2054 zil_itxg_clean(void *arg)
2055 {
2056 itx_t *itx;
2057 list_t *list;
2058 avl_tree_t *t;
2059 void *cookie;
2060 itxs_t *itxs = arg;
2061 itx_async_node_t *ian;
2062
2063 list = &itxs->i_sync_list;
2064 while ((itx = list_head(list)) != NULL) {
2065 /*
2066 * In the general case, commit itxs will not be found
2067 * here, as they'll be committed to an lwb via
2068 * zil_lwb_commit(), and free'd in that function. Having
2069 * said that, it is still possible for commit itxs to be
2070 * found here, due to the following race:
2071 *
2072 * - a thread calls zil_commit() which assigns the
2073 * commit itx to a per-txg i_sync_list
2074 * - zil_itxg_clean() is called (e.g. via spa_sync())
2075 * while the waiter is still on the i_sync_list
2076 *
2077 * There's nothing to prevent syncing the txg while the
2078 * waiter is on the i_sync_list. This normally doesn't
2079 * happen because spa_sync() is slower than zil_commit(),
2080 * but if zil_commit() calls txg_wait_synced() (e.g.
2081 * because zil_create() or zil_commit_writer_stall() is
2082 * called) we will hit this case.
2083 */
2084 if (itx->itx_lr.lrc_txtype == TX_COMMIT)
2085 zil_commit_waiter_skip(itx->itx_private);
2086
2087 list_remove(list, itx);
2088 zil_itx_destroy(itx);
2089 }
2090
2091 cookie = NULL;
2092 t = &itxs->i_async_tree;
2093 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
2094 list = &ian->ia_list;
2095 while ((itx = list_head(list)) != NULL) {
2096 list_remove(list, itx);
2097 /* commit itxs should never be on the async lists. */
2098 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
2099 zil_itx_destroy(itx);
2100 }
2101 list_destroy(list);
2102 kmem_free(ian, sizeof (itx_async_node_t));
2103 }
2104 avl_destroy(t);
2105
2106 kmem_free(itxs, sizeof (itxs_t));
2107 }
2108
2109 static int
2110 zil_aitx_compare(const void *x1, const void *x2)
2111 {
2112 const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
2113 const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
2114
2115 return (TREE_CMP(o1, o2));
2116 }
2117
2118 /*
2119 * Remove all async itx with the given oid.
2120 */
2121 void
2122 zil_remove_async(zilog_t *zilog, uint64_t oid)
2123 {
2124 uint64_t otxg, txg;
2125 itx_async_node_t *ian;
2126 avl_tree_t *t;
2127 avl_index_t where;
2128 list_t clean_list;
2129 itx_t *itx;
2130
2131 ASSERT(oid != 0);
2132 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
2133
2134 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2135 otxg = ZILTEST_TXG;
2136 else
2137 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2138
2139 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2140 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2141
2142 mutex_enter(&itxg->itxg_lock);
2143 if (itxg->itxg_txg != txg) {
2144 mutex_exit(&itxg->itxg_lock);
2145 continue;
2146 }
2147
2148 /*
2149 * Locate the object node and append its list.
2150 */
2151 t = &itxg->itxg_itxs->i_async_tree;
2152 ian = avl_find(t, &oid, &where);
2153 if (ian != NULL)
2154 list_move_tail(&clean_list, &ian->ia_list);
2155 mutex_exit(&itxg->itxg_lock);
2156 }
2157 while ((itx = list_head(&clean_list)) != NULL) {
2158 list_remove(&clean_list, itx);
2159 /* commit itxs should never be on the async lists. */
2160 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
2161 zil_itx_destroy(itx);
2162 }
2163 list_destroy(&clean_list);
2164 }
2165
2166 void
2167 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
2168 {
2169 uint64_t txg;
2170 itxg_t *itxg;
2171 itxs_t *itxs, *clean = NULL;
2172
2173 /*
2174 * Ensure the data of a renamed file is committed before the rename.
2175 */
2176 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
2177 zil_async_to_sync(zilog, itx->itx_oid);
2178
2179 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
2180 txg = ZILTEST_TXG;
2181 else
2182 txg = dmu_tx_get_txg(tx);
2183
2184 itxg = &zilog->zl_itxg[txg & TXG_MASK];
2185 mutex_enter(&itxg->itxg_lock);
2186 itxs = itxg->itxg_itxs;
2187 if (itxg->itxg_txg != txg) {
2188 if (itxs != NULL) {
2189 /*
2190 * The zil_clean callback hasn't got around to cleaning
2191 * this itxg. Save the itxs for release below.
2192 * This should be rare.
2193 */
2194 zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
2195 "txg %llu", (u_longlong_t)itxg->itxg_txg);
2196 clean = itxg->itxg_itxs;
2197 }
2198 itxg->itxg_txg = txg;
2199 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t),
2200 KM_SLEEP);
2201
2202 list_create(&itxs->i_sync_list, sizeof (itx_t),
2203 offsetof(itx_t, itx_node));
2204 avl_create(&itxs->i_async_tree, zil_aitx_compare,
2205 sizeof (itx_async_node_t),
2206 offsetof(itx_async_node_t, ia_node));
2207 }
2208 if (itx->itx_sync) {
2209 list_insert_tail(&itxs->i_sync_list, itx);
2210 } else {
2211 avl_tree_t *t = &itxs->i_async_tree;
2212 uint64_t foid =
2213 LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid);
2214 itx_async_node_t *ian;
2215 avl_index_t where;
2216
2217 ian = avl_find(t, &foid, &where);
2218 if (ian == NULL) {
2219 ian = kmem_alloc(sizeof (itx_async_node_t),
2220 KM_SLEEP);
2221 list_create(&ian->ia_list, sizeof (itx_t),
2222 offsetof(itx_t, itx_node));
2223 ian->ia_foid = foid;
2224 avl_insert(t, ian, where);
2225 }
2226 list_insert_tail(&ian->ia_list, itx);
2227 }
2228
2229 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
2230
2231 /*
2232 * We don't want to dirty the ZIL using ZILTEST_TXG, because
2233 * zil_clean() will never be called using ZILTEST_TXG. Thus, we
2234 * need to be careful to always dirty the ZIL using the "real"
2235 * TXG (not itxg_txg) even when the SPA is frozen.
2236 */
2237 zilog_dirty(zilog, dmu_tx_get_txg(tx));
2238 mutex_exit(&itxg->itxg_lock);
2239
2240 /* Release the old itxs now we've dropped the lock */
2241 if (clean != NULL)
2242 zil_itxg_clean(clean);
2243 }
2244
2245 /*
2246 * If there are any in-memory intent log transactions which have now been
2247 * synced then start up a taskq to free them. We should only do this after we
2248 * have written out the uberblocks (i.e. txg has been committed) so that
2249 * don't inadvertently clean out in-memory log records that would be required
2250 * by zil_commit().
2251 */
2252 void
2253 zil_clean(zilog_t *zilog, uint64_t synced_txg)
2254 {
2255 itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
2256 itxs_t *clean_me;
2257
2258 ASSERT3U(synced_txg, <, ZILTEST_TXG);
2259
2260 mutex_enter(&itxg->itxg_lock);
2261 if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
2262 mutex_exit(&itxg->itxg_lock);
2263 return;
2264 }
2265 ASSERT3U(itxg->itxg_txg, <=, synced_txg);
2266 ASSERT3U(itxg->itxg_txg, !=, 0);
2267 clean_me = itxg->itxg_itxs;
2268 itxg->itxg_itxs = NULL;
2269 itxg->itxg_txg = 0;
2270 mutex_exit(&itxg->itxg_lock);
2271 /*
2272 * Preferably start a task queue to free up the old itxs but
2273 * if taskq_dispatch can't allocate resources to do that then
2274 * free it in-line. This should be rare. Note, using TQ_SLEEP
2275 * created a bad performance problem.
2276 */
2277 ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
2278 ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
2279 taskqid_t id = taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
2280 zil_itxg_clean, clean_me, TQ_NOSLEEP);
2281 if (id == TASKQID_INVALID)
2282 zil_itxg_clean(clean_me);
2283 }
2284
2285 /*
2286 * This function will traverse the queue of itxs that need to be
2287 * committed, and move them onto the ZIL's zl_itx_commit_list.
2288 */
2289 static void
2290 zil_get_commit_list(zilog_t *zilog)
2291 {
2292 uint64_t otxg, txg;
2293 list_t *commit_list = &zilog->zl_itx_commit_list;
2294
2295 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2296
2297 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2298 otxg = ZILTEST_TXG;
2299 else
2300 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2301
2302 /*
2303 * This is inherently racy, since there is nothing to prevent
2304 * the last synced txg from changing. That's okay since we'll
2305 * only commit things in the future.
2306 */
2307 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2308 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2309
2310 mutex_enter(&itxg->itxg_lock);
2311 if (itxg->itxg_txg != txg) {
2312 mutex_exit(&itxg->itxg_lock);
2313 continue;
2314 }
2315
2316 /*
2317 * If we're adding itx records to the zl_itx_commit_list,
2318 * then the zil better be dirty in this "txg". We can assert
2319 * that here since we're holding the itxg_lock which will
2320 * prevent spa_sync from cleaning it. Once we add the itxs
2321 * to the zl_itx_commit_list we must commit it to disk even
2322 * if it's unnecessary (i.e. the txg was synced).
2323 */
2324 ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
2325 spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
2326 list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
2327
2328 mutex_exit(&itxg->itxg_lock);
2329 }
2330 }
2331
2332 /*
2333 * Move the async itxs for a specified object to commit into sync lists.
2334 */
2335 void
2336 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
2337 {
2338 uint64_t otxg, txg;
2339 itx_async_node_t *ian;
2340 avl_tree_t *t;
2341 avl_index_t where;
2342
2343 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2344 otxg = ZILTEST_TXG;
2345 else
2346 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2347
2348 /*
2349 * This is inherently racy, since there is nothing to prevent
2350 * the last synced txg from changing.
2351 */
2352 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2353 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2354
2355 mutex_enter(&itxg->itxg_lock);
2356 if (itxg->itxg_txg != txg) {
2357 mutex_exit(&itxg->itxg_lock);
2358 continue;
2359 }
2360
2361 /*
2362 * If a foid is specified then find that node and append its
2363 * list. Otherwise walk the tree appending all the lists
2364 * to the sync list. We add to the end rather than the
2365 * beginning to ensure the create has happened.
2366 */
2367 t = &itxg->itxg_itxs->i_async_tree;
2368 if (foid != 0) {
2369 ian = avl_find(t, &foid, &where);
2370 if (ian != NULL) {
2371 list_move_tail(&itxg->itxg_itxs->i_sync_list,
2372 &ian->ia_list);
2373 }
2374 } else {
2375 void *cookie = NULL;
2376
2377 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
2378 list_move_tail(&itxg->itxg_itxs->i_sync_list,
2379 &ian->ia_list);
2380 list_destroy(&ian->ia_list);
2381 kmem_free(ian, sizeof (itx_async_node_t));
2382 }
2383 }
2384 mutex_exit(&itxg->itxg_lock);
2385 }
2386 }
2387
2388 /*
2389 * This function will prune commit itxs that are at the head of the
2390 * commit list (it won't prune past the first non-commit itx), and
2391 * either: a) attach them to the last lwb that's still pending
2392 * completion, or b) skip them altogether.
2393 *
2394 * This is used as a performance optimization to prevent commit itxs
2395 * from generating new lwbs when it's unnecessary to do so.
2396 */
2397 static void
2398 zil_prune_commit_list(zilog_t *zilog)
2399 {
2400 itx_t *itx;
2401
2402 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2403
2404 while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) {
2405 lr_t *lrc = &itx->itx_lr;
2406 if (lrc->lrc_txtype != TX_COMMIT)
2407 break;
2408
2409 mutex_enter(&zilog->zl_lock);
2410
2411 lwb_t *last_lwb = zilog->zl_last_lwb_opened;
2412 if (last_lwb == NULL ||
2413 last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) {
2414 /*
2415 * All of the itxs this waiter was waiting on
2416 * must have already completed (or there were
2417 * never any itx's for it to wait on), so it's
2418 * safe to skip this waiter and mark it done.
2419 */
2420 zil_commit_waiter_skip(itx->itx_private);
2421 } else {
2422 zil_commit_waiter_link_lwb(itx->itx_private, last_lwb);
2423 itx->itx_private = NULL;
2424 }
2425
2426 mutex_exit(&zilog->zl_lock);
2427
2428 list_remove(&zilog->zl_itx_commit_list, itx);
2429 zil_itx_destroy(itx);
2430 }
2431
2432 IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
2433 }
2434
2435 static void
2436 zil_commit_writer_stall(zilog_t *zilog)
2437 {
2438 /*
2439 * When zio_alloc_zil() fails to allocate the next lwb block on
2440 * disk, we must call txg_wait_synced() to ensure all of the
2441 * lwbs in the zilog's zl_lwb_list are synced and then freed (in
2442 * zil_sync()), such that any subsequent ZIL writer (i.e. a call
2443 * to zil_process_commit_list()) will have to call zil_create(),
2444 * and start a new ZIL chain.
2445 *
2446 * Since zil_alloc_zil() failed, the lwb that was previously
2447 * issued does not have a pointer to the "next" lwb on disk.
2448 * Thus, if another ZIL writer thread was to allocate the "next"
2449 * on-disk lwb, that block could be leaked in the event of a
2450 * crash (because the previous lwb on-disk would not point to
2451 * it).
2452 *
2453 * We must hold the zilog's zl_issuer_lock while we do this, to
2454 * ensure no new threads enter zil_process_commit_list() until
2455 * all lwb's in the zl_lwb_list have been synced and freed
2456 * (which is achieved via the txg_wait_synced() call).
2457 */
2458 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2459 txg_wait_synced(zilog->zl_dmu_pool, 0);
2460 ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
2461 }
2462
2463 /*
2464 * This function will traverse the commit list, creating new lwbs as
2465 * needed, and committing the itxs from the commit list to these newly
2466 * created lwbs. Additionally, as a new lwb is created, the previous
2467 * lwb will be issued to the zio layer to be written to disk.
2468 */
2469 static void
2470 zil_process_commit_list(zilog_t *zilog)
2471 {
2472 spa_t *spa = zilog->zl_spa;
2473 list_t nolwb_itxs;
2474 list_t nolwb_waiters;
2475 lwb_t *lwb, *plwb;
2476 itx_t *itx;
2477 boolean_t first = B_TRUE;
2478
2479 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2480
2481 /*
2482 * Return if there's nothing to commit before we dirty the fs by
2483 * calling zil_create().
2484 */
2485 if (list_head(&zilog->zl_itx_commit_list) == NULL)
2486 return;
2487
2488 list_create(&nolwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
2489 list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t),
2490 offsetof(zil_commit_waiter_t, zcw_node));
2491
2492 lwb = list_tail(&zilog->zl_lwb_list);
2493 if (lwb == NULL) {
2494 lwb = zil_create(zilog);
2495 } else {
2496 /*
2497 * Activate SPA_FEATURE_ZILSAXATTR for the cases where ZIL will
2498 * have already been created (zl_lwb_list not empty).
2499 */
2500 zil_commit_activate_saxattr_feature(zilog);
2501 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2502 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
2503 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
2504 first = (lwb->lwb_state != LWB_STATE_OPENED) &&
2505 ((plwb = list_prev(&zilog->zl_lwb_list, lwb)) == NULL ||
2506 plwb->lwb_state == LWB_STATE_FLUSH_DONE);
2507 }
2508
2509 while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) {
2510 lr_t *lrc = &itx->itx_lr;
2511 uint64_t txg = lrc->lrc_txg;
2512
2513 ASSERT3U(txg, !=, 0);
2514
2515 if (lrc->lrc_txtype == TX_COMMIT) {
2516 DTRACE_PROBE2(zil__process__commit__itx,
2517 zilog_t *, zilog, itx_t *, itx);
2518 } else {
2519 DTRACE_PROBE2(zil__process__normal__itx,
2520 zilog_t *, zilog, itx_t *, itx);
2521 }
2522
2523 list_remove(&zilog->zl_itx_commit_list, itx);
2524
2525 boolean_t synced = txg <= spa_last_synced_txg(spa);
2526 boolean_t frozen = txg > spa_freeze_txg(spa);
2527
2528 /*
2529 * If the txg of this itx has already been synced out, then
2530 * we don't need to commit this itx to an lwb. This is
2531 * because the data of this itx will have already been
2532 * written to the main pool. This is inherently racy, and
2533 * it's still ok to commit an itx whose txg has already
2534 * been synced; this will result in a write that's
2535 * unnecessary, but will do no harm.
2536 *
2537 * With that said, we always want to commit TX_COMMIT itxs
2538 * to an lwb, regardless of whether or not that itx's txg
2539 * has been synced out. We do this to ensure any OPENED lwb
2540 * will always have at least one zil_commit_waiter_t linked
2541 * to the lwb.
2542 *
2543 * As a counter-example, if we skipped TX_COMMIT itx's
2544 * whose txg had already been synced, the following
2545 * situation could occur if we happened to be racing with
2546 * spa_sync:
2547 *
2548 * 1. We commit a non-TX_COMMIT itx to an lwb, where the
2549 * itx's txg is 10 and the last synced txg is 9.
2550 * 2. spa_sync finishes syncing out txg 10.
2551 * 3. We move to the next itx in the list, it's a TX_COMMIT
2552 * whose txg is 10, so we skip it rather than committing
2553 * it to the lwb used in (1).
2554 *
2555 * If the itx that is skipped in (3) is the last TX_COMMIT
2556 * itx in the commit list, than it's possible for the lwb
2557 * used in (1) to remain in the OPENED state indefinitely.
2558 *
2559 * To prevent the above scenario from occurring, ensuring
2560 * that once an lwb is OPENED it will transition to ISSUED
2561 * and eventually DONE, we always commit TX_COMMIT itx's to
2562 * an lwb here, even if that itx's txg has already been
2563 * synced.
2564 *
2565 * Finally, if the pool is frozen, we _always_ commit the
2566 * itx. The point of freezing the pool is to prevent data
2567 * from being written to the main pool via spa_sync, and
2568 * instead rely solely on the ZIL to persistently store the
2569 * data; i.e. when the pool is frozen, the last synced txg
2570 * value can't be trusted.
2571 */
2572 if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) {
2573 if (lwb != NULL) {
2574 lwb = zil_lwb_commit(zilog, itx, lwb);
2575
2576 if (lwb == NULL)
2577 list_insert_tail(&nolwb_itxs, itx);
2578 else
2579 list_insert_tail(&lwb->lwb_itxs, itx);
2580 } else {
2581 if (lrc->lrc_txtype == TX_COMMIT) {
2582 zil_commit_waiter_link_nolwb(
2583 itx->itx_private, &nolwb_waiters);
2584 }
2585
2586 list_insert_tail(&nolwb_itxs, itx);
2587 }
2588 } else {
2589 ASSERT3S(lrc->lrc_txtype, !=, TX_COMMIT);
2590 zil_itx_destroy(itx);
2591 }
2592 }
2593
2594 if (lwb == NULL) {
2595 /*
2596 * This indicates zio_alloc_zil() failed to allocate the
2597 * "next" lwb on-disk. When this happens, we must stall
2598 * the ZIL write pipeline; see the comment within
2599 * zil_commit_writer_stall() for more details.
2600 */
2601 zil_commit_writer_stall(zilog);
2602
2603 /*
2604 * Additionally, we have to signal and mark the "nolwb"
2605 * waiters as "done" here, since without an lwb, we
2606 * can't do this via zil_lwb_flush_vdevs_done() like
2607 * normal.
2608 */
2609 zil_commit_waiter_t *zcw;
2610 while ((zcw = list_head(&nolwb_waiters)) != NULL) {
2611 zil_commit_waiter_skip(zcw);
2612 list_remove(&nolwb_waiters, zcw);
2613 }
2614
2615 /*
2616 * And finally, we have to destroy the itx's that
2617 * couldn't be committed to an lwb; this will also call
2618 * the itx's callback if one exists for the itx.
2619 */
2620 while ((itx = list_head(&nolwb_itxs)) != NULL) {
2621 list_remove(&nolwb_itxs, itx);
2622 zil_itx_destroy(itx);
2623 }
2624 } else {
2625 ASSERT(list_is_empty(&nolwb_waiters));
2626 ASSERT3P(lwb, !=, NULL);
2627 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2628 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
2629 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
2630
2631 /*
2632 * At this point, the ZIL block pointed at by the "lwb"
2633 * variable is in one of the following states: "closed"
2634 * or "open".
2635 *
2636 * If it's "closed", then no itxs have been committed to
2637 * it, so there's no point in issuing its zio (i.e. it's
2638 * "empty").
2639 *
2640 * If it's "open", then it contains one or more itxs that
2641 * eventually need to be committed to stable storage. In
2642 * this case we intentionally do not issue the lwb's zio
2643 * to disk yet, and instead rely on one of the following
2644 * two mechanisms for issuing the zio:
2645 *
2646 * 1. Ideally, there will be more ZIL activity occurring
2647 * on the system, such that this function will be
2648 * immediately called again (not necessarily by the same
2649 * thread) and this lwb's zio will be issued via
2650 * zil_lwb_commit(). This way, the lwb is guaranteed to
2651 * be "full" when it is issued to disk, and we'll make
2652 * use of the lwb's size the best we can.
2653 *
2654 * 2. If there isn't sufficient ZIL activity occurring on
2655 * the system, such that this lwb's zio isn't issued via
2656 * zil_lwb_commit(), zil_commit_waiter() will issue the
2657 * lwb's zio. If this occurs, the lwb is not guaranteed
2658 * to be "full" by the time its zio is issued, and means
2659 * the size of the lwb was "too large" given the amount
2660 * of ZIL activity occurring on the system at that time.
2661 *
2662 * We do this for a couple of reasons:
2663 *
2664 * 1. To try and reduce the number of IOPs needed to
2665 * write the same number of itxs. If an lwb has space
2666 * available in its buffer for more itxs, and more itxs
2667 * will be committed relatively soon (relative to the
2668 * latency of performing a write), then it's beneficial
2669 * to wait for these "next" itxs. This way, more itxs
2670 * can be committed to stable storage with fewer writes.
2671 *
2672 * 2. To try and use the largest lwb block size that the
2673 * incoming rate of itxs can support. Again, this is to
2674 * try and pack as many itxs into as few lwbs as
2675 * possible, without significantly impacting the latency
2676 * of each individual itx.
2677 *
2678 * If we had no already running or open LWBs, it can be
2679 * the workload is single-threaded. And if the ZIL write
2680 * latency is very small or if the LWB is almost full, it
2681 * may be cheaper to bypass the delay.
2682 */
2683 if (lwb->lwb_state == LWB_STATE_OPENED && first) {
2684 hrtime_t sleep = zilog->zl_last_lwb_latency *
2685 zfs_commit_timeout_pct / 100;
2686 if (sleep < zil_min_commit_timeout ||
2687 lwb->lwb_sz - lwb->lwb_nused < lwb->lwb_sz / 8) {
2688 lwb = zil_lwb_write_issue(zilog, lwb);
2689 zilog->zl_cur_used = 0;
2690 if (lwb == NULL)
2691 zil_commit_writer_stall(zilog);
2692 }
2693 }
2694 }
2695 }
2696
2697 /*
2698 * This function is responsible for ensuring the passed in commit waiter
2699 * (and associated commit itx) is committed to an lwb. If the waiter is
2700 * not already committed to an lwb, all itxs in the zilog's queue of
2701 * itxs will be processed. The assumption is the passed in waiter's
2702 * commit itx will found in the queue just like the other non-commit
2703 * itxs, such that when the entire queue is processed, the waiter will
2704 * have been committed to an lwb.
2705 *
2706 * The lwb associated with the passed in waiter is not guaranteed to
2707 * have been issued by the time this function completes. If the lwb is
2708 * not issued, we rely on future calls to zil_commit_writer() to issue
2709 * the lwb, or the timeout mechanism found in zil_commit_waiter().
2710 */
2711 static void
2712 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw)
2713 {
2714 ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2715 ASSERT(spa_writeable(zilog->zl_spa));
2716
2717 mutex_enter(&zilog->zl_issuer_lock);
2718
2719 if (zcw->zcw_lwb != NULL || zcw->zcw_done) {
2720 /*
2721 * It's possible that, while we were waiting to acquire
2722 * the "zl_issuer_lock", another thread committed this
2723 * waiter to an lwb. If that occurs, we bail out early,
2724 * without processing any of the zilog's queue of itxs.
2725 *
2726 * On certain workloads and system configurations, the
2727 * "zl_issuer_lock" can become highly contended. In an
2728 * attempt to reduce this contention, we immediately drop
2729 * the lock if the waiter has already been processed.
2730 *
2731 * We've measured this optimization to reduce CPU spent
2732 * contending on this lock by up to 5%, using a system
2733 * with 32 CPUs, low latency storage (~50 usec writes),
2734 * and 1024 threads performing sync writes.
2735 */
2736 goto out;
2737 }
2738
2739 ZIL_STAT_BUMP(zilog, zil_commit_writer_count);
2740
2741 zil_get_commit_list(zilog);
2742 zil_prune_commit_list(zilog);
2743 zil_process_commit_list(zilog);
2744
2745 out:
2746 mutex_exit(&zilog->zl_issuer_lock);
2747 }
2748
2749 static void
2750 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw)
2751 {
2752 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2753 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2754 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
2755
2756 lwb_t *lwb = zcw->zcw_lwb;
2757 ASSERT3P(lwb, !=, NULL);
2758 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED);
2759
2760 /*
2761 * If the lwb has already been issued by another thread, we can
2762 * immediately return since there's no work to be done (the
2763 * point of this function is to issue the lwb). Additionally, we
2764 * do this prior to acquiring the zl_issuer_lock, to avoid
2765 * acquiring it when it's not necessary to do so.
2766 */
2767 if (lwb->lwb_state == LWB_STATE_ISSUED ||
2768 lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2769 lwb->lwb_state == LWB_STATE_FLUSH_DONE)
2770 return;
2771
2772 /*
2773 * In order to call zil_lwb_write_issue() we must hold the
2774 * zilog's "zl_issuer_lock". We can't simply acquire that lock,
2775 * since we're already holding the commit waiter's "zcw_lock",
2776 * and those two locks are acquired in the opposite order
2777 * elsewhere.
2778 */
2779 mutex_exit(&zcw->zcw_lock);
2780 mutex_enter(&zilog->zl_issuer_lock);
2781 mutex_enter(&zcw->zcw_lock);
2782
2783 /*
2784 * Since we just dropped and re-acquired the commit waiter's
2785 * lock, we have to re-check to see if the waiter was marked
2786 * "done" during that process. If the waiter was marked "done",
2787 * the "lwb" pointer is no longer valid (it can be free'd after
2788 * the waiter is marked "done"), so without this check we could
2789 * wind up with a use-after-free error below.
2790 */
2791 if (zcw->zcw_done)
2792 goto out;
2793
2794 ASSERT3P(lwb, ==, zcw->zcw_lwb);
2795
2796 /*
2797 * We've already checked this above, but since we hadn't acquired
2798 * the zilog's zl_issuer_lock, we have to perform this check a
2799 * second time while holding the lock.
2800 *
2801 * We don't need to hold the zl_lock since the lwb cannot transition
2802 * from OPENED to ISSUED while we hold the zl_issuer_lock. The lwb
2803 * _can_ transition from ISSUED to DONE, but it's OK to race with
2804 * that transition since we treat the lwb the same, whether it's in
2805 * the ISSUED or DONE states.
2806 *
2807 * The important thing, is we treat the lwb differently depending on
2808 * if it's ISSUED or OPENED, and block any other threads that might
2809 * attempt to issue this lwb. For that reason we hold the
2810 * zl_issuer_lock when checking the lwb_state; we must not call
2811 * zil_lwb_write_issue() if the lwb had already been issued.
2812 *
2813 * See the comment above the lwb_state_t structure definition for
2814 * more details on the lwb states, and locking requirements.
2815 */
2816 if (lwb->lwb_state == LWB_STATE_ISSUED ||
2817 lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2818 lwb->lwb_state == LWB_STATE_FLUSH_DONE)
2819 goto out;
2820
2821 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
2822
2823 /*
2824 * As described in the comments above zil_commit_waiter() and
2825 * zil_process_commit_list(), we need to issue this lwb's zio
2826 * since we've reached the commit waiter's timeout and it still
2827 * hasn't been issued.
2828 */
2829 lwb_t *nlwb = zil_lwb_write_issue(zilog, lwb);
2830
2831 IMPLY(nlwb != NULL, lwb->lwb_state != LWB_STATE_OPENED);
2832
2833 /*
2834 * Since the lwb's zio hadn't been issued by the time this thread
2835 * reached its timeout, we reset the zilog's "zl_cur_used" field
2836 * to influence the zil block size selection algorithm.
2837 *
2838 * By having to issue the lwb's zio here, it means the size of the
2839 * lwb was too large, given the incoming throughput of itxs. By
2840 * setting "zl_cur_used" to zero, we communicate this fact to the
2841 * block size selection algorithm, so it can take this information
2842 * into account, and potentially select a smaller size for the
2843 * next lwb block that is allocated.
2844 */
2845 zilog->zl_cur_used = 0;
2846
2847 if (nlwb == NULL) {
2848 /*
2849 * When zil_lwb_write_issue() returns NULL, this
2850 * indicates zio_alloc_zil() failed to allocate the
2851 * "next" lwb on-disk. When this occurs, the ZIL write
2852 * pipeline must be stalled; see the comment within the
2853 * zil_commit_writer_stall() function for more details.
2854 *
2855 * We must drop the commit waiter's lock prior to
2856 * calling zil_commit_writer_stall() or else we can wind
2857 * up with the following deadlock:
2858 *
2859 * - This thread is waiting for the txg to sync while
2860 * holding the waiter's lock; txg_wait_synced() is
2861 * used within txg_commit_writer_stall().
2862 *
2863 * - The txg can't sync because it is waiting for this
2864 * lwb's zio callback to call dmu_tx_commit().
2865 *
2866 * - The lwb's zio callback can't call dmu_tx_commit()
2867 * because it's blocked trying to acquire the waiter's
2868 * lock, which occurs prior to calling dmu_tx_commit()
2869 */
2870 mutex_exit(&zcw->zcw_lock);
2871 zil_commit_writer_stall(zilog);
2872 mutex_enter(&zcw->zcw_lock);
2873 }
2874
2875 out:
2876 mutex_exit(&zilog->zl_issuer_lock);
2877 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2878 }
2879
2880 /*
2881 * This function is responsible for performing the following two tasks:
2882 *
2883 * 1. its primary responsibility is to block until the given "commit
2884 * waiter" is considered "done".
2885 *
2886 * 2. its secondary responsibility is to issue the zio for the lwb that
2887 * the given "commit waiter" is waiting on, if this function has
2888 * waited "long enough" and the lwb is still in the "open" state.
2889 *
2890 * Given a sufficient amount of itxs being generated and written using
2891 * the ZIL, the lwb's zio will be issued via the zil_lwb_commit()
2892 * function. If this does not occur, this secondary responsibility will
2893 * ensure the lwb is issued even if there is not other synchronous
2894 * activity on the system.
2895 *
2896 * For more details, see zil_process_commit_list(); more specifically,
2897 * the comment at the bottom of that function.
2898 */
2899 static void
2900 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw)
2901 {
2902 ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2903 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2904 ASSERT(spa_writeable(zilog->zl_spa));
2905
2906 mutex_enter(&zcw->zcw_lock);
2907
2908 /*
2909 * The timeout is scaled based on the lwb latency to avoid
2910 * significantly impacting the latency of each individual itx.
2911 * For more details, see the comment at the bottom of the
2912 * zil_process_commit_list() function.
2913 */
2914 int pct = MAX(zfs_commit_timeout_pct, 1);
2915 hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100;
2916 hrtime_t wakeup = gethrtime() + sleep;
2917 boolean_t timedout = B_FALSE;
2918
2919 while (!zcw->zcw_done) {
2920 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2921
2922 lwb_t *lwb = zcw->zcw_lwb;
2923
2924 /*
2925 * Usually, the waiter will have a non-NULL lwb field here,
2926 * but it's possible for it to be NULL as a result of
2927 * zil_commit() racing with spa_sync().
2928 *
2929 * When zil_clean() is called, it's possible for the itxg
2930 * list (which may be cleaned via a taskq) to contain
2931 * commit itxs. When this occurs, the commit waiters linked
2932 * off of these commit itxs will not be committed to an
2933 * lwb. Additionally, these commit waiters will not be
2934 * marked done until zil_commit_waiter_skip() is called via
2935 * zil_itxg_clean().
2936 *
2937 * Thus, it's possible for this commit waiter (i.e. the
2938 * "zcw" variable) to be found in this "in between" state;
2939 * where it's "zcw_lwb" field is NULL, and it hasn't yet
2940 * been skipped, so it's "zcw_done" field is still B_FALSE.
2941 */
2942 IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED);
2943
2944 if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) {
2945 ASSERT3B(timedout, ==, B_FALSE);
2946
2947 /*
2948 * If the lwb hasn't been issued yet, then we
2949 * need to wait with a timeout, in case this
2950 * function needs to issue the lwb after the
2951 * timeout is reached; responsibility (2) from
2952 * the comment above this function.
2953 */
2954 int rc = cv_timedwait_hires(&zcw->zcw_cv,
2955 &zcw->zcw_lock, wakeup, USEC2NSEC(1),
2956 CALLOUT_FLAG_ABSOLUTE);
2957
2958 if (rc != -1 || zcw->zcw_done)
2959 continue;
2960
2961 timedout = B_TRUE;
2962 zil_commit_waiter_timeout(zilog, zcw);
2963
2964 if (!zcw->zcw_done) {
2965 /*
2966 * If the commit waiter has already been
2967 * marked "done", it's possible for the
2968 * waiter's lwb structure to have already
2969 * been freed. Thus, we can only reliably
2970 * make these assertions if the waiter
2971 * isn't done.
2972 */
2973 ASSERT3P(lwb, ==, zcw->zcw_lwb);
2974 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
2975 }
2976 } else {
2977 /*
2978 * If the lwb isn't open, then it must have already
2979 * been issued. In that case, there's no need to
2980 * use a timeout when waiting for the lwb to
2981 * complete.
2982 *
2983 * Additionally, if the lwb is NULL, the waiter
2984 * will soon be signaled and marked done via
2985 * zil_clean() and zil_itxg_clean(), so no timeout
2986 * is required.
2987 */
2988
2989 IMPLY(lwb != NULL,
2990 lwb->lwb_state == LWB_STATE_ISSUED ||
2991 lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2992 lwb->lwb_state == LWB_STATE_FLUSH_DONE);
2993 cv_wait(&zcw->zcw_cv, &zcw->zcw_lock);
2994 }
2995 }
2996
2997 mutex_exit(&zcw->zcw_lock);
2998 }
2999
3000 static zil_commit_waiter_t *
3001 zil_alloc_commit_waiter(void)
3002 {
3003 zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP);
3004
3005 cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL);
3006 mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL);
3007 list_link_init(&zcw->zcw_node);
3008 zcw->zcw_lwb = NULL;
3009 zcw->zcw_done = B_FALSE;
3010 zcw->zcw_zio_error = 0;
3011
3012 return (zcw);
3013 }
3014
3015 static void
3016 zil_free_commit_waiter(zil_commit_waiter_t *zcw)
3017 {
3018 ASSERT(!list_link_active(&zcw->zcw_node));
3019 ASSERT3P(zcw->zcw_lwb, ==, NULL);
3020 ASSERT3B(zcw->zcw_done, ==, B_TRUE);
3021 mutex_destroy(&zcw->zcw_lock);
3022 cv_destroy(&zcw->zcw_cv);
3023 kmem_cache_free(zil_zcw_cache, zcw);
3024 }
3025
3026 /*
3027 * This function is used to create a TX_COMMIT itx and assign it. This
3028 * way, it will be linked into the ZIL's list of synchronous itxs, and
3029 * then later committed to an lwb (or skipped) when
3030 * zil_process_commit_list() is called.
3031 */
3032 static void
3033 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw)
3034 {
3035 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
3036 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
3037
3038 itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t));
3039 itx->itx_sync = B_TRUE;
3040 itx->itx_private = zcw;
3041
3042 zil_itx_assign(zilog, itx, tx);
3043
3044 dmu_tx_commit(tx);
3045 }
3046
3047 /*
3048 * Commit ZFS Intent Log transactions (itxs) to stable storage.
3049 *
3050 * When writing ZIL transactions to the on-disk representation of the
3051 * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple
3052 * itxs can be committed to a single lwb. Once a lwb is written and
3053 * committed to stable storage (i.e. the lwb is written, and vdevs have
3054 * been flushed), each itx that was committed to that lwb is also
3055 * considered to be committed to stable storage.
3056 *
3057 * When an itx is committed to an lwb, the log record (lr_t) contained
3058 * by the itx is copied into the lwb's zio buffer, and once this buffer
3059 * is written to disk, it becomes an on-disk ZIL block.
3060 *
3061 * As itxs are generated, they're inserted into the ZIL's queue of
3062 * uncommitted itxs. The semantics of zil_commit() are such that it will
3063 * block until all itxs that were in the queue when it was called, are
3064 * committed to stable storage.
3065 *
3066 * If "foid" is zero, this means all "synchronous" and "asynchronous"
3067 * itxs, for all objects in the dataset, will be committed to stable
3068 * storage prior to zil_commit() returning. If "foid" is non-zero, all
3069 * "synchronous" itxs for all objects, but only "asynchronous" itxs
3070 * that correspond to the foid passed in, will be committed to stable
3071 * storage prior to zil_commit() returning.
3072 *
3073 * Generally speaking, when zil_commit() is called, the consumer doesn't
3074 * actually care about _all_ of the uncommitted itxs. Instead, they're
3075 * simply trying to waiting for a specific itx to be committed to disk,
3076 * but the interface(s) for interacting with the ZIL don't allow such
3077 * fine-grained communication. A better interface would allow a consumer
3078 * to create and assign an itx, and then pass a reference to this itx to
3079 * zil_commit(); such that zil_commit() would return as soon as that
3080 * specific itx was committed to disk (instead of waiting for _all_
3081 * itxs to be committed).
3082 *
3083 * When a thread calls zil_commit() a special "commit itx" will be
3084 * generated, along with a corresponding "waiter" for this commit itx.
3085 * zil_commit() will wait on this waiter's CV, such that when the waiter
3086 * is marked done, and signaled, zil_commit() will return.
3087 *
3088 * This commit itx is inserted into the queue of uncommitted itxs. This
3089 * provides an easy mechanism for determining which itxs were in the
3090 * queue prior to zil_commit() having been called, and which itxs were
3091 * added after zil_commit() was called.
3092 *
3093 * The commit itx is special; it doesn't have any on-disk representation.
3094 * When a commit itx is "committed" to an lwb, the waiter associated
3095 * with it is linked onto the lwb's list of waiters. Then, when that lwb
3096 * completes, each waiter on the lwb's list is marked done and signaled
3097 * -- allowing the thread waiting on the waiter to return from zil_commit().
3098 *
3099 * It's important to point out a few critical factors that allow us
3100 * to make use of the commit itxs, commit waiters, per-lwb lists of
3101 * commit waiters, and zio completion callbacks like we're doing:
3102 *
3103 * 1. The list of waiters for each lwb is traversed, and each commit
3104 * waiter is marked "done" and signaled, in the zio completion
3105 * callback of the lwb's zio[*].
3106 *
3107 * * Actually, the waiters are signaled in the zio completion
3108 * callback of the root zio for the DKIOCFLUSHWRITECACHE commands
3109 * that are sent to the vdevs upon completion of the lwb zio.
3110 *
3111 * 2. When the itxs are inserted into the ZIL's queue of uncommitted
3112 * itxs, the order in which they are inserted is preserved[*]; as
3113 * itxs are added to the queue, they are added to the tail of
3114 * in-memory linked lists.
3115 *
3116 * When committing the itxs to lwbs (to be written to disk), they
3117 * are committed in the same order in which the itxs were added to
3118 * the uncommitted queue's linked list(s); i.e. the linked list of
3119 * itxs to commit is traversed from head to tail, and each itx is
3120 * committed to an lwb in that order.
3121 *
3122 * * To clarify:
3123 *
3124 * - the order of "sync" itxs is preserved w.r.t. other
3125 * "sync" itxs, regardless of the corresponding objects.
3126 * - the order of "async" itxs is preserved w.r.t. other
3127 * "async" itxs corresponding to the same object.
3128 * - the order of "async" itxs is *not* preserved w.r.t. other
3129 * "async" itxs corresponding to different objects.
3130 * - the order of "sync" itxs w.r.t. "async" itxs (or vice
3131 * versa) is *not* preserved, even for itxs that correspond
3132 * to the same object.
3133 *
3134 * For more details, see: zil_itx_assign(), zil_async_to_sync(),
3135 * zil_get_commit_list(), and zil_process_commit_list().
3136 *
3137 * 3. The lwbs represent a linked list of blocks on disk. Thus, any
3138 * lwb cannot be considered committed to stable storage, until its
3139 * "previous" lwb is also committed to stable storage. This fact,
3140 * coupled with the fact described above, means that itxs are
3141 * committed in (roughly) the order in which they were generated.
3142 * This is essential because itxs are dependent on prior itxs.
3143 * Thus, we *must not* deem an itx as being committed to stable
3144 * storage, until *all* prior itxs have also been committed to
3145 * stable storage.
3146 *
3147 * To enforce this ordering of lwb zio's, while still leveraging as
3148 * much of the underlying storage performance as possible, we rely
3149 * on two fundamental concepts:
3150 *
3151 * 1. The creation and issuance of lwb zio's is protected by
3152 * the zilog's "zl_issuer_lock", which ensures only a single
3153 * thread is creating and/or issuing lwb's at a time
3154 * 2. The "previous" lwb is a child of the "current" lwb
3155 * (leveraging the zio parent-child dependency graph)
3156 *
3157 * By relying on this parent-child zio relationship, we can have
3158 * many lwb zio's concurrently issued to the underlying storage,
3159 * but the order in which they complete will be the same order in
3160 * which they were created.
3161 */
3162 void
3163 zil_commit(zilog_t *zilog, uint64_t foid)
3164 {
3165 /*
3166 * We should never attempt to call zil_commit on a snapshot for
3167 * a couple of reasons:
3168 *
3169 * 1. A snapshot may never be modified, thus it cannot have any
3170 * in-flight itxs that would have modified the dataset.
3171 *
3172 * 2. By design, when zil_commit() is called, a commit itx will
3173 * be assigned to this zilog; as a result, the zilog will be
3174 * dirtied. We must not dirty the zilog of a snapshot; there's
3175 * checks in the code that enforce this invariant, and will
3176 * cause a panic if it's not upheld.
3177 */
3178 ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE);
3179
3180 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3181 return;
3182
3183 if (!spa_writeable(zilog->zl_spa)) {
3184 /*
3185 * If the SPA is not writable, there should never be any
3186 * pending itxs waiting to be committed to disk. If that
3187 * weren't true, we'd skip writing those itxs out, and
3188 * would break the semantics of zil_commit(); thus, we're
3189 * verifying that truth before we return to the caller.
3190 */
3191 ASSERT(list_is_empty(&zilog->zl_lwb_list));
3192 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
3193 for (int i = 0; i < TXG_SIZE; i++)
3194 ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL);
3195 return;
3196 }
3197
3198 /*
3199 * If the ZIL is suspended, we don't want to dirty it by calling
3200 * zil_commit_itx_assign() below, nor can we write out
3201 * lwbs like would be done in zil_commit_write(). Thus, we
3202 * simply rely on txg_wait_synced() to maintain the necessary
3203 * semantics, and avoid calling those functions altogether.
3204 */
3205 if (zilog->zl_suspend > 0) {
3206 txg_wait_synced(zilog->zl_dmu_pool, 0);
3207 return;
3208 }
3209
3210 zil_commit_impl(zilog, foid);
3211 }
3212
3213 void
3214 zil_commit_impl(zilog_t *zilog, uint64_t foid)
3215 {
3216 ZIL_STAT_BUMP(zilog, zil_commit_count);
3217
3218 /*
3219 * Move the "async" itxs for the specified foid to the "sync"
3220 * queues, such that they will be later committed (or skipped)
3221 * to an lwb when zil_process_commit_list() is called.
3222 *
3223 * Since these "async" itxs must be committed prior to this
3224 * call to zil_commit returning, we must perform this operation
3225 * before we call zil_commit_itx_assign().
3226 */
3227 zil_async_to_sync(zilog, foid);
3228
3229 /*
3230 * We allocate a new "waiter" structure which will initially be
3231 * linked to the commit itx using the itx's "itx_private" field.
3232 * Since the commit itx doesn't represent any on-disk state,
3233 * when it's committed to an lwb, rather than copying the its
3234 * lr_t into the lwb's buffer, the commit itx's "waiter" will be
3235 * added to the lwb's list of waiters. Then, when the lwb is
3236 * committed to stable storage, each waiter in the lwb's list of
3237 * waiters will be marked "done", and signalled.
3238 *
3239 * We must create the waiter and assign the commit itx prior to
3240 * calling zil_commit_writer(), or else our specific commit itx
3241 * is not guaranteed to be committed to an lwb prior to calling
3242 * zil_commit_waiter().
3243 */
3244 zil_commit_waiter_t *zcw = zil_alloc_commit_waiter();
3245 zil_commit_itx_assign(zilog, zcw);
3246
3247 zil_commit_writer(zilog, zcw);
3248 zil_commit_waiter(zilog, zcw);
3249
3250 if (zcw->zcw_zio_error != 0) {
3251 /*
3252 * If there was an error writing out the ZIL blocks that
3253 * this thread is waiting on, then we fallback to
3254 * relying on spa_sync() to write out the data this
3255 * thread is waiting on. Obviously this has performance
3256 * implications, but the expectation is for this to be
3257 * an exceptional case, and shouldn't occur often.
3258 */
3259 DTRACE_PROBE2(zil__commit__io__error,
3260 zilog_t *, zilog, zil_commit_waiter_t *, zcw);
3261 txg_wait_synced(zilog->zl_dmu_pool, 0);
3262 }
3263
3264 zil_free_commit_waiter(zcw);
3265 }
3266
3267 /*
3268 * Called in syncing context to free committed log blocks and update log header.
3269 */
3270 void
3271 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
3272 {
3273 zil_header_t *zh = zil_header_in_syncing_context(zilog);
3274 uint64_t txg = dmu_tx_get_txg(tx);
3275 spa_t *spa = zilog->zl_spa;
3276 uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
3277 lwb_t *lwb;
3278
3279 /*
3280 * We don't zero out zl_destroy_txg, so make sure we don't try
3281 * to destroy it twice.
3282 */
3283 if (spa_sync_pass(spa) != 1)
3284 return;
3285
3286 zil_lwb_flush_wait_all(zilog, txg);
3287
3288 mutex_enter(&zilog->zl_lock);
3289
3290 ASSERT(zilog->zl_stop_sync == 0);
3291
3292 if (*replayed_seq != 0) {
3293 ASSERT(zh->zh_replay_seq < *replayed_seq);
3294 zh->zh_replay_seq = *replayed_seq;
3295 *replayed_seq = 0;
3296 }
3297
3298 if (zilog->zl_destroy_txg == txg) {
3299 blkptr_t blk = zh->zh_log;
3300 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
3301
3302 ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
3303
3304 memset(zh, 0, sizeof (zil_header_t));
3305 memset(zilog->zl_replayed_seq, 0,
3306 sizeof (zilog->zl_replayed_seq));
3307
3308 if (zilog->zl_keep_first) {
3309 /*
3310 * If this block was part of log chain that couldn't
3311 * be claimed because a device was missing during
3312 * zil_claim(), but that device later returns,
3313 * then this block could erroneously appear valid.
3314 * To guard against this, assign a new GUID to the new
3315 * log chain so it doesn't matter what blk points to.
3316 */
3317 zil_init_log_chain(zilog, &blk);
3318 zh->zh_log = blk;
3319 } else {
3320 /*
3321 * A destroyed ZIL chain can't contain any TX_SETSAXATTR
3322 * records. So, deactivate the feature for this dataset.
3323 * We activate it again when we start a new ZIL chain.
3324 */
3325 if (dsl_dataset_feature_is_active(ds,
3326 SPA_FEATURE_ZILSAXATTR))
3327 dsl_dataset_deactivate_feature(ds,
3328 SPA_FEATURE_ZILSAXATTR, tx);
3329 }
3330 }
3331
3332 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
3333 zh->zh_log = lwb->lwb_blk;
3334 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
3335 break;
3336 list_remove(&zilog->zl_lwb_list, lwb);
3337 zio_free(spa, txg, &lwb->lwb_blk);
3338 zil_free_lwb(zilog, lwb);
3339
3340 /*
3341 * If we don't have anything left in the lwb list then
3342 * we've had an allocation failure and we need to zero
3343 * out the zil_header blkptr so that we don't end
3344 * up freeing the same block twice.
3345 */
3346 if (list_head(&zilog->zl_lwb_list) == NULL)
3347 BP_ZERO(&zh->zh_log);
3348 }
3349
3350 /*
3351 * Remove fastwrite on any blocks that have been pre-allocated for
3352 * the next commit. This prevents fastwrite counter pollution by
3353 * unused, long-lived LWBs.
3354 */
3355 for (; lwb != NULL; lwb = list_next(&zilog->zl_lwb_list, lwb)) {
3356 if (lwb->lwb_fastwrite && !lwb->lwb_write_zio) {
3357 metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk);
3358 lwb->lwb_fastwrite = 0;
3359 }
3360 }
3361
3362 mutex_exit(&zilog->zl_lock);
3363 }
3364
3365 static int
3366 zil_lwb_cons(void *vbuf, void *unused, int kmflag)
3367 {
3368 (void) unused, (void) kmflag;
3369 lwb_t *lwb = vbuf;
3370 list_create(&lwb->lwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
3371 list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t),
3372 offsetof(zil_commit_waiter_t, zcw_node));
3373 avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare,
3374 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
3375 mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
3376 return (0);
3377 }
3378
3379 static void
3380 zil_lwb_dest(void *vbuf, void *unused)
3381 {
3382 (void) unused;
3383 lwb_t *lwb = vbuf;
3384 mutex_destroy(&lwb->lwb_vdev_lock);
3385 avl_destroy(&lwb->lwb_vdev_tree);
3386 list_destroy(&lwb->lwb_waiters);
3387 list_destroy(&lwb->lwb_itxs);
3388 }
3389
3390 void
3391 zil_init(void)
3392 {
3393 zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
3394 sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0);
3395
3396 zil_zcw_cache = kmem_cache_create("zil_zcw_cache",
3397 sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
3398
3399 zil_sums_init(&zil_sums_global);
3400 zil_kstats_global = kstat_create("zfs", 0, "zil", "misc",
3401 KSTAT_TYPE_NAMED, sizeof (zil_stats) / sizeof (kstat_named_t),
3402 KSTAT_FLAG_VIRTUAL);
3403
3404 if (zil_kstats_global != NULL) {
3405 zil_kstats_global->ks_data = &zil_stats;
3406 zil_kstats_global->ks_update = zil_kstats_global_update;
3407 zil_kstats_global->ks_private = NULL;
3408 kstat_install(zil_kstats_global);
3409 }
3410 }
3411
3412 void
3413 zil_fini(void)
3414 {
3415 kmem_cache_destroy(zil_zcw_cache);
3416 kmem_cache_destroy(zil_lwb_cache);
3417
3418 if (zil_kstats_global != NULL) {
3419 kstat_delete(zil_kstats_global);
3420 zil_kstats_global = NULL;
3421 }
3422
3423 zil_sums_fini(&zil_sums_global);
3424 }
3425
3426 void
3427 zil_set_sync(zilog_t *zilog, uint64_t sync)
3428 {
3429 zilog->zl_sync = sync;
3430 }
3431
3432 void
3433 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
3434 {
3435 zilog->zl_logbias = logbias;
3436 }
3437
3438 zilog_t *
3439 zil_alloc(objset_t *os, zil_header_t *zh_phys)
3440 {
3441 zilog_t *zilog;
3442
3443 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
3444
3445 zilog->zl_header = zh_phys;
3446 zilog->zl_os = os;
3447 zilog->zl_spa = dmu_objset_spa(os);
3448 zilog->zl_dmu_pool = dmu_objset_pool(os);
3449 zilog->zl_destroy_txg = TXG_INITIAL - 1;
3450 zilog->zl_logbias = dmu_objset_logbias(os);
3451 zilog->zl_sync = dmu_objset_syncprop(os);
3452 zilog->zl_dirty_max_txg = 0;
3453 zilog->zl_last_lwb_opened = NULL;
3454 zilog->zl_last_lwb_latency = 0;
3455 zilog->zl_max_block_size = zil_maxblocksize;
3456
3457 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
3458 mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL);
3459 mutex_init(&zilog->zl_lwb_io_lock, NULL, MUTEX_DEFAULT, NULL);
3460
3461 for (int i = 0; i < TXG_SIZE; i++) {
3462 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
3463 MUTEX_DEFAULT, NULL);
3464 }
3465
3466 list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
3467 offsetof(lwb_t, lwb_node));
3468
3469 list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
3470 offsetof(itx_t, itx_node));
3471
3472 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
3473 cv_init(&zilog->zl_lwb_io_cv, NULL, CV_DEFAULT, NULL);
3474
3475 return (zilog);
3476 }
3477
3478 void
3479 zil_free(zilog_t *zilog)
3480 {
3481 int i;
3482
3483 zilog->zl_stop_sync = 1;
3484
3485 ASSERT0(zilog->zl_suspend);
3486 ASSERT0(zilog->zl_suspending);
3487
3488 ASSERT(list_is_empty(&zilog->zl_lwb_list));
3489 list_destroy(&zilog->zl_lwb_list);
3490
3491 ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
3492 list_destroy(&zilog->zl_itx_commit_list);
3493
3494 for (i = 0; i < TXG_SIZE; i++) {
3495 /*
3496 * It's possible for an itx to be generated that doesn't dirty
3497 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
3498 * callback to remove the entry. We remove those here.
3499 *
3500 * Also free up the ziltest itxs.
3501 */
3502 if (zilog->zl_itxg[i].itxg_itxs)
3503 zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
3504 mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
3505 }
3506
3507 mutex_destroy(&zilog->zl_issuer_lock);
3508 mutex_destroy(&zilog->zl_lock);
3509 mutex_destroy(&zilog->zl_lwb_io_lock);
3510
3511 cv_destroy(&zilog->zl_cv_suspend);
3512 cv_destroy(&zilog->zl_lwb_io_cv);
3513
3514 kmem_free(zilog, sizeof (zilog_t));
3515 }
3516
3517 /*
3518 * Open an intent log.
3519 */
3520 zilog_t *
3521 zil_open(objset_t *os, zil_get_data_t *get_data, zil_sums_t *zil_sums)
3522 {
3523 zilog_t *zilog = dmu_objset_zil(os);
3524
3525 ASSERT3P(zilog->zl_get_data, ==, NULL);
3526 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
3527 ASSERT(list_is_empty(&zilog->zl_lwb_list));
3528
3529 zilog->zl_get_data = get_data;
3530 zilog->zl_sums = zil_sums;
3531
3532 return (zilog);
3533 }
3534
3535 /*
3536 * Close an intent log.
3537 */
3538 void
3539 zil_close(zilog_t *zilog)
3540 {
3541 lwb_t *lwb;
3542 uint64_t txg;
3543
3544 if (!dmu_objset_is_snapshot(zilog->zl_os)) {
3545 zil_commit(zilog, 0);
3546 } else {
3547 ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
3548 ASSERT0(zilog->zl_dirty_max_txg);
3549 ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE);
3550 }
3551
3552 mutex_enter(&zilog->zl_lock);
3553 lwb = list_tail(&zilog->zl_lwb_list);
3554 if (lwb == NULL)
3555 txg = zilog->zl_dirty_max_txg;
3556 else
3557 txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg);
3558 mutex_exit(&zilog->zl_lock);
3559
3560 /*
3561 * zl_lwb_max_issued_txg may be larger than lwb_max_txg. It depends
3562 * on the time when the dmu_tx transaction is assigned in
3563 * zil_lwb_write_issue().
3564 */
3565 mutex_enter(&zilog->zl_lwb_io_lock);
3566 txg = MAX(zilog->zl_lwb_max_issued_txg, txg);
3567 mutex_exit(&zilog->zl_lwb_io_lock);
3568
3569 /*
3570 * We need to use txg_wait_synced() to wait until that txg is synced.
3571 * zil_sync() will guarantee all lwbs up to that txg have been
3572 * written out, flushed, and cleaned.
3573 */
3574 if (txg != 0)
3575 txg_wait_synced(zilog->zl_dmu_pool, txg);
3576
3577 if (zilog_is_dirty(zilog))
3578 zfs_dbgmsg("zil (%px) is dirty, txg %llu", zilog,
3579 (u_longlong_t)txg);
3580 if (txg < spa_freeze_txg(zilog->zl_spa))
3581 VERIFY(!zilog_is_dirty(zilog));
3582
3583 zilog->zl_get_data = NULL;
3584
3585 /*
3586 * We should have only one lwb left on the list; remove it now.
3587 */
3588 mutex_enter(&zilog->zl_lock);
3589 lwb = list_head(&zilog->zl_lwb_list);
3590 if (lwb != NULL) {
3591 ASSERT3P(lwb, ==, list_tail(&zilog->zl_lwb_list));
3592 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
3593
3594 if (lwb->lwb_fastwrite)
3595 metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk);
3596
3597 list_remove(&zilog->zl_lwb_list, lwb);
3598 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
3599 zil_free_lwb(zilog, lwb);
3600 }
3601 mutex_exit(&zilog->zl_lock);
3602 }
3603
3604 static const char *suspend_tag = "zil suspending";
3605
3606 /*
3607 * Suspend an intent log. While in suspended mode, we still honor
3608 * synchronous semantics, but we rely on txg_wait_synced() to do it.
3609 * On old version pools, we suspend the log briefly when taking a
3610 * snapshot so that it will have an empty intent log.
3611 *
3612 * Long holds are not really intended to be used the way we do here --
3613 * held for such a short time. A concurrent caller of dsl_dataset_long_held()
3614 * could fail. Therefore we take pains to only put a long hold if it is
3615 * actually necessary. Fortunately, it will only be necessary if the
3616 * objset is currently mounted (or the ZVOL equivalent). In that case it
3617 * will already have a long hold, so we are not really making things any worse.
3618 *
3619 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
3620 * zvol_state_t), and use their mechanism to prevent their hold from being
3621 * dropped (e.g. VFS_HOLD()). However, that would be even more pain for
3622 * very little gain.
3623 *
3624 * if cookiep == NULL, this does both the suspend & resume.
3625 * Otherwise, it returns with the dataset "long held", and the cookie
3626 * should be passed into zil_resume().
3627 */
3628 int
3629 zil_suspend(const char *osname, void **cookiep)
3630 {
3631 objset_t *os;
3632 zilog_t *zilog;
3633 const zil_header_t *zh;
3634 int error;
3635
3636 error = dmu_objset_hold(osname, suspend_tag, &os);
3637 if (error != 0)
3638 return (error);
3639 zilog = dmu_objset_zil(os);
3640
3641 mutex_enter(&zilog->zl_lock);
3642 zh = zilog->zl_header;
3643
3644 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */
3645 mutex_exit(&zilog->zl_lock);
3646 dmu_objset_rele(os, suspend_tag);
3647 return (SET_ERROR(EBUSY));
3648 }
3649
3650 /*
3651 * Don't put a long hold in the cases where we can avoid it. This
3652 * is when there is no cookie so we are doing a suspend & resume
3653 * (i.e. called from zil_vdev_offline()), and there's nothing to do
3654 * for the suspend because it's already suspended, or there's no ZIL.
3655 */
3656 if (cookiep == NULL && !zilog->zl_suspending &&
3657 (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
3658 mutex_exit(&zilog->zl_lock);
3659 dmu_objset_rele(os, suspend_tag);
3660 return (0);
3661 }
3662
3663 dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
3664 dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
3665
3666 zilog->zl_suspend++;
3667
3668 if (zilog->zl_suspend > 1) {
3669 /*
3670 * Someone else is already suspending it.
3671 * Just wait for them to finish.
3672 */
3673
3674 while (zilog->zl_suspending)
3675 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
3676 mutex_exit(&zilog->zl_lock);
3677
3678 if (cookiep == NULL)
3679 zil_resume(os);
3680 else
3681 *cookiep = os;
3682 return (0);
3683 }
3684
3685 /*
3686 * If there is no pointer to an on-disk block, this ZIL must not
3687 * be active (e.g. filesystem not mounted), so there's nothing
3688 * to clean up.
3689 */
3690 if (BP_IS_HOLE(&zh->zh_log)) {
3691 ASSERT(cookiep != NULL); /* fast path already handled */
3692
3693 *cookiep = os;
3694 mutex_exit(&zilog->zl_lock);
3695 return (0);
3696 }
3697
3698 /*
3699 * The ZIL has work to do. Ensure that the associated encryption
3700 * key will remain mapped while we are committing the log by
3701 * grabbing a reference to it. If the key isn't loaded we have no
3702 * choice but to return an error until the wrapping key is loaded.
3703 */
3704 if (os->os_encrypted &&
3705 dsl_dataset_create_key_mapping(dmu_objset_ds(os)) != 0) {
3706 zilog->zl_suspend--;
3707 mutex_exit(&zilog->zl_lock);
3708 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3709 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3710 return (SET_ERROR(EACCES));
3711 }
3712
3713 zilog->zl_suspending = B_TRUE;
3714 mutex_exit(&zilog->zl_lock);
3715
3716 /*
3717 * We need to use zil_commit_impl to ensure we wait for all
3718 * LWB_STATE_OPENED and LWB_STATE_ISSUED lwbs to be committed
3719 * to disk before proceeding. If we used zil_commit instead, it
3720 * would just call txg_wait_synced(), because zl_suspend is set.
3721 * txg_wait_synced() doesn't wait for these lwb's to be
3722 * LWB_STATE_FLUSH_DONE before returning.
3723 */
3724 zil_commit_impl(zilog, 0);
3725
3726 /*
3727 * Now that we've ensured all lwb's are LWB_STATE_FLUSH_DONE, we
3728 * use txg_wait_synced() to ensure the data from the zilog has
3729 * migrated to the main pool before calling zil_destroy().
3730 */
3731 txg_wait_synced(zilog->zl_dmu_pool, 0);
3732
3733 zil_destroy(zilog, B_FALSE);
3734
3735 mutex_enter(&zilog->zl_lock);
3736 zilog->zl_suspending = B_FALSE;
3737 cv_broadcast(&zilog->zl_cv_suspend);
3738 mutex_exit(&zilog->zl_lock);
3739
3740 if (os->os_encrypted)
3741 dsl_dataset_remove_key_mapping(dmu_objset_ds(os));
3742
3743 if (cookiep == NULL)
3744 zil_resume(os);
3745 else
3746 *cookiep = os;
3747 return (0);
3748 }
3749
3750 void
3751 zil_resume(void *cookie)
3752 {
3753 objset_t *os = cookie;
3754 zilog_t *zilog = dmu_objset_zil(os);
3755
3756 mutex_enter(&zilog->zl_lock);
3757 ASSERT(zilog->zl_suspend != 0);
3758 zilog->zl_suspend--;
3759 mutex_exit(&zilog->zl_lock);
3760 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3761 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3762 }
3763
3764 typedef struct zil_replay_arg {
3765 zil_replay_func_t *const *zr_replay;
3766 void *zr_arg;
3767 boolean_t zr_byteswap;
3768 char *zr_lr;
3769 } zil_replay_arg_t;
3770
3771 static int
3772 zil_replay_error(zilog_t *zilog, const lr_t *lr, int error)
3773 {
3774 char name[ZFS_MAX_DATASET_NAME_LEN];
3775
3776 zilog->zl_replaying_seq--; /* didn't actually replay this one */
3777
3778 dmu_objset_name(zilog->zl_os, name);
3779
3780 cmn_err(CE_WARN, "ZFS replay transaction error %d, "
3781 "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
3782 (u_longlong_t)lr->lrc_seq,
3783 (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
3784 (lr->lrc_txtype & TX_CI) ? "CI" : "");
3785
3786 return (error);
3787 }
3788
3789 static int
3790 zil_replay_log_record(zilog_t *zilog, const lr_t *lr, void *zra,
3791 uint64_t claim_txg)
3792 {
3793 zil_replay_arg_t *zr = zra;
3794 const zil_header_t *zh = zilog->zl_header;
3795 uint64_t reclen = lr->lrc_reclen;
3796 uint64_t txtype = lr->lrc_txtype;
3797 int error = 0;
3798
3799 zilog->zl_replaying_seq = lr->lrc_seq;
3800
3801 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */
3802 return (0);
3803
3804 if (lr->lrc_txg < claim_txg) /* already committed */
3805 return (0);
3806
3807 /* Strip case-insensitive bit, still present in log record */
3808 txtype &= ~TX_CI;
3809
3810 if (txtype == 0 || txtype >= TX_MAX_TYPE)
3811 return (zil_replay_error(zilog, lr, EINVAL));
3812
3813 /*
3814 * If this record type can be logged out of order, the object
3815 * (lr_foid) may no longer exist. That's legitimate, not an error.
3816 */
3817 if (TX_OOO(txtype)) {
3818 error = dmu_object_info(zilog->zl_os,
3819 LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL);
3820 if (error == ENOENT || error == EEXIST)
3821 return (0);
3822 }
3823
3824 /*
3825 * Make a copy of the data so we can revise and extend it.
3826 */
3827 memcpy(zr->zr_lr, lr, reclen);
3828
3829 /*
3830 * If this is a TX_WRITE with a blkptr, suck in the data.
3831 */
3832 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
3833 error = zil_read_log_data(zilog, (lr_write_t *)lr,
3834 zr->zr_lr + reclen);
3835 if (error != 0)
3836 return (zil_replay_error(zilog, lr, error));
3837 }
3838
3839 /*
3840 * The log block containing this lr may have been byteswapped
3841 * so that we can easily examine common fields like lrc_txtype.
3842 * However, the log is a mix of different record types, and only the
3843 * replay vectors know how to byteswap their records. Therefore, if
3844 * the lr was byteswapped, undo it before invoking the replay vector.
3845 */
3846 if (zr->zr_byteswap)
3847 byteswap_uint64_array(zr->zr_lr, reclen);
3848
3849 /*
3850 * We must now do two things atomically: replay this log record,
3851 * and update the log header sequence number to reflect the fact that
3852 * we did so. At the end of each replay function the sequence number
3853 * is updated if we are in replay mode.
3854 */
3855 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
3856 if (error != 0) {
3857 /*
3858 * The DMU's dnode layer doesn't see removes until the txg
3859 * commits, so a subsequent claim can spuriously fail with
3860 * EEXIST. So if we receive any error we try syncing out
3861 * any removes then retry the transaction. Note that we
3862 * specify B_FALSE for byteswap now, so we don't do it twice.
3863 */
3864 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
3865 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
3866 if (error != 0)
3867 return (zil_replay_error(zilog, lr, error));
3868 }
3869 return (0);
3870 }
3871
3872 static int
3873 zil_incr_blks(zilog_t *zilog, const blkptr_t *bp, void *arg, uint64_t claim_txg)
3874 {
3875 (void) bp, (void) arg, (void) claim_txg;
3876
3877 zilog->zl_replay_blks++;
3878
3879 return (0);
3880 }
3881
3882 /*
3883 * If this dataset has a non-empty intent log, replay it and destroy it.
3884 * Return B_TRUE if there were any entries to replay.
3885 */
3886 boolean_t
3887 zil_replay(objset_t *os, void *arg,
3888 zil_replay_func_t *const replay_func[TX_MAX_TYPE])
3889 {
3890 zilog_t *zilog = dmu_objset_zil(os);
3891 const zil_header_t *zh = zilog->zl_header;
3892 zil_replay_arg_t zr;
3893
3894 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
3895 return (zil_destroy(zilog, B_TRUE));
3896 }
3897
3898 zr.zr_replay = replay_func;
3899 zr.zr_arg = arg;
3900 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
3901 zr.zr_lr = vmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
3902
3903 /*
3904 * Wait for in-progress removes to sync before starting replay.
3905 */
3906 txg_wait_synced(zilog->zl_dmu_pool, 0);
3907
3908 zilog->zl_replay = B_TRUE;
3909 zilog->zl_replay_time = ddi_get_lbolt();
3910 ASSERT(zilog->zl_replay_blks == 0);
3911 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
3912 zh->zh_claim_txg, B_TRUE);
3913 vmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
3914
3915 zil_destroy(zilog, B_FALSE);
3916 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
3917 zilog->zl_replay = B_FALSE;
3918
3919 return (B_TRUE);
3920 }
3921
3922 boolean_t
3923 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
3924 {
3925 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3926 return (B_TRUE);
3927
3928 if (zilog->zl_replay) {
3929 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
3930 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
3931 zilog->zl_replaying_seq;
3932 return (B_TRUE);
3933 }
3934
3935 return (B_FALSE);
3936 }
3937
3938 int
3939 zil_reset(const char *osname, void *arg)
3940 {
3941 (void) arg;
3942
3943 int error = zil_suspend(osname, NULL);
3944 /* EACCES means crypto key not loaded */
3945 if ((error == EACCES) || (error == EBUSY))
3946 return (SET_ERROR(error));
3947 if (error != 0)
3948 return (SET_ERROR(EEXIST));
3949 return (0);
3950 }
3951
3952 EXPORT_SYMBOL(zil_alloc);
3953 EXPORT_SYMBOL(zil_free);
3954 EXPORT_SYMBOL(zil_open);
3955 EXPORT_SYMBOL(zil_close);
3956 EXPORT_SYMBOL(zil_replay);
3957 EXPORT_SYMBOL(zil_replaying);
3958 EXPORT_SYMBOL(zil_destroy);
3959 EXPORT_SYMBOL(zil_destroy_sync);
3960 EXPORT_SYMBOL(zil_itx_create);
3961 EXPORT_SYMBOL(zil_itx_destroy);
3962 EXPORT_SYMBOL(zil_itx_assign);
3963 EXPORT_SYMBOL(zil_commit);
3964 EXPORT_SYMBOL(zil_claim);
3965 EXPORT_SYMBOL(zil_check_log_chain);
3966 EXPORT_SYMBOL(zil_sync);
3967 EXPORT_SYMBOL(zil_clean);
3968 EXPORT_SYMBOL(zil_suspend);
3969 EXPORT_SYMBOL(zil_resume);
3970 EXPORT_SYMBOL(zil_lwb_add_block);
3971 EXPORT_SYMBOL(zil_bp_tree_add);
3972 EXPORT_SYMBOL(zil_set_sync);
3973 EXPORT_SYMBOL(zil_set_logbias);
3974 EXPORT_SYMBOL(zil_sums_init);
3975 EXPORT_SYMBOL(zil_sums_fini);
3976 EXPORT_SYMBOL(zil_kstat_values_update);
3977
3978 ZFS_MODULE_PARAM(zfs, zfs_, commit_timeout_pct, UINT, ZMOD_RW,
3979 "ZIL block open timeout percentage");
3980
3981 ZFS_MODULE_PARAM(zfs_zil, zil_, min_commit_timeout, U64, ZMOD_RW,
3982 "Minimum delay we care for ZIL block commit");
3983
3984 ZFS_MODULE_PARAM(zfs_zil, zil_, replay_disable, INT, ZMOD_RW,
3985 "Disable intent logging replay");
3986
3987 ZFS_MODULE_PARAM(zfs_zil, zil_, nocacheflush, INT, ZMOD_RW,
3988 "Disable ZIL cache flushes");
3989
3990 ZFS_MODULE_PARAM(zfs_zil, zil_, slog_bulk, U64, ZMOD_RW,
3991 "Limit in bytes slog sync writes per commit");
3992
3993 ZFS_MODULE_PARAM(zfs_zil, zil_, maxblocksize, UINT, ZMOD_RW,
3994 "Limit in bytes of ZIL log block size");
Cache object: 730b1b7b608da08a23abc5234ec17bd3
|