The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/contrib/openzfs/module/zfs/zil.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * CDDL HEADER START
    3  *
    4  * The contents of this file are subject to the terms of the
    5  * Common Development and Distribution License (the "License").
    6  * You may not use this file except in compliance with the License.
    7  *
    8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
    9  * or https://opensource.org/licenses/CDDL-1.0.
   10  * See the License for the specific language governing permissions
   11  * and limitations under the License.
   12  *
   13  * When distributing Covered Code, include this CDDL HEADER in each
   14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
   15  * If applicable, add the following below this CDDL HEADER, with the
   16  * fields enclosed by brackets "[]" replaced with your own identifying
   17  * information: Portions Copyright [yyyy] [name of copyright owner]
   18  *
   19  * CDDL HEADER END
   20  */
   21 /*
   22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
   23  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
   24  * Copyright (c) 2014 Integros [integros.com]
   25  * Copyright (c) 2018 Datto Inc.
   26  */
   27 
   28 /* Portions Copyright 2010 Robert Milkowski */
   29 
   30 #include <sys/zfs_context.h>
   31 #include <sys/spa.h>
   32 #include <sys/spa_impl.h>
   33 #include <sys/dmu.h>
   34 #include <sys/zap.h>
   35 #include <sys/arc.h>
   36 #include <sys/stat.h>
   37 #include <sys/zil.h>
   38 #include <sys/zil_impl.h>
   39 #include <sys/dsl_dataset.h>
   40 #include <sys/vdev_impl.h>
   41 #include <sys/dmu_tx.h>
   42 #include <sys/dsl_pool.h>
   43 #include <sys/metaslab.h>
   44 #include <sys/trace_zfs.h>
   45 #include <sys/abd.h>
   46 #include <sys/wmsum.h>
   47 
   48 /*
   49  * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system
   50  * calls that change the file system. Each itx has enough information to
   51  * be able to replay them after a system crash, power loss, or
   52  * equivalent failure mode. These are stored in memory until either:
   53  *
   54  *   1. they are committed to the pool by the DMU transaction group
   55  *      (txg), at which point they can be discarded; or
   56  *   2. they are committed to the on-disk ZIL for the dataset being
   57  *      modified (e.g. due to an fsync, O_DSYNC, or other synchronous
   58  *      requirement).
   59  *
   60  * In the event of a crash or power loss, the itxs contained by each
   61  * dataset's on-disk ZIL will be replayed when that dataset is first
   62  * instantiated (e.g. if the dataset is a normal filesystem, when it is
   63  * first mounted).
   64  *
   65  * As hinted at above, there is one ZIL per dataset (both the in-memory
   66  * representation, and the on-disk representation). The on-disk format
   67  * consists of 3 parts:
   68  *
   69  *      - a single, per-dataset, ZIL header; which points to a chain of
   70  *      - zero or more ZIL blocks; each of which contains
   71  *      - zero or more ZIL records
   72  *
   73  * A ZIL record holds the information necessary to replay a single
   74  * system call transaction. A ZIL block can hold many ZIL records, and
   75  * the blocks are chained together, similarly to a singly linked list.
   76  *
   77  * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL
   78  * block in the chain, and the ZIL header points to the first block in
   79  * the chain.
   80  *
   81  * Note, there is not a fixed place in the pool to hold these ZIL
   82  * blocks; they are dynamically allocated and freed as needed from the
   83  * blocks available on the pool, though they can be preferentially
   84  * allocated from a dedicated "log" vdev.
   85  */
   86 
   87 /*
   88  * This controls the amount of time that a ZIL block (lwb) will remain
   89  * "open" when it isn't "full", and it has a thread waiting for it to be
   90  * committed to stable storage. Please refer to the zil_commit_waiter()
   91  * function (and the comments within it) for more details.
   92  */
   93 static uint_t zfs_commit_timeout_pct = 5;
   94 
   95 /*
   96  * Minimal time we care to delay commit waiting for more ZIL records.
   97  * At least FreeBSD kernel can't sleep for less than 2us at its best.
   98  * So requests to sleep for less then 5us is a waste of CPU time with
   99  * a risk of significant log latency increase due to oversleep.
  100  */
  101 static uint64_t zil_min_commit_timeout = 5000;
  102 
  103 /*
  104  * See zil.h for more information about these fields.
  105  */
  106 static zil_kstat_values_t zil_stats = {
  107         { "zil_commit_count",                   KSTAT_DATA_UINT64 },
  108         { "zil_commit_writer_count",            KSTAT_DATA_UINT64 },
  109         { "zil_itx_count",                      KSTAT_DATA_UINT64 },
  110         { "zil_itx_indirect_count",             KSTAT_DATA_UINT64 },
  111         { "zil_itx_indirect_bytes",             KSTAT_DATA_UINT64 },
  112         { "zil_itx_copied_count",               KSTAT_DATA_UINT64 },
  113         { "zil_itx_copied_bytes",               KSTAT_DATA_UINT64 },
  114         { "zil_itx_needcopy_count",             KSTAT_DATA_UINT64 },
  115         { "zil_itx_needcopy_bytes",             KSTAT_DATA_UINT64 },
  116         { "zil_itx_metaslab_normal_count",      KSTAT_DATA_UINT64 },
  117         { "zil_itx_metaslab_normal_bytes",      KSTAT_DATA_UINT64 },
  118         { "zil_itx_metaslab_slog_count",        KSTAT_DATA_UINT64 },
  119         { "zil_itx_metaslab_slog_bytes",        KSTAT_DATA_UINT64 },
  120 };
  121 
  122 static zil_sums_t zil_sums_global;
  123 static kstat_t *zil_kstats_global;
  124 
  125 /*
  126  * Disable intent logging replay.  This global ZIL switch affects all pools.
  127  */
  128 int zil_replay_disable = 0;
  129 
  130 /*
  131  * Disable the DKIOCFLUSHWRITECACHE commands that are normally sent to
  132  * the disk(s) by the ZIL after an LWB write has completed. Setting this
  133  * will cause ZIL corruption on power loss if a volatile out-of-order
  134  * write cache is enabled.
  135  */
  136 static int zil_nocacheflush = 0;
  137 
  138 /*
  139  * Limit SLOG write size per commit executed with synchronous priority.
  140  * Any writes above that will be executed with lower (asynchronous) priority
  141  * to limit potential SLOG device abuse by single active ZIL writer.
  142  */
  143 static uint64_t zil_slog_bulk = 768 * 1024;
  144 
  145 static kmem_cache_t *zil_lwb_cache;
  146 static kmem_cache_t *zil_zcw_cache;
  147 
  148 #define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
  149     sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
  150 
  151 static int
  152 zil_bp_compare(const void *x1, const void *x2)
  153 {
  154         const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
  155         const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
  156 
  157         int cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2));
  158         if (likely(cmp))
  159                 return (cmp);
  160 
  161         return (TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)));
  162 }
  163 
  164 static void
  165 zil_bp_tree_init(zilog_t *zilog)
  166 {
  167         avl_create(&zilog->zl_bp_tree, zil_bp_compare,
  168             sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
  169 }
  170 
  171 static void
  172 zil_bp_tree_fini(zilog_t *zilog)
  173 {
  174         avl_tree_t *t = &zilog->zl_bp_tree;
  175         zil_bp_node_t *zn;
  176         void *cookie = NULL;
  177 
  178         while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
  179                 kmem_free(zn, sizeof (zil_bp_node_t));
  180 
  181         avl_destroy(t);
  182 }
  183 
  184 int
  185 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
  186 {
  187         avl_tree_t *t = &zilog->zl_bp_tree;
  188         const dva_t *dva;
  189         zil_bp_node_t *zn;
  190         avl_index_t where;
  191 
  192         if (BP_IS_EMBEDDED(bp))
  193                 return (0);
  194 
  195         dva = BP_IDENTITY(bp);
  196 
  197         if (avl_find(t, dva, &where) != NULL)
  198                 return (SET_ERROR(EEXIST));
  199 
  200         zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
  201         zn->zn_dva = *dva;
  202         avl_insert(t, zn, where);
  203 
  204         return (0);
  205 }
  206 
  207 static zil_header_t *
  208 zil_header_in_syncing_context(zilog_t *zilog)
  209 {
  210         return ((zil_header_t *)zilog->zl_header);
  211 }
  212 
  213 static void
  214 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
  215 {
  216         zio_cksum_t *zc = &bp->blk_cksum;
  217 
  218         (void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_0],
  219             sizeof (zc->zc_word[ZIL_ZC_GUID_0]));
  220         (void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_1],
  221             sizeof (zc->zc_word[ZIL_ZC_GUID_1]));
  222         zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
  223         zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
  224 }
  225 
  226 static int
  227 zil_kstats_global_update(kstat_t *ksp, int rw)
  228 {
  229         zil_kstat_values_t *zs = ksp->ks_data;
  230         ASSERT3P(&zil_stats, ==, zs);
  231 
  232         if (rw == KSTAT_WRITE) {
  233                 return (SET_ERROR(EACCES));
  234         }
  235 
  236         zil_kstat_values_update(zs, &zil_sums_global);
  237 
  238         return (0);
  239 }
  240 
  241 /*
  242  * Read a log block and make sure it's valid.
  243  */
  244 static int
  245 zil_read_log_block(zilog_t *zilog, boolean_t decrypt, const blkptr_t *bp,
  246     blkptr_t *nbp, void *dst, char **end)
  247 {
  248         zio_flag_t zio_flags = ZIO_FLAG_CANFAIL;
  249         arc_flags_t aflags = ARC_FLAG_WAIT;
  250         arc_buf_t *abuf = NULL;
  251         zbookmark_phys_t zb;
  252         int error;
  253 
  254         if (zilog->zl_header->zh_claim_txg == 0)
  255                 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
  256 
  257         if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
  258                 zio_flags |= ZIO_FLAG_SPECULATIVE;
  259 
  260         if (!decrypt)
  261                 zio_flags |= ZIO_FLAG_RAW;
  262 
  263         SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
  264             ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
  265 
  266         error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func,
  267             &abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
  268 
  269         if (error == 0) {
  270                 zio_cksum_t cksum = bp->blk_cksum;
  271 
  272                 /*
  273                  * Validate the checksummed log block.
  274                  *
  275                  * Sequence numbers should be... sequential.  The checksum
  276                  * verifier for the next block should be bp's checksum plus 1.
  277                  *
  278                  * Also check the log chain linkage and size used.
  279                  */
  280                 cksum.zc_word[ZIL_ZC_SEQ]++;
  281 
  282                 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
  283                         zil_chain_t *zilc = abuf->b_data;
  284                         char *lr = (char *)(zilc + 1);
  285                         uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
  286 
  287                         if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
  288                             sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
  289                                 error = SET_ERROR(ECKSUM);
  290                         } else {
  291                                 ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
  292                                 memcpy(dst, lr, len);
  293                                 *end = (char *)dst + len;
  294                                 *nbp = zilc->zc_next_blk;
  295                         }
  296                 } else {
  297                         char *lr = abuf->b_data;
  298                         uint64_t size = BP_GET_LSIZE(bp);
  299                         zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
  300 
  301                         if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
  302                             sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
  303                             (zilc->zc_nused > (size - sizeof (*zilc)))) {
  304                                 error = SET_ERROR(ECKSUM);
  305                         } else {
  306                                 ASSERT3U(zilc->zc_nused, <=,
  307                                     SPA_OLD_MAXBLOCKSIZE);
  308                                 memcpy(dst, lr, zilc->zc_nused);
  309                                 *end = (char *)dst + zilc->zc_nused;
  310                                 *nbp = zilc->zc_next_blk;
  311                         }
  312                 }
  313 
  314                 arc_buf_destroy(abuf, &abuf);
  315         }
  316 
  317         return (error);
  318 }
  319 
  320 /*
  321  * Read a TX_WRITE log data block.
  322  */
  323 static int
  324 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
  325 {
  326         zio_flag_t zio_flags = ZIO_FLAG_CANFAIL;
  327         const blkptr_t *bp = &lr->lr_blkptr;
  328         arc_flags_t aflags = ARC_FLAG_WAIT;
  329         arc_buf_t *abuf = NULL;
  330         zbookmark_phys_t zb;
  331         int error;
  332 
  333         if (BP_IS_HOLE(bp)) {
  334                 if (wbuf != NULL)
  335                         memset(wbuf, 0, MAX(BP_GET_LSIZE(bp), lr->lr_length));
  336                 return (0);
  337         }
  338 
  339         if (zilog->zl_header->zh_claim_txg == 0)
  340                 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
  341 
  342         /*
  343          * If we are not using the resulting data, we are just checking that
  344          * it hasn't been corrupted so we don't need to waste CPU time
  345          * decompressing and decrypting it.
  346          */
  347         if (wbuf == NULL)
  348                 zio_flags |= ZIO_FLAG_RAW;
  349 
  350         ASSERT3U(BP_GET_LSIZE(bp), !=, 0);
  351         SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
  352             ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
  353 
  354         error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
  355             ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
  356 
  357         if (error == 0) {
  358                 if (wbuf != NULL)
  359                         memcpy(wbuf, abuf->b_data, arc_buf_size(abuf));
  360                 arc_buf_destroy(abuf, &abuf);
  361         }
  362 
  363         return (error);
  364 }
  365 
  366 void
  367 zil_sums_init(zil_sums_t *zs)
  368 {
  369         wmsum_init(&zs->zil_commit_count, 0);
  370         wmsum_init(&zs->zil_commit_writer_count, 0);
  371         wmsum_init(&zs->zil_itx_count, 0);
  372         wmsum_init(&zs->zil_itx_indirect_count, 0);
  373         wmsum_init(&zs->zil_itx_indirect_bytes, 0);
  374         wmsum_init(&zs->zil_itx_copied_count, 0);
  375         wmsum_init(&zs->zil_itx_copied_bytes, 0);
  376         wmsum_init(&zs->zil_itx_needcopy_count, 0);
  377         wmsum_init(&zs->zil_itx_needcopy_bytes, 0);
  378         wmsum_init(&zs->zil_itx_metaslab_normal_count, 0);
  379         wmsum_init(&zs->zil_itx_metaslab_normal_bytes, 0);
  380         wmsum_init(&zs->zil_itx_metaslab_slog_count, 0);
  381         wmsum_init(&zs->zil_itx_metaslab_slog_bytes, 0);
  382 }
  383 
  384 void
  385 zil_sums_fini(zil_sums_t *zs)
  386 {
  387         wmsum_fini(&zs->zil_commit_count);
  388         wmsum_fini(&zs->zil_commit_writer_count);
  389         wmsum_fini(&zs->zil_itx_count);
  390         wmsum_fini(&zs->zil_itx_indirect_count);
  391         wmsum_fini(&zs->zil_itx_indirect_bytes);
  392         wmsum_fini(&zs->zil_itx_copied_count);
  393         wmsum_fini(&zs->zil_itx_copied_bytes);
  394         wmsum_fini(&zs->zil_itx_needcopy_count);
  395         wmsum_fini(&zs->zil_itx_needcopy_bytes);
  396         wmsum_fini(&zs->zil_itx_metaslab_normal_count);
  397         wmsum_fini(&zs->zil_itx_metaslab_normal_bytes);
  398         wmsum_fini(&zs->zil_itx_metaslab_slog_count);
  399         wmsum_fini(&zs->zil_itx_metaslab_slog_bytes);
  400 }
  401 
  402 void
  403 zil_kstat_values_update(zil_kstat_values_t *zs, zil_sums_t *zil_sums)
  404 {
  405         zs->zil_commit_count.value.ui64 =
  406             wmsum_value(&zil_sums->zil_commit_count);
  407         zs->zil_commit_writer_count.value.ui64 =
  408             wmsum_value(&zil_sums->zil_commit_writer_count);
  409         zs->zil_itx_count.value.ui64 =
  410             wmsum_value(&zil_sums->zil_itx_count);
  411         zs->zil_itx_indirect_count.value.ui64 =
  412             wmsum_value(&zil_sums->zil_itx_indirect_count);
  413         zs->zil_itx_indirect_bytes.value.ui64 =
  414             wmsum_value(&zil_sums->zil_itx_indirect_bytes);
  415         zs->zil_itx_copied_count.value.ui64 =
  416             wmsum_value(&zil_sums->zil_itx_copied_count);
  417         zs->zil_itx_copied_bytes.value.ui64 =
  418             wmsum_value(&zil_sums->zil_itx_copied_bytes);
  419         zs->zil_itx_needcopy_count.value.ui64 =
  420             wmsum_value(&zil_sums->zil_itx_needcopy_count);
  421         zs->zil_itx_needcopy_bytes.value.ui64 =
  422             wmsum_value(&zil_sums->zil_itx_needcopy_bytes);
  423         zs->zil_itx_metaslab_normal_count.value.ui64 =
  424             wmsum_value(&zil_sums->zil_itx_metaslab_normal_count);
  425         zs->zil_itx_metaslab_normal_bytes.value.ui64 =
  426             wmsum_value(&zil_sums->zil_itx_metaslab_normal_bytes);
  427         zs->zil_itx_metaslab_slog_count.value.ui64 =
  428             wmsum_value(&zil_sums->zil_itx_metaslab_slog_count);
  429         zs->zil_itx_metaslab_slog_bytes.value.ui64 =
  430             wmsum_value(&zil_sums->zil_itx_metaslab_slog_bytes);
  431 }
  432 
  433 /*
  434  * Parse the intent log, and call parse_func for each valid record within.
  435  */
  436 int
  437 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
  438     zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg,
  439     boolean_t decrypt)
  440 {
  441         const zil_header_t *zh = zilog->zl_header;
  442         boolean_t claimed = !!zh->zh_claim_txg;
  443         uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
  444         uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
  445         uint64_t max_blk_seq = 0;
  446         uint64_t max_lr_seq = 0;
  447         uint64_t blk_count = 0;
  448         uint64_t lr_count = 0;
  449         blkptr_t blk, next_blk = {{{{0}}}};
  450         char *lrbuf, *lrp;
  451         int error = 0;
  452 
  453         /*
  454          * Old logs didn't record the maximum zh_claim_lr_seq.
  455          */
  456         if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
  457                 claim_lr_seq = UINT64_MAX;
  458 
  459         /*
  460          * Starting at the block pointed to by zh_log we read the log chain.
  461          * For each block in the chain we strongly check that block to
  462          * ensure its validity.  We stop when an invalid block is found.
  463          * For each block pointer in the chain we call parse_blk_func().
  464          * For each record in each valid block we call parse_lr_func().
  465          * If the log has been claimed, stop if we encounter a sequence
  466          * number greater than the highest claimed sequence number.
  467          */
  468         lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
  469         zil_bp_tree_init(zilog);
  470 
  471         for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
  472                 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
  473                 int reclen;
  474                 char *end = NULL;
  475 
  476                 if (blk_seq > claim_blk_seq)
  477                         break;
  478 
  479                 error = parse_blk_func(zilog, &blk, arg, txg);
  480                 if (error != 0)
  481                         break;
  482                 ASSERT3U(max_blk_seq, <, blk_seq);
  483                 max_blk_seq = blk_seq;
  484                 blk_count++;
  485 
  486                 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
  487                         break;
  488 
  489                 error = zil_read_log_block(zilog, decrypt, &blk, &next_blk,
  490                     lrbuf, &end);
  491                 if (error != 0) {
  492                         if (claimed) {
  493                                 char name[ZFS_MAX_DATASET_NAME_LEN];
  494 
  495                                 dmu_objset_name(zilog->zl_os, name);
  496 
  497                                 cmn_err(CE_WARN, "ZFS read log block error %d, "
  498                                     "dataset %s, seq 0x%llx\n", error, name,
  499                                     (u_longlong_t)blk_seq);
  500                         }
  501                         break;
  502                 }
  503 
  504                 for (lrp = lrbuf; lrp < end; lrp += reclen) {
  505                         lr_t *lr = (lr_t *)lrp;
  506                         reclen = lr->lrc_reclen;
  507                         ASSERT3U(reclen, >=, sizeof (lr_t));
  508                         if (lr->lrc_seq > claim_lr_seq)
  509                                 goto done;
  510 
  511                         error = parse_lr_func(zilog, lr, arg, txg);
  512                         if (error != 0)
  513                                 goto done;
  514                         ASSERT3U(max_lr_seq, <, lr->lrc_seq);
  515                         max_lr_seq = lr->lrc_seq;
  516                         lr_count++;
  517                 }
  518         }
  519 done:
  520         zilog->zl_parse_error = error;
  521         zilog->zl_parse_blk_seq = max_blk_seq;
  522         zilog->zl_parse_lr_seq = max_lr_seq;
  523         zilog->zl_parse_blk_count = blk_count;
  524         zilog->zl_parse_lr_count = lr_count;
  525 
  526         zil_bp_tree_fini(zilog);
  527         zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
  528 
  529         return (error);
  530 }
  531 
  532 static int
  533 zil_clear_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
  534     uint64_t first_txg)
  535 {
  536         (void) tx;
  537         ASSERT(!BP_IS_HOLE(bp));
  538 
  539         /*
  540          * As we call this function from the context of a rewind to a
  541          * checkpoint, each ZIL block whose txg is later than the txg
  542          * that we rewind to is invalid. Thus, we return -1 so
  543          * zil_parse() doesn't attempt to read it.
  544          */
  545         if (bp->blk_birth >= first_txg)
  546                 return (-1);
  547 
  548         if (zil_bp_tree_add(zilog, bp) != 0)
  549                 return (0);
  550 
  551         zio_free(zilog->zl_spa, first_txg, bp);
  552         return (0);
  553 }
  554 
  555 static int
  556 zil_noop_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
  557     uint64_t first_txg)
  558 {
  559         (void) zilog, (void) lrc, (void) tx, (void) first_txg;
  560         return (0);
  561 }
  562 
  563 static int
  564 zil_claim_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
  565     uint64_t first_txg)
  566 {
  567         /*
  568          * Claim log block if not already committed and not already claimed.
  569          * If tx == NULL, just verify that the block is claimable.
  570          */
  571         if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
  572             zil_bp_tree_add(zilog, bp) != 0)
  573                 return (0);
  574 
  575         return (zio_wait(zio_claim(NULL, zilog->zl_spa,
  576             tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
  577             ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
  578 }
  579 
  580 static int
  581 zil_claim_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
  582     uint64_t first_txg)
  583 {
  584         lr_write_t *lr = (lr_write_t *)lrc;
  585         int error;
  586 
  587         if (lrc->lrc_txtype != TX_WRITE)
  588                 return (0);
  589 
  590         /*
  591          * If the block is not readable, don't claim it.  This can happen
  592          * in normal operation when a log block is written to disk before
  593          * some of the dmu_sync() blocks it points to.  In this case, the
  594          * transaction cannot have been committed to anyone (we would have
  595          * waited for all writes to be stable first), so it is semantically
  596          * correct to declare this the end of the log.
  597          */
  598         if (lr->lr_blkptr.blk_birth >= first_txg) {
  599                 error = zil_read_log_data(zilog, lr, NULL);
  600                 if (error != 0)
  601                         return (error);
  602         }
  603 
  604         return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
  605 }
  606 
  607 static int
  608 zil_free_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
  609     uint64_t claim_txg)
  610 {
  611         (void) claim_txg;
  612 
  613         zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
  614 
  615         return (0);
  616 }
  617 
  618 static int
  619 zil_free_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
  620     uint64_t claim_txg)
  621 {
  622         lr_write_t *lr = (lr_write_t *)lrc;
  623         blkptr_t *bp = &lr->lr_blkptr;
  624 
  625         /*
  626          * If we previously claimed it, we need to free it.
  627          */
  628         if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
  629             bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
  630             !BP_IS_HOLE(bp))
  631                 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
  632 
  633         return (0);
  634 }
  635 
  636 static int
  637 zil_lwb_vdev_compare(const void *x1, const void *x2)
  638 {
  639         const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
  640         const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
  641 
  642         return (TREE_CMP(v1, v2));
  643 }
  644 
  645 static lwb_t *
  646 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg,
  647     boolean_t fastwrite)
  648 {
  649         lwb_t *lwb;
  650 
  651         lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
  652         lwb->lwb_zilog = zilog;
  653         lwb->lwb_blk = *bp;
  654         lwb->lwb_fastwrite = fastwrite;
  655         lwb->lwb_slog = slog;
  656         lwb->lwb_state = LWB_STATE_CLOSED;
  657         lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
  658         lwb->lwb_max_txg = txg;
  659         lwb->lwb_write_zio = NULL;
  660         lwb->lwb_root_zio = NULL;
  661         lwb->lwb_issued_timestamp = 0;
  662         lwb->lwb_issued_txg = 0;
  663         if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
  664                 lwb->lwb_nused = sizeof (zil_chain_t);
  665                 lwb->lwb_sz = BP_GET_LSIZE(bp);
  666         } else {
  667                 lwb->lwb_nused = 0;
  668                 lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
  669         }
  670 
  671         mutex_enter(&zilog->zl_lock);
  672         list_insert_tail(&zilog->zl_lwb_list, lwb);
  673         mutex_exit(&zilog->zl_lock);
  674 
  675         ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
  676         ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
  677         VERIFY(list_is_empty(&lwb->lwb_waiters));
  678         VERIFY(list_is_empty(&lwb->lwb_itxs));
  679 
  680         return (lwb);
  681 }
  682 
  683 static void
  684 zil_free_lwb(zilog_t *zilog, lwb_t *lwb)
  685 {
  686         ASSERT(MUTEX_HELD(&zilog->zl_lock));
  687         ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
  688         VERIFY(list_is_empty(&lwb->lwb_waiters));
  689         VERIFY(list_is_empty(&lwb->lwb_itxs));
  690         ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
  691         ASSERT3P(lwb->lwb_write_zio, ==, NULL);
  692         ASSERT3P(lwb->lwb_root_zio, ==, NULL);
  693         ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa));
  694         ASSERT(lwb->lwb_state == LWB_STATE_CLOSED ||
  695             lwb->lwb_state == LWB_STATE_FLUSH_DONE);
  696 
  697         /*
  698          * Clear the zilog's field to indicate this lwb is no longer
  699          * valid, and prevent use-after-free errors.
  700          */
  701         if (zilog->zl_last_lwb_opened == lwb)
  702                 zilog->zl_last_lwb_opened = NULL;
  703 
  704         kmem_cache_free(zil_lwb_cache, lwb);
  705 }
  706 
  707 /*
  708  * Called when we create in-memory log transactions so that we know
  709  * to cleanup the itxs at the end of spa_sync().
  710  */
  711 static void
  712 zilog_dirty(zilog_t *zilog, uint64_t txg)
  713 {
  714         dsl_pool_t *dp = zilog->zl_dmu_pool;
  715         dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
  716 
  717         ASSERT(spa_writeable(zilog->zl_spa));
  718 
  719         if (ds->ds_is_snapshot)
  720                 panic("dirtying snapshot!");
  721 
  722         if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
  723                 /* up the hold count until we can be written out */
  724                 dmu_buf_add_ref(ds->ds_dbuf, zilog);
  725 
  726                 zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg);
  727         }
  728 }
  729 
  730 /*
  731  * Determine if the zil is dirty in the specified txg. Callers wanting to
  732  * ensure that the dirty state does not change must hold the itxg_lock for
  733  * the specified txg. Holding the lock will ensure that the zil cannot be
  734  * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
  735  * state.
  736  */
  737 static boolean_t __maybe_unused
  738 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
  739 {
  740         dsl_pool_t *dp = zilog->zl_dmu_pool;
  741 
  742         if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
  743                 return (B_TRUE);
  744         return (B_FALSE);
  745 }
  746 
  747 /*
  748  * Determine if the zil is dirty. The zil is considered dirty if it has
  749  * any pending itx records that have not been cleaned by zil_clean().
  750  */
  751 static boolean_t
  752 zilog_is_dirty(zilog_t *zilog)
  753 {
  754         dsl_pool_t *dp = zilog->zl_dmu_pool;
  755 
  756         for (int t = 0; t < TXG_SIZE; t++) {
  757                 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
  758                         return (B_TRUE);
  759         }
  760         return (B_FALSE);
  761 }
  762 
  763 /*
  764  * Its called in zil_commit context (zil_process_commit_list()/zil_create()).
  765  * It activates SPA_FEATURE_ZILSAXATTR feature, if its enabled.
  766  * Check dsl_dataset_feature_is_active to avoid txg_wait_synced() on every
  767  * zil_commit.
  768  */
  769 static void
  770 zil_commit_activate_saxattr_feature(zilog_t *zilog)
  771 {
  772         dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
  773         uint64_t txg = 0;
  774         dmu_tx_t *tx = NULL;
  775 
  776         if (spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) &&
  777             dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL &&
  778             !dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR)) {
  779                 tx = dmu_tx_create(zilog->zl_os);
  780                 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
  781                 dsl_dataset_dirty(ds, tx);
  782                 txg = dmu_tx_get_txg(tx);
  783 
  784                 mutex_enter(&ds->ds_lock);
  785                 ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] =
  786                     (void *)B_TRUE;
  787                 mutex_exit(&ds->ds_lock);
  788                 dmu_tx_commit(tx);
  789                 txg_wait_synced(zilog->zl_dmu_pool, txg);
  790         }
  791 }
  792 
  793 /*
  794  * Create an on-disk intent log.
  795  */
  796 static lwb_t *
  797 zil_create(zilog_t *zilog)
  798 {
  799         const zil_header_t *zh = zilog->zl_header;
  800         lwb_t *lwb = NULL;
  801         uint64_t txg = 0;
  802         dmu_tx_t *tx = NULL;
  803         blkptr_t blk;
  804         int error = 0;
  805         boolean_t fastwrite = FALSE;
  806         boolean_t slog = FALSE;
  807         dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
  808 
  809 
  810         /*
  811          * Wait for any previous destroy to complete.
  812          */
  813         txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
  814 
  815         ASSERT(zh->zh_claim_txg == 0);
  816         ASSERT(zh->zh_replay_seq == 0);
  817 
  818         blk = zh->zh_log;
  819 
  820         /*
  821          * Allocate an initial log block if:
  822          *    - there isn't one already
  823          *    - the existing block is the wrong endianness
  824          */
  825         if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
  826                 tx = dmu_tx_create(zilog->zl_os);
  827                 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
  828                 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
  829                 txg = dmu_tx_get_txg(tx);
  830 
  831                 if (!BP_IS_HOLE(&blk)) {
  832                         zio_free(zilog->zl_spa, txg, &blk);
  833                         BP_ZERO(&blk);
  834                 }
  835 
  836                 error = zio_alloc_zil(zilog->zl_spa, zilog->zl_os, txg, &blk,
  837                     ZIL_MIN_BLKSZ, &slog);
  838                 fastwrite = TRUE;
  839 
  840                 if (error == 0)
  841                         zil_init_log_chain(zilog, &blk);
  842         }
  843 
  844         /*
  845          * Allocate a log write block (lwb) for the first log block.
  846          */
  847         if (error == 0)
  848                 lwb = zil_alloc_lwb(zilog, &blk, slog, txg, fastwrite);
  849 
  850         /*
  851          * If we just allocated the first log block, commit our transaction
  852          * and wait for zil_sync() to stuff the block pointer into zh_log.
  853          * (zh is part of the MOS, so we cannot modify it in open context.)
  854          */
  855         if (tx != NULL) {
  856                 /*
  857                  * If "zilsaxattr" feature is enabled on zpool, then activate
  858                  * it now when we're creating the ZIL chain. We can't wait with
  859                  * this until we write the first xattr log record because we
  860                  * need to wait for the feature activation to sync out.
  861                  */
  862                 if (spa_feature_is_enabled(zilog->zl_spa,
  863                     SPA_FEATURE_ZILSAXATTR) && dmu_objset_type(zilog->zl_os) !=
  864                     DMU_OST_ZVOL) {
  865                         mutex_enter(&ds->ds_lock);
  866                         ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] =
  867                             (void *)B_TRUE;
  868                         mutex_exit(&ds->ds_lock);
  869                 }
  870 
  871                 dmu_tx_commit(tx);
  872                 txg_wait_synced(zilog->zl_dmu_pool, txg);
  873         } else {
  874                 /*
  875                  * This branch covers the case where we enable the feature on a
  876                  * zpool that has existing ZIL headers.
  877                  */
  878                 zil_commit_activate_saxattr_feature(zilog);
  879         }
  880         IMPLY(spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) &&
  881             dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL,
  882             dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR));
  883 
  884         ASSERT(error != 0 || memcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
  885         IMPLY(error == 0, lwb != NULL);
  886 
  887         return (lwb);
  888 }
  889 
  890 /*
  891  * In one tx, free all log blocks and clear the log header. If keep_first
  892  * is set, then we're replaying a log with no content. We want to keep the
  893  * first block, however, so that the first synchronous transaction doesn't
  894  * require a txg_wait_synced() in zil_create(). We don't need to
  895  * txg_wait_synced() here either when keep_first is set, because both
  896  * zil_create() and zil_destroy() will wait for any in-progress destroys
  897  * to complete.
  898  * Return B_TRUE if there were any entries to replay.
  899  */
  900 boolean_t
  901 zil_destroy(zilog_t *zilog, boolean_t keep_first)
  902 {
  903         const zil_header_t *zh = zilog->zl_header;
  904         lwb_t *lwb;
  905         dmu_tx_t *tx;
  906         uint64_t txg;
  907 
  908         /*
  909          * Wait for any previous destroy to complete.
  910          */
  911         txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
  912 
  913         zilog->zl_old_header = *zh;             /* debugging aid */
  914 
  915         if (BP_IS_HOLE(&zh->zh_log))
  916                 return (B_FALSE);
  917 
  918         tx = dmu_tx_create(zilog->zl_os);
  919         VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
  920         dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
  921         txg = dmu_tx_get_txg(tx);
  922 
  923         mutex_enter(&zilog->zl_lock);
  924 
  925         ASSERT3U(zilog->zl_destroy_txg, <, txg);
  926         zilog->zl_destroy_txg = txg;
  927         zilog->zl_keep_first = keep_first;
  928 
  929         if (!list_is_empty(&zilog->zl_lwb_list)) {
  930                 ASSERT(zh->zh_claim_txg == 0);
  931                 VERIFY(!keep_first);
  932                 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
  933                         if (lwb->lwb_fastwrite)
  934                                 metaslab_fastwrite_unmark(zilog->zl_spa,
  935                                     &lwb->lwb_blk);
  936 
  937                         list_remove(&zilog->zl_lwb_list, lwb);
  938                         if (lwb->lwb_buf != NULL)
  939                                 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
  940                         zio_free(zilog->zl_spa, txg, &lwb->lwb_blk);
  941                         zil_free_lwb(zilog, lwb);
  942                 }
  943         } else if (!keep_first) {
  944                 zil_destroy_sync(zilog, tx);
  945         }
  946         mutex_exit(&zilog->zl_lock);
  947 
  948         dmu_tx_commit(tx);
  949 
  950         return (B_TRUE);
  951 }
  952 
  953 void
  954 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
  955 {
  956         ASSERT(list_is_empty(&zilog->zl_lwb_list));
  957         (void) zil_parse(zilog, zil_free_log_block,
  958             zil_free_log_record, tx, zilog->zl_header->zh_claim_txg, B_FALSE);
  959 }
  960 
  961 int
  962 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
  963 {
  964         dmu_tx_t *tx = txarg;
  965         zilog_t *zilog;
  966         uint64_t first_txg;
  967         zil_header_t *zh;
  968         objset_t *os;
  969         int error;
  970 
  971         error = dmu_objset_own_obj(dp, ds->ds_object,
  972             DMU_OST_ANY, B_FALSE, B_FALSE, FTAG, &os);
  973         if (error != 0) {
  974                 /*
  975                  * EBUSY indicates that the objset is inconsistent, in which
  976                  * case it can not have a ZIL.
  977                  */
  978                 if (error != EBUSY) {
  979                         cmn_err(CE_WARN, "can't open objset for %llu, error %u",
  980                             (unsigned long long)ds->ds_object, error);
  981                 }
  982 
  983                 return (0);
  984         }
  985 
  986         zilog = dmu_objset_zil(os);
  987         zh = zil_header_in_syncing_context(zilog);
  988         ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa));
  989         first_txg = spa_min_claim_txg(zilog->zl_spa);
  990 
  991         /*
  992          * If the spa_log_state is not set to be cleared, check whether
  993          * the current uberblock is a checkpoint one and if the current
  994          * header has been claimed before moving on.
  995          *
  996          * If the current uberblock is a checkpointed uberblock then
  997          * one of the following scenarios took place:
  998          *
  999          * 1] We are currently rewinding to the checkpoint of the pool.
 1000          * 2] We crashed in the middle of a checkpoint rewind but we
 1001          *    did manage to write the checkpointed uberblock to the
 1002          *    vdev labels, so when we tried to import the pool again
 1003          *    the checkpointed uberblock was selected from the import
 1004          *    procedure.
 1005          *
 1006          * In both cases we want to zero out all the ZIL blocks, except
 1007          * the ones that have been claimed at the time of the checkpoint
 1008          * (their zh_claim_txg != 0). The reason is that these blocks
 1009          * may be corrupted since we may have reused their locations on
 1010          * disk after we took the checkpoint.
 1011          *
 1012          * We could try to set spa_log_state to SPA_LOG_CLEAR earlier
 1013          * when we first figure out whether the current uberblock is
 1014          * checkpointed or not. Unfortunately, that would discard all
 1015          * the logs, including the ones that are claimed, and we would
 1016          * leak space.
 1017          */
 1018         if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR ||
 1019             (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
 1020             zh->zh_claim_txg == 0)) {
 1021                 if (!BP_IS_HOLE(&zh->zh_log)) {
 1022                         (void) zil_parse(zilog, zil_clear_log_block,
 1023                             zil_noop_log_record, tx, first_txg, B_FALSE);
 1024                 }
 1025                 BP_ZERO(&zh->zh_log);
 1026                 if (os->os_encrypted)
 1027                         os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
 1028                 dsl_dataset_dirty(dmu_objset_ds(os), tx);
 1029                 dmu_objset_disown(os, B_FALSE, FTAG);
 1030                 return (0);
 1031         }
 1032 
 1033         /*
 1034          * If we are not rewinding and opening the pool normally, then
 1035          * the min_claim_txg should be equal to the first txg of the pool.
 1036          */
 1037         ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa));
 1038 
 1039         /*
 1040          * Claim all log blocks if we haven't already done so, and remember
 1041          * the highest claimed sequence number.  This ensures that if we can
 1042          * read only part of the log now (e.g. due to a missing device),
 1043          * but we can read the entire log later, we will not try to replay
 1044          * or destroy beyond the last block we successfully claimed.
 1045          */
 1046         ASSERT3U(zh->zh_claim_txg, <=, first_txg);
 1047         if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
 1048                 (void) zil_parse(zilog, zil_claim_log_block,
 1049                     zil_claim_log_record, tx, first_txg, B_FALSE);
 1050                 zh->zh_claim_txg = first_txg;
 1051                 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
 1052                 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
 1053                 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
 1054                         zh->zh_flags |= ZIL_REPLAY_NEEDED;
 1055                 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
 1056                 if (os->os_encrypted)
 1057                         os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
 1058                 dsl_dataset_dirty(dmu_objset_ds(os), tx);
 1059         }
 1060 
 1061         ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
 1062         dmu_objset_disown(os, B_FALSE, FTAG);
 1063         return (0);
 1064 }
 1065 
 1066 /*
 1067  * Check the log by walking the log chain.
 1068  * Checksum errors are ok as they indicate the end of the chain.
 1069  * Any other error (no device or read failure) returns an error.
 1070  */
 1071 int
 1072 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
 1073 {
 1074         (void) dp;
 1075         zilog_t *zilog;
 1076         objset_t *os;
 1077         blkptr_t *bp;
 1078         int error;
 1079 
 1080         ASSERT(tx == NULL);
 1081 
 1082         error = dmu_objset_from_ds(ds, &os);
 1083         if (error != 0) {
 1084                 cmn_err(CE_WARN, "can't open objset %llu, error %d",
 1085                     (unsigned long long)ds->ds_object, error);
 1086                 return (0);
 1087         }
 1088 
 1089         zilog = dmu_objset_zil(os);
 1090         bp = (blkptr_t *)&zilog->zl_header->zh_log;
 1091 
 1092         if (!BP_IS_HOLE(bp)) {
 1093                 vdev_t *vd;
 1094                 boolean_t valid = B_TRUE;
 1095 
 1096                 /*
 1097                  * Check the first block and determine if it's on a log device
 1098                  * which may have been removed or faulted prior to loading this
 1099                  * pool.  If so, there's no point in checking the rest of the
 1100                  * log as its content should have already been synced to the
 1101                  * pool.
 1102                  */
 1103                 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
 1104                 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
 1105                 if (vd->vdev_islog && vdev_is_dead(vd))
 1106                         valid = vdev_log_state_valid(vd);
 1107                 spa_config_exit(os->os_spa, SCL_STATE, FTAG);
 1108 
 1109                 if (!valid)
 1110                         return (0);
 1111 
 1112                 /*
 1113                  * Check whether the current uberblock is checkpointed (e.g.
 1114                  * we are rewinding) and whether the current header has been
 1115                  * claimed or not. If it hasn't then skip verifying it. We
 1116                  * do this because its ZIL blocks may be part of the pool's
 1117                  * state before the rewind, which is no longer valid.
 1118                  */
 1119                 zil_header_t *zh = zil_header_in_syncing_context(zilog);
 1120                 if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
 1121                     zh->zh_claim_txg == 0)
 1122                         return (0);
 1123         }
 1124 
 1125         /*
 1126          * Because tx == NULL, zil_claim_log_block() will not actually claim
 1127          * any blocks, but just determine whether it is possible to do so.
 1128          * In addition to checking the log chain, zil_claim_log_block()
 1129          * will invoke zio_claim() with a done func of spa_claim_notify(),
 1130          * which will update spa_max_claim_txg.  See spa_load() for details.
 1131          */
 1132         error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
 1133             zilog->zl_header->zh_claim_txg ? -1ULL :
 1134             spa_min_claim_txg(os->os_spa), B_FALSE);
 1135 
 1136         return ((error == ECKSUM || error == ENOENT) ? 0 : error);
 1137 }
 1138 
 1139 /*
 1140  * When an itx is "skipped", this function is used to properly mark the
 1141  * waiter as "done, and signal any thread(s) waiting on it. An itx can
 1142  * be skipped (and not committed to an lwb) for a variety of reasons,
 1143  * one of them being that the itx was committed via spa_sync(), prior to
 1144  * it being committed to an lwb; this can happen if a thread calling
 1145  * zil_commit() is racing with spa_sync().
 1146  */
 1147 static void
 1148 zil_commit_waiter_skip(zil_commit_waiter_t *zcw)
 1149 {
 1150         mutex_enter(&zcw->zcw_lock);
 1151         ASSERT3B(zcw->zcw_done, ==, B_FALSE);
 1152         zcw->zcw_done = B_TRUE;
 1153         cv_broadcast(&zcw->zcw_cv);
 1154         mutex_exit(&zcw->zcw_lock);
 1155 }
 1156 
 1157 /*
 1158  * This function is used when the given waiter is to be linked into an
 1159  * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb.
 1160  * At this point, the waiter will no longer be referenced by the itx,
 1161  * and instead, will be referenced by the lwb.
 1162  */
 1163 static void
 1164 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb)
 1165 {
 1166         /*
 1167          * The lwb_waiters field of the lwb is protected by the zilog's
 1168          * zl_lock, thus it must be held when calling this function.
 1169          */
 1170         ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_lock));
 1171 
 1172         mutex_enter(&zcw->zcw_lock);
 1173         ASSERT(!list_link_active(&zcw->zcw_node));
 1174         ASSERT3P(zcw->zcw_lwb, ==, NULL);
 1175         ASSERT3P(lwb, !=, NULL);
 1176         ASSERT(lwb->lwb_state == LWB_STATE_OPENED ||
 1177             lwb->lwb_state == LWB_STATE_ISSUED ||
 1178             lwb->lwb_state == LWB_STATE_WRITE_DONE);
 1179 
 1180         list_insert_tail(&lwb->lwb_waiters, zcw);
 1181         zcw->zcw_lwb = lwb;
 1182         mutex_exit(&zcw->zcw_lock);
 1183 }
 1184 
 1185 /*
 1186  * This function is used when zio_alloc_zil() fails to allocate a ZIL
 1187  * block, and the given waiter must be linked to the "nolwb waiters"
 1188  * list inside of zil_process_commit_list().
 1189  */
 1190 static void
 1191 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb)
 1192 {
 1193         mutex_enter(&zcw->zcw_lock);
 1194         ASSERT(!list_link_active(&zcw->zcw_node));
 1195         ASSERT3P(zcw->zcw_lwb, ==, NULL);
 1196         list_insert_tail(nolwb, zcw);
 1197         mutex_exit(&zcw->zcw_lock);
 1198 }
 1199 
 1200 void
 1201 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp)
 1202 {
 1203         avl_tree_t *t = &lwb->lwb_vdev_tree;
 1204         avl_index_t where;
 1205         zil_vdev_node_t *zv, zvsearch;
 1206         int ndvas = BP_GET_NDVAS(bp);
 1207         int i;
 1208 
 1209         if (zil_nocacheflush)
 1210                 return;
 1211 
 1212         mutex_enter(&lwb->lwb_vdev_lock);
 1213         for (i = 0; i < ndvas; i++) {
 1214                 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
 1215                 if (avl_find(t, &zvsearch, &where) == NULL) {
 1216                         zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
 1217                         zv->zv_vdev = zvsearch.zv_vdev;
 1218                         avl_insert(t, zv, where);
 1219                 }
 1220         }
 1221         mutex_exit(&lwb->lwb_vdev_lock);
 1222 }
 1223 
 1224 static void
 1225 zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb)
 1226 {
 1227         avl_tree_t *src = &lwb->lwb_vdev_tree;
 1228         avl_tree_t *dst = &nlwb->lwb_vdev_tree;
 1229         void *cookie = NULL;
 1230         zil_vdev_node_t *zv;
 1231 
 1232         ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
 1233         ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
 1234         ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
 1235 
 1236         /*
 1237          * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does
 1238          * not need the protection of lwb_vdev_lock (it will only be modified
 1239          * while holding zilog->zl_lock) as its writes and those of its
 1240          * children have all completed.  The younger 'nlwb' may be waiting on
 1241          * future writes to additional vdevs.
 1242          */
 1243         mutex_enter(&nlwb->lwb_vdev_lock);
 1244         /*
 1245          * Tear down the 'lwb' vdev tree, ensuring that entries which do not
 1246          * exist in 'nlwb' are moved to it, freeing any would-be duplicates.
 1247          */
 1248         while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) {
 1249                 avl_index_t where;
 1250 
 1251                 if (avl_find(dst, zv, &where) == NULL) {
 1252                         avl_insert(dst, zv, where);
 1253                 } else {
 1254                         kmem_free(zv, sizeof (*zv));
 1255                 }
 1256         }
 1257         mutex_exit(&nlwb->lwb_vdev_lock);
 1258 }
 1259 
 1260 void
 1261 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg)
 1262 {
 1263         lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
 1264 }
 1265 
 1266 /*
 1267  * This function is a called after all vdevs associated with a given lwb
 1268  * write have completed their DKIOCFLUSHWRITECACHE command; or as soon
 1269  * as the lwb write completes, if "zil_nocacheflush" is set. Further,
 1270  * all "previous" lwb's will have completed before this function is
 1271  * called; i.e. this function is called for all previous lwbs before
 1272  * it's called for "this" lwb (enforced via zio the dependencies
 1273  * configured in zil_lwb_set_zio_dependency()).
 1274  *
 1275  * The intention is for this function to be called as soon as the
 1276  * contents of an lwb are considered "stable" on disk, and will survive
 1277  * any sudden loss of power. At this point, any threads waiting for the
 1278  * lwb to reach this state are signalled, and the "waiter" structures
 1279  * are marked "done".
 1280  */
 1281 static void
 1282 zil_lwb_flush_vdevs_done(zio_t *zio)
 1283 {
 1284         lwb_t *lwb = zio->io_private;
 1285         zilog_t *zilog = lwb->lwb_zilog;
 1286         zil_commit_waiter_t *zcw;
 1287         itx_t *itx;
 1288         uint64_t txg;
 1289 
 1290         spa_config_exit(zilog->zl_spa, SCL_STATE, lwb);
 1291 
 1292         zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
 1293 
 1294         mutex_enter(&zilog->zl_lock);
 1295 
 1296         /*
 1297          * If we have had an allocation failure and the txg is
 1298          * waiting to sync then we want zil_sync() to remove the lwb so
 1299          * that it's not picked up as the next new one in
 1300          * zil_process_commit_list(). zil_sync() will only remove the
 1301          * lwb if lwb_buf is null.
 1302          */
 1303         lwb->lwb_buf = NULL;
 1304 
 1305         ASSERT3U(lwb->lwb_issued_timestamp, >, 0);
 1306         zilog->zl_last_lwb_latency = (zilog->zl_last_lwb_latency * 3 +
 1307             gethrtime() - lwb->lwb_issued_timestamp) / 4;
 1308 
 1309         lwb->lwb_root_zio = NULL;
 1310 
 1311         ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
 1312         lwb->lwb_state = LWB_STATE_FLUSH_DONE;
 1313 
 1314         if (zilog->zl_last_lwb_opened == lwb) {
 1315                 /*
 1316                  * Remember the highest committed log sequence number
 1317                  * for ztest. We only update this value when all the log
 1318                  * writes succeeded, because ztest wants to ASSERT that
 1319                  * it got the whole log chain.
 1320                  */
 1321                 zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
 1322         }
 1323 
 1324         while ((itx = list_head(&lwb->lwb_itxs)) != NULL) {
 1325                 list_remove(&lwb->lwb_itxs, itx);
 1326                 zil_itx_destroy(itx);
 1327         }
 1328 
 1329         while ((zcw = list_head(&lwb->lwb_waiters)) != NULL) {
 1330                 mutex_enter(&zcw->zcw_lock);
 1331 
 1332                 ASSERT(list_link_active(&zcw->zcw_node));
 1333                 list_remove(&lwb->lwb_waiters, zcw);
 1334 
 1335                 ASSERT3P(zcw->zcw_lwb, ==, lwb);
 1336                 zcw->zcw_lwb = NULL;
 1337                 /*
 1338                  * We expect any ZIO errors from child ZIOs to have been
 1339                  * propagated "up" to this specific LWB's root ZIO, in
 1340                  * order for this error handling to work correctly. This
 1341                  * includes ZIO errors from either this LWB's write or
 1342                  * flush, as well as any errors from other dependent LWBs
 1343                  * (e.g. a root LWB ZIO that might be a child of this LWB).
 1344                  *
 1345                  * With that said, it's important to note that LWB flush
 1346                  * errors are not propagated up to the LWB root ZIO.
 1347                  * This is incorrect behavior, and results in VDEV flush
 1348                  * errors not being handled correctly here. See the
 1349                  * comment above the call to "zio_flush" for details.
 1350                  */
 1351 
 1352                 zcw->zcw_zio_error = zio->io_error;
 1353 
 1354                 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
 1355                 zcw->zcw_done = B_TRUE;
 1356                 cv_broadcast(&zcw->zcw_cv);
 1357 
 1358                 mutex_exit(&zcw->zcw_lock);
 1359         }
 1360 
 1361         mutex_exit(&zilog->zl_lock);
 1362 
 1363         mutex_enter(&zilog->zl_lwb_io_lock);
 1364         txg = lwb->lwb_issued_txg;
 1365         ASSERT3U(zilog->zl_lwb_inflight[txg & TXG_MASK], >, 0);
 1366         zilog->zl_lwb_inflight[txg & TXG_MASK]--;
 1367         if (zilog->zl_lwb_inflight[txg & TXG_MASK] == 0)
 1368                 cv_broadcast(&zilog->zl_lwb_io_cv);
 1369         mutex_exit(&zilog->zl_lwb_io_lock);
 1370 }
 1371 
 1372 /*
 1373  * Wait for the completion of all issued write/flush of that txg provided.
 1374  * It guarantees zil_lwb_flush_vdevs_done() is called and returned.
 1375  */
 1376 static void
 1377 zil_lwb_flush_wait_all(zilog_t *zilog, uint64_t txg)
 1378 {
 1379         ASSERT3U(txg, ==, spa_syncing_txg(zilog->zl_spa));
 1380 
 1381         mutex_enter(&zilog->zl_lwb_io_lock);
 1382         while (zilog->zl_lwb_inflight[txg & TXG_MASK] > 0)
 1383                 cv_wait(&zilog->zl_lwb_io_cv, &zilog->zl_lwb_io_lock);
 1384         mutex_exit(&zilog->zl_lwb_io_lock);
 1385 
 1386 #ifdef ZFS_DEBUG
 1387         mutex_enter(&zilog->zl_lock);
 1388         mutex_enter(&zilog->zl_lwb_io_lock);
 1389         lwb_t *lwb = list_head(&zilog->zl_lwb_list);
 1390         while (lwb != NULL && lwb->lwb_max_txg <= txg) {
 1391                 if (lwb->lwb_issued_txg <= txg) {
 1392                         ASSERT(lwb->lwb_state != LWB_STATE_ISSUED);
 1393                         ASSERT(lwb->lwb_state != LWB_STATE_WRITE_DONE);
 1394                         IMPLY(lwb->lwb_issued_txg > 0,
 1395                             lwb->lwb_state == LWB_STATE_FLUSH_DONE);
 1396                 }
 1397                 IMPLY(lwb->lwb_state == LWB_STATE_FLUSH_DONE,
 1398                     lwb->lwb_buf == NULL);
 1399                 lwb = list_next(&zilog->zl_lwb_list, lwb);
 1400         }
 1401         mutex_exit(&zilog->zl_lwb_io_lock);
 1402         mutex_exit(&zilog->zl_lock);
 1403 #endif
 1404 }
 1405 
 1406 /*
 1407  * This is called when an lwb's write zio completes. The callback's
 1408  * purpose is to issue the DKIOCFLUSHWRITECACHE commands for the vdevs
 1409  * in the lwb's lwb_vdev_tree. The tree will contain the vdevs involved
 1410  * in writing out this specific lwb's data, and in the case that cache
 1411  * flushes have been deferred, vdevs involved in writing the data for
 1412  * previous lwbs. The writes corresponding to all the vdevs in the
 1413  * lwb_vdev_tree will have completed by the time this is called, due to
 1414  * the zio dependencies configured in zil_lwb_set_zio_dependency(),
 1415  * which takes deferred flushes into account. The lwb will be "done"
 1416  * once zil_lwb_flush_vdevs_done() is called, which occurs in the zio
 1417  * completion callback for the lwb's root zio.
 1418  */
 1419 static void
 1420 zil_lwb_write_done(zio_t *zio)
 1421 {
 1422         lwb_t *lwb = zio->io_private;
 1423         spa_t *spa = zio->io_spa;
 1424         zilog_t *zilog = lwb->lwb_zilog;
 1425         avl_tree_t *t = &lwb->lwb_vdev_tree;
 1426         void *cookie = NULL;
 1427         zil_vdev_node_t *zv;
 1428         lwb_t *nlwb;
 1429 
 1430         ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0);
 1431 
 1432         ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
 1433         ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
 1434         ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
 1435         ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
 1436         ASSERT(!BP_IS_GANG(zio->io_bp));
 1437         ASSERT(!BP_IS_HOLE(zio->io_bp));
 1438         ASSERT(BP_GET_FILL(zio->io_bp) == 0);
 1439 
 1440         abd_free(zio->io_abd);
 1441 
 1442         mutex_enter(&zilog->zl_lock);
 1443         ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED);
 1444         lwb->lwb_state = LWB_STATE_WRITE_DONE;
 1445         lwb->lwb_write_zio = NULL;
 1446         lwb->lwb_fastwrite = FALSE;
 1447         nlwb = list_next(&zilog->zl_lwb_list, lwb);
 1448         mutex_exit(&zilog->zl_lock);
 1449 
 1450         if (avl_numnodes(t) == 0)
 1451                 return;
 1452 
 1453         /*
 1454          * If there was an IO error, we're not going to call zio_flush()
 1455          * on these vdevs, so we simply empty the tree and free the
 1456          * nodes. We avoid calling zio_flush() since there isn't any
 1457          * good reason for doing so, after the lwb block failed to be
 1458          * written out.
 1459          *
 1460          * Additionally, we don't perform any further error handling at
 1461          * this point (e.g. setting "zcw_zio_error" appropriately), as
 1462          * we expect that to occur in "zil_lwb_flush_vdevs_done" (thus,
 1463          * we expect any error seen here, to have been propagated to
 1464          * that function).
 1465          */
 1466         if (zio->io_error != 0) {
 1467                 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
 1468                         kmem_free(zv, sizeof (*zv));
 1469                 return;
 1470         }
 1471 
 1472         /*
 1473          * If this lwb does not have any threads waiting for it to
 1474          * complete, we want to defer issuing the DKIOCFLUSHWRITECACHE
 1475          * command to the vdevs written to by "this" lwb, and instead
 1476          * rely on the "next" lwb to handle the DKIOCFLUSHWRITECACHE
 1477          * command for those vdevs. Thus, we merge the vdev tree of
 1478          * "this" lwb with the vdev tree of the "next" lwb in the list,
 1479          * and assume the "next" lwb will handle flushing the vdevs (or
 1480          * deferring the flush(s) again).
 1481          *
 1482          * This is a useful performance optimization, especially for
 1483          * workloads with lots of async write activity and few sync
 1484          * write and/or fsync activity, as it has the potential to
 1485          * coalesce multiple flush commands to a vdev into one.
 1486          */
 1487         if (list_head(&lwb->lwb_waiters) == NULL && nlwb != NULL) {
 1488                 zil_lwb_flush_defer(lwb, nlwb);
 1489                 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
 1490                 return;
 1491         }
 1492 
 1493         while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
 1494                 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
 1495                 if (vd != NULL) {
 1496                         /*
 1497                          * The "ZIO_FLAG_DONT_PROPAGATE" is currently
 1498                          * always used within "zio_flush". This means,
 1499                          * any errors when flushing the vdev(s), will
 1500                          * (unfortunately) not be handled correctly,
 1501                          * since these "zio_flush" errors will not be
 1502                          * propagated up to "zil_lwb_flush_vdevs_done".
 1503                          */
 1504                         zio_flush(lwb->lwb_root_zio, vd);
 1505                 }
 1506                 kmem_free(zv, sizeof (*zv));
 1507         }
 1508 }
 1509 
 1510 static void
 1511 zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb)
 1512 {
 1513         lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened;
 1514 
 1515         ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
 1516         ASSERT(MUTEX_HELD(&zilog->zl_lock));
 1517 
 1518         /*
 1519          * The zilog's "zl_last_lwb_opened" field is used to build the
 1520          * lwb/zio dependency chain, which is used to preserve the
 1521          * ordering of lwb completions that is required by the semantics
 1522          * of the ZIL. Each new lwb zio becomes a parent of the
 1523          * "previous" lwb zio, such that the new lwb's zio cannot
 1524          * complete until the "previous" lwb's zio completes.
 1525          *
 1526          * This is required by the semantics of zil_commit(); the commit
 1527          * waiters attached to the lwbs will be woken in the lwb zio's
 1528          * completion callback, so this zio dependency graph ensures the
 1529          * waiters are woken in the correct order (the same order the
 1530          * lwbs were created).
 1531          */
 1532         if (last_lwb_opened != NULL &&
 1533             last_lwb_opened->lwb_state != LWB_STATE_FLUSH_DONE) {
 1534                 ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
 1535                     last_lwb_opened->lwb_state == LWB_STATE_ISSUED ||
 1536                     last_lwb_opened->lwb_state == LWB_STATE_WRITE_DONE);
 1537 
 1538                 ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL);
 1539                 zio_add_child(lwb->lwb_root_zio,
 1540                     last_lwb_opened->lwb_root_zio);
 1541 
 1542                 /*
 1543                  * If the previous lwb's write hasn't already completed,
 1544                  * we also want to order the completion of the lwb write
 1545                  * zios (above, we only order the completion of the lwb
 1546                  * root zios). This is required because of how we can
 1547                  * defer the DKIOCFLUSHWRITECACHE commands for each lwb.
 1548                  *
 1549                  * When the DKIOCFLUSHWRITECACHE commands are deferred,
 1550                  * the previous lwb will rely on this lwb to flush the
 1551                  * vdevs written to by that previous lwb. Thus, we need
 1552                  * to ensure this lwb doesn't issue the flush until
 1553                  * after the previous lwb's write completes. We ensure
 1554                  * this ordering by setting the zio parent/child
 1555                  * relationship here.
 1556                  *
 1557                  * Without this relationship on the lwb's write zio,
 1558                  * it's possible for this lwb's write to complete prior
 1559                  * to the previous lwb's write completing; and thus, the
 1560                  * vdevs for the previous lwb would be flushed prior to
 1561                  * that lwb's data being written to those vdevs (the
 1562                  * vdevs are flushed in the lwb write zio's completion
 1563                  * handler, zil_lwb_write_done()).
 1564                  */
 1565                 if (last_lwb_opened->lwb_state != LWB_STATE_WRITE_DONE) {
 1566                         ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
 1567                             last_lwb_opened->lwb_state == LWB_STATE_ISSUED);
 1568 
 1569                         ASSERT3P(last_lwb_opened->lwb_write_zio, !=, NULL);
 1570                         zio_add_child(lwb->lwb_write_zio,
 1571                             last_lwb_opened->lwb_write_zio);
 1572                 }
 1573         }
 1574 }
 1575 
 1576 
 1577 /*
 1578  * This function's purpose is to "open" an lwb such that it is ready to
 1579  * accept new itxs being committed to it. To do this, the lwb's zio
 1580  * structures are created, and linked to the lwb. This function is
 1581  * idempotent; if the passed in lwb has already been opened, this
 1582  * function is essentially a no-op.
 1583  */
 1584 static void
 1585 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb)
 1586 {
 1587         zbookmark_phys_t zb;
 1588         zio_priority_t prio;
 1589 
 1590         ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
 1591         ASSERT3P(lwb, !=, NULL);
 1592         EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED);
 1593         EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED);
 1594 
 1595         SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
 1596             ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
 1597             lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
 1598 
 1599         /* Lock so zil_sync() doesn't fastwrite_unmark after zio is created */
 1600         mutex_enter(&zilog->zl_lock);
 1601         if (lwb->lwb_root_zio == NULL) {
 1602                 abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf,
 1603                     BP_GET_LSIZE(&lwb->lwb_blk));
 1604 
 1605                 if (!lwb->lwb_fastwrite) {
 1606                         metaslab_fastwrite_mark(zilog->zl_spa, &lwb->lwb_blk);
 1607                         lwb->lwb_fastwrite = 1;
 1608                 }
 1609 
 1610                 if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk)
 1611                         prio = ZIO_PRIORITY_SYNC_WRITE;
 1612                 else
 1613                         prio = ZIO_PRIORITY_ASYNC_WRITE;
 1614 
 1615                 lwb->lwb_root_zio = zio_root(zilog->zl_spa,
 1616                     zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL);
 1617                 ASSERT3P(lwb->lwb_root_zio, !=, NULL);
 1618 
 1619                 lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio,
 1620                     zilog->zl_spa, 0, &lwb->lwb_blk, lwb_abd,
 1621                     BP_GET_LSIZE(&lwb->lwb_blk), zil_lwb_write_done, lwb,
 1622                     prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_FASTWRITE, &zb);
 1623                 ASSERT3P(lwb->lwb_write_zio, !=, NULL);
 1624 
 1625                 lwb->lwb_state = LWB_STATE_OPENED;
 1626 
 1627                 zil_lwb_set_zio_dependency(zilog, lwb);
 1628                 zilog->zl_last_lwb_opened = lwb;
 1629         }
 1630         mutex_exit(&zilog->zl_lock);
 1631 
 1632         ASSERT3P(lwb->lwb_root_zio, !=, NULL);
 1633         ASSERT3P(lwb->lwb_write_zio, !=, NULL);
 1634         ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
 1635 }
 1636 
 1637 /*
 1638  * Define a limited set of intent log block sizes.
 1639  *
 1640  * These must be a multiple of 4KB. Note only the amount used (again
 1641  * aligned to 4KB) actually gets written. However, we can't always just
 1642  * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
 1643  */
 1644 static const struct {
 1645         uint64_t        limit;
 1646         uint64_t        blksz;
 1647 } zil_block_buckets[] = {
 1648         { 4096,         4096 },                 /* non TX_WRITE */
 1649         { 8192 + 4096,  8192 + 4096 },          /* database */
 1650         { 32768 + 4096, 32768 + 4096 },         /* NFS writes */
 1651         { 65536 + 4096, 65536 + 4096 },         /* 64KB writes */
 1652         { 131072,       131072 },               /* < 128KB writes */
 1653         { 131072 +4096, 65536 + 4096 },         /* 128KB writes */
 1654         { UINT64_MAX,   SPA_OLD_MAXBLOCKSIZE},  /* > 128KB writes */
 1655 };
 1656 
 1657 /*
 1658  * Maximum block size used by the ZIL.  This is picked up when the ZIL is
 1659  * initialized.  Otherwise this should not be used directly; see
 1660  * zl_max_block_size instead.
 1661  */
 1662 static uint_t zil_maxblocksize = SPA_OLD_MAXBLOCKSIZE;
 1663 
 1664 /*
 1665  * Start a log block write and advance to the next log block.
 1666  * Calls are serialized.
 1667  */
 1668 static lwb_t *
 1669 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb)
 1670 {
 1671         lwb_t *nlwb = NULL;
 1672         zil_chain_t *zilc;
 1673         spa_t *spa = zilog->zl_spa;
 1674         blkptr_t *bp;
 1675         dmu_tx_t *tx;
 1676         uint64_t txg;
 1677         uint64_t zil_blksz, wsz;
 1678         int i, error;
 1679         boolean_t slog;
 1680 
 1681         ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
 1682         ASSERT3P(lwb->lwb_root_zio, !=, NULL);
 1683         ASSERT3P(lwb->lwb_write_zio, !=, NULL);
 1684         ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
 1685 
 1686         if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
 1687                 zilc = (zil_chain_t *)lwb->lwb_buf;
 1688                 bp = &zilc->zc_next_blk;
 1689         } else {
 1690                 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
 1691                 bp = &zilc->zc_next_blk;
 1692         }
 1693 
 1694         ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
 1695 
 1696         /*
 1697          * Allocate the next block and save its address in this block
 1698          * before writing it in order to establish the log chain.
 1699          */
 1700 
 1701         tx = dmu_tx_create(zilog->zl_os);
 1702 
 1703         /*
 1704          * Since we are not going to create any new dirty data, and we
 1705          * can even help with clearing the existing dirty data, we
 1706          * should not be subject to the dirty data based delays. We
 1707          * use TXG_NOTHROTTLE to bypass the delay mechanism.
 1708          */
 1709         VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
 1710 
 1711         dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
 1712         txg = dmu_tx_get_txg(tx);
 1713 
 1714         mutex_enter(&zilog->zl_lwb_io_lock);
 1715         lwb->lwb_issued_txg = txg;
 1716         zilog->zl_lwb_inflight[txg & TXG_MASK]++;
 1717         zilog->zl_lwb_max_issued_txg = MAX(txg, zilog->zl_lwb_max_issued_txg);
 1718         mutex_exit(&zilog->zl_lwb_io_lock);
 1719 
 1720         /*
 1721          * Log blocks are pre-allocated. Here we select the size of the next
 1722          * block, based on size used in the last block.
 1723          * - first find the smallest bucket that will fit the block from a
 1724          *   limited set of block sizes. This is because it's faster to write
 1725          *   blocks allocated from the same metaslab as they are adjacent or
 1726          *   close.
 1727          * - next find the maximum from the new suggested size and an array of
 1728          *   previous sizes. This lessens a picket fence effect of wrongly
 1729          *   guessing the size if we have a stream of say 2k, 64k, 2k, 64k
 1730          *   requests.
 1731          *
 1732          * Note we only write what is used, but we can't just allocate
 1733          * the maximum block size because we can exhaust the available
 1734          * pool log space.
 1735          */
 1736         zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
 1737         for (i = 0; zil_blksz > zil_block_buckets[i].limit; i++)
 1738                 continue;
 1739         zil_blksz = MIN(zil_block_buckets[i].blksz, zilog->zl_max_block_size);
 1740         zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
 1741         for (i = 0; i < ZIL_PREV_BLKS; i++)
 1742                 zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
 1743         zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
 1744 
 1745         BP_ZERO(bp);
 1746         error = zio_alloc_zil(spa, zilog->zl_os, txg, bp, zil_blksz, &slog);
 1747         if (slog) {
 1748                 ZIL_STAT_BUMP(zilog, zil_itx_metaslab_slog_count);
 1749                 ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_bytes,
 1750                     lwb->lwb_nused);
 1751         } else {
 1752                 ZIL_STAT_BUMP(zilog, zil_itx_metaslab_normal_count);
 1753                 ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_bytes,
 1754                     lwb->lwb_nused);
 1755         }
 1756         if (error == 0) {
 1757                 ASSERT3U(bp->blk_birth, ==, txg);
 1758                 bp->blk_cksum = lwb->lwb_blk.blk_cksum;
 1759                 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
 1760 
 1761                 /*
 1762                  * Allocate a new log write block (lwb).
 1763                  */
 1764                 nlwb = zil_alloc_lwb(zilog, bp, slog, txg, TRUE);
 1765         }
 1766 
 1767         if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
 1768                 /* For Slim ZIL only write what is used. */
 1769                 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
 1770                 ASSERT3U(wsz, <=, lwb->lwb_sz);
 1771                 zio_shrink(lwb->lwb_write_zio, wsz);
 1772 
 1773         } else {
 1774                 wsz = lwb->lwb_sz;
 1775         }
 1776 
 1777         zilc->zc_pad = 0;
 1778         zilc->zc_nused = lwb->lwb_nused;
 1779         zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
 1780 
 1781         /*
 1782          * clear unused data for security
 1783          */
 1784         memset(lwb->lwb_buf + lwb->lwb_nused, 0, wsz - lwb->lwb_nused);
 1785 
 1786         spa_config_enter(zilog->zl_spa, SCL_STATE, lwb, RW_READER);
 1787 
 1788         zil_lwb_add_block(lwb, &lwb->lwb_blk);
 1789         lwb->lwb_issued_timestamp = gethrtime();
 1790         lwb->lwb_state = LWB_STATE_ISSUED;
 1791 
 1792         zio_nowait(lwb->lwb_root_zio);
 1793         zio_nowait(lwb->lwb_write_zio);
 1794 
 1795         dmu_tx_commit(tx);
 1796 
 1797         /*
 1798          * If there was an allocation failure then nlwb will be null which
 1799          * forces a txg_wait_synced().
 1800          */
 1801         return (nlwb);
 1802 }
 1803 
 1804 /*
 1805  * Maximum amount of write data that can be put into single log block.
 1806  */
 1807 uint64_t
 1808 zil_max_log_data(zilog_t *zilog)
 1809 {
 1810         return (zilog->zl_max_block_size -
 1811             sizeof (zil_chain_t) - sizeof (lr_write_t));
 1812 }
 1813 
 1814 /*
 1815  * Maximum amount of log space we agree to waste to reduce number of
 1816  * WR_NEED_COPY chunks to reduce zl_get_data() overhead (~12%).
 1817  */
 1818 static inline uint64_t
 1819 zil_max_waste_space(zilog_t *zilog)
 1820 {
 1821         return (zil_max_log_data(zilog) / 8);
 1822 }
 1823 
 1824 /*
 1825  * Maximum amount of write data for WR_COPIED.  For correctness, consumers
 1826  * must fall back to WR_NEED_COPY if we can't fit the entire record into one
 1827  * maximum sized log block, because each WR_COPIED record must fit in a
 1828  * single log block.  For space efficiency, we want to fit two records into a
 1829  * max-sized log block.
 1830  */
 1831 uint64_t
 1832 zil_max_copied_data(zilog_t *zilog)
 1833 {
 1834         return ((zilog->zl_max_block_size - sizeof (zil_chain_t)) / 2 -
 1835             sizeof (lr_write_t));
 1836 }
 1837 
 1838 static lwb_t *
 1839 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
 1840 {
 1841         lr_t *lrcb, *lrc;
 1842         lr_write_t *lrwb, *lrw;
 1843         char *lr_buf;
 1844         uint64_t dlen, dnow, dpad, lwb_sp, reclen, txg, max_log_data;
 1845 
 1846         ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
 1847         ASSERT3P(lwb, !=, NULL);
 1848         ASSERT3P(lwb->lwb_buf, !=, NULL);
 1849 
 1850         zil_lwb_write_open(zilog, lwb);
 1851 
 1852         lrc = &itx->itx_lr;
 1853         lrw = (lr_write_t *)lrc;
 1854 
 1855         /*
 1856          * A commit itx doesn't represent any on-disk state; instead
 1857          * it's simply used as a place holder on the commit list, and
 1858          * provides a mechanism for attaching a "commit waiter" onto the
 1859          * correct lwb (such that the waiter can be signalled upon
 1860          * completion of that lwb). Thus, we don't process this itx's
 1861          * log record if it's a commit itx (these itx's don't have log
 1862          * records), and instead link the itx's waiter onto the lwb's
 1863          * list of waiters.
 1864          *
 1865          * For more details, see the comment above zil_commit().
 1866          */
 1867         if (lrc->lrc_txtype == TX_COMMIT) {
 1868                 mutex_enter(&zilog->zl_lock);
 1869                 zil_commit_waiter_link_lwb(itx->itx_private, lwb);
 1870                 itx->itx_private = NULL;
 1871                 mutex_exit(&zilog->zl_lock);
 1872                 return (lwb);
 1873         }
 1874 
 1875         if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
 1876                 dlen = P2ROUNDUP_TYPED(
 1877                     lrw->lr_length, sizeof (uint64_t), uint64_t);
 1878                 dpad = dlen - lrw->lr_length;
 1879         } else {
 1880                 dlen = dpad = 0;
 1881         }
 1882         reclen = lrc->lrc_reclen;
 1883         zilog->zl_cur_used += (reclen + dlen);
 1884         txg = lrc->lrc_txg;
 1885 
 1886         ASSERT3U(zilog->zl_cur_used, <, UINT64_MAX - (reclen + dlen));
 1887 
 1888 cont:
 1889         /*
 1890          * If this record won't fit in the current log block, start a new one.
 1891          * For WR_NEED_COPY optimize layout for minimal number of chunks.
 1892          */
 1893         lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
 1894         max_log_data = zil_max_log_data(zilog);
 1895         if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
 1896             lwb_sp < zil_max_waste_space(zilog) &&
 1897             (dlen % max_log_data == 0 ||
 1898             lwb_sp < reclen + dlen % max_log_data))) {
 1899                 lwb = zil_lwb_write_issue(zilog, lwb);
 1900                 if (lwb == NULL)
 1901                         return (NULL);
 1902                 zil_lwb_write_open(zilog, lwb);
 1903                 ASSERT(LWB_EMPTY(lwb));
 1904                 lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
 1905 
 1906                 /*
 1907                  * There must be enough space in the new, empty log block to
 1908                  * hold reclen.  For WR_COPIED, we need to fit the whole
 1909                  * record in one block, and reclen is the header size + the
 1910                  * data size. For WR_NEED_COPY, we can create multiple
 1911                  * records, splitting the data into multiple blocks, so we
 1912                  * only need to fit one word of data per block; in this case
 1913                  * reclen is just the header size (no data).
 1914                  */
 1915                 ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
 1916         }
 1917 
 1918         dnow = MIN(dlen, lwb_sp - reclen);
 1919         lr_buf = lwb->lwb_buf + lwb->lwb_nused;
 1920         memcpy(lr_buf, lrc, reclen);
 1921         lrcb = (lr_t *)lr_buf;          /* Like lrc, but inside lwb. */
 1922         lrwb = (lr_write_t *)lrcb;      /* Like lrw, but inside lwb. */
 1923 
 1924         ZIL_STAT_BUMP(zilog, zil_itx_count);
 1925 
 1926         /*
 1927          * If it's a write, fetch the data or get its blkptr as appropriate.
 1928          */
 1929         if (lrc->lrc_txtype == TX_WRITE) {
 1930                 if (txg > spa_freeze_txg(zilog->zl_spa))
 1931                         txg_wait_synced(zilog->zl_dmu_pool, txg);
 1932                 if (itx->itx_wr_state == WR_COPIED) {
 1933                         ZIL_STAT_BUMP(zilog, zil_itx_copied_count);
 1934                         ZIL_STAT_INCR(zilog, zil_itx_copied_bytes,
 1935                             lrw->lr_length);
 1936                 } else {
 1937                         char *dbuf;
 1938                         int error;
 1939 
 1940                         if (itx->itx_wr_state == WR_NEED_COPY) {
 1941                                 dbuf = lr_buf + reclen;
 1942                                 lrcb->lrc_reclen += dnow;
 1943                                 if (lrwb->lr_length > dnow)
 1944                                         lrwb->lr_length = dnow;
 1945                                 lrw->lr_offset += dnow;
 1946                                 lrw->lr_length -= dnow;
 1947                                 ZIL_STAT_BUMP(zilog, zil_itx_needcopy_count);
 1948                                 ZIL_STAT_INCR(zilog, zil_itx_needcopy_bytes,
 1949                                     dnow);
 1950                         } else {
 1951                                 ASSERT3S(itx->itx_wr_state, ==, WR_INDIRECT);
 1952                                 dbuf = NULL;
 1953                                 ZIL_STAT_BUMP(zilog, zil_itx_indirect_count);
 1954                                 ZIL_STAT_INCR(zilog, zil_itx_indirect_bytes,
 1955                                     lrw->lr_length);
 1956                         }
 1957 
 1958                         /*
 1959                          * We pass in the "lwb_write_zio" rather than
 1960                          * "lwb_root_zio" so that the "lwb_write_zio"
 1961                          * becomes the parent of any zio's created by
 1962                          * the "zl_get_data" callback. The vdevs are
 1963                          * flushed after the "lwb_write_zio" completes,
 1964                          * so we want to make sure that completion
 1965                          * callback waits for these additional zio's,
 1966                          * such that the vdevs used by those zio's will
 1967                          * be included in the lwb's vdev tree, and those
 1968                          * vdevs will be properly flushed. If we passed
 1969                          * in "lwb_root_zio" here, then these additional
 1970                          * vdevs may not be flushed; e.g. if these zio's
 1971                          * completed after "lwb_write_zio" completed.
 1972                          */
 1973                         error = zilog->zl_get_data(itx->itx_private,
 1974                             itx->itx_gen, lrwb, dbuf, lwb,
 1975                             lwb->lwb_write_zio);
 1976                         if (dbuf != NULL && error == 0 && dnow == dlen)
 1977                                 /* Zero any padding bytes in the last block. */
 1978                                 memset((char *)dbuf + lrwb->lr_length, 0, dpad);
 1979 
 1980                         if (error == EIO) {
 1981                                 txg_wait_synced(zilog->zl_dmu_pool, txg);
 1982                                 return (lwb);
 1983                         }
 1984                         if (error != 0) {
 1985                                 ASSERT(error == ENOENT || error == EEXIST ||
 1986                                     error == EALREADY);
 1987                                 return (lwb);
 1988                         }
 1989                 }
 1990         }
 1991 
 1992         /*
 1993          * We're actually making an entry, so update lrc_seq to be the
 1994          * log record sequence number.  Note that this is generally not
 1995          * equal to the itx sequence number because not all transactions
 1996          * are synchronous, and sometimes spa_sync() gets there first.
 1997          */
 1998         lrcb->lrc_seq = ++zilog->zl_lr_seq;
 1999         lwb->lwb_nused += reclen + dnow;
 2000 
 2001         zil_lwb_add_txg(lwb, txg);
 2002 
 2003         ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
 2004         ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
 2005 
 2006         dlen -= dnow;
 2007         if (dlen > 0) {
 2008                 zilog->zl_cur_used += reclen;
 2009                 goto cont;
 2010         }
 2011 
 2012         return (lwb);
 2013 }
 2014 
 2015 itx_t *
 2016 zil_itx_create(uint64_t txtype, size_t olrsize)
 2017 {
 2018         size_t itxsize, lrsize;
 2019         itx_t *itx;
 2020 
 2021         lrsize = P2ROUNDUP_TYPED(olrsize, sizeof (uint64_t), size_t);
 2022         itxsize = offsetof(itx_t, itx_lr) + lrsize;
 2023 
 2024         itx = zio_data_buf_alloc(itxsize);
 2025         itx->itx_lr.lrc_txtype = txtype;
 2026         itx->itx_lr.lrc_reclen = lrsize;
 2027         itx->itx_lr.lrc_seq = 0;        /* defensive */
 2028         memset((char *)&itx->itx_lr + olrsize, 0, lrsize - olrsize);
 2029         itx->itx_sync = B_TRUE;         /* default is synchronous */
 2030         itx->itx_callback = NULL;
 2031         itx->itx_callback_data = NULL;
 2032         itx->itx_size = itxsize;
 2033 
 2034         return (itx);
 2035 }
 2036 
 2037 void
 2038 zil_itx_destroy(itx_t *itx)
 2039 {
 2040         IMPLY(itx->itx_lr.lrc_txtype == TX_COMMIT, itx->itx_callback == NULL);
 2041         IMPLY(itx->itx_callback != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
 2042 
 2043         if (itx->itx_callback != NULL)
 2044                 itx->itx_callback(itx->itx_callback_data);
 2045 
 2046         zio_data_buf_free(itx, itx->itx_size);
 2047 }
 2048 
 2049 /*
 2050  * Free up the sync and async itxs. The itxs_t has already been detached
 2051  * so no locks are needed.
 2052  */
 2053 static void
 2054 zil_itxg_clean(void *arg)
 2055 {
 2056         itx_t *itx;
 2057         list_t *list;
 2058         avl_tree_t *t;
 2059         void *cookie;
 2060         itxs_t *itxs = arg;
 2061         itx_async_node_t *ian;
 2062 
 2063         list = &itxs->i_sync_list;
 2064         while ((itx = list_head(list)) != NULL) {
 2065                 /*
 2066                  * In the general case, commit itxs will not be found
 2067                  * here, as they'll be committed to an lwb via
 2068                  * zil_lwb_commit(), and free'd in that function. Having
 2069                  * said that, it is still possible for commit itxs to be
 2070                  * found here, due to the following race:
 2071                  *
 2072                  *      - a thread calls zil_commit() which assigns the
 2073                  *        commit itx to a per-txg i_sync_list
 2074                  *      - zil_itxg_clean() is called (e.g. via spa_sync())
 2075                  *        while the waiter is still on the i_sync_list
 2076                  *
 2077                  * There's nothing to prevent syncing the txg while the
 2078                  * waiter is on the i_sync_list. This normally doesn't
 2079                  * happen because spa_sync() is slower than zil_commit(),
 2080                  * but if zil_commit() calls txg_wait_synced() (e.g.
 2081                  * because zil_create() or zil_commit_writer_stall() is
 2082                  * called) we will hit this case.
 2083                  */
 2084                 if (itx->itx_lr.lrc_txtype == TX_COMMIT)
 2085                         zil_commit_waiter_skip(itx->itx_private);
 2086 
 2087                 list_remove(list, itx);
 2088                 zil_itx_destroy(itx);
 2089         }
 2090 
 2091         cookie = NULL;
 2092         t = &itxs->i_async_tree;
 2093         while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
 2094                 list = &ian->ia_list;
 2095                 while ((itx = list_head(list)) != NULL) {
 2096                         list_remove(list, itx);
 2097                         /* commit itxs should never be on the async lists. */
 2098                         ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
 2099                         zil_itx_destroy(itx);
 2100                 }
 2101                 list_destroy(list);
 2102                 kmem_free(ian, sizeof (itx_async_node_t));
 2103         }
 2104         avl_destroy(t);
 2105 
 2106         kmem_free(itxs, sizeof (itxs_t));
 2107 }
 2108 
 2109 static int
 2110 zil_aitx_compare(const void *x1, const void *x2)
 2111 {
 2112         const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
 2113         const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
 2114 
 2115         return (TREE_CMP(o1, o2));
 2116 }
 2117 
 2118 /*
 2119  * Remove all async itx with the given oid.
 2120  */
 2121 void
 2122 zil_remove_async(zilog_t *zilog, uint64_t oid)
 2123 {
 2124         uint64_t otxg, txg;
 2125         itx_async_node_t *ian;
 2126         avl_tree_t *t;
 2127         avl_index_t where;
 2128         list_t clean_list;
 2129         itx_t *itx;
 2130 
 2131         ASSERT(oid != 0);
 2132         list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
 2133 
 2134         if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
 2135                 otxg = ZILTEST_TXG;
 2136         else
 2137                 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
 2138 
 2139         for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
 2140                 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
 2141 
 2142                 mutex_enter(&itxg->itxg_lock);
 2143                 if (itxg->itxg_txg != txg) {
 2144                         mutex_exit(&itxg->itxg_lock);
 2145                         continue;
 2146                 }
 2147 
 2148                 /*
 2149                  * Locate the object node and append its list.
 2150                  */
 2151                 t = &itxg->itxg_itxs->i_async_tree;
 2152                 ian = avl_find(t, &oid, &where);
 2153                 if (ian != NULL)
 2154                         list_move_tail(&clean_list, &ian->ia_list);
 2155                 mutex_exit(&itxg->itxg_lock);
 2156         }
 2157         while ((itx = list_head(&clean_list)) != NULL) {
 2158                 list_remove(&clean_list, itx);
 2159                 /* commit itxs should never be on the async lists. */
 2160                 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
 2161                 zil_itx_destroy(itx);
 2162         }
 2163         list_destroy(&clean_list);
 2164 }
 2165 
 2166 void
 2167 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
 2168 {
 2169         uint64_t txg;
 2170         itxg_t *itxg;
 2171         itxs_t *itxs, *clean = NULL;
 2172 
 2173         /*
 2174          * Ensure the data of a renamed file is committed before the rename.
 2175          */
 2176         if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
 2177                 zil_async_to_sync(zilog, itx->itx_oid);
 2178 
 2179         if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
 2180                 txg = ZILTEST_TXG;
 2181         else
 2182                 txg = dmu_tx_get_txg(tx);
 2183 
 2184         itxg = &zilog->zl_itxg[txg & TXG_MASK];
 2185         mutex_enter(&itxg->itxg_lock);
 2186         itxs = itxg->itxg_itxs;
 2187         if (itxg->itxg_txg != txg) {
 2188                 if (itxs != NULL) {
 2189                         /*
 2190                          * The zil_clean callback hasn't got around to cleaning
 2191                          * this itxg. Save the itxs for release below.
 2192                          * This should be rare.
 2193                          */
 2194                         zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
 2195                             "txg %llu", (u_longlong_t)itxg->itxg_txg);
 2196                         clean = itxg->itxg_itxs;
 2197                 }
 2198                 itxg->itxg_txg = txg;
 2199                 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t),
 2200                     KM_SLEEP);
 2201 
 2202                 list_create(&itxs->i_sync_list, sizeof (itx_t),
 2203                     offsetof(itx_t, itx_node));
 2204                 avl_create(&itxs->i_async_tree, zil_aitx_compare,
 2205                     sizeof (itx_async_node_t),
 2206                     offsetof(itx_async_node_t, ia_node));
 2207         }
 2208         if (itx->itx_sync) {
 2209                 list_insert_tail(&itxs->i_sync_list, itx);
 2210         } else {
 2211                 avl_tree_t *t = &itxs->i_async_tree;
 2212                 uint64_t foid =
 2213                     LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid);
 2214                 itx_async_node_t *ian;
 2215                 avl_index_t where;
 2216 
 2217                 ian = avl_find(t, &foid, &where);
 2218                 if (ian == NULL) {
 2219                         ian = kmem_alloc(sizeof (itx_async_node_t),
 2220                             KM_SLEEP);
 2221                         list_create(&ian->ia_list, sizeof (itx_t),
 2222                             offsetof(itx_t, itx_node));
 2223                         ian->ia_foid = foid;
 2224                         avl_insert(t, ian, where);
 2225                 }
 2226                 list_insert_tail(&ian->ia_list, itx);
 2227         }
 2228 
 2229         itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
 2230 
 2231         /*
 2232          * We don't want to dirty the ZIL using ZILTEST_TXG, because
 2233          * zil_clean() will never be called using ZILTEST_TXG. Thus, we
 2234          * need to be careful to always dirty the ZIL using the "real"
 2235          * TXG (not itxg_txg) even when the SPA is frozen.
 2236          */
 2237         zilog_dirty(zilog, dmu_tx_get_txg(tx));
 2238         mutex_exit(&itxg->itxg_lock);
 2239 
 2240         /* Release the old itxs now we've dropped the lock */
 2241         if (clean != NULL)
 2242                 zil_itxg_clean(clean);
 2243 }
 2244 
 2245 /*
 2246  * If there are any in-memory intent log transactions which have now been
 2247  * synced then start up a taskq to free them. We should only do this after we
 2248  * have written out the uberblocks (i.e. txg has been committed) so that
 2249  * don't inadvertently clean out in-memory log records that would be required
 2250  * by zil_commit().
 2251  */
 2252 void
 2253 zil_clean(zilog_t *zilog, uint64_t synced_txg)
 2254 {
 2255         itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
 2256         itxs_t *clean_me;
 2257 
 2258         ASSERT3U(synced_txg, <, ZILTEST_TXG);
 2259 
 2260         mutex_enter(&itxg->itxg_lock);
 2261         if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
 2262                 mutex_exit(&itxg->itxg_lock);
 2263                 return;
 2264         }
 2265         ASSERT3U(itxg->itxg_txg, <=, synced_txg);
 2266         ASSERT3U(itxg->itxg_txg, !=, 0);
 2267         clean_me = itxg->itxg_itxs;
 2268         itxg->itxg_itxs = NULL;
 2269         itxg->itxg_txg = 0;
 2270         mutex_exit(&itxg->itxg_lock);
 2271         /*
 2272          * Preferably start a task queue to free up the old itxs but
 2273          * if taskq_dispatch can't allocate resources to do that then
 2274          * free it in-line. This should be rare. Note, using TQ_SLEEP
 2275          * created a bad performance problem.
 2276          */
 2277         ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
 2278         ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
 2279         taskqid_t id = taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
 2280             zil_itxg_clean, clean_me, TQ_NOSLEEP);
 2281         if (id == TASKQID_INVALID)
 2282                 zil_itxg_clean(clean_me);
 2283 }
 2284 
 2285 /*
 2286  * This function will traverse the queue of itxs that need to be
 2287  * committed, and move them onto the ZIL's zl_itx_commit_list.
 2288  */
 2289 static void
 2290 zil_get_commit_list(zilog_t *zilog)
 2291 {
 2292         uint64_t otxg, txg;
 2293         list_t *commit_list = &zilog->zl_itx_commit_list;
 2294 
 2295         ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
 2296 
 2297         if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
 2298                 otxg = ZILTEST_TXG;
 2299         else
 2300                 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
 2301 
 2302         /*
 2303          * This is inherently racy, since there is nothing to prevent
 2304          * the last synced txg from changing. That's okay since we'll
 2305          * only commit things in the future.
 2306          */
 2307         for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
 2308                 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
 2309 
 2310                 mutex_enter(&itxg->itxg_lock);
 2311                 if (itxg->itxg_txg != txg) {
 2312                         mutex_exit(&itxg->itxg_lock);
 2313                         continue;
 2314                 }
 2315 
 2316                 /*
 2317                  * If we're adding itx records to the zl_itx_commit_list,
 2318                  * then the zil better be dirty in this "txg". We can assert
 2319                  * that here since we're holding the itxg_lock which will
 2320                  * prevent spa_sync from cleaning it. Once we add the itxs
 2321                  * to the zl_itx_commit_list we must commit it to disk even
 2322                  * if it's unnecessary (i.e. the txg was synced).
 2323                  */
 2324                 ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
 2325                     spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
 2326                 list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
 2327 
 2328                 mutex_exit(&itxg->itxg_lock);
 2329         }
 2330 }
 2331 
 2332 /*
 2333  * Move the async itxs for a specified object to commit into sync lists.
 2334  */
 2335 void
 2336 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
 2337 {
 2338         uint64_t otxg, txg;
 2339         itx_async_node_t *ian;
 2340         avl_tree_t *t;
 2341         avl_index_t where;
 2342 
 2343         if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
 2344                 otxg = ZILTEST_TXG;
 2345         else
 2346                 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
 2347 
 2348         /*
 2349          * This is inherently racy, since there is nothing to prevent
 2350          * the last synced txg from changing.
 2351          */
 2352         for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
 2353                 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
 2354 
 2355                 mutex_enter(&itxg->itxg_lock);
 2356                 if (itxg->itxg_txg != txg) {
 2357                         mutex_exit(&itxg->itxg_lock);
 2358                         continue;
 2359                 }
 2360 
 2361                 /*
 2362                  * If a foid is specified then find that node and append its
 2363                  * list. Otherwise walk the tree appending all the lists
 2364                  * to the sync list. We add to the end rather than the
 2365                  * beginning to ensure the create has happened.
 2366                  */
 2367                 t = &itxg->itxg_itxs->i_async_tree;
 2368                 if (foid != 0) {
 2369                         ian = avl_find(t, &foid, &where);
 2370                         if (ian != NULL) {
 2371                                 list_move_tail(&itxg->itxg_itxs->i_sync_list,
 2372                                     &ian->ia_list);
 2373                         }
 2374                 } else {
 2375                         void *cookie = NULL;
 2376 
 2377                         while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
 2378                                 list_move_tail(&itxg->itxg_itxs->i_sync_list,
 2379                                     &ian->ia_list);
 2380                                 list_destroy(&ian->ia_list);
 2381                                 kmem_free(ian, sizeof (itx_async_node_t));
 2382                         }
 2383                 }
 2384                 mutex_exit(&itxg->itxg_lock);
 2385         }
 2386 }
 2387 
 2388 /*
 2389  * This function will prune commit itxs that are at the head of the
 2390  * commit list (it won't prune past the first non-commit itx), and
 2391  * either: a) attach them to the last lwb that's still pending
 2392  * completion, or b) skip them altogether.
 2393  *
 2394  * This is used as a performance optimization to prevent commit itxs
 2395  * from generating new lwbs when it's unnecessary to do so.
 2396  */
 2397 static void
 2398 zil_prune_commit_list(zilog_t *zilog)
 2399 {
 2400         itx_t *itx;
 2401 
 2402         ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
 2403 
 2404         while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) {
 2405                 lr_t *lrc = &itx->itx_lr;
 2406                 if (lrc->lrc_txtype != TX_COMMIT)
 2407                         break;
 2408 
 2409                 mutex_enter(&zilog->zl_lock);
 2410 
 2411                 lwb_t *last_lwb = zilog->zl_last_lwb_opened;
 2412                 if (last_lwb == NULL ||
 2413                     last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) {
 2414                         /*
 2415                          * All of the itxs this waiter was waiting on
 2416                          * must have already completed (or there were
 2417                          * never any itx's for it to wait on), so it's
 2418                          * safe to skip this waiter and mark it done.
 2419                          */
 2420                         zil_commit_waiter_skip(itx->itx_private);
 2421                 } else {
 2422                         zil_commit_waiter_link_lwb(itx->itx_private, last_lwb);
 2423                         itx->itx_private = NULL;
 2424                 }
 2425 
 2426                 mutex_exit(&zilog->zl_lock);
 2427 
 2428                 list_remove(&zilog->zl_itx_commit_list, itx);
 2429                 zil_itx_destroy(itx);
 2430         }
 2431 
 2432         IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
 2433 }
 2434 
 2435 static void
 2436 zil_commit_writer_stall(zilog_t *zilog)
 2437 {
 2438         /*
 2439          * When zio_alloc_zil() fails to allocate the next lwb block on
 2440          * disk, we must call txg_wait_synced() to ensure all of the
 2441          * lwbs in the zilog's zl_lwb_list are synced and then freed (in
 2442          * zil_sync()), such that any subsequent ZIL writer (i.e. a call
 2443          * to zil_process_commit_list()) will have to call zil_create(),
 2444          * and start a new ZIL chain.
 2445          *
 2446          * Since zil_alloc_zil() failed, the lwb that was previously
 2447          * issued does not have a pointer to the "next" lwb on disk.
 2448          * Thus, if another ZIL writer thread was to allocate the "next"
 2449          * on-disk lwb, that block could be leaked in the event of a
 2450          * crash (because the previous lwb on-disk would not point to
 2451          * it).
 2452          *
 2453          * We must hold the zilog's zl_issuer_lock while we do this, to
 2454          * ensure no new threads enter zil_process_commit_list() until
 2455          * all lwb's in the zl_lwb_list have been synced and freed
 2456          * (which is achieved via the txg_wait_synced() call).
 2457          */
 2458         ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
 2459         txg_wait_synced(zilog->zl_dmu_pool, 0);
 2460         ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
 2461 }
 2462 
 2463 /*
 2464  * This function will traverse the commit list, creating new lwbs as
 2465  * needed, and committing the itxs from the commit list to these newly
 2466  * created lwbs. Additionally, as a new lwb is created, the previous
 2467  * lwb will be issued to the zio layer to be written to disk.
 2468  */
 2469 static void
 2470 zil_process_commit_list(zilog_t *zilog)
 2471 {
 2472         spa_t *spa = zilog->zl_spa;
 2473         list_t nolwb_itxs;
 2474         list_t nolwb_waiters;
 2475         lwb_t *lwb, *plwb;
 2476         itx_t *itx;
 2477         boolean_t first = B_TRUE;
 2478 
 2479         ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
 2480 
 2481         /*
 2482          * Return if there's nothing to commit before we dirty the fs by
 2483          * calling zil_create().
 2484          */
 2485         if (list_head(&zilog->zl_itx_commit_list) == NULL)
 2486                 return;
 2487 
 2488         list_create(&nolwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
 2489         list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t),
 2490             offsetof(zil_commit_waiter_t, zcw_node));
 2491 
 2492         lwb = list_tail(&zilog->zl_lwb_list);
 2493         if (lwb == NULL) {
 2494                 lwb = zil_create(zilog);
 2495         } else {
 2496                 /*
 2497                  * Activate SPA_FEATURE_ZILSAXATTR for the cases where ZIL will
 2498                  * have already been created (zl_lwb_list not empty).
 2499                  */
 2500                 zil_commit_activate_saxattr_feature(zilog);
 2501                 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
 2502                 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
 2503                 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
 2504                 first = (lwb->lwb_state != LWB_STATE_OPENED) &&
 2505                     ((plwb = list_prev(&zilog->zl_lwb_list, lwb)) == NULL ||
 2506                     plwb->lwb_state == LWB_STATE_FLUSH_DONE);
 2507         }
 2508 
 2509         while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) {
 2510                 lr_t *lrc = &itx->itx_lr;
 2511                 uint64_t txg = lrc->lrc_txg;
 2512 
 2513                 ASSERT3U(txg, !=, 0);
 2514 
 2515                 if (lrc->lrc_txtype == TX_COMMIT) {
 2516                         DTRACE_PROBE2(zil__process__commit__itx,
 2517                             zilog_t *, zilog, itx_t *, itx);
 2518                 } else {
 2519                         DTRACE_PROBE2(zil__process__normal__itx,
 2520                             zilog_t *, zilog, itx_t *, itx);
 2521                 }
 2522 
 2523                 list_remove(&zilog->zl_itx_commit_list, itx);
 2524 
 2525                 boolean_t synced = txg <= spa_last_synced_txg(spa);
 2526                 boolean_t frozen = txg > spa_freeze_txg(spa);
 2527 
 2528                 /*
 2529                  * If the txg of this itx has already been synced out, then
 2530                  * we don't need to commit this itx to an lwb. This is
 2531                  * because the data of this itx will have already been
 2532                  * written to the main pool. This is inherently racy, and
 2533                  * it's still ok to commit an itx whose txg has already
 2534                  * been synced; this will result in a write that's
 2535                  * unnecessary, but will do no harm.
 2536                  *
 2537                  * With that said, we always want to commit TX_COMMIT itxs
 2538                  * to an lwb, regardless of whether or not that itx's txg
 2539                  * has been synced out. We do this to ensure any OPENED lwb
 2540                  * will always have at least one zil_commit_waiter_t linked
 2541                  * to the lwb.
 2542                  *
 2543                  * As a counter-example, if we skipped TX_COMMIT itx's
 2544                  * whose txg had already been synced, the following
 2545                  * situation could occur if we happened to be racing with
 2546                  * spa_sync:
 2547                  *
 2548                  * 1. We commit a non-TX_COMMIT itx to an lwb, where the
 2549                  *    itx's txg is 10 and the last synced txg is 9.
 2550                  * 2. spa_sync finishes syncing out txg 10.
 2551                  * 3. We move to the next itx in the list, it's a TX_COMMIT
 2552                  *    whose txg is 10, so we skip it rather than committing
 2553                  *    it to the lwb used in (1).
 2554                  *
 2555                  * If the itx that is skipped in (3) is the last TX_COMMIT
 2556                  * itx in the commit list, than it's possible for the lwb
 2557                  * used in (1) to remain in the OPENED state indefinitely.
 2558                  *
 2559                  * To prevent the above scenario from occurring, ensuring
 2560                  * that once an lwb is OPENED it will transition to ISSUED
 2561                  * and eventually DONE, we always commit TX_COMMIT itx's to
 2562                  * an lwb here, even if that itx's txg has already been
 2563                  * synced.
 2564                  *
 2565                  * Finally, if the pool is frozen, we _always_ commit the
 2566                  * itx.  The point of freezing the pool is to prevent data
 2567                  * from being written to the main pool via spa_sync, and
 2568                  * instead rely solely on the ZIL to persistently store the
 2569                  * data; i.e.  when the pool is frozen, the last synced txg
 2570                  * value can't be trusted.
 2571                  */
 2572                 if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) {
 2573                         if (lwb != NULL) {
 2574                                 lwb = zil_lwb_commit(zilog, itx, lwb);
 2575 
 2576                                 if (lwb == NULL)
 2577                                         list_insert_tail(&nolwb_itxs, itx);
 2578                                 else
 2579                                         list_insert_tail(&lwb->lwb_itxs, itx);
 2580                         } else {
 2581                                 if (lrc->lrc_txtype == TX_COMMIT) {
 2582                                         zil_commit_waiter_link_nolwb(
 2583                                             itx->itx_private, &nolwb_waiters);
 2584                                 }
 2585 
 2586                                 list_insert_tail(&nolwb_itxs, itx);
 2587                         }
 2588                 } else {
 2589                         ASSERT3S(lrc->lrc_txtype, !=, TX_COMMIT);
 2590                         zil_itx_destroy(itx);
 2591                 }
 2592         }
 2593 
 2594         if (lwb == NULL) {
 2595                 /*
 2596                  * This indicates zio_alloc_zil() failed to allocate the
 2597                  * "next" lwb on-disk. When this happens, we must stall
 2598                  * the ZIL write pipeline; see the comment within
 2599                  * zil_commit_writer_stall() for more details.
 2600                  */
 2601                 zil_commit_writer_stall(zilog);
 2602 
 2603                 /*
 2604                  * Additionally, we have to signal and mark the "nolwb"
 2605                  * waiters as "done" here, since without an lwb, we
 2606                  * can't do this via zil_lwb_flush_vdevs_done() like
 2607                  * normal.
 2608                  */
 2609                 zil_commit_waiter_t *zcw;
 2610                 while ((zcw = list_head(&nolwb_waiters)) != NULL) {
 2611                         zil_commit_waiter_skip(zcw);
 2612                         list_remove(&nolwb_waiters, zcw);
 2613                 }
 2614 
 2615                 /*
 2616                  * And finally, we have to destroy the itx's that
 2617                  * couldn't be committed to an lwb; this will also call
 2618                  * the itx's callback if one exists for the itx.
 2619                  */
 2620                 while ((itx = list_head(&nolwb_itxs)) != NULL) {
 2621                         list_remove(&nolwb_itxs, itx);
 2622                         zil_itx_destroy(itx);
 2623                 }
 2624         } else {
 2625                 ASSERT(list_is_empty(&nolwb_waiters));
 2626                 ASSERT3P(lwb, !=, NULL);
 2627                 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
 2628                 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
 2629                 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
 2630 
 2631                 /*
 2632                  * At this point, the ZIL block pointed at by the "lwb"
 2633                  * variable is in one of the following states: "closed"
 2634                  * or "open".
 2635                  *
 2636                  * If it's "closed", then no itxs have been committed to
 2637                  * it, so there's no point in issuing its zio (i.e. it's
 2638                  * "empty").
 2639                  *
 2640                  * If it's "open", then it contains one or more itxs that
 2641                  * eventually need to be committed to stable storage. In
 2642                  * this case we intentionally do not issue the lwb's zio
 2643                  * to disk yet, and instead rely on one of the following
 2644                  * two mechanisms for issuing the zio:
 2645                  *
 2646                  * 1. Ideally, there will be more ZIL activity occurring
 2647                  * on the system, such that this function will be
 2648                  * immediately called again (not necessarily by the same
 2649                  * thread) and this lwb's zio will be issued via
 2650                  * zil_lwb_commit(). This way, the lwb is guaranteed to
 2651                  * be "full" when it is issued to disk, and we'll make
 2652                  * use of the lwb's size the best we can.
 2653                  *
 2654                  * 2. If there isn't sufficient ZIL activity occurring on
 2655                  * the system, such that this lwb's zio isn't issued via
 2656                  * zil_lwb_commit(), zil_commit_waiter() will issue the
 2657                  * lwb's zio. If this occurs, the lwb is not guaranteed
 2658                  * to be "full" by the time its zio is issued, and means
 2659                  * the size of the lwb was "too large" given the amount
 2660                  * of ZIL activity occurring on the system at that time.
 2661                  *
 2662                  * We do this for a couple of reasons:
 2663                  *
 2664                  * 1. To try and reduce the number of IOPs needed to
 2665                  * write the same number of itxs. If an lwb has space
 2666                  * available in its buffer for more itxs, and more itxs
 2667                  * will be committed relatively soon (relative to the
 2668                  * latency of performing a write), then it's beneficial
 2669                  * to wait for these "next" itxs. This way, more itxs
 2670                  * can be committed to stable storage with fewer writes.
 2671                  *
 2672                  * 2. To try and use the largest lwb block size that the
 2673                  * incoming rate of itxs can support. Again, this is to
 2674                  * try and pack as many itxs into as few lwbs as
 2675                  * possible, without significantly impacting the latency
 2676                  * of each individual itx.
 2677                  *
 2678                  * If we had no already running or open LWBs, it can be
 2679                  * the workload is single-threaded.  And if the ZIL write
 2680                  * latency is very small or if the LWB is almost full, it
 2681                  * may be cheaper to bypass the delay.
 2682                  */
 2683                 if (lwb->lwb_state == LWB_STATE_OPENED && first) {
 2684                         hrtime_t sleep = zilog->zl_last_lwb_latency *
 2685                             zfs_commit_timeout_pct / 100;
 2686                         if (sleep < zil_min_commit_timeout ||
 2687                             lwb->lwb_sz - lwb->lwb_nused < lwb->lwb_sz / 8) {
 2688                                 lwb = zil_lwb_write_issue(zilog, lwb);
 2689                                 zilog->zl_cur_used = 0;
 2690                                 if (lwb == NULL)
 2691                                         zil_commit_writer_stall(zilog);
 2692                         }
 2693                 }
 2694         }
 2695 }
 2696 
 2697 /*
 2698  * This function is responsible for ensuring the passed in commit waiter
 2699  * (and associated commit itx) is committed to an lwb. If the waiter is
 2700  * not already committed to an lwb, all itxs in the zilog's queue of
 2701  * itxs will be processed. The assumption is the passed in waiter's
 2702  * commit itx will found in the queue just like the other non-commit
 2703  * itxs, such that when the entire queue is processed, the waiter will
 2704  * have been committed to an lwb.
 2705  *
 2706  * The lwb associated with the passed in waiter is not guaranteed to
 2707  * have been issued by the time this function completes. If the lwb is
 2708  * not issued, we rely on future calls to zil_commit_writer() to issue
 2709  * the lwb, or the timeout mechanism found in zil_commit_waiter().
 2710  */
 2711 static void
 2712 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw)
 2713 {
 2714         ASSERT(!MUTEX_HELD(&zilog->zl_lock));
 2715         ASSERT(spa_writeable(zilog->zl_spa));
 2716 
 2717         mutex_enter(&zilog->zl_issuer_lock);
 2718 
 2719         if (zcw->zcw_lwb != NULL || zcw->zcw_done) {
 2720                 /*
 2721                  * It's possible that, while we were waiting to acquire
 2722                  * the "zl_issuer_lock", another thread committed this
 2723                  * waiter to an lwb. If that occurs, we bail out early,
 2724                  * without processing any of the zilog's queue of itxs.
 2725                  *
 2726                  * On certain workloads and system configurations, the
 2727                  * "zl_issuer_lock" can become highly contended. In an
 2728                  * attempt to reduce this contention, we immediately drop
 2729                  * the lock if the waiter has already been processed.
 2730                  *
 2731                  * We've measured this optimization to reduce CPU spent
 2732                  * contending on this lock by up to 5%, using a system
 2733                  * with 32 CPUs, low latency storage (~50 usec writes),
 2734                  * and 1024 threads performing sync writes.
 2735                  */
 2736                 goto out;
 2737         }
 2738 
 2739         ZIL_STAT_BUMP(zilog, zil_commit_writer_count);
 2740 
 2741         zil_get_commit_list(zilog);
 2742         zil_prune_commit_list(zilog);
 2743         zil_process_commit_list(zilog);
 2744 
 2745 out:
 2746         mutex_exit(&zilog->zl_issuer_lock);
 2747 }
 2748 
 2749 static void
 2750 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw)
 2751 {
 2752         ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
 2753         ASSERT(MUTEX_HELD(&zcw->zcw_lock));
 2754         ASSERT3B(zcw->zcw_done, ==, B_FALSE);
 2755 
 2756         lwb_t *lwb = zcw->zcw_lwb;
 2757         ASSERT3P(lwb, !=, NULL);
 2758         ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED);
 2759 
 2760         /*
 2761          * If the lwb has already been issued by another thread, we can
 2762          * immediately return since there's no work to be done (the
 2763          * point of this function is to issue the lwb). Additionally, we
 2764          * do this prior to acquiring the zl_issuer_lock, to avoid
 2765          * acquiring it when it's not necessary to do so.
 2766          */
 2767         if (lwb->lwb_state == LWB_STATE_ISSUED ||
 2768             lwb->lwb_state == LWB_STATE_WRITE_DONE ||
 2769             lwb->lwb_state == LWB_STATE_FLUSH_DONE)
 2770                 return;
 2771 
 2772         /*
 2773          * In order to call zil_lwb_write_issue() we must hold the
 2774          * zilog's "zl_issuer_lock". We can't simply acquire that lock,
 2775          * since we're already holding the commit waiter's "zcw_lock",
 2776          * and those two locks are acquired in the opposite order
 2777          * elsewhere.
 2778          */
 2779         mutex_exit(&zcw->zcw_lock);
 2780         mutex_enter(&zilog->zl_issuer_lock);
 2781         mutex_enter(&zcw->zcw_lock);
 2782 
 2783         /*
 2784          * Since we just dropped and re-acquired the commit waiter's
 2785          * lock, we have to re-check to see if the waiter was marked
 2786          * "done" during that process. If the waiter was marked "done",
 2787          * the "lwb" pointer is no longer valid (it can be free'd after
 2788          * the waiter is marked "done"), so without this check we could
 2789          * wind up with a use-after-free error below.
 2790          */
 2791         if (zcw->zcw_done)
 2792                 goto out;
 2793 
 2794         ASSERT3P(lwb, ==, zcw->zcw_lwb);
 2795 
 2796         /*
 2797          * We've already checked this above, but since we hadn't acquired
 2798          * the zilog's zl_issuer_lock, we have to perform this check a
 2799          * second time while holding the lock.
 2800          *
 2801          * We don't need to hold the zl_lock since the lwb cannot transition
 2802          * from OPENED to ISSUED while we hold the zl_issuer_lock. The lwb
 2803          * _can_ transition from ISSUED to DONE, but it's OK to race with
 2804          * that transition since we treat the lwb the same, whether it's in
 2805          * the ISSUED or DONE states.
 2806          *
 2807          * The important thing, is we treat the lwb differently depending on
 2808          * if it's ISSUED or OPENED, and block any other threads that might
 2809          * attempt to issue this lwb. For that reason we hold the
 2810          * zl_issuer_lock when checking the lwb_state; we must not call
 2811          * zil_lwb_write_issue() if the lwb had already been issued.
 2812          *
 2813          * See the comment above the lwb_state_t structure definition for
 2814          * more details on the lwb states, and locking requirements.
 2815          */
 2816         if (lwb->lwb_state == LWB_STATE_ISSUED ||
 2817             lwb->lwb_state == LWB_STATE_WRITE_DONE ||
 2818             lwb->lwb_state == LWB_STATE_FLUSH_DONE)
 2819                 goto out;
 2820 
 2821         ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
 2822 
 2823         /*
 2824          * As described in the comments above zil_commit_waiter() and
 2825          * zil_process_commit_list(), we need to issue this lwb's zio
 2826          * since we've reached the commit waiter's timeout and it still
 2827          * hasn't been issued.
 2828          */
 2829         lwb_t *nlwb = zil_lwb_write_issue(zilog, lwb);
 2830 
 2831         IMPLY(nlwb != NULL, lwb->lwb_state != LWB_STATE_OPENED);
 2832 
 2833         /*
 2834          * Since the lwb's zio hadn't been issued by the time this thread
 2835          * reached its timeout, we reset the zilog's "zl_cur_used" field
 2836          * to influence the zil block size selection algorithm.
 2837          *
 2838          * By having to issue the lwb's zio here, it means the size of the
 2839          * lwb was too large, given the incoming throughput of itxs.  By
 2840          * setting "zl_cur_used" to zero, we communicate this fact to the
 2841          * block size selection algorithm, so it can take this information
 2842          * into account, and potentially select a smaller size for the
 2843          * next lwb block that is allocated.
 2844          */
 2845         zilog->zl_cur_used = 0;
 2846 
 2847         if (nlwb == NULL) {
 2848                 /*
 2849                  * When zil_lwb_write_issue() returns NULL, this
 2850                  * indicates zio_alloc_zil() failed to allocate the
 2851                  * "next" lwb on-disk. When this occurs, the ZIL write
 2852                  * pipeline must be stalled; see the comment within the
 2853                  * zil_commit_writer_stall() function for more details.
 2854                  *
 2855                  * We must drop the commit waiter's lock prior to
 2856                  * calling zil_commit_writer_stall() or else we can wind
 2857                  * up with the following deadlock:
 2858                  *
 2859                  * - This thread is waiting for the txg to sync while
 2860                  *   holding the waiter's lock; txg_wait_synced() is
 2861                  *   used within txg_commit_writer_stall().
 2862                  *
 2863                  * - The txg can't sync because it is waiting for this
 2864                  *   lwb's zio callback to call dmu_tx_commit().
 2865                  *
 2866                  * - The lwb's zio callback can't call dmu_tx_commit()
 2867                  *   because it's blocked trying to acquire the waiter's
 2868                  *   lock, which occurs prior to calling dmu_tx_commit()
 2869                  */
 2870                 mutex_exit(&zcw->zcw_lock);
 2871                 zil_commit_writer_stall(zilog);
 2872                 mutex_enter(&zcw->zcw_lock);
 2873         }
 2874 
 2875 out:
 2876         mutex_exit(&zilog->zl_issuer_lock);
 2877         ASSERT(MUTEX_HELD(&zcw->zcw_lock));
 2878 }
 2879 
 2880 /*
 2881  * This function is responsible for performing the following two tasks:
 2882  *
 2883  * 1. its primary responsibility is to block until the given "commit
 2884  *    waiter" is considered "done".
 2885  *
 2886  * 2. its secondary responsibility is to issue the zio for the lwb that
 2887  *    the given "commit waiter" is waiting on, if this function has
 2888  *    waited "long enough" and the lwb is still in the "open" state.
 2889  *
 2890  * Given a sufficient amount of itxs being generated and written using
 2891  * the ZIL, the lwb's zio will be issued via the zil_lwb_commit()
 2892  * function. If this does not occur, this secondary responsibility will
 2893  * ensure the lwb is issued even if there is not other synchronous
 2894  * activity on the system.
 2895  *
 2896  * For more details, see zil_process_commit_list(); more specifically,
 2897  * the comment at the bottom of that function.
 2898  */
 2899 static void
 2900 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw)
 2901 {
 2902         ASSERT(!MUTEX_HELD(&zilog->zl_lock));
 2903         ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
 2904         ASSERT(spa_writeable(zilog->zl_spa));
 2905 
 2906         mutex_enter(&zcw->zcw_lock);
 2907 
 2908         /*
 2909          * The timeout is scaled based on the lwb latency to avoid
 2910          * significantly impacting the latency of each individual itx.
 2911          * For more details, see the comment at the bottom of the
 2912          * zil_process_commit_list() function.
 2913          */
 2914         int pct = MAX(zfs_commit_timeout_pct, 1);
 2915         hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100;
 2916         hrtime_t wakeup = gethrtime() + sleep;
 2917         boolean_t timedout = B_FALSE;
 2918 
 2919         while (!zcw->zcw_done) {
 2920                 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
 2921 
 2922                 lwb_t *lwb = zcw->zcw_lwb;
 2923 
 2924                 /*
 2925                  * Usually, the waiter will have a non-NULL lwb field here,
 2926                  * but it's possible for it to be NULL as a result of
 2927                  * zil_commit() racing with spa_sync().
 2928                  *
 2929                  * When zil_clean() is called, it's possible for the itxg
 2930                  * list (which may be cleaned via a taskq) to contain
 2931                  * commit itxs. When this occurs, the commit waiters linked
 2932                  * off of these commit itxs will not be committed to an
 2933                  * lwb.  Additionally, these commit waiters will not be
 2934                  * marked done until zil_commit_waiter_skip() is called via
 2935                  * zil_itxg_clean().
 2936                  *
 2937                  * Thus, it's possible for this commit waiter (i.e. the
 2938                  * "zcw" variable) to be found in this "in between" state;
 2939                  * where it's "zcw_lwb" field is NULL, and it hasn't yet
 2940                  * been skipped, so it's "zcw_done" field is still B_FALSE.
 2941                  */
 2942                 IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED);
 2943 
 2944                 if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) {
 2945                         ASSERT3B(timedout, ==, B_FALSE);
 2946 
 2947                         /*
 2948                          * If the lwb hasn't been issued yet, then we
 2949                          * need to wait with a timeout, in case this
 2950                          * function needs to issue the lwb after the
 2951                          * timeout is reached; responsibility (2) from
 2952                          * the comment above this function.
 2953                          */
 2954                         int rc = cv_timedwait_hires(&zcw->zcw_cv,
 2955                             &zcw->zcw_lock, wakeup, USEC2NSEC(1),
 2956                             CALLOUT_FLAG_ABSOLUTE);
 2957 
 2958                         if (rc != -1 || zcw->zcw_done)
 2959                                 continue;
 2960 
 2961                         timedout = B_TRUE;
 2962                         zil_commit_waiter_timeout(zilog, zcw);
 2963 
 2964                         if (!zcw->zcw_done) {
 2965                                 /*
 2966                                  * If the commit waiter has already been
 2967                                  * marked "done", it's possible for the
 2968                                  * waiter's lwb structure to have already
 2969                                  * been freed.  Thus, we can only reliably
 2970                                  * make these assertions if the waiter
 2971                                  * isn't done.
 2972                                  */
 2973                                 ASSERT3P(lwb, ==, zcw->zcw_lwb);
 2974                                 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
 2975                         }
 2976                 } else {
 2977                         /*
 2978                          * If the lwb isn't open, then it must have already
 2979                          * been issued. In that case, there's no need to
 2980                          * use a timeout when waiting for the lwb to
 2981                          * complete.
 2982                          *
 2983                          * Additionally, if the lwb is NULL, the waiter
 2984                          * will soon be signaled and marked done via
 2985                          * zil_clean() and zil_itxg_clean(), so no timeout
 2986                          * is required.
 2987                          */
 2988 
 2989                         IMPLY(lwb != NULL,
 2990                             lwb->lwb_state == LWB_STATE_ISSUED ||
 2991                             lwb->lwb_state == LWB_STATE_WRITE_DONE ||
 2992                             lwb->lwb_state == LWB_STATE_FLUSH_DONE);
 2993                         cv_wait(&zcw->zcw_cv, &zcw->zcw_lock);
 2994                 }
 2995         }
 2996 
 2997         mutex_exit(&zcw->zcw_lock);
 2998 }
 2999 
 3000 static zil_commit_waiter_t *
 3001 zil_alloc_commit_waiter(void)
 3002 {
 3003         zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP);
 3004 
 3005         cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL);
 3006         mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL);
 3007         list_link_init(&zcw->zcw_node);
 3008         zcw->zcw_lwb = NULL;
 3009         zcw->zcw_done = B_FALSE;
 3010         zcw->zcw_zio_error = 0;
 3011 
 3012         return (zcw);
 3013 }
 3014 
 3015 static void
 3016 zil_free_commit_waiter(zil_commit_waiter_t *zcw)
 3017 {
 3018         ASSERT(!list_link_active(&zcw->zcw_node));
 3019         ASSERT3P(zcw->zcw_lwb, ==, NULL);
 3020         ASSERT3B(zcw->zcw_done, ==, B_TRUE);
 3021         mutex_destroy(&zcw->zcw_lock);
 3022         cv_destroy(&zcw->zcw_cv);
 3023         kmem_cache_free(zil_zcw_cache, zcw);
 3024 }
 3025 
 3026 /*
 3027  * This function is used to create a TX_COMMIT itx and assign it. This
 3028  * way, it will be linked into the ZIL's list of synchronous itxs, and
 3029  * then later committed to an lwb (or skipped) when
 3030  * zil_process_commit_list() is called.
 3031  */
 3032 static void
 3033 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw)
 3034 {
 3035         dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
 3036         VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
 3037 
 3038         itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t));
 3039         itx->itx_sync = B_TRUE;
 3040         itx->itx_private = zcw;
 3041 
 3042         zil_itx_assign(zilog, itx, tx);
 3043 
 3044         dmu_tx_commit(tx);
 3045 }
 3046 
 3047 /*
 3048  * Commit ZFS Intent Log transactions (itxs) to stable storage.
 3049  *
 3050  * When writing ZIL transactions to the on-disk representation of the
 3051  * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple
 3052  * itxs can be committed to a single lwb. Once a lwb is written and
 3053  * committed to stable storage (i.e. the lwb is written, and vdevs have
 3054  * been flushed), each itx that was committed to that lwb is also
 3055  * considered to be committed to stable storage.
 3056  *
 3057  * When an itx is committed to an lwb, the log record (lr_t) contained
 3058  * by the itx is copied into the lwb's zio buffer, and once this buffer
 3059  * is written to disk, it becomes an on-disk ZIL block.
 3060  *
 3061  * As itxs are generated, they're inserted into the ZIL's queue of
 3062  * uncommitted itxs. The semantics of zil_commit() are such that it will
 3063  * block until all itxs that were in the queue when it was called, are
 3064  * committed to stable storage.
 3065  *
 3066  * If "foid" is zero, this means all "synchronous" and "asynchronous"
 3067  * itxs, for all objects in the dataset, will be committed to stable
 3068  * storage prior to zil_commit() returning. If "foid" is non-zero, all
 3069  * "synchronous" itxs for all objects, but only "asynchronous" itxs
 3070  * that correspond to the foid passed in, will be committed to stable
 3071  * storage prior to zil_commit() returning.
 3072  *
 3073  * Generally speaking, when zil_commit() is called, the consumer doesn't
 3074  * actually care about _all_ of the uncommitted itxs. Instead, they're
 3075  * simply trying to waiting for a specific itx to be committed to disk,
 3076  * but the interface(s) for interacting with the ZIL don't allow such
 3077  * fine-grained communication. A better interface would allow a consumer
 3078  * to create and assign an itx, and then pass a reference to this itx to
 3079  * zil_commit(); such that zil_commit() would return as soon as that
 3080  * specific itx was committed to disk (instead of waiting for _all_
 3081  * itxs to be committed).
 3082  *
 3083  * When a thread calls zil_commit() a special "commit itx" will be
 3084  * generated, along with a corresponding "waiter" for this commit itx.
 3085  * zil_commit() will wait on this waiter's CV, such that when the waiter
 3086  * is marked done, and signaled, zil_commit() will return.
 3087  *
 3088  * This commit itx is inserted into the queue of uncommitted itxs. This
 3089  * provides an easy mechanism for determining which itxs were in the
 3090  * queue prior to zil_commit() having been called, and which itxs were
 3091  * added after zil_commit() was called.
 3092  *
 3093  * The commit itx is special; it doesn't have any on-disk representation.
 3094  * When a commit itx is "committed" to an lwb, the waiter associated
 3095  * with it is linked onto the lwb's list of waiters. Then, when that lwb
 3096  * completes, each waiter on the lwb's list is marked done and signaled
 3097  * -- allowing the thread waiting on the waiter to return from zil_commit().
 3098  *
 3099  * It's important to point out a few critical factors that allow us
 3100  * to make use of the commit itxs, commit waiters, per-lwb lists of
 3101  * commit waiters, and zio completion callbacks like we're doing:
 3102  *
 3103  *   1. The list of waiters for each lwb is traversed, and each commit
 3104  *      waiter is marked "done" and signaled, in the zio completion
 3105  *      callback of the lwb's zio[*].
 3106  *
 3107  *      * Actually, the waiters are signaled in the zio completion
 3108  *        callback of the root zio for the DKIOCFLUSHWRITECACHE commands
 3109  *        that are sent to the vdevs upon completion of the lwb zio.
 3110  *
 3111  *   2. When the itxs are inserted into the ZIL's queue of uncommitted
 3112  *      itxs, the order in which they are inserted is preserved[*]; as
 3113  *      itxs are added to the queue, they are added to the tail of
 3114  *      in-memory linked lists.
 3115  *
 3116  *      When committing the itxs to lwbs (to be written to disk), they
 3117  *      are committed in the same order in which the itxs were added to
 3118  *      the uncommitted queue's linked list(s); i.e. the linked list of
 3119  *      itxs to commit is traversed from head to tail, and each itx is
 3120  *      committed to an lwb in that order.
 3121  *
 3122  *      * To clarify:
 3123  *
 3124  *        - the order of "sync" itxs is preserved w.r.t. other
 3125  *          "sync" itxs, regardless of the corresponding objects.
 3126  *        - the order of "async" itxs is preserved w.r.t. other
 3127  *          "async" itxs corresponding to the same object.
 3128  *        - the order of "async" itxs is *not* preserved w.r.t. other
 3129  *          "async" itxs corresponding to different objects.
 3130  *        - the order of "sync" itxs w.r.t. "async" itxs (or vice
 3131  *          versa) is *not* preserved, even for itxs that correspond
 3132  *          to the same object.
 3133  *
 3134  *      For more details, see: zil_itx_assign(), zil_async_to_sync(),
 3135  *      zil_get_commit_list(), and zil_process_commit_list().
 3136  *
 3137  *   3. The lwbs represent a linked list of blocks on disk. Thus, any
 3138  *      lwb cannot be considered committed to stable storage, until its
 3139  *      "previous" lwb is also committed to stable storage. This fact,
 3140  *      coupled with the fact described above, means that itxs are
 3141  *      committed in (roughly) the order in which they were generated.
 3142  *      This is essential because itxs are dependent on prior itxs.
 3143  *      Thus, we *must not* deem an itx as being committed to stable
 3144  *      storage, until *all* prior itxs have also been committed to
 3145  *      stable storage.
 3146  *
 3147  *      To enforce this ordering of lwb zio's, while still leveraging as
 3148  *      much of the underlying storage performance as possible, we rely
 3149  *      on two fundamental concepts:
 3150  *
 3151  *          1. The creation and issuance of lwb zio's is protected by
 3152  *             the zilog's "zl_issuer_lock", which ensures only a single
 3153  *             thread is creating and/or issuing lwb's at a time
 3154  *          2. The "previous" lwb is a child of the "current" lwb
 3155  *             (leveraging the zio parent-child dependency graph)
 3156  *
 3157  *      By relying on this parent-child zio relationship, we can have
 3158  *      many lwb zio's concurrently issued to the underlying storage,
 3159  *      but the order in which they complete will be the same order in
 3160  *      which they were created.
 3161  */
 3162 void
 3163 zil_commit(zilog_t *zilog, uint64_t foid)
 3164 {
 3165         /*
 3166          * We should never attempt to call zil_commit on a snapshot for
 3167          * a couple of reasons:
 3168          *
 3169          * 1. A snapshot may never be modified, thus it cannot have any
 3170          *    in-flight itxs that would have modified the dataset.
 3171          *
 3172          * 2. By design, when zil_commit() is called, a commit itx will
 3173          *    be assigned to this zilog; as a result, the zilog will be
 3174          *    dirtied. We must not dirty the zilog of a snapshot; there's
 3175          *    checks in the code that enforce this invariant, and will
 3176          *    cause a panic if it's not upheld.
 3177          */
 3178         ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE);
 3179 
 3180         if (zilog->zl_sync == ZFS_SYNC_DISABLED)
 3181                 return;
 3182 
 3183         if (!spa_writeable(zilog->zl_spa)) {
 3184                 /*
 3185                  * If the SPA is not writable, there should never be any
 3186                  * pending itxs waiting to be committed to disk. If that
 3187                  * weren't true, we'd skip writing those itxs out, and
 3188                  * would break the semantics of zil_commit(); thus, we're
 3189                  * verifying that truth before we return to the caller.
 3190                  */
 3191                 ASSERT(list_is_empty(&zilog->zl_lwb_list));
 3192                 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
 3193                 for (int i = 0; i < TXG_SIZE; i++)
 3194                         ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL);
 3195                 return;
 3196         }
 3197 
 3198         /*
 3199          * If the ZIL is suspended, we don't want to dirty it by calling
 3200          * zil_commit_itx_assign() below, nor can we write out
 3201          * lwbs like would be done in zil_commit_write(). Thus, we
 3202          * simply rely on txg_wait_synced() to maintain the necessary
 3203          * semantics, and avoid calling those functions altogether.
 3204          */
 3205         if (zilog->zl_suspend > 0) {
 3206                 txg_wait_synced(zilog->zl_dmu_pool, 0);
 3207                 return;
 3208         }
 3209 
 3210         zil_commit_impl(zilog, foid);
 3211 }
 3212 
 3213 void
 3214 zil_commit_impl(zilog_t *zilog, uint64_t foid)
 3215 {
 3216         ZIL_STAT_BUMP(zilog, zil_commit_count);
 3217 
 3218         /*
 3219          * Move the "async" itxs for the specified foid to the "sync"
 3220          * queues, such that they will be later committed (or skipped)
 3221          * to an lwb when zil_process_commit_list() is called.
 3222          *
 3223          * Since these "async" itxs must be committed prior to this
 3224          * call to zil_commit returning, we must perform this operation
 3225          * before we call zil_commit_itx_assign().
 3226          */
 3227         zil_async_to_sync(zilog, foid);
 3228 
 3229         /*
 3230          * We allocate a new "waiter" structure which will initially be
 3231          * linked to the commit itx using the itx's "itx_private" field.
 3232          * Since the commit itx doesn't represent any on-disk state,
 3233          * when it's committed to an lwb, rather than copying the its
 3234          * lr_t into the lwb's buffer, the commit itx's "waiter" will be
 3235          * added to the lwb's list of waiters. Then, when the lwb is
 3236          * committed to stable storage, each waiter in the lwb's list of
 3237          * waiters will be marked "done", and signalled.
 3238          *
 3239          * We must create the waiter and assign the commit itx prior to
 3240          * calling zil_commit_writer(), or else our specific commit itx
 3241          * is not guaranteed to be committed to an lwb prior to calling
 3242          * zil_commit_waiter().
 3243          */
 3244         zil_commit_waiter_t *zcw = zil_alloc_commit_waiter();
 3245         zil_commit_itx_assign(zilog, zcw);
 3246 
 3247         zil_commit_writer(zilog, zcw);
 3248         zil_commit_waiter(zilog, zcw);
 3249 
 3250         if (zcw->zcw_zio_error != 0) {
 3251                 /*
 3252                  * If there was an error writing out the ZIL blocks that
 3253                  * this thread is waiting on, then we fallback to
 3254                  * relying on spa_sync() to write out the data this
 3255                  * thread is waiting on. Obviously this has performance
 3256                  * implications, but the expectation is for this to be
 3257                  * an exceptional case, and shouldn't occur often.
 3258                  */
 3259                 DTRACE_PROBE2(zil__commit__io__error,
 3260                     zilog_t *, zilog, zil_commit_waiter_t *, zcw);
 3261                 txg_wait_synced(zilog->zl_dmu_pool, 0);
 3262         }
 3263 
 3264         zil_free_commit_waiter(zcw);
 3265 }
 3266 
 3267 /*
 3268  * Called in syncing context to free committed log blocks and update log header.
 3269  */
 3270 void
 3271 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
 3272 {
 3273         zil_header_t *zh = zil_header_in_syncing_context(zilog);
 3274         uint64_t txg = dmu_tx_get_txg(tx);
 3275         spa_t *spa = zilog->zl_spa;
 3276         uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
 3277         lwb_t *lwb;
 3278 
 3279         /*
 3280          * We don't zero out zl_destroy_txg, so make sure we don't try
 3281          * to destroy it twice.
 3282          */
 3283         if (spa_sync_pass(spa) != 1)
 3284                 return;
 3285 
 3286         zil_lwb_flush_wait_all(zilog, txg);
 3287 
 3288         mutex_enter(&zilog->zl_lock);
 3289 
 3290         ASSERT(zilog->zl_stop_sync == 0);
 3291 
 3292         if (*replayed_seq != 0) {
 3293                 ASSERT(zh->zh_replay_seq < *replayed_seq);
 3294                 zh->zh_replay_seq = *replayed_seq;
 3295                 *replayed_seq = 0;
 3296         }
 3297 
 3298         if (zilog->zl_destroy_txg == txg) {
 3299                 blkptr_t blk = zh->zh_log;
 3300                 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
 3301 
 3302                 ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
 3303 
 3304                 memset(zh, 0, sizeof (zil_header_t));
 3305                 memset(zilog->zl_replayed_seq, 0,
 3306                     sizeof (zilog->zl_replayed_seq));
 3307 
 3308                 if (zilog->zl_keep_first) {
 3309                         /*
 3310                          * If this block was part of log chain that couldn't
 3311                          * be claimed because a device was missing during
 3312                          * zil_claim(), but that device later returns,
 3313                          * then this block could erroneously appear valid.
 3314                          * To guard against this, assign a new GUID to the new
 3315                          * log chain so it doesn't matter what blk points to.
 3316                          */
 3317                         zil_init_log_chain(zilog, &blk);
 3318                         zh->zh_log = blk;
 3319                 } else {
 3320                         /*
 3321                          * A destroyed ZIL chain can't contain any TX_SETSAXATTR
 3322                          * records. So, deactivate the feature for this dataset.
 3323                          * We activate it again when we start a new ZIL chain.
 3324                          */
 3325                         if (dsl_dataset_feature_is_active(ds,
 3326                             SPA_FEATURE_ZILSAXATTR))
 3327                                 dsl_dataset_deactivate_feature(ds,
 3328                                     SPA_FEATURE_ZILSAXATTR, tx);
 3329                 }
 3330         }
 3331 
 3332         while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
 3333                 zh->zh_log = lwb->lwb_blk;
 3334                 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
 3335                         break;
 3336                 list_remove(&zilog->zl_lwb_list, lwb);
 3337                 zio_free(spa, txg, &lwb->lwb_blk);
 3338                 zil_free_lwb(zilog, lwb);
 3339 
 3340                 /*
 3341                  * If we don't have anything left in the lwb list then
 3342                  * we've had an allocation failure and we need to zero
 3343                  * out the zil_header blkptr so that we don't end
 3344                  * up freeing the same block twice.
 3345                  */
 3346                 if (list_head(&zilog->zl_lwb_list) == NULL)
 3347                         BP_ZERO(&zh->zh_log);
 3348         }
 3349 
 3350         /*
 3351          * Remove fastwrite on any blocks that have been pre-allocated for
 3352          * the next commit. This prevents fastwrite counter pollution by
 3353          * unused, long-lived LWBs.
 3354          */
 3355         for (; lwb != NULL; lwb = list_next(&zilog->zl_lwb_list, lwb)) {
 3356                 if (lwb->lwb_fastwrite && !lwb->lwb_write_zio) {
 3357                         metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk);
 3358                         lwb->lwb_fastwrite = 0;
 3359                 }
 3360         }
 3361 
 3362         mutex_exit(&zilog->zl_lock);
 3363 }
 3364 
 3365 static int
 3366 zil_lwb_cons(void *vbuf, void *unused, int kmflag)
 3367 {
 3368         (void) unused, (void) kmflag;
 3369         lwb_t *lwb = vbuf;
 3370         list_create(&lwb->lwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
 3371         list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t),
 3372             offsetof(zil_commit_waiter_t, zcw_node));
 3373         avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare,
 3374             sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
 3375         mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
 3376         return (0);
 3377 }
 3378 
 3379 static void
 3380 zil_lwb_dest(void *vbuf, void *unused)
 3381 {
 3382         (void) unused;
 3383         lwb_t *lwb = vbuf;
 3384         mutex_destroy(&lwb->lwb_vdev_lock);
 3385         avl_destroy(&lwb->lwb_vdev_tree);
 3386         list_destroy(&lwb->lwb_waiters);
 3387         list_destroy(&lwb->lwb_itxs);
 3388 }
 3389 
 3390 void
 3391 zil_init(void)
 3392 {
 3393         zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
 3394             sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0);
 3395 
 3396         zil_zcw_cache = kmem_cache_create("zil_zcw_cache",
 3397             sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
 3398 
 3399         zil_sums_init(&zil_sums_global);
 3400         zil_kstats_global = kstat_create("zfs", 0, "zil", "misc",
 3401             KSTAT_TYPE_NAMED, sizeof (zil_stats) / sizeof (kstat_named_t),
 3402             KSTAT_FLAG_VIRTUAL);
 3403 
 3404         if (zil_kstats_global != NULL) {
 3405                 zil_kstats_global->ks_data = &zil_stats;
 3406                 zil_kstats_global->ks_update = zil_kstats_global_update;
 3407                 zil_kstats_global->ks_private = NULL;
 3408                 kstat_install(zil_kstats_global);
 3409         }
 3410 }
 3411 
 3412 void
 3413 zil_fini(void)
 3414 {
 3415         kmem_cache_destroy(zil_zcw_cache);
 3416         kmem_cache_destroy(zil_lwb_cache);
 3417 
 3418         if (zil_kstats_global != NULL) {
 3419                 kstat_delete(zil_kstats_global);
 3420                 zil_kstats_global = NULL;
 3421         }
 3422 
 3423         zil_sums_fini(&zil_sums_global);
 3424 }
 3425 
 3426 void
 3427 zil_set_sync(zilog_t *zilog, uint64_t sync)
 3428 {
 3429         zilog->zl_sync = sync;
 3430 }
 3431 
 3432 void
 3433 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
 3434 {
 3435         zilog->zl_logbias = logbias;
 3436 }
 3437 
 3438 zilog_t *
 3439 zil_alloc(objset_t *os, zil_header_t *zh_phys)
 3440 {
 3441         zilog_t *zilog;
 3442 
 3443         zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
 3444 
 3445         zilog->zl_header = zh_phys;
 3446         zilog->zl_os = os;
 3447         zilog->zl_spa = dmu_objset_spa(os);
 3448         zilog->zl_dmu_pool = dmu_objset_pool(os);
 3449         zilog->zl_destroy_txg = TXG_INITIAL - 1;
 3450         zilog->zl_logbias = dmu_objset_logbias(os);
 3451         zilog->zl_sync = dmu_objset_syncprop(os);
 3452         zilog->zl_dirty_max_txg = 0;
 3453         zilog->zl_last_lwb_opened = NULL;
 3454         zilog->zl_last_lwb_latency = 0;
 3455         zilog->zl_max_block_size = zil_maxblocksize;
 3456 
 3457         mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
 3458         mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL);
 3459         mutex_init(&zilog->zl_lwb_io_lock, NULL, MUTEX_DEFAULT, NULL);
 3460 
 3461         for (int i = 0; i < TXG_SIZE; i++) {
 3462                 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
 3463                     MUTEX_DEFAULT, NULL);
 3464         }
 3465 
 3466         list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
 3467             offsetof(lwb_t, lwb_node));
 3468 
 3469         list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
 3470             offsetof(itx_t, itx_node));
 3471 
 3472         cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
 3473         cv_init(&zilog->zl_lwb_io_cv, NULL, CV_DEFAULT, NULL);
 3474 
 3475         return (zilog);
 3476 }
 3477 
 3478 void
 3479 zil_free(zilog_t *zilog)
 3480 {
 3481         int i;
 3482 
 3483         zilog->zl_stop_sync = 1;
 3484 
 3485         ASSERT0(zilog->zl_suspend);
 3486         ASSERT0(zilog->zl_suspending);
 3487 
 3488         ASSERT(list_is_empty(&zilog->zl_lwb_list));
 3489         list_destroy(&zilog->zl_lwb_list);
 3490 
 3491         ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
 3492         list_destroy(&zilog->zl_itx_commit_list);
 3493 
 3494         for (i = 0; i < TXG_SIZE; i++) {
 3495                 /*
 3496                  * It's possible for an itx to be generated that doesn't dirty
 3497                  * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
 3498                  * callback to remove the entry. We remove those here.
 3499                  *
 3500                  * Also free up the ziltest itxs.
 3501                  */
 3502                 if (zilog->zl_itxg[i].itxg_itxs)
 3503                         zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
 3504                 mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
 3505         }
 3506 
 3507         mutex_destroy(&zilog->zl_issuer_lock);
 3508         mutex_destroy(&zilog->zl_lock);
 3509         mutex_destroy(&zilog->zl_lwb_io_lock);
 3510 
 3511         cv_destroy(&zilog->zl_cv_suspend);
 3512         cv_destroy(&zilog->zl_lwb_io_cv);
 3513 
 3514         kmem_free(zilog, sizeof (zilog_t));
 3515 }
 3516 
 3517 /*
 3518  * Open an intent log.
 3519  */
 3520 zilog_t *
 3521 zil_open(objset_t *os, zil_get_data_t *get_data, zil_sums_t *zil_sums)
 3522 {
 3523         zilog_t *zilog = dmu_objset_zil(os);
 3524 
 3525         ASSERT3P(zilog->zl_get_data, ==, NULL);
 3526         ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
 3527         ASSERT(list_is_empty(&zilog->zl_lwb_list));
 3528 
 3529         zilog->zl_get_data = get_data;
 3530         zilog->zl_sums = zil_sums;
 3531 
 3532         return (zilog);
 3533 }
 3534 
 3535 /*
 3536  * Close an intent log.
 3537  */
 3538 void
 3539 zil_close(zilog_t *zilog)
 3540 {
 3541         lwb_t *lwb;
 3542         uint64_t txg;
 3543 
 3544         if (!dmu_objset_is_snapshot(zilog->zl_os)) {
 3545                 zil_commit(zilog, 0);
 3546         } else {
 3547                 ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
 3548                 ASSERT0(zilog->zl_dirty_max_txg);
 3549                 ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE);
 3550         }
 3551 
 3552         mutex_enter(&zilog->zl_lock);
 3553         lwb = list_tail(&zilog->zl_lwb_list);
 3554         if (lwb == NULL)
 3555                 txg = zilog->zl_dirty_max_txg;
 3556         else
 3557                 txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg);
 3558         mutex_exit(&zilog->zl_lock);
 3559 
 3560         /*
 3561          * zl_lwb_max_issued_txg may be larger than lwb_max_txg. It depends
 3562          * on the time when the dmu_tx transaction is assigned in
 3563          * zil_lwb_write_issue().
 3564          */
 3565         mutex_enter(&zilog->zl_lwb_io_lock);
 3566         txg = MAX(zilog->zl_lwb_max_issued_txg, txg);
 3567         mutex_exit(&zilog->zl_lwb_io_lock);
 3568 
 3569         /*
 3570          * We need to use txg_wait_synced() to wait until that txg is synced.
 3571          * zil_sync() will guarantee all lwbs up to that txg have been
 3572          * written out, flushed, and cleaned.
 3573          */
 3574         if (txg != 0)
 3575                 txg_wait_synced(zilog->zl_dmu_pool, txg);
 3576 
 3577         if (zilog_is_dirty(zilog))
 3578                 zfs_dbgmsg("zil (%px) is dirty, txg %llu", zilog,
 3579                     (u_longlong_t)txg);
 3580         if (txg < spa_freeze_txg(zilog->zl_spa))
 3581                 VERIFY(!zilog_is_dirty(zilog));
 3582 
 3583         zilog->zl_get_data = NULL;
 3584 
 3585         /*
 3586          * We should have only one lwb left on the list; remove it now.
 3587          */
 3588         mutex_enter(&zilog->zl_lock);
 3589         lwb = list_head(&zilog->zl_lwb_list);
 3590         if (lwb != NULL) {
 3591                 ASSERT3P(lwb, ==, list_tail(&zilog->zl_lwb_list));
 3592                 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
 3593 
 3594                 if (lwb->lwb_fastwrite)
 3595                         metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk);
 3596 
 3597                 list_remove(&zilog->zl_lwb_list, lwb);
 3598                 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
 3599                 zil_free_lwb(zilog, lwb);
 3600         }
 3601         mutex_exit(&zilog->zl_lock);
 3602 }
 3603 
 3604 static const char *suspend_tag = "zil suspending";
 3605 
 3606 /*
 3607  * Suspend an intent log.  While in suspended mode, we still honor
 3608  * synchronous semantics, but we rely on txg_wait_synced() to do it.
 3609  * On old version pools, we suspend the log briefly when taking a
 3610  * snapshot so that it will have an empty intent log.
 3611  *
 3612  * Long holds are not really intended to be used the way we do here --
 3613  * held for such a short time.  A concurrent caller of dsl_dataset_long_held()
 3614  * could fail.  Therefore we take pains to only put a long hold if it is
 3615  * actually necessary.  Fortunately, it will only be necessary if the
 3616  * objset is currently mounted (or the ZVOL equivalent).  In that case it
 3617  * will already have a long hold, so we are not really making things any worse.
 3618  *
 3619  * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
 3620  * zvol_state_t), and use their mechanism to prevent their hold from being
 3621  * dropped (e.g. VFS_HOLD()).  However, that would be even more pain for
 3622  * very little gain.
 3623  *
 3624  * if cookiep == NULL, this does both the suspend & resume.
 3625  * Otherwise, it returns with the dataset "long held", and the cookie
 3626  * should be passed into zil_resume().
 3627  */
 3628 int
 3629 zil_suspend(const char *osname, void **cookiep)
 3630 {
 3631         objset_t *os;
 3632         zilog_t *zilog;
 3633         const zil_header_t *zh;
 3634         int error;
 3635 
 3636         error = dmu_objset_hold(osname, suspend_tag, &os);
 3637         if (error != 0)
 3638                 return (error);
 3639         zilog = dmu_objset_zil(os);
 3640 
 3641         mutex_enter(&zilog->zl_lock);
 3642         zh = zilog->zl_header;
 3643 
 3644         if (zh->zh_flags & ZIL_REPLAY_NEEDED) {         /* unplayed log */
 3645                 mutex_exit(&zilog->zl_lock);
 3646                 dmu_objset_rele(os, suspend_tag);
 3647                 return (SET_ERROR(EBUSY));
 3648         }
 3649 
 3650         /*
 3651          * Don't put a long hold in the cases where we can avoid it.  This
 3652          * is when there is no cookie so we are doing a suspend & resume
 3653          * (i.e. called from zil_vdev_offline()), and there's nothing to do
 3654          * for the suspend because it's already suspended, or there's no ZIL.
 3655          */
 3656         if (cookiep == NULL && !zilog->zl_suspending &&
 3657             (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
 3658                 mutex_exit(&zilog->zl_lock);
 3659                 dmu_objset_rele(os, suspend_tag);
 3660                 return (0);
 3661         }
 3662 
 3663         dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
 3664         dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
 3665 
 3666         zilog->zl_suspend++;
 3667 
 3668         if (zilog->zl_suspend > 1) {
 3669                 /*
 3670                  * Someone else is already suspending it.
 3671                  * Just wait for them to finish.
 3672                  */
 3673 
 3674                 while (zilog->zl_suspending)
 3675                         cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
 3676                 mutex_exit(&zilog->zl_lock);
 3677 
 3678                 if (cookiep == NULL)
 3679                         zil_resume(os);
 3680                 else
 3681                         *cookiep = os;
 3682                 return (0);
 3683         }
 3684 
 3685         /*
 3686          * If there is no pointer to an on-disk block, this ZIL must not
 3687          * be active (e.g. filesystem not mounted), so there's nothing
 3688          * to clean up.
 3689          */
 3690         if (BP_IS_HOLE(&zh->zh_log)) {
 3691                 ASSERT(cookiep != NULL); /* fast path already handled */
 3692 
 3693                 *cookiep = os;
 3694                 mutex_exit(&zilog->zl_lock);
 3695                 return (0);
 3696         }
 3697 
 3698         /*
 3699          * The ZIL has work to do. Ensure that the associated encryption
 3700          * key will remain mapped while we are committing the log by
 3701          * grabbing a reference to it. If the key isn't loaded we have no
 3702          * choice but to return an error until the wrapping key is loaded.
 3703          */
 3704         if (os->os_encrypted &&
 3705             dsl_dataset_create_key_mapping(dmu_objset_ds(os)) != 0) {
 3706                 zilog->zl_suspend--;
 3707                 mutex_exit(&zilog->zl_lock);
 3708                 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
 3709                 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
 3710                 return (SET_ERROR(EACCES));
 3711         }
 3712 
 3713         zilog->zl_suspending = B_TRUE;
 3714         mutex_exit(&zilog->zl_lock);
 3715 
 3716         /*
 3717          * We need to use zil_commit_impl to ensure we wait for all
 3718          * LWB_STATE_OPENED and LWB_STATE_ISSUED lwbs to be committed
 3719          * to disk before proceeding. If we used zil_commit instead, it
 3720          * would just call txg_wait_synced(), because zl_suspend is set.
 3721          * txg_wait_synced() doesn't wait for these lwb's to be
 3722          * LWB_STATE_FLUSH_DONE before returning.
 3723          */
 3724         zil_commit_impl(zilog, 0);
 3725 
 3726         /*
 3727          * Now that we've ensured all lwb's are LWB_STATE_FLUSH_DONE, we
 3728          * use txg_wait_synced() to ensure the data from the zilog has
 3729          * migrated to the main pool before calling zil_destroy().
 3730          */
 3731         txg_wait_synced(zilog->zl_dmu_pool, 0);
 3732 
 3733         zil_destroy(zilog, B_FALSE);
 3734 
 3735         mutex_enter(&zilog->zl_lock);
 3736         zilog->zl_suspending = B_FALSE;
 3737         cv_broadcast(&zilog->zl_cv_suspend);
 3738         mutex_exit(&zilog->zl_lock);
 3739 
 3740         if (os->os_encrypted)
 3741                 dsl_dataset_remove_key_mapping(dmu_objset_ds(os));
 3742 
 3743         if (cookiep == NULL)
 3744                 zil_resume(os);
 3745         else
 3746                 *cookiep = os;
 3747         return (0);
 3748 }
 3749 
 3750 void
 3751 zil_resume(void *cookie)
 3752 {
 3753         objset_t *os = cookie;
 3754         zilog_t *zilog = dmu_objset_zil(os);
 3755 
 3756         mutex_enter(&zilog->zl_lock);
 3757         ASSERT(zilog->zl_suspend != 0);
 3758         zilog->zl_suspend--;
 3759         mutex_exit(&zilog->zl_lock);
 3760         dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
 3761         dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
 3762 }
 3763 
 3764 typedef struct zil_replay_arg {
 3765         zil_replay_func_t *const *zr_replay;
 3766         void            *zr_arg;
 3767         boolean_t       zr_byteswap;
 3768         char            *zr_lr;
 3769 } zil_replay_arg_t;
 3770 
 3771 static int
 3772 zil_replay_error(zilog_t *zilog, const lr_t *lr, int error)
 3773 {
 3774         char name[ZFS_MAX_DATASET_NAME_LEN];
 3775 
 3776         zilog->zl_replaying_seq--;      /* didn't actually replay this one */
 3777 
 3778         dmu_objset_name(zilog->zl_os, name);
 3779 
 3780         cmn_err(CE_WARN, "ZFS replay transaction error %d, "
 3781             "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
 3782             (u_longlong_t)lr->lrc_seq,
 3783             (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
 3784             (lr->lrc_txtype & TX_CI) ? "CI" : "");
 3785 
 3786         return (error);
 3787 }
 3788 
 3789 static int
 3790 zil_replay_log_record(zilog_t *zilog, const lr_t *lr, void *zra,
 3791     uint64_t claim_txg)
 3792 {
 3793         zil_replay_arg_t *zr = zra;
 3794         const zil_header_t *zh = zilog->zl_header;
 3795         uint64_t reclen = lr->lrc_reclen;
 3796         uint64_t txtype = lr->lrc_txtype;
 3797         int error = 0;
 3798 
 3799         zilog->zl_replaying_seq = lr->lrc_seq;
 3800 
 3801         if (lr->lrc_seq <= zh->zh_replay_seq)   /* already replayed */
 3802                 return (0);
 3803 
 3804         if (lr->lrc_txg < claim_txg)            /* already committed */
 3805                 return (0);
 3806 
 3807         /* Strip case-insensitive bit, still present in log record */
 3808         txtype &= ~TX_CI;
 3809 
 3810         if (txtype == 0 || txtype >= TX_MAX_TYPE)
 3811                 return (zil_replay_error(zilog, lr, EINVAL));
 3812 
 3813         /*
 3814          * If this record type can be logged out of order, the object
 3815          * (lr_foid) may no longer exist.  That's legitimate, not an error.
 3816          */
 3817         if (TX_OOO(txtype)) {
 3818                 error = dmu_object_info(zilog->zl_os,
 3819                     LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL);
 3820                 if (error == ENOENT || error == EEXIST)
 3821                         return (0);
 3822         }
 3823 
 3824         /*
 3825          * Make a copy of the data so we can revise and extend it.
 3826          */
 3827         memcpy(zr->zr_lr, lr, reclen);
 3828 
 3829         /*
 3830          * If this is a TX_WRITE with a blkptr, suck in the data.
 3831          */
 3832         if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
 3833                 error = zil_read_log_data(zilog, (lr_write_t *)lr,
 3834                     zr->zr_lr + reclen);
 3835                 if (error != 0)
 3836                         return (zil_replay_error(zilog, lr, error));
 3837         }
 3838 
 3839         /*
 3840          * The log block containing this lr may have been byteswapped
 3841          * so that we can easily examine common fields like lrc_txtype.
 3842          * However, the log is a mix of different record types, and only the
 3843          * replay vectors know how to byteswap their records.  Therefore, if
 3844          * the lr was byteswapped, undo it before invoking the replay vector.
 3845          */
 3846         if (zr->zr_byteswap)
 3847                 byteswap_uint64_array(zr->zr_lr, reclen);
 3848 
 3849         /*
 3850          * We must now do two things atomically: replay this log record,
 3851          * and update the log header sequence number to reflect the fact that
 3852          * we did so. At the end of each replay function the sequence number
 3853          * is updated if we are in replay mode.
 3854          */
 3855         error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
 3856         if (error != 0) {
 3857                 /*
 3858                  * The DMU's dnode layer doesn't see removes until the txg
 3859                  * commits, so a subsequent claim can spuriously fail with
 3860                  * EEXIST. So if we receive any error we try syncing out
 3861                  * any removes then retry the transaction.  Note that we
 3862                  * specify B_FALSE for byteswap now, so we don't do it twice.
 3863                  */
 3864                 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
 3865                 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
 3866                 if (error != 0)
 3867                         return (zil_replay_error(zilog, lr, error));
 3868         }
 3869         return (0);
 3870 }
 3871 
 3872 static int
 3873 zil_incr_blks(zilog_t *zilog, const blkptr_t *bp, void *arg, uint64_t claim_txg)
 3874 {
 3875         (void) bp, (void) arg, (void) claim_txg;
 3876 
 3877         zilog->zl_replay_blks++;
 3878 
 3879         return (0);
 3880 }
 3881 
 3882 /*
 3883  * If this dataset has a non-empty intent log, replay it and destroy it.
 3884  * Return B_TRUE if there were any entries to replay.
 3885  */
 3886 boolean_t
 3887 zil_replay(objset_t *os, void *arg,
 3888     zil_replay_func_t *const replay_func[TX_MAX_TYPE])
 3889 {
 3890         zilog_t *zilog = dmu_objset_zil(os);
 3891         const zil_header_t *zh = zilog->zl_header;
 3892         zil_replay_arg_t zr;
 3893 
 3894         if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
 3895                 return (zil_destroy(zilog, B_TRUE));
 3896         }
 3897 
 3898         zr.zr_replay = replay_func;
 3899         zr.zr_arg = arg;
 3900         zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
 3901         zr.zr_lr = vmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
 3902 
 3903         /*
 3904          * Wait for in-progress removes to sync before starting replay.
 3905          */
 3906         txg_wait_synced(zilog->zl_dmu_pool, 0);
 3907 
 3908         zilog->zl_replay = B_TRUE;
 3909         zilog->zl_replay_time = ddi_get_lbolt();
 3910         ASSERT(zilog->zl_replay_blks == 0);
 3911         (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
 3912             zh->zh_claim_txg, B_TRUE);
 3913         vmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
 3914 
 3915         zil_destroy(zilog, B_FALSE);
 3916         txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
 3917         zilog->zl_replay = B_FALSE;
 3918 
 3919         return (B_TRUE);
 3920 }
 3921 
 3922 boolean_t
 3923 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
 3924 {
 3925         if (zilog->zl_sync == ZFS_SYNC_DISABLED)
 3926                 return (B_TRUE);
 3927 
 3928         if (zilog->zl_replay) {
 3929                 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
 3930                 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
 3931                     zilog->zl_replaying_seq;
 3932                 return (B_TRUE);
 3933         }
 3934 
 3935         return (B_FALSE);
 3936 }
 3937 
 3938 int
 3939 zil_reset(const char *osname, void *arg)
 3940 {
 3941         (void) arg;
 3942 
 3943         int error = zil_suspend(osname, NULL);
 3944         /* EACCES means crypto key not loaded */
 3945         if ((error == EACCES) || (error == EBUSY))
 3946                 return (SET_ERROR(error));
 3947         if (error != 0)
 3948                 return (SET_ERROR(EEXIST));
 3949         return (0);
 3950 }
 3951 
 3952 EXPORT_SYMBOL(zil_alloc);
 3953 EXPORT_SYMBOL(zil_free);
 3954 EXPORT_SYMBOL(zil_open);
 3955 EXPORT_SYMBOL(zil_close);
 3956 EXPORT_SYMBOL(zil_replay);
 3957 EXPORT_SYMBOL(zil_replaying);
 3958 EXPORT_SYMBOL(zil_destroy);
 3959 EXPORT_SYMBOL(zil_destroy_sync);
 3960 EXPORT_SYMBOL(zil_itx_create);
 3961 EXPORT_SYMBOL(zil_itx_destroy);
 3962 EXPORT_SYMBOL(zil_itx_assign);
 3963 EXPORT_SYMBOL(zil_commit);
 3964 EXPORT_SYMBOL(zil_claim);
 3965 EXPORT_SYMBOL(zil_check_log_chain);
 3966 EXPORT_SYMBOL(zil_sync);
 3967 EXPORT_SYMBOL(zil_clean);
 3968 EXPORT_SYMBOL(zil_suspend);
 3969 EXPORT_SYMBOL(zil_resume);
 3970 EXPORT_SYMBOL(zil_lwb_add_block);
 3971 EXPORT_SYMBOL(zil_bp_tree_add);
 3972 EXPORT_SYMBOL(zil_set_sync);
 3973 EXPORT_SYMBOL(zil_set_logbias);
 3974 EXPORT_SYMBOL(zil_sums_init);
 3975 EXPORT_SYMBOL(zil_sums_fini);
 3976 EXPORT_SYMBOL(zil_kstat_values_update);
 3977 
 3978 ZFS_MODULE_PARAM(zfs, zfs_, commit_timeout_pct, UINT, ZMOD_RW,
 3979         "ZIL block open timeout percentage");
 3980 
 3981 ZFS_MODULE_PARAM(zfs_zil, zil_, min_commit_timeout, U64, ZMOD_RW,
 3982         "Minimum delay we care for ZIL block commit");
 3983 
 3984 ZFS_MODULE_PARAM(zfs_zil, zil_, replay_disable, INT, ZMOD_RW,
 3985         "Disable intent logging replay");
 3986 
 3987 ZFS_MODULE_PARAM(zfs_zil, zil_, nocacheflush, INT, ZMOD_RW,
 3988         "Disable ZIL cache flushes");
 3989 
 3990 ZFS_MODULE_PARAM(zfs_zil, zil_, slog_bulk, U64, ZMOD_RW,
 3991         "Limit in bytes slog sync writes per commit");
 3992 
 3993 ZFS_MODULE_PARAM(zfs_zil, zil_, maxblocksize, UINT, ZMOD_RW,
 3994         "Limit in bytes of ZIL log block size");

Cache object: 730b1b7b608da08a23abc5234ec17bd3


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.