1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2022 by Delphix. All rights reserved.
24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2017, Intel Corporation.
26 * Copyright (c) 2019, Klara Inc.
27 * Copyright (c) 2019, Allan Jude
28 * Copyright (c) 2021, Datto, Inc.
29 */
30
31 #include <sys/sysmacros.h>
32 #include <sys/zfs_context.h>
33 #include <sys/fm/fs/zfs.h>
34 #include <sys/spa.h>
35 #include <sys/txg.h>
36 #include <sys/spa_impl.h>
37 #include <sys/vdev_impl.h>
38 #include <sys/vdev_trim.h>
39 #include <sys/zio_impl.h>
40 #include <sys/zio_compress.h>
41 #include <sys/zio_checksum.h>
42 #include <sys/dmu_objset.h>
43 #include <sys/arc.h>
44 #include <sys/ddt.h>
45 #include <sys/blkptr.h>
46 #include <sys/zfeature.h>
47 #include <sys/dsl_scan.h>
48 #include <sys/metaslab_impl.h>
49 #include <sys/time.h>
50 #include <sys/trace_zfs.h>
51 #include <sys/abd.h>
52 #include <sys/dsl_crypt.h>
53 #include <cityhash.h>
54
55 /*
56 * ==========================================================================
57 * I/O type descriptions
58 * ==========================================================================
59 */
60 const char *const zio_type_name[ZIO_TYPES] = {
61 /*
62 * Note: Linux kernel thread name length is limited
63 * so these names will differ from upstream open zfs.
64 */
65 "z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_ioctl", "z_trim"
66 };
67
68 int zio_dva_throttle_enabled = B_TRUE;
69 static int zio_deadman_log_all = B_FALSE;
70
71 /*
72 * ==========================================================================
73 * I/O kmem caches
74 * ==========================================================================
75 */
76 static kmem_cache_t *zio_cache;
77 static kmem_cache_t *zio_link_cache;
78 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
79 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
80 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
81 static uint64_t zio_buf_cache_allocs[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
82 static uint64_t zio_buf_cache_frees[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
83 #endif
84
85 /* Mark IOs as "slow" if they take longer than 30 seconds */
86 static uint_t zio_slow_io_ms = (30 * MILLISEC);
87
88 #define BP_SPANB(indblkshift, level) \
89 (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
90 #define COMPARE_META_LEVEL 0x80000000ul
91 /*
92 * The following actions directly effect the spa's sync-to-convergence logic.
93 * The values below define the sync pass when we start performing the action.
94 * Care should be taken when changing these values as they directly impact
95 * spa_sync() performance. Tuning these values may introduce subtle performance
96 * pathologies and should only be done in the context of performance analysis.
97 * These tunables will eventually be removed and replaced with #defines once
98 * enough analysis has been done to determine optimal values.
99 *
100 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
101 * regular blocks are not deferred.
102 *
103 * Starting in sync pass 8 (zfs_sync_pass_dont_compress), we disable
104 * compression (including of metadata). In practice, we don't have this
105 * many sync passes, so this has no effect.
106 *
107 * The original intent was that disabling compression would help the sync
108 * passes to converge. However, in practice disabling compression increases
109 * the average number of sync passes, because when we turn compression off, a
110 * lot of block's size will change and thus we have to re-allocate (not
111 * overwrite) them. It also increases the number of 128KB allocations (e.g.
112 * for indirect blocks and spacemaps) because these will not be compressed.
113 * The 128K allocations are especially detrimental to performance on highly
114 * fragmented systems, which may have very few free segments of this size,
115 * and may need to load new metaslabs to satisfy 128K allocations.
116 */
117
118 /* defer frees starting in this pass */
119 uint_t zfs_sync_pass_deferred_free = 2;
120
121 /* don't compress starting in this pass */
122 static uint_t zfs_sync_pass_dont_compress = 8;
123
124 /* rewrite new bps starting in this pass */
125 static uint_t zfs_sync_pass_rewrite = 2;
126
127 /*
128 * An allocating zio is one that either currently has the DVA allocate
129 * stage set or will have it later in its lifetime.
130 */
131 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
132
133 /*
134 * Enable smaller cores by excluding metadata
135 * allocations as well.
136 */
137 int zio_exclude_metadata = 0;
138 static int zio_requeue_io_start_cut_in_line = 1;
139
140 #ifdef ZFS_DEBUG
141 static const int zio_buf_debug_limit = 16384;
142 #else
143 static const int zio_buf_debug_limit = 0;
144 #endif
145
146 static inline void __zio_execute(zio_t *zio);
147
148 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t);
149
150 void
151 zio_init(void)
152 {
153 size_t c;
154
155 zio_cache = kmem_cache_create("zio_cache",
156 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
157 zio_link_cache = kmem_cache_create("zio_link_cache",
158 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
159
160 /*
161 * For small buffers, we want a cache for each multiple of
162 * SPA_MINBLOCKSIZE. For larger buffers, we want a cache
163 * for each quarter-power of 2.
164 */
165 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
166 size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
167 size_t p2 = size;
168 size_t align = 0;
169 size_t data_cflags, cflags;
170
171 data_cflags = KMC_NODEBUG;
172 cflags = (zio_exclude_metadata || size > zio_buf_debug_limit) ?
173 KMC_NODEBUG : 0;
174
175 while (!ISP2(p2))
176 p2 &= p2 - 1;
177
178 #ifndef _KERNEL
179 /*
180 * If we are using watchpoints, put each buffer on its own page,
181 * to eliminate the performance overhead of trapping to the
182 * kernel when modifying a non-watched buffer that shares the
183 * page with a watched buffer.
184 */
185 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
186 continue;
187 /*
188 * Here's the problem - on 4K native devices in userland on
189 * Linux using O_DIRECT, buffers must be 4K aligned or I/O
190 * will fail with EINVAL, causing zdb (and others) to coredump.
191 * Since userland probably doesn't need optimized buffer caches,
192 * we just force 4K alignment on everything.
193 */
194 align = 8 * SPA_MINBLOCKSIZE;
195 #else
196 if (size < PAGESIZE) {
197 align = SPA_MINBLOCKSIZE;
198 } else if (IS_P2ALIGNED(size, p2 >> 2)) {
199 align = PAGESIZE;
200 }
201 #endif
202
203 if (align != 0) {
204 char name[36];
205 if (cflags == data_cflags) {
206 /*
207 * Resulting kmem caches would be identical.
208 * Save memory by creating only one.
209 */
210 (void) snprintf(name, sizeof (name),
211 "zio_buf_comb_%lu", (ulong_t)size);
212 zio_buf_cache[c] = kmem_cache_create(name,
213 size, align, NULL, NULL, NULL, NULL, NULL,
214 cflags);
215 zio_data_buf_cache[c] = zio_buf_cache[c];
216 continue;
217 }
218 (void) snprintf(name, sizeof (name), "zio_buf_%lu",
219 (ulong_t)size);
220 zio_buf_cache[c] = kmem_cache_create(name, size,
221 align, NULL, NULL, NULL, NULL, NULL, cflags);
222
223 (void) snprintf(name, sizeof (name), "zio_data_buf_%lu",
224 (ulong_t)size);
225 zio_data_buf_cache[c] = kmem_cache_create(name, size,
226 align, NULL, NULL, NULL, NULL, NULL, data_cflags);
227 }
228 }
229
230 while (--c != 0) {
231 ASSERT(zio_buf_cache[c] != NULL);
232 if (zio_buf_cache[c - 1] == NULL)
233 zio_buf_cache[c - 1] = zio_buf_cache[c];
234
235 ASSERT(zio_data_buf_cache[c] != NULL);
236 if (zio_data_buf_cache[c - 1] == NULL)
237 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
238 }
239
240 zio_inject_init();
241
242 lz4_init();
243 }
244
245 void
246 zio_fini(void)
247 {
248 size_t n = SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT;
249
250 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
251 for (size_t i = 0; i < n; i++) {
252 if (zio_buf_cache_allocs[i] != zio_buf_cache_frees[i])
253 (void) printf("zio_fini: [%d] %llu != %llu\n",
254 (int)((i + 1) << SPA_MINBLOCKSHIFT),
255 (long long unsigned)zio_buf_cache_allocs[i],
256 (long long unsigned)zio_buf_cache_frees[i]);
257 }
258 #endif
259
260 /*
261 * The same kmem cache can show up multiple times in both zio_buf_cache
262 * and zio_data_buf_cache. Do a wasteful but trivially correct scan to
263 * sort it out.
264 */
265 for (size_t i = 0; i < n; i++) {
266 kmem_cache_t *cache = zio_buf_cache[i];
267 if (cache == NULL)
268 continue;
269 for (size_t j = i; j < n; j++) {
270 if (cache == zio_buf_cache[j])
271 zio_buf_cache[j] = NULL;
272 if (cache == zio_data_buf_cache[j])
273 zio_data_buf_cache[j] = NULL;
274 }
275 kmem_cache_destroy(cache);
276 }
277
278 for (size_t i = 0; i < n; i++) {
279 kmem_cache_t *cache = zio_data_buf_cache[i];
280 if (cache == NULL)
281 continue;
282 for (size_t j = i; j < n; j++) {
283 if (cache == zio_data_buf_cache[j])
284 zio_data_buf_cache[j] = NULL;
285 }
286 kmem_cache_destroy(cache);
287 }
288
289 for (size_t i = 0; i < n; i++) {
290 VERIFY3P(zio_buf_cache[i], ==, NULL);
291 VERIFY3P(zio_data_buf_cache[i], ==, NULL);
292 }
293
294 kmem_cache_destroy(zio_link_cache);
295 kmem_cache_destroy(zio_cache);
296
297 zio_inject_fini();
298
299 lz4_fini();
300 }
301
302 /*
303 * ==========================================================================
304 * Allocate and free I/O buffers
305 * ==========================================================================
306 */
307
308 /*
309 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a
310 * crashdump if the kernel panics, so use it judiciously. Obviously, it's
311 * useful to inspect ZFS metadata, but if possible, we should avoid keeping
312 * excess / transient data in-core during a crashdump.
313 */
314 void *
315 zio_buf_alloc(size_t size)
316 {
317 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
318
319 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
320 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
321 atomic_add_64(&zio_buf_cache_allocs[c], 1);
322 #endif
323
324 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
325 }
326
327 /*
328 * Use zio_data_buf_alloc to allocate data. The data will not appear in a
329 * crashdump if the kernel panics. This exists so that we will limit the amount
330 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount
331 * of kernel heap dumped to disk when the kernel panics)
332 */
333 void *
334 zio_data_buf_alloc(size_t size)
335 {
336 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
337
338 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
339
340 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
341 }
342
343 void
344 zio_buf_free(void *buf, size_t size)
345 {
346 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
347
348 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
349 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
350 atomic_add_64(&zio_buf_cache_frees[c], 1);
351 #endif
352
353 kmem_cache_free(zio_buf_cache[c], buf);
354 }
355
356 void
357 zio_data_buf_free(void *buf, size_t size)
358 {
359 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
360
361 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
362
363 kmem_cache_free(zio_data_buf_cache[c], buf);
364 }
365
366 static void
367 zio_abd_free(void *abd, size_t size)
368 {
369 (void) size;
370 abd_free((abd_t *)abd);
371 }
372
373 /*
374 * ==========================================================================
375 * Push and pop I/O transform buffers
376 * ==========================================================================
377 */
378 void
379 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize,
380 zio_transform_func_t *transform)
381 {
382 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
383
384 zt->zt_orig_abd = zio->io_abd;
385 zt->zt_orig_size = zio->io_size;
386 zt->zt_bufsize = bufsize;
387 zt->zt_transform = transform;
388
389 zt->zt_next = zio->io_transform_stack;
390 zio->io_transform_stack = zt;
391
392 zio->io_abd = data;
393 zio->io_size = size;
394 }
395
396 void
397 zio_pop_transforms(zio_t *zio)
398 {
399 zio_transform_t *zt;
400
401 while ((zt = zio->io_transform_stack) != NULL) {
402 if (zt->zt_transform != NULL)
403 zt->zt_transform(zio,
404 zt->zt_orig_abd, zt->zt_orig_size);
405
406 if (zt->zt_bufsize != 0)
407 abd_free(zio->io_abd);
408
409 zio->io_abd = zt->zt_orig_abd;
410 zio->io_size = zt->zt_orig_size;
411 zio->io_transform_stack = zt->zt_next;
412
413 kmem_free(zt, sizeof (zio_transform_t));
414 }
415 }
416
417 /*
418 * ==========================================================================
419 * I/O transform callbacks for subblocks, decompression, and decryption
420 * ==========================================================================
421 */
422 static void
423 zio_subblock(zio_t *zio, abd_t *data, uint64_t size)
424 {
425 ASSERT(zio->io_size > size);
426
427 if (zio->io_type == ZIO_TYPE_READ)
428 abd_copy(data, zio->io_abd, size);
429 }
430
431 static void
432 zio_decompress(zio_t *zio, abd_t *data, uint64_t size)
433 {
434 if (zio->io_error == 0) {
435 void *tmp = abd_borrow_buf(data, size);
436 int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
437 zio->io_abd, tmp, zio->io_size, size,
438 &zio->io_prop.zp_complevel);
439 abd_return_buf_copy(data, tmp, size);
440
441 if (zio_injection_enabled && ret == 0)
442 ret = zio_handle_fault_injection(zio, EINVAL);
443
444 if (ret != 0)
445 zio->io_error = SET_ERROR(EIO);
446 }
447 }
448
449 static void
450 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size)
451 {
452 int ret;
453 void *tmp;
454 blkptr_t *bp = zio->io_bp;
455 spa_t *spa = zio->io_spa;
456 uint64_t dsobj = zio->io_bookmark.zb_objset;
457 uint64_t lsize = BP_GET_LSIZE(bp);
458 dmu_object_type_t ot = BP_GET_TYPE(bp);
459 uint8_t salt[ZIO_DATA_SALT_LEN];
460 uint8_t iv[ZIO_DATA_IV_LEN];
461 uint8_t mac[ZIO_DATA_MAC_LEN];
462 boolean_t no_crypt = B_FALSE;
463
464 ASSERT(BP_USES_CRYPT(bp));
465 ASSERT3U(size, !=, 0);
466
467 if (zio->io_error != 0)
468 return;
469
470 /*
471 * Verify the cksum of MACs stored in an indirect bp. It will always
472 * be possible to verify this since it does not require an encryption
473 * key.
474 */
475 if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) {
476 zio_crypt_decode_mac_bp(bp, mac);
477
478 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
479 /*
480 * We haven't decompressed the data yet, but
481 * zio_crypt_do_indirect_mac_checksum() requires
482 * decompressed data to be able to parse out the MACs
483 * from the indirect block. We decompress it now and
484 * throw away the result after we are finished.
485 */
486 tmp = zio_buf_alloc(lsize);
487 ret = zio_decompress_data(BP_GET_COMPRESS(bp),
488 zio->io_abd, tmp, zio->io_size, lsize,
489 &zio->io_prop.zp_complevel);
490 if (ret != 0) {
491 ret = SET_ERROR(EIO);
492 goto error;
493 }
494 ret = zio_crypt_do_indirect_mac_checksum(B_FALSE,
495 tmp, lsize, BP_SHOULD_BYTESWAP(bp), mac);
496 zio_buf_free(tmp, lsize);
497 } else {
498 ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE,
499 zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac);
500 }
501 abd_copy(data, zio->io_abd, size);
502
503 if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) {
504 ret = zio_handle_decrypt_injection(spa,
505 &zio->io_bookmark, ot, ECKSUM);
506 }
507 if (ret != 0)
508 goto error;
509
510 return;
511 }
512
513 /*
514 * If this is an authenticated block, just check the MAC. It would be
515 * nice to separate this out into its own flag, but when this was done,
516 * we had run out of bits in what is now zio_flag_t. Future cleanup
517 * could make this a flag bit.
518 */
519 if (BP_IS_AUTHENTICATED(bp)) {
520 if (ot == DMU_OT_OBJSET) {
521 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa,
522 dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp));
523 } else {
524 zio_crypt_decode_mac_bp(bp, mac);
525 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj,
526 zio->io_abd, size, mac);
527 if (zio_injection_enabled && ret == 0) {
528 ret = zio_handle_decrypt_injection(spa,
529 &zio->io_bookmark, ot, ECKSUM);
530 }
531 }
532 abd_copy(data, zio->io_abd, size);
533
534 if (ret != 0)
535 goto error;
536
537 return;
538 }
539
540 zio_crypt_decode_params_bp(bp, salt, iv);
541
542 if (ot == DMU_OT_INTENT_LOG) {
543 tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t));
544 zio_crypt_decode_mac_zil(tmp, mac);
545 abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t));
546 } else {
547 zio_crypt_decode_mac_bp(bp, mac);
548 }
549
550 ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp),
551 BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data,
552 zio->io_abd, &no_crypt);
553 if (no_crypt)
554 abd_copy(data, zio->io_abd, size);
555
556 if (ret != 0)
557 goto error;
558
559 return;
560
561 error:
562 /* assert that the key was found unless this was speculative */
563 ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE));
564
565 /*
566 * If there was a decryption / authentication error return EIO as
567 * the io_error. If this was not a speculative zio, create an ereport.
568 */
569 if (ret == ECKSUM) {
570 zio->io_error = SET_ERROR(EIO);
571 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
572 spa_log_error(spa, &zio->io_bookmark);
573 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
574 spa, NULL, &zio->io_bookmark, zio, 0);
575 }
576 } else {
577 zio->io_error = ret;
578 }
579 }
580
581 /*
582 * ==========================================================================
583 * I/O parent/child relationships and pipeline interlocks
584 * ==========================================================================
585 */
586 zio_t *
587 zio_walk_parents(zio_t *cio, zio_link_t **zl)
588 {
589 list_t *pl = &cio->io_parent_list;
590
591 *zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl);
592 if (*zl == NULL)
593 return (NULL);
594
595 ASSERT((*zl)->zl_child == cio);
596 return ((*zl)->zl_parent);
597 }
598
599 zio_t *
600 zio_walk_children(zio_t *pio, zio_link_t **zl)
601 {
602 list_t *cl = &pio->io_child_list;
603
604 ASSERT(MUTEX_HELD(&pio->io_lock));
605
606 *zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl);
607 if (*zl == NULL)
608 return (NULL);
609
610 ASSERT((*zl)->zl_parent == pio);
611 return ((*zl)->zl_child);
612 }
613
614 zio_t *
615 zio_unique_parent(zio_t *cio)
616 {
617 zio_link_t *zl = NULL;
618 zio_t *pio = zio_walk_parents(cio, &zl);
619
620 VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL);
621 return (pio);
622 }
623
624 void
625 zio_add_child(zio_t *pio, zio_t *cio)
626 {
627 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
628
629 /*
630 * Logical I/Os can have logical, gang, or vdev children.
631 * Gang I/Os can have gang or vdev children.
632 * Vdev I/Os can only have vdev children.
633 * The following ASSERT captures all of these constraints.
634 */
635 ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
636
637 zl->zl_parent = pio;
638 zl->zl_child = cio;
639
640 mutex_enter(&pio->io_lock);
641 mutex_enter(&cio->io_lock);
642
643 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
644
645 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
646 pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
647
648 list_insert_head(&pio->io_child_list, zl);
649 list_insert_head(&cio->io_parent_list, zl);
650
651 pio->io_child_count++;
652 cio->io_parent_count++;
653
654 mutex_exit(&cio->io_lock);
655 mutex_exit(&pio->io_lock);
656 }
657
658 static void
659 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
660 {
661 ASSERT(zl->zl_parent == pio);
662 ASSERT(zl->zl_child == cio);
663
664 mutex_enter(&pio->io_lock);
665 mutex_enter(&cio->io_lock);
666
667 list_remove(&pio->io_child_list, zl);
668 list_remove(&cio->io_parent_list, zl);
669
670 pio->io_child_count--;
671 cio->io_parent_count--;
672
673 mutex_exit(&cio->io_lock);
674 mutex_exit(&pio->io_lock);
675 kmem_cache_free(zio_link_cache, zl);
676 }
677
678 static boolean_t
679 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait)
680 {
681 boolean_t waiting = B_FALSE;
682
683 mutex_enter(&zio->io_lock);
684 ASSERT(zio->io_stall == NULL);
685 for (int c = 0; c < ZIO_CHILD_TYPES; c++) {
686 if (!(ZIO_CHILD_BIT_IS_SET(childbits, c)))
687 continue;
688
689 uint64_t *countp = &zio->io_children[c][wait];
690 if (*countp != 0) {
691 zio->io_stage >>= 1;
692 ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN);
693 zio->io_stall = countp;
694 waiting = B_TRUE;
695 break;
696 }
697 }
698 mutex_exit(&zio->io_lock);
699 return (waiting);
700 }
701
702 __attribute__((always_inline))
703 static inline void
704 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait,
705 zio_t **next_to_executep)
706 {
707 uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
708 int *errorp = &pio->io_child_error[zio->io_child_type];
709
710 mutex_enter(&pio->io_lock);
711 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
712 *errorp = zio_worst_error(*errorp, zio->io_error);
713 pio->io_reexecute |= zio->io_reexecute;
714 ASSERT3U(*countp, >, 0);
715
716 (*countp)--;
717
718 if (*countp == 0 && pio->io_stall == countp) {
719 zio_taskq_type_t type =
720 pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE :
721 ZIO_TASKQ_INTERRUPT;
722 pio->io_stall = NULL;
723 mutex_exit(&pio->io_lock);
724
725 /*
726 * If we can tell the caller to execute this parent next, do
727 * so. We only do this if the parent's zio type matches the
728 * child's type. Otherwise dispatch the parent zio in its
729 * own taskq.
730 *
731 * Having the caller execute the parent when possible reduces
732 * locking on the zio taskq's, reduces context switch
733 * overhead, and has no recursion penalty. Note that one
734 * read from disk typically causes at least 3 zio's: a
735 * zio_null(), the logical zio_read(), and then a physical
736 * zio. When the physical ZIO completes, we are able to call
737 * zio_done() on all 3 of these zio's from one invocation of
738 * zio_execute() by returning the parent back to
739 * zio_execute(). Since the parent isn't executed until this
740 * thread returns back to zio_execute(), the caller should do
741 * so promptly.
742 *
743 * In other cases, dispatching the parent prevents
744 * overflowing the stack when we have deeply nested
745 * parent-child relationships, as we do with the "mega zio"
746 * of writes for spa_sync(), and the chain of ZIL blocks.
747 */
748 if (next_to_executep != NULL && *next_to_executep == NULL &&
749 pio->io_type == zio->io_type) {
750 *next_to_executep = pio;
751 } else {
752 zio_taskq_dispatch(pio, type, B_FALSE);
753 }
754 } else {
755 mutex_exit(&pio->io_lock);
756 }
757 }
758
759 static void
760 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
761 {
762 if (zio->io_child_error[c] != 0 && zio->io_error == 0)
763 zio->io_error = zio->io_child_error[c];
764 }
765
766 int
767 zio_bookmark_compare(const void *x1, const void *x2)
768 {
769 const zio_t *z1 = x1;
770 const zio_t *z2 = x2;
771
772 if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset)
773 return (-1);
774 if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset)
775 return (1);
776
777 if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object)
778 return (-1);
779 if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object)
780 return (1);
781
782 if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level)
783 return (-1);
784 if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level)
785 return (1);
786
787 if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid)
788 return (-1);
789 if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid)
790 return (1);
791
792 if (z1 < z2)
793 return (-1);
794 if (z1 > z2)
795 return (1);
796
797 return (0);
798 }
799
800 /*
801 * ==========================================================================
802 * Create the various types of I/O (read, write, free, etc)
803 * ==========================================================================
804 */
805 static zio_t *
806 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
807 abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done,
808 void *private, zio_type_t type, zio_priority_t priority,
809 zio_flag_t flags, vdev_t *vd, uint64_t offset,
810 const zbookmark_phys_t *zb, enum zio_stage stage,
811 enum zio_stage pipeline)
812 {
813 zio_t *zio;
814
815 IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE);
816 ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0);
817 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
818
819 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
820 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
821 ASSERT(vd || stage == ZIO_STAGE_OPEN);
822
823 IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0);
824
825 zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
826 memset(zio, 0, sizeof (zio_t));
827
828 mutex_init(&zio->io_lock, NULL, MUTEX_NOLOCKDEP, NULL);
829 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
830
831 list_create(&zio->io_parent_list, sizeof (zio_link_t),
832 offsetof(zio_link_t, zl_parent_node));
833 list_create(&zio->io_child_list, sizeof (zio_link_t),
834 offsetof(zio_link_t, zl_child_node));
835 metaslab_trace_init(&zio->io_alloc_list);
836
837 if (vd != NULL)
838 zio->io_child_type = ZIO_CHILD_VDEV;
839 else if (flags & ZIO_FLAG_GANG_CHILD)
840 zio->io_child_type = ZIO_CHILD_GANG;
841 else if (flags & ZIO_FLAG_DDT_CHILD)
842 zio->io_child_type = ZIO_CHILD_DDT;
843 else
844 zio->io_child_type = ZIO_CHILD_LOGICAL;
845
846 if (bp != NULL) {
847 zio->io_bp = (blkptr_t *)bp;
848 zio->io_bp_copy = *bp;
849 zio->io_bp_orig = *bp;
850 if (type != ZIO_TYPE_WRITE ||
851 zio->io_child_type == ZIO_CHILD_DDT)
852 zio->io_bp = &zio->io_bp_copy; /* so caller can free */
853 if (zio->io_child_type == ZIO_CHILD_LOGICAL)
854 zio->io_logical = zio;
855 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
856 pipeline |= ZIO_GANG_STAGES;
857 }
858
859 zio->io_spa = spa;
860 zio->io_txg = txg;
861 zio->io_done = done;
862 zio->io_private = private;
863 zio->io_type = type;
864 zio->io_priority = priority;
865 zio->io_vd = vd;
866 zio->io_offset = offset;
867 zio->io_orig_abd = zio->io_abd = data;
868 zio->io_orig_size = zio->io_size = psize;
869 zio->io_lsize = lsize;
870 zio->io_orig_flags = zio->io_flags = flags;
871 zio->io_orig_stage = zio->io_stage = stage;
872 zio->io_orig_pipeline = zio->io_pipeline = pipeline;
873 zio->io_pipeline_trace = ZIO_STAGE_OPEN;
874
875 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
876 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
877
878 if (zb != NULL)
879 zio->io_bookmark = *zb;
880
881 if (pio != NULL) {
882 zio->io_metaslab_class = pio->io_metaslab_class;
883 if (zio->io_logical == NULL)
884 zio->io_logical = pio->io_logical;
885 if (zio->io_child_type == ZIO_CHILD_GANG)
886 zio->io_gang_leader = pio->io_gang_leader;
887 zio_add_child(pio, zio);
888 }
889
890 taskq_init_ent(&zio->io_tqent);
891
892 return (zio);
893 }
894
895 void
896 zio_destroy(zio_t *zio)
897 {
898 metaslab_trace_fini(&zio->io_alloc_list);
899 list_destroy(&zio->io_parent_list);
900 list_destroy(&zio->io_child_list);
901 mutex_destroy(&zio->io_lock);
902 cv_destroy(&zio->io_cv);
903 kmem_cache_free(zio_cache, zio);
904 }
905
906 zio_t *
907 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
908 void *private, zio_flag_t flags)
909 {
910 zio_t *zio;
911
912 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
913 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
914 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
915
916 return (zio);
917 }
918
919 zio_t *
920 zio_root(spa_t *spa, zio_done_func_t *done, void *private, zio_flag_t flags)
921 {
922 return (zio_null(NULL, spa, NULL, done, private, flags));
923 }
924
925 static int
926 zfs_blkptr_verify_log(spa_t *spa, const blkptr_t *bp,
927 enum blk_verify_flag blk_verify, const char *fmt, ...)
928 {
929 va_list adx;
930 char buf[256];
931
932 va_start(adx, fmt);
933 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
934 va_end(adx);
935
936 switch (blk_verify) {
937 case BLK_VERIFY_HALT:
938 dprintf_bp(bp, "blkptr at %p dprintf_bp():", bp);
939 zfs_panic_recover("%s: %s", spa_name(spa), buf);
940 break;
941 case BLK_VERIFY_LOG:
942 zfs_dbgmsg("%s: %s", spa_name(spa), buf);
943 break;
944 case BLK_VERIFY_ONLY:
945 break;
946 }
947
948 return (1);
949 }
950
951 /*
952 * Verify the block pointer fields contain reasonable values. This means
953 * it only contains known object types, checksum/compression identifiers,
954 * block sizes within the maximum allowed limits, valid DVAs, etc.
955 *
956 * If everything checks out B_TRUE is returned. The zfs_blkptr_verify
957 * argument controls the behavior when an invalid field is detected.
958 *
959 * Modes for zfs_blkptr_verify:
960 * 1) BLK_VERIFY_ONLY (evaluate the block)
961 * 2) BLK_VERIFY_LOG (evaluate the block and log problems)
962 * 3) BLK_VERIFY_HALT (call zfs_panic_recover on error)
963 */
964 boolean_t
965 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp, boolean_t config_held,
966 enum blk_verify_flag blk_verify)
967 {
968 int errors = 0;
969
970 if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
971 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
972 "blkptr at %p has invalid TYPE %llu",
973 bp, (longlong_t)BP_GET_TYPE(bp));
974 }
975 if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS) {
976 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
977 "blkptr at %p has invalid CHECKSUM %llu",
978 bp, (longlong_t)BP_GET_CHECKSUM(bp));
979 }
980 if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS) {
981 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
982 "blkptr at %p has invalid COMPRESS %llu",
983 bp, (longlong_t)BP_GET_COMPRESS(bp));
984 }
985 if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
986 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
987 "blkptr at %p has invalid LSIZE %llu",
988 bp, (longlong_t)BP_GET_LSIZE(bp));
989 }
990 if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
991 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
992 "blkptr at %p has invalid PSIZE %llu",
993 bp, (longlong_t)BP_GET_PSIZE(bp));
994 }
995
996 if (BP_IS_EMBEDDED(bp)) {
997 if (BPE_GET_ETYPE(bp) >= NUM_BP_EMBEDDED_TYPES) {
998 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
999 "blkptr at %p has invalid ETYPE %llu",
1000 bp, (longlong_t)BPE_GET_ETYPE(bp));
1001 }
1002 }
1003
1004 /*
1005 * Do not verify individual DVAs if the config is not trusted. This
1006 * will be done once the zio is executed in vdev_mirror_map_alloc.
1007 */
1008 if (!spa->spa_trust_config)
1009 return (errors == 0);
1010
1011 if (!config_held)
1012 spa_config_enter(spa, SCL_VDEV, bp, RW_READER);
1013 else
1014 ASSERT(spa_config_held(spa, SCL_VDEV, RW_WRITER));
1015 /*
1016 * Pool-specific checks.
1017 *
1018 * Note: it would be nice to verify that the blk_birth and
1019 * BP_PHYSICAL_BIRTH() are not too large. However, spa_freeze()
1020 * allows the birth time of log blocks (and dmu_sync()-ed blocks
1021 * that are in the log) to be arbitrarily large.
1022 */
1023 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
1024 const dva_t *dva = &bp->blk_dva[i];
1025 uint64_t vdevid = DVA_GET_VDEV(dva);
1026
1027 if (vdevid >= spa->spa_root_vdev->vdev_children) {
1028 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1029 "blkptr at %p DVA %u has invalid VDEV %llu",
1030 bp, i, (longlong_t)vdevid);
1031 continue;
1032 }
1033 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1034 if (vd == NULL) {
1035 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1036 "blkptr at %p DVA %u has invalid VDEV %llu",
1037 bp, i, (longlong_t)vdevid);
1038 continue;
1039 }
1040 if (vd->vdev_ops == &vdev_hole_ops) {
1041 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1042 "blkptr at %p DVA %u has hole VDEV %llu",
1043 bp, i, (longlong_t)vdevid);
1044 continue;
1045 }
1046 if (vd->vdev_ops == &vdev_missing_ops) {
1047 /*
1048 * "missing" vdevs are valid during import, but we
1049 * don't have their detailed info (e.g. asize), so
1050 * we can't perform any more checks on them.
1051 */
1052 continue;
1053 }
1054 uint64_t offset = DVA_GET_OFFSET(dva);
1055 uint64_t asize = DVA_GET_ASIZE(dva);
1056 if (DVA_GET_GANG(dva))
1057 asize = vdev_gang_header_asize(vd);
1058 if (offset + asize > vd->vdev_asize) {
1059 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1060 "blkptr at %p DVA %u has invalid OFFSET %llu",
1061 bp, i, (longlong_t)offset);
1062 }
1063 }
1064 if (errors > 0)
1065 dprintf_bp(bp, "blkptr at %p dprintf_bp():", bp);
1066 if (!config_held)
1067 spa_config_exit(spa, SCL_VDEV, bp);
1068
1069 return (errors == 0);
1070 }
1071
1072 boolean_t
1073 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp)
1074 {
1075 (void) bp;
1076 uint64_t vdevid = DVA_GET_VDEV(dva);
1077
1078 if (vdevid >= spa->spa_root_vdev->vdev_children)
1079 return (B_FALSE);
1080
1081 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1082 if (vd == NULL)
1083 return (B_FALSE);
1084
1085 if (vd->vdev_ops == &vdev_hole_ops)
1086 return (B_FALSE);
1087
1088 if (vd->vdev_ops == &vdev_missing_ops) {
1089 return (B_FALSE);
1090 }
1091
1092 uint64_t offset = DVA_GET_OFFSET(dva);
1093 uint64_t asize = DVA_GET_ASIZE(dva);
1094
1095 if (DVA_GET_GANG(dva))
1096 asize = vdev_gang_header_asize(vd);
1097 if (offset + asize > vd->vdev_asize)
1098 return (B_FALSE);
1099
1100 return (B_TRUE);
1101 }
1102
1103 zio_t *
1104 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
1105 abd_t *data, uint64_t size, zio_done_func_t *done, void *private,
1106 zio_priority_t priority, zio_flag_t flags, const zbookmark_phys_t *zb)
1107 {
1108 zio_t *zio;
1109
1110 zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
1111 data, size, size, done, private,
1112 ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
1113 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1114 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
1115
1116 return (zio);
1117 }
1118
1119 zio_t *
1120 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
1121 abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp,
1122 zio_done_func_t *ready, zio_done_func_t *children_ready,
1123 zio_done_func_t *physdone, zio_done_func_t *done,
1124 void *private, zio_priority_t priority, zio_flag_t flags,
1125 const zbookmark_phys_t *zb)
1126 {
1127 zio_t *zio;
1128
1129 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
1130 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
1131 zp->zp_compress >= ZIO_COMPRESS_OFF &&
1132 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
1133 DMU_OT_IS_VALID(zp->zp_type) &&
1134 zp->zp_level < 32 &&
1135 zp->zp_copies > 0 &&
1136 zp->zp_copies <= spa_max_replication(spa));
1137
1138 zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private,
1139 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
1140 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1141 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
1142
1143 zio->io_ready = ready;
1144 zio->io_children_ready = children_ready;
1145 zio->io_physdone = physdone;
1146 zio->io_prop = *zp;
1147
1148 /*
1149 * Data can be NULL if we are going to call zio_write_override() to
1150 * provide the already-allocated BP. But we may need the data to
1151 * verify a dedup hit (if requested). In this case, don't try to
1152 * dedup (just take the already-allocated BP verbatim). Encrypted
1153 * dedup blocks need data as well so we also disable dedup in this
1154 * case.
1155 */
1156 if (data == NULL &&
1157 (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) {
1158 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
1159 }
1160
1161 return (zio);
1162 }
1163
1164 zio_t *
1165 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data,
1166 uint64_t size, zio_done_func_t *done, void *private,
1167 zio_priority_t priority, zio_flag_t flags, zbookmark_phys_t *zb)
1168 {
1169 zio_t *zio;
1170
1171 zio = zio_create(pio, spa, txg, bp, data, size, size, done, private,
1172 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb,
1173 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
1174
1175 return (zio);
1176 }
1177
1178 void
1179 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
1180 {
1181 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
1182 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1183 ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1184 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
1185
1186 /*
1187 * We must reset the io_prop to match the values that existed
1188 * when the bp was first written by dmu_sync() keeping in mind
1189 * that nopwrite and dedup are mutually exclusive.
1190 */
1191 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
1192 zio->io_prop.zp_nopwrite = nopwrite;
1193 zio->io_prop.zp_copies = copies;
1194 zio->io_bp_override = bp;
1195 }
1196
1197 void
1198 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
1199 {
1200
1201 (void) zfs_blkptr_verify(spa, bp, B_FALSE, BLK_VERIFY_HALT);
1202
1203 /*
1204 * The check for EMBEDDED is a performance optimization. We
1205 * process the free here (by ignoring it) rather than
1206 * putting it on the list and then processing it in zio_free_sync().
1207 */
1208 if (BP_IS_EMBEDDED(bp))
1209 return;
1210
1211 /*
1212 * Frees that are for the currently-syncing txg, are not going to be
1213 * deferred, and which will not need to do a read (i.e. not GANG or
1214 * DEDUP), can be processed immediately. Otherwise, put them on the
1215 * in-memory list for later processing.
1216 *
1217 * Note that we only defer frees after zfs_sync_pass_deferred_free
1218 * when the log space map feature is disabled. [see relevant comment
1219 * in spa_sync_iterate_to_convergence()]
1220 */
1221 if (BP_IS_GANG(bp) ||
1222 BP_GET_DEDUP(bp) ||
1223 txg != spa->spa_syncing_txg ||
1224 (spa_sync_pass(spa) >= zfs_sync_pass_deferred_free &&
1225 !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))) {
1226 metaslab_check_free(spa, bp);
1227 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
1228 } else {
1229 VERIFY3P(zio_free_sync(NULL, spa, txg, bp, 0), ==, NULL);
1230 }
1231 }
1232
1233 /*
1234 * To improve performance, this function may return NULL if we were able
1235 * to do the free immediately. This avoids the cost of creating a zio
1236 * (and linking it to the parent, etc).
1237 */
1238 zio_t *
1239 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1240 zio_flag_t flags)
1241 {
1242 ASSERT(!BP_IS_HOLE(bp));
1243 ASSERT(spa_syncing_txg(spa) == txg);
1244
1245 if (BP_IS_EMBEDDED(bp))
1246 return (NULL);
1247
1248 metaslab_check_free(spa, bp);
1249 arc_freed(spa, bp);
1250 dsl_scan_freed(spa, bp);
1251
1252 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp)) {
1253 /*
1254 * GANG and DEDUP blocks can induce a read (for the gang block
1255 * header, or the DDT), so issue them asynchronously so that
1256 * this thread is not tied up.
1257 */
1258 enum zio_stage stage =
1259 ZIO_FREE_PIPELINE | ZIO_STAGE_ISSUE_ASYNC;
1260
1261 return (zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1262 BP_GET_PSIZE(bp), NULL, NULL,
1263 ZIO_TYPE_FREE, ZIO_PRIORITY_NOW,
1264 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage));
1265 } else {
1266 metaslab_free(spa, bp, txg, B_FALSE);
1267 return (NULL);
1268 }
1269 }
1270
1271 zio_t *
1272 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1273 zio_done_func_t *done, void *private, zio_flag_t flags)
1274 {
1275 zio_t *zio;
1276
1277 (void) zfs_blkptr_verify(spa, bp, flags & ZIO_FLAG_CONFIG_WRITER,
1278 BLK_VERIFY_HALT);
1279
1280 if (BP_IS_EMBEDDED(bp))
1281 return (zio_null(pio, spa, NULL, NULL, NULL, 0));
1282
1283 /*
1284 * A claim is an allocation of a specific block. Claims are needed
1285 * to support immediate writes in the intent log. The issue is that
1286 * immediate writes contain committed data, but in a txg that was
1287 * *not* committed. Upon opening the pool after an unclean shutdown,
1288 * the intent log claims all blocks that contain immediate write data
1289 * so that the SPA knows they're in use.
1290 *
1291 * All claims *must* be resolved in the first txg -- before the SPA
1292 * starts allocating blocks -- so that nothing is allocated twice.
1293 * If txg == 0 we just verify that the block is claimable.
1294 */
1295 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <,
1296 spa_min_claim_txg(spa));
1297 ASSERT(txg == spa_min_claim_txg(spa) || txg == 0);
1298 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(8) */
1299
1300 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1301 BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW,
1302 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
1303 ASSERT0(zio->io_queued_timestamp);
1304
1305 return (zio);
1306 }
1307
1308 zio_t *
1309 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
1310 zio_done_func_t *done, void *private, zio_flag_t flags)
1311 {
1312 zio_t *zio;
1313 int c;
1314
1315 if (vd->vdev_children == 0) {
1316 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
1317 ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
1318 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
1319
1320 zio->io_cmd = cmd;
1321 } else {
1322 zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
1323
1324 for (c = 0; c < vd->vdev_children; c++)
1325 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
1326 done, private, flags));
1327 }
1328
1329 return (zio);
1330 }
1331
1332 zio_t *
1333 zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1334 zio_done_func_t *done, void *private, zio_priority_t priority,
1335 zio_flag_t flags, enum trim_flag trim_flags)
1336 {
1337 zio_t *zio;
1338
1339 ASSERT0(vd->vdev_children);
1340 ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
1341 ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift));
1342 ASSERT3U(size, !=, 0);
1343
1344 zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done,
1345 private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL,
1346 vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE);
1347 zio->io_trim_flags = trim_flags;
1348
1349 return (zio);
1350 }
1351
1352 zio_t *
1353 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1354 abd_t *data, int checksum, zio_done_func_t *done, void *private,
1355 zio_priority_t priority, zio_flag_t flags, boolean_t labels)
1356 {
1357 zio_t *zio;
1358
1359 ASSERT(vd->vdev_children == 0);
1360 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1361 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1362 ASSERT3U(offset + size, <=, vd->vdev_psize);
1363
1364 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1365 private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1366 offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
1367
1368 zio->io_prop.zp_checksum = checksum;
1369
1370 return (zio);
1371 }
1372
1373 zio_t *
1374 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1375 abd_t *data, int checksum, zio_done_func_t *done, void *private,
1376 zio_priority_t priority, zio_flag_t flags, boolean_t labels)
1377 {
1378 zio_t *zio;
1379
1380 ASSERT(vd->vdev_children == 0);
1381 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1382 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1383 ASSERT3U(offset + size, <=, vd->vdev_psize);
1384
1385 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1386 private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1387 offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
1388
1389 zio->io_prop.zp_checksum = checksum;
1390
1391 if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
1392 /*
1393 * zec checksums are necessarily destructive -- they modify
1394 * the end of the write buffer to hold the verifier/checksum.
1395 * Therefore, we must make a local copy in case the data is
1396 * being written to multiple places in parallel.
1397 */
1398 abd_t *wbuf = abd_alloc_sametype(data, size);
1399 abd_copy(wbuf, data, size);
1400
1401 zio_push_transform(zio, wbuf, size, size, NULL);
1402 }
1403
1404 return (zio);
1405 }
1406
1407 /*
1408 * Create a child I/O to do some work for us.
1409 */
1410 zio_t *
1411 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1412 abd_t *data, uint64_t size, int type, zio_priority_t priority,
1413 zio_flag_t flags, zio_done_func_t *done, void *private)
1414 {
1415 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1416 zio_t *zio;
1417
1418 /*
1419 * vdev child I/Os do not propagate their error to the parent.
1420 * Therefore, for correct operation the caller *must* check for
1421 * and handle the error in the child i/o's done callback.
1422 * The only exceptions are i/os that we don't care about
1423 * (OPTIONAL or REPAIR).
1424 */
1425 ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) ||
1426 done != NULL);
1427
1428 if (type == ZIO_TYPE_READ && bp != NULL) {
1429 /*
1430 * If we have the bp, then the child should perform the
1431 * checksum and the parent need not. This pushes error
1432 * detection as close to the leaves as possible and
1433 * eliminates redundant checksums in the interior nodes.
1434 */
1435 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1436 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1437 }
1438
1439 if (vd->vdev_ops->vdev_op_leaf) {
1440 ASSERT0(vd->vdev_children);
1441 offset += VDEV_LABEL_START_SIZE;
1442 }
1443
1444 flags |= ZIO_VDEV_CHILD_FLAGS(pio);
1445
1446 /*
1447 * If we've decided to do a repair, the write is not speculative --
1448 * even if the original read was.
1449 */
1450 if (flags & ZIO_FLAG_IO_REPAIR)
1451 flags &= ~ZIO_FLAG_SPECULATIVE;
1452
1453 /*
1454 * If we're creating a child I/O that is not associated with a
1455 * top-level vdev, then the child zio is not an allocating I/O.
1456 * If this is a retried I/O then we ignore it since we will
1457 * have already processed the original allocating I/O.
1458 */
1459 if (flags & ZIO_FLAG_IO_ALLOCATING &&
1460 (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) {
1461 ASSERT(pio->io_metaslab_class != NULL);
1462 ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled);
1463 ASSERT(type == ZIO_TYPE_WRITE);
1464 ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE);
1465 ASSERT(!(flags & ZIO_FLAG_IO_REPAIR));
1466 ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) ||
1467 pio->io_child_type == ZIO_CHILD_GANG);
1468
1469 flags &= ~ZIO_FLAG_IO_ALLOCATING;
1470 }
1471
1472
1473 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size,
1474 done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1475 ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1476 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
1477
1478 zio->io_physdone = pio->io_physdone;
1479 if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
1480 zio->io_logical->io_phys_children++;
1481
1482 return (zio);
1483 }
1484
1485 zio_t *
1486 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size,
1487 zio_type_t type, zio_priority_t priority, zio_flag_t flags,
1488 zio_done_func_t *done, void *private)
1489 {
1490 zio_t *zio;
1491
1492 ASSERT(vd->vdev_ops->vdev_op_leaf);
1493
1494 zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1495 data, size, size, done, private, type, priority,
1496 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1497 vd, offset, NULL,
1498 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1499
1500 return (zio);
1501 }
1502
1503 void
1504 zio_flush(zio_t *zio, vdev_t *vd)
1505 {
1506 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
1507 NULL, NULL,
1508 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1509 }
1510
1511 void
1512 zio_shrink(zio_t *zio, uint64_t size)
1513 {
1514 ASSERT3P(zio->io_executor, ==, NULL);
1515 ASSERT3U(zio->io_orig_size, ==, zio->io_size);
1516 ASSERT3U(size, <=, zio->io_size);
1517
1518 /*
1519 * We don't shrink for raidz because of problems with the
1520 * reconstruction when reading back less than the block size.
1521 * Note, BP_IS_RAIDZ() assumes no compression.
1522 */
1523 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1524 if (!BP_IS_RAIDZ(zio->io_bp)) {
1525 /* we are not doing a raw write */
1526 ASSERT3U(zio->io_size, ==, zio->io_lsize);
1527 zio->io_orig_size = zio->io_size = zio->io_lsize = size;
1528 }
1529 }
1530
1531 /*
1532 * ==========================================================================
1533 * Prepare to read and write logical blocks
1534 * ==========================================================================
1535 */
1536
1537 static zio_t *
1538 zio_read_bp_init(zio_t *zio)
1539 {
1540 blkptr_t *bp = zio->io_bp;
1541 uint64_t psize =
1542 BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1543
1544 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1545
1546 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1547 zio->io_child_type == ZIO_CHILD_LOGICAL &&
1548 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1549 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1550 psize, psize, zio_decompress);
1551 }
1552
1553 if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) ||
1554 BP_HAS_INDIRECT_MAC_CKSUM(bp)) &&
1555 zio->io_child_type == ZIO_CHILD_LOGICAL) {
1556 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1557 psize, psize, zio_decrypt);
1558 }
1559
1560 if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1561 int psize = BPE_GET_PSIZE(bp);
1562 void *data = abd_borrow_buf(zio->io_abd, psize);
1563
1564 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1565 decode_embedded_bp_compressed(bp, data);
1566 abd_return_buf_copy(zio->io_abd, data, psize);
1567 } else {
1568 ASSERT(!BP_IS_EMBEDDED(bp));
1569 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1570 }
1571
1572 if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1573 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1574
1575 if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1576 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1577
1578 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1579 zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1580
1581 return (zio);
1582 }
1583
1584 static zio_t *
1585 zio_write_bp_init(zio_t *zio)
1586 {
1587 if (!IO_IS_ALLOCATING(zio))
1588 return (zio);
1589
1590 ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1591
1592 if (zio->io_bp_override) {
1593 blkptr_t *bp = zio->io_bp;
1594 zio_prop_t *zp = &zio->io_prop;
1595
1596 ASSERT(bp->blk_birth != zio->io_txg);
1597 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1598
1599 *bp = *zio->io_bp_override;
1600 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1601
1602 if (BP_IS_EMBEDDED(bp))
1603 return (zio);
1604
1605 /*
1606 * If we've been overridden and nopwrite is set then
1607 * set the flag accordingly to indicate that a nopwrite
1608 * has already occurred.
1609 */
1610 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1611 ASSERT(!zp->zp_dedup);
1612 ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum);
1613 zio->io_flags |= ZIO_FLAG_NOPWRITE;
1614 return (zio);
1615 }
1616
1617 ASSERT(!zp->zp_nopwrite);
1618
1619 if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1620 return (zio);
1621
1622 ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1623 ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1624
1625 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum &&
1626 !zp->zp_encrypt) {
1627 BP_SET_DEDUP(bp, 1);
1628 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1629 return (zio);
1630 }
1631
1632 /*
1633 * We were unable to handle this as an override bp, treat
1634 * it as a regular write I/O.
1635 */
1636 zio->io_bp_override = NULL;
1637 *bp = zio->io_bp_orig;
1638 zio->io_pipeline = zio->io_orig_pipeline;
1639 }
1640
1641 return (zio);
1642 }
1643
1644 static zio_t *
1645 zio_write_compress(zio_t *zio)
1646 {
1647 spa_t *spa = zio->io_spa;
1648 zio_prop_t *zp = &zio->io_prop;
1649 enum zio_compress compress = zp->zp_compress;
1650 blkptr_t *bp = zio->io_bp;
1651 uint64_t lsize = zio->io_lsize;
1652 uint64_t psize = zio->io_size;
1653 uint32_t pass = 1;
1654
1655 /*
1656 * If our children haven't all reached the ready stage,
1657 * wait for them and then repeat this pipeline stage.
1658 */
1659 if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
1660 ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) {
1661 return (NULL);
1662 }
1663
1664 if (!IO_IS_ALLOCATING(zio))
1665 return (zio);
1666
1667 if (zio->io_children_ready != NULL) {
1668 /*
1669 * Now that all our children are ready, run the callback
1670 * associated with this zio in case it wants to modify the
1671 * data to be written.
1672 */
1673 ASSERT3U(zp->zp_level, >, 0);
1674 zio->io_children_ready(zio);
1675 }
1676
1677 ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1678 ASSERT(zio->io_bp_override == NULL);
1679
1680 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1681 /*
1682 * We're rewriting an existing block, which means we're
1683 * working on behalf of spa_sync(). For spa_sync() to
1684 * converge, it must eventually be the case that we don't
1685 * have to allocate new blocks. But compression changes
1686 * the blocksize, which forces a reallocate, and makes
1687 * convergence take longer. Therefore, after the first
1688 * few passes, stop compressing to ensure convergence.
1689 */
1690 pass = spa_sync_pass(spa);
1691
1692 ASSERT(zio->io_txg == spa_syncing_txg(spa));
1693 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1694 ASSERT(!BP_GET_DEDUP(bp));
1695
1696 if (pass >= zfs_sync_pass_dont_compress)
1697 compress = ZIO_COMPRESS_OFF;
1698
1699 /* Make sure someone doesn't change their mind on overwrites */
1700 ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1701 spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1702 }
1703
1704 /* If it's a compressed write that is not raw, compress the buffer. */
1705 if (compress != ZIO_COMPRESS_OFF &&
1706 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1707 void *cbuf = zio_buf_alloc(lsize);
1708 psize = zio_compress_data(compress, zio->io_abd, cbuf, lsize,
1709 zp->zp_complevel);
1710 if (psize == 0 || psize >= lsize) {
1711 compress = ZIO_COMPRESS_OFF;
1712 zio_buf_free(cbuf, lsize);
1713 } else if (!zp->zp_dedup && !zp->zp_encrypt &&
1714 psize <= BPE_PAYLOAD_SIZE &&
1715 zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1716 spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1717 encode_embedded_bp_compressed(bp,
1718 cbuf, compress, lsize, psize);
1719 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1720 BP_SET_TYPE(bp, zio->io_prop.zp_type);
1721 BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1722 zio_buf_free(cbuf, lsize);
1723 bp->blk_birth = zio->io_txg;
1724 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1725 ASSERT(spa_feature_is_active(spa,
1726 SPA_FEATURE_EMBEDDED_DATA));
1727 return (zio);
1728 } else {
1729 /*
1730 * Round compressed size up to the minimum allocation
1731 * size of the smallest-ashift device, and zero the
1732 * tail. This ensures that the compressed size of the
1733 * BP (and thus compressratio property) are correct,
1734 * in that we charge for the padding used to fill out
1735 * the last sector.
1736 */
1737 ASSERT3U(spa->spa_min_alloc, >=, SPA_MINBLOCKSHIFT);
1738 size_t rounded = (size_t)roundup(psize,
1739 spa->spa_min_alloc);
1740 if (rounded >= lsize) {
1741 compress = ZIO_COMPRESS_OFF;
1742 zio_buf_free(cbuf, lsize);
1743 psize = lsize;
1744 } else {
1745 abd_t *cdata = abd_get_from_buf(cbuf, lsize);
1746 abd_take_ownership_of_buf(cdata, B_TRUE);
1747 abd_zero_off(cdata, psize, rounded - psize);
1748 psize = rounded;
1749 zio_push_transform(zio, cdata,
1750 psize, lsize, NULL);
1751 }
1752 }
1753
1754 /*
1755 * We were unable to handle this as an override bp, treat
1756 * it as a regular write I/O.
1757 */
1758 zio->io_bp_override = NULL;
1759 *bp = zio->io_bp_orig;
1760 zio->io_pipeline = zio->io_orig_pipeline;
1761
1762 } else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 &&
1763 zp->zp_type == DMU_OT_DNODE) {
1764 /*
1765 * The DMU actually relies on the zio layer's compression
1766 * to free metadnode blocks that have had all contained
1767 * dnodes freed. As a result, even when doing a raw
1768 * receive, we must check whether the block can be compressed
1769 * to a hole.
1770 */
1771 psize = zio_compress_data(ZIO_COMPRESS_EMPTY,
1772 zio->io_abd, NULL, lsize, zp->zp_complevel);
1773 if (psize == 0 || psize >= lsize)
1774 compress = ZIO_COMPRESS_OFF;
1775 } else if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS &&
1776 !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) {
1777 /*
1778 * If we are raw receiving an encrypted dataset we should not
1779 * take this codepath because it will change the on-disk block
1780 * and decryption will fail.
1781 */
1782 size_t rounded = MIN((size_t)roundup(psize,
1783 spa->spa_min_alloc), lsize);
1784
1785 if (rounded != psize) {
1786 abd_t *cdata = abd_alloc_linear(rounded, B_TRUE);
1787 abd_zero_off(cdata, psize, rounded - psize);
1788 abd_copy_off(cdata, zio->io_abd, 0, 0, psize);
1789 psize = rounded;
1790 zio_push_transform(zio, cdata,
1791 psize, rounded, NULL);
1792 }
1793 } else {
1794 ASSERT3U(psize, !=, 0);
1795 }
1796
1797 /*
1798 * The final pass of spa_sync() must be all rewrites, but the first
1799 * few passes offer a trade-off: allocating blocks defers convergence,
1800 * but newly allocated blocks are sequential, so they can be written
1801 * to disk faster. Therefore, we allow the first few passes of
1802 * spa_sync() to allocate new blocks, but force rewrites after that.
1803 * There should only be a handful of blocks after pass 1 in any case.
1804 */
1805 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1806 BP_GET_PSIZE(bp) == psize &&
1807 pass >= zfs_sync_pass_rewrite) {
1808 VERIFY3U(psize, !=, 0);
1809 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1810
1811 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1812 zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1813 } else {
1814 BP_ZERO(bp);
1815 zio->io_pipeline = ZIO_WRITE_PIPELINE;
1816 }
1817
1818 if (psize == 0) {
1819 if (zio->io_bp_orig.blk_birth != 0 &&
1820 spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1821 BP_SET_LSIZE(bp, lsize);
1822 BP_SET_TYPE(bp, zp->zp_type);
1823 BP_SET_LEVEL(bp, zp->zp_level);
1824 BP_SET_BIRTH(bp, zio->io_txg, 0);
1825 }
1826 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1827 } else {
1828 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1829 BP_SET_LSIZE(bp, lsize);
1830 BP_SET_TYPE(bp, zp->zp_type);
1831 BP_SET_LEVEL(bp, zp->zp_level);
1832 BP_SET_PSIZE(bp, psize);
1833 BP_SET_COMPRESS(bp, compress);
1834 BP_SET_CHECKSUM(bp, zp->zp_checksum);
1835 BP_SET_DEDUP(bp, zp->zp_dedup);
1836 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1837 if (zp->zp_dedup) {
1838 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1839 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1840 ASSERT(!zp->zp_encrypt ||
1841 DMU_OT_IS_ENCRYPTED(zp->zp_type));
1842 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1843 }
1844 if (zp->zp_nopwrite) {
1845 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1846 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1847 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1848 }
1849 }
1850 return (zio);
1851 }
1852
1853 static zio_t *
1854 zio_free_bp_init(zio_t *zio)
1855 {
1856 blkptr_t *bp = zio->io_bp;
1857
1858 if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1859 if (BP_GET_DEDUP(bp))
1860 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1861 }
1862
1863 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1864
1865 return (zio);
1866 }
1867
1868 /*
1869 * ==========================================================================
1870 * Execute the I/O pipeline
1871 * ==========================================================================
1872 */
1873
1874 static void
1875 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1876 {
1877 spa_t *spa = zio->io_spa;
1878 zio_type_t t = zio->io_type;
1879 int flags = (cutinline ? TQ_FRONT : 0);
1880
1881 /*
1882 * If we're a config writer or a probe, the normal issue and
1883 * interrupt threads may all be blocked waiting for the config lock.
1884 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1885 */
1886 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1887 t = ZIO_TYPE_NULL;
1888
1889 /*
1890 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1891 */
1892 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1893 t = ZIO_TYPE_NULL;
1894
1895 /*
1896 * If this is a high priority I/O, then use the high priority taskq if
1897 * available.
1898 */
1899 if ((zio->io_priority == ZIO_PRIORITY_NOW ||
1900 zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) &&
1901 spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1902 q++;
1903
1904 ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1905
1906 /*
1907 * NB: We are assuming that the zio can only be dispatched
1908 * to a single taskq at a time. It would be a grievous error
1909 * to dispatch the zio to another taskq at the same time.
1910 */
1911 ASSERT(taskq_empty_ent(&zio->io_tqent));
1912 spa_taskq_dispatch_ent(spa, t, q, zio_execute, zio, flags,
1913 &zio->io_tqent);
1914 }
1915
1916 static boolean_t
1917 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1918 {
1919 spa_t *spa = zio->io_spa;
1920
1921 taskq_t *tq = taskq_of_curthread();
1922
1923 for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1924 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1925 uint_t i;
1926 for (i = 0; i < tqs->stqs_count; i++) {
1927 if (tqs->stqs_taskq[i] == tq)
1928 return (B_TRUE);
1929 }
1930 }
1931
1932 return (B_FALSE);
1933 }
1934
1935 static zio_t *
1936 zio_issue_async(zio_t *zio)
1937 {
1938 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1939
1940 return (NULL);
1941 }
1942
1943 void
1944 zio_interrupt(void *zio)
1945 {
1946 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1947 }
1948
1949 void
1950 zio_delay_interrupt(zio_t *zio)
1951 {
1952 /*
1953 * The timeout_generic() function isn't defined in userspace, so
1954 * rather than trying to implement the function, the zio delay
1955 * functionality has been disabled for userspace builds.
1956 */
1957
1958 #ifdef _KERNEL
1959 /*
1960 * If io_target_timestamp is zero, then no delay has been registered
1961 * for this IO, thus jump to the end of this function and "skip" the
1962 * delay; issuing it directly to the zio layer.
1963 */
1964 if (zio->io_target_timestamp != 0) {
1965 hrtime_t now = gethrtime();
1966
1967 if (now >= zio->io_target_timestamp) {
1968 /*
1969 * This IO has already taken longer than the target
1970 * delay to complete, so we don't want to delay it
1971 * any longer; we "miss" the delay and issue it
1972 * directly to the zio layer. This is likely due to
1973 * the target latency being set to a value less than
1974 * the underlying hardware can satisfy (e.g. delay
1975 * set to 1ms, but the disks take 10ms to complete an
1976 * IO request).
1977 */
1978
1979 DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
1980 hrtime_t, now);
1981
1982 zio_interrupt(zio);
1983 } else {
1984 taskqid_t tid;
1985 hrtime_t diff = zio->io_target_timestamp - now;
1986 clock_t expire_at_tick = ddi_get_lbolt() +
1987 NSEC_TO_TICK(diff);
1988
1989 DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
1990 hrtime_t, now, hrtime_t, diff);
1991
1992 if (NSEC_TO_TICK(diff) == 0) {
1993 /* Our delay is less than a jiffy - just spin */
1994 zfs_sleep_until(zio->io_target_timestamp);
1995 zio_interrupt(zio);
1996 } else {
1997 /*
1998 * Use taskq_dispatch_delay() in the place of
1999 * OpenZFS's timeout_generic().
2000 */
2001 tid = taskq_dispatch_delay(system_taskq,
2002 zio_interrupt, zio, TQ_NOSLEEP,
2003 expire_at_tick);
2004 if (tid == TASKQID_INVALID) {
2005 /*
2006 * Couldn't allocate a task. Just
2007 * finish the zio without a delay.
2008 */
2009 zio_interrupt(zio);
2010 }
2011 }
2012 }
2013 return;
2014 }
2015 #endif
2016 DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
2017 zio_interrupt(zio);
2018 }
2019
2020 static void
2021 zio_deadman_impl(zio_t *pio, int ziodepth)
2022 {
2023 zio_t *cio, *cio_next;
2024 zio_link_t *zl = NULL;
2025 vdev_t *vd = pio->io_vd;
2026
2027 if (zio_deadman_log_all || (vd != NULL && vd->vdev_ops->vdev_op_leaf)) {
2028 vdev_queue_t *vq = vd ? &vd->vdev_queue : NULL;
2029 zbookmark_phys_t *zb = &pio->io_bookmark;
2030 uint64_t delta = gethrtime() - pio->io_timestamp;
2031 uint64_t failmode = spa_get_deadman_failmode(pio->io_spa);
2032
2033 zfs_dbgmsg("slow zio[%d]: zio=%px timestamp=%llu "
2034 "delta=%llu queued=%llu io=%llu "
2035 "path=%s "
2036 "last=%llu type=%d "
2037 "priority=%d flags=0x%llx stage=0x%x "
2038 "pipeline=0x%x pipeline-trace=0x%x "
2039 "objset=%llu object=%llu "
2040 "level=%llu blkid=%llu "
2041 "offset=%llu size=%llu "
2042 "error=%d",
2043 ziodepth, pio, pio->io_timestamp,
2044 (u_longlong_t)delta, pio->io_delta, pio->io_delay,
2045 vd ? vd->vdev_path : "NULL",
2046 vq ? vq->vq_io_complete_ts : 0, pio->io_type,
2047 pio->io_priority, (u_longlong_t)pio->io_flags,
2048 pio->io_stage, pio->io_pipeline, pio->io_pipeline_trace,
2049 (u_longlong_t)zb->zb_objset, (u_longlong_t)zb->zb_object,
2050 (u_longlong_t)zb->zb_level, (u_longlong_t)zb->zb_blkid,
2051 (u_longlong_t)pio->io_offset, (u_longlong_t)pio->io_size,
2052 pio->io_error);
2053 (void) zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN,
2054 pio->io_spa, vd, zb, pio, 0);
2055
2056 if (failmode == ZIO_FAILURE_MODE_CONTINUE &&
2057 taskq_empty_ent(&pio->io_tqent)) {
2058 zio_interrupt(pio);
2059 }
2060 }
2061
2062 mutex_enter(&pio->io_lock);
2063 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2064 cio_next = zio_walk_children(pio, &zl);
2065 zio_deadman_impl(cio, ziodepth + 1);
2066 }
2067 mutex_exit(&pio->io_lock);
2068 }
2069
2070 /*
2071 * Log the critical information describing this zio and all of its children
2072 * using the zfs_dbgmsg() interface then post deadman event for the ZED.
2073 */
2074 void
2075 zio_deadman(zio_t *pio, const char *tag)
2076 {
2077 spa_t *spa = pio->io_spa;
2078 char *name = spa_name(spa);
2079
2080 if (!zfs_deadman_enabled || spa_suspended(spa))
2081 return;
2082
2083 zio_deadman_impl(pio, 0);
2084
2085 switch (spa_get_deadman_failmode(spa)) {
2086 case ZIO_FAILURE_MODE_WAIT:
2087 zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag, name);
2088 break;
2089
2090 case ZIO_FAILURE_MODE_CONTINUE:
2091 zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag, name);
2092 break;
2093
2094 case ZIO_FAILURE_MODE_PANIC:
2095 fm_panic("%s determined I/O to pool '%s' is hung.", tag, name);
2096 break;
2097 }
2098 }
2099
2100 /*
2101 * Execute the I/O pipeline until one of the following occurs:
2102 * (1) the I/O completes; (2) the pipeline stalls waiting for
2103 * dependent child I/Os; (3) the I/O issues, so we're waiting
2104 * for an I/O completion interrupt; (4) the I/O is delegated by
2105 * vdev-level caching or aggregation; (5) the I/O is deferred
2106 * due to vdev-level queueing; (6) the I/O is handed off to
2107 * another thread. In all cases, the pipeline stops whenever
2108 * there's no CPU work; it never burns a thread in cv_wait_io().
2109 *
2110 * There's no locking on io_stage because there's no legitimate way
2111 * for multiple threads to be attempting to process the same I/O.
2112 */
2113 static zio_pipe_stage_t *zio_pipeline[];
2114
2115 /*
2116 * zio_execute() is a wrapper around the static function
2117 * __zio_execute() so that we can force __zio_execute() to be
2118 * inlined. This reduces stack overhead which is important
2119 * because __zio_execute() is called recursively in several zio
2120 * code paths. zio_execute() itself cannot be inlined because
2121 * it is externally visible.
2122 */
2123 void
2124 zio_execute(void *zio)
2125 {
2126 fstrans_cookie_t cookie;
2127
2128 cookie = spl_fstrans_mark();
2129 __zio_execute(zio);
2130 spl_fstrans_unmark(cookie);
2131 }
2132
2133 /*
2134 * Used to determine if in the current context the stack is sized large
2135 * enough to allow zio_execute() to be called recursively. A minimum
2136 * stack size of 16K is required to avoid needing to re-dispatch the zio.
2137 */
2138 static boolean_t
2139 zio_execute_stack_check(zio_t *zio)
2140 {
2141 #if !defined(HAVE_LARGE_STACKS)
2142 dsl_pool_t *dp = spa_get_dsl(zio->io_spa);
2143
2144 /* Executing in txg_sync_thread() context. */
2145 if (dp && curthread == dp->dp_tx.tx_sync_thread)
2146 return (B_TRUE);
2147
2148 /* Pool initialization outside of zio_taskq context. */
2149 if (dp && spa_is_initializing(dp->dp_spa) &&
2150 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE) &&
2151 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE_HIGH))
2152 return (B_TRUE);
2153 #else
2154 (void) zio;
2155 #endif /* HAVE_LARGE_STACKS */
2156
2157 return (B_FALSE);
2158 }
2159
2160 __attribute__((always_inline))
2161 static inline void
2162 __zio_execute(zio_t *zio)
2163 {
2164 ASSERT3U(zio->io_queued_timestamp, >, 0);
2165
2166 while (zio->io_stage < ZIO_STAGE_DONE) {
2167 enum zio_stage pipeline = zio->io_pipeline;
2168 enum zio_stage stage = zio->io_stage;
2169
2170 zio->io_executor = curthread;
2171
2172 ASSERT(!MUTEX_HELD(&zio->io_lock));
2173 ASSERT(ISP2(stage));
2174 ASSERT(zio->io_stall == NULL);
2175
2176 do {
2177 stage <<= 1;
2178 } while ((stage & pipeline) == 0);
2179
2180 ASSERT(stage <= ZIO_STAGE_DONE);
2181
2182 /*
2183 * If we are in interrupt context and this pipeline stage
2184 * will grab a config lock that is held across I/O,
2185 * or may wait for an I/O that needs an interrupt thread
2186 * to complete, issue async to avoid deadlock.
2187 *
2188 * For VDEV_IO_START, we cut in line so that the io will
2189 * be sent to disk promptly.
2190 */
2191 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
2192 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
2193 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2194 zio_requeue_io_start_cut_in_line : B_FALSE;
2195 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2196 return;
2197 }
2198
2199 /*
2200 * If the current context doesn't have large enough stacks
2201 * the zio must be issued asynchronously to prevent overflow.
2202 */
2203 if (zio_execute_stack_check(zio)) {
2204 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2205 zio_requeue_io_start_cut_in_line : B_FALSE;
2206 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2207 return;
2208 }
2209
2210 zio->io_stage = stage;
2211 zio->io_pipeline_trace |= zio->io_stage;
2212
2213 /*
2214 * The zio pipeline stage returns the next zio to execute
2215 * (typically the same as this one), or NULL if we should
2216 * stop.
2217 */
2218 zio = zio_pipeline[highbit64(stage) - 1](zio);
2219
2220 if (zio == NULL)
2221 return;
2222 }
2223 }
2224
2225
2226 /*
2227 * ==========================================================================
2228 * Initiate I/O, either sync or async
2229 * ==========================================================================
2230 */
2231 int
2232 zio_wait(zio_t *zio)
2233 {
2234 /*
2235 * Some routines, like zio_free_sync(), may return a NULL zio
2236 * to avoid the performance overhead of creating and then destroying
2237 * an unneeded zio. For the callers' simplicity, we accept a NULL
2238 * zio and ignore it.
2239 */
2240 if (zio == NULL)
2241 return (0);
2242
2243 long timeout = MSEC_TO_TICK(zfs_deadman_ziotime_ms);
2244 int error;
2245
2246 ASSERT3S(zio->io_stage, ==, ZIO_STAGE_OPEN);
2247 ASSERT3P(zio->io_executor, ==, NULL);
2248
2249 zio->io_waiter = curthread;
2250 ASSERT0(zio->io_queued_timestamp);
2251 zio->io_queued_timestamp = gethrtime();
2252
2253 __zio_execute(zio);
2254
2255 mutex_enter(&zio->io_lock);
2256 while (zio->io_executor != NULL) {
2257 error = cv_timedwait_io(&zio->io_cv, &zio->io_lock,
2258 ddi_get_lbolt() + timeout);
2259
2260 if (zfs_deadman_enabled && error == -1 &&
2261 gethrtime() - zio->io_queued_timestamp >
2262 spa_deadman_ziotime(zio->io_spa)) {
2263 mutex_exit(&zio->io_lock);
2264 timeout = MSEC_TO_TICK(zfs_deadman_checktime_ms);
2265 zio_deadman(zio, FTAG);
2266 mutex_enter(&zio->io_lock);
2267 }
2268 }
2269 mutex_exit(&zio->io_lock);
2270
2271 error = zio->io_error;
2272 zio_destroy(zio);
2273
2274 return (error);
2275 }
2276
2277 void
2278 zio_nowait(zio_t *zio)
2279 {
2280 /*
2281 * See comment in zio_wait().
2282 */
2283 if (zio == NULL)
2284 return;
2285
2286 ASSERT3P(zio->io_executor, ==, NULL);
2287
2288 if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
2289 zio_unique_parent(zio) == NULL) {
2290 zio_t *pio;
2291
2292 /*
2293 * This is a logical async I/O with no parent to wait for it.
2294 * We add it to the spa_async_root_zio "Godfather" I/O which
2295 * will ensure they complete prior to unloading the pool.
2296 */
2297 spa_t *spa = zio->io_spa;
2298 pio = spa->spa_async_zio_root[CPU_SEQID_UNSTABLE];
2299
2300 zio_add_child(pio, zio);
2301 }
2302
2303 ASSERT0(zio->io_queued_timestamp);
2304 zio->io_queued_timestamp = gethrtime();
2305 __zio_execute(zio);
2306 }
2307
2308 /*
2309 * ==========================================================================
2310 * Reexecute, cancel, or suspend/resume failed I/O
2311 * ==========================================================================
2312 */
2313
2314 static void
2315 zio_reexecute(void *arg)
2316 {
2317 zio_t *pio = arg;
2318 zio_t *cio, *cio_next;
2319
2320 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
2321 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
2322 ASSERT(pio->io_gang_leader == NULL);
2323 ASSERT(pio->io_gang_tree == NULL);
2324
2325 pio->io_flags = pio->io_orig_flags;
2326 pio->io_stage = pio->io_orig_stage;
2327 pio->io_pipeline = pio->io_orig_pipeline;
2328 pio->io_reexecute = 0;
2329 pio->io_flags |= ZIO_FLAG_REEXECUTED;
2330 pio->io_pipeline_trace = 0;
2331 pio->io_error = 0;
2332 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2333 pio->io_state[w] = 0;
2334 for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2335 pio->io_child_error[c] = 0;
2336
2337 if (IO_IS_ALLOCATING(pio))
2338 BP_ZERO(pio->io_bp);
2339
2340 /*
2341 * As we reexecute pio's children, new children could be created.
2342 * New children go to the head of pio's io_child_list, however,
2343 * so we will (correctly) not reexecute them. The key is that
2344 * the remainder of pio's io_child_list, from 'cio_next' onward,
2345 * cannot be affected by any side effects of reexecuting 'cio'.
2346 */
2347 zio_link_t *zl = NULL;
2348 mutex_enter(&pio->io_lock);
2349 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2350 cio_next = zio_walk_children(pio, &zl);
2351 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2352 pio->io_children[cio->io_child_type][w]++;
2353 mutex_exit(&pio->io_lock);
2354 zio_reexecute(cio);
2355 mutex_enter(&pio->io_lock);
2356 }
2357 mutex_exit(&pio->io_lock);
2358
2359 /*
2360 * Now that all children have been reexecuted, execute the parent.
2361 * We don't reexecute "The Godfather" I/O here as it's the
2362 * responsibility of the caller to wait on it.
2363 */
2364 if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) {
2365 pio->io_queued_timestamp = gethrtime();
2366 __zio_execute(pio);
2367 }
2368 }
2369
2370 void
2371 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason)
2372 {
2373 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
2374 fm_panic("Pool '%s' has encountered an uncorrectable I/O "
2375 "failure and the failure mode property for this pool "
2376 "is set to panic.", spa_name(spa));
2377
2378 cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable I/O "
2379 "failure and has been suspended.\n", spa_name(spa));
2380
2381 (void) zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL,
2382 NULL, NULL, 0);
2383
2384 mutex_enter(&spa->spa_suspend_lock);
2385
2386 if (spa->spa_suspend_zio_root == NULL)
2387 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
2388 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2389 ZIO_FLAG_GODFATHER);
2390
2391 spa->spa_suspended = reason;
2392
2393 if (zio != NULL) {
2394 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
2395 ASSERT(zio != spa->spa_suspend_zio_root);
2396 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2397 ASSERT(zio_unique_parent(zio) == NULL);
2398 ASSERT(zio->io_stage == ZIO_STAGE_DONE);
2399 zio_add_child(spa->spa_suspend_zio_root, zio);
2400 }
2401
2402 mutex_exit(&spa->spa_suspend_lock);
2403 }
2404
2405 int
2406 zio_resume(spa_t *spa)
2407 {
2408 zio_t *pio;
2409
2410 /*
2411 * Reexecute all previously suspended i/o.
2412 */
2413 mutex_enter(&spa->spa_suspend_lock);
2414 spa->spa_suspended = ZIO_SUSPEND_NONE;
2415 cv_broadcast(&spa->spa_suspend_cv);
2416 pio = spa->spa_suspend_zio_root;
2417 spa->spa_suspend_zio_root = NULL;
2418 mutex_exit(&spa->spa_suspend_lock);
2419
2420 if (pio == NULL)
2421 return (0);
2422
2423 zio_reexecute(pio);
2424 return (zio_wait(pio));
2425 }
2426
2427 void
2428 zio_resume_wait(spa_t *spa)
2429 {
2430 mutex_enter(&spa->spa_suspend_lock);
2431 while (spa_suspended(spa))
2432 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
2433 mutex_exit(&spa->spa_suspend_lock);
2434 }
2435
2436 /*
2437 * ==========================================================================
2438 * Gang blocks.
2439 *
2440 * A gang block is a collection of small blocks that looks to the DMU
2441 * like one large block. When zio_dva_allocate() cannot find a block
2442 * of the requested size, due to either severe fragmentation or the pool
2443 * being nearly full, it calls zio_write_gang_block() to construct the
2444 * block from smaller fragments.
2445 *
2446 * A gang block consists of a gang header (zio_gbh_phys_t) and up to
2447 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like
2448 * an indirect block: it's an array of block pointers. It consumes
2449 * only one sector and hence is allocatable regardless of fragmentation.
2450 * The gang header's bps point to its gang members, which hold the data.
2451 *
2452 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
2453 * as the verifier to ensure uniqueness of the SHA256 checksum.
2454 * Critically, the gang block bp's blk_cksum is the checksum of the data,
2455 * not the gang header. This ensures that data block signatures (needed for
2456 * deduplication) are independent of how the block is physically stored.
2457 *
2458 * Gang blocks can be nested: a gang member may itself be a gang block.
2459 * Thus every gang block is a tree in which root and all interior nodes are
2460 * gang headers, and the leaves are normal blocks that contain user data.
2461 * The root of the gang tree is called the gang leader.
2462 *
2463 * To perform any operation (read, rewrite, free, claim) on a gang block,
2464 * zio_gang_assemble() first assembles the gang tree (minus data leaves)
2465 * in the io_gang_tree field of the original logical i/o by recursively
2466 * reading the gang leader and all gang headers below it. This yields
2467 * an in-core tree containing the contents of every gang header and the
2468 * bps for every constituent of the gang block.
2469 *
2470 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
2471 * and invokes a callback on each bp. To free a gang block, zio_gang_issue()
2472 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
2473 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
2474 * zio_read_gang() is a wrapper around zio_read() that omits reading gang
2475 * headers, since we already have those in io_gang_tree. zio_rewrite_gang()
2476 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
2477 * of the gang header plus zio_checksum_compute() of the data to update the
2478 * gang header's blk_cksum as described above.
2479 *
2480 * The two-phase assemble/issue model solves the problem of partial failure --
2481 * what if you'd freed part of a gang block but then couldn't read the
2482 * gang header for another part? Assembling the entire gang tree first
2483 * ensures that all the necessary gang header I/O has succeeded before
2484 * starting the actual work of free, claim, or write. Once the gang tree
2485 * is assembled, free and claim are in-memory operations that cannot fail.
2486 *
2487 * In the event that a gang write fails, zio_dva_unallocate() walks the
2488 * gang tree to immediately free (i.e. insert back into the space map)
2489 * everything we've allocated. This ensures that we don't get ENOSPC
2490 * errors during repeated suspend/resume cycles due to a flaky device.
2491 *
2492 * Gang rewrites only happen during sync-to-convergence. If we can't assemble
2493 * the gang tree, we won't modify the block, so we can safely defer the free
2494 * (knowing that the block is still intact). If we *can* assemble the gang
2495 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
2496 * each constituent bp and we can allocate a new block on the next sync pass.
2497 *
2498 * In all cases, the gang tree allows complete recovery from partial failure.
2499 * ==========================================================================
2500 */
2501
2502 static void
2503 zio_gang_issue_func_done(zio_t *zio)
2504 {
2505 abd_free(zio->io_abd);
2506 }
2507
2508 static zio_t *
2509 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2510 uint64_t offset)
2511 {
2512 if (gn != NULL)
2513 return (pio);
2514
2515 return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset),
2516 BP_GET_PSIZE(bp), zio_gang_issue_func_done,
2517 NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2518 &pio->io_bookmark));
2519 }
2520
2521 static zio_t *
2522 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2523 uint64_t offset)
2524 {
2525 zio_t *zio;
2526
2527 if (gn != NULL) {
2528 abd_t *gbh_abd =
2529 abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2530 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2531 gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL,
2532 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2533 &pio->io_bookmark);
2534 /*
2535 * As we rewrite each gang header, the pipeline will compute
2536 * a new gang block header checksum for it; but no one will
2537 * compute a new data checksum, so we do that here. The one
2538 * exception is the gang leader: the pipeline already computed
2539 * its data checksum because that stage precedes gang assembly.
2540 * (Presently, nothing actually uses interior data checksums;
2541 * this is just good hygiene.)
2542 */
2543 if (gn != pio->io_gang_leader->io_gang_tree) {
2544 abd_t *buf = abd_get_offset(data, offset);
2545
2546 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
2547 buf, BP_GET_PSIZE(bp));
2548
2549 abd_free(buf);
2550 }
2551 /*
2552 * If we are here to damage data for testing purposes,
2553 * leave the GBH alone so that we can detect the damage.
2554 */
2555 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
2556 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2557 } else {
2558 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2559 abd_get_offset(data, offset), BP_GET_PSIZE(bp),
2560 zio_gang_issue_func_done, NULL, pio->io_priority,
2561 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2562 }
2563
2564 return (zio);
2565 }
2566
2567 static zio_t *
2568 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2569 uint64_t offset)
2570 {
2571 (void) gn, (void) data, (void) offset;
2572
2573 zio_t *zio = zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
2574 ZIO_GANG_CHILD_FLAGS(pio));
2575 if (zio == NULL) {
2576 zio = zio_null(pio, pio->io_spa,
2577 NULL, NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio));
2578 }
2579 return (zio);
2580 }
2581
2582 static zio_t *
2583 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2584 uint64_t offset)
2585 {
2586 (void) gn, (void) data, (void) offset;
2587 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
2588 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
2589 }
2590
2591 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
2592 NULL,
2593 zio_read_gang,
2594 zio_rewrite_gang,
2595 zio_free_gang,
2596 zio_claim_gang,
2597 NULL
2598 };
2599
2600 static void zio_gang_tree_assemble_done(zio_t *zio);
2601
2602 static zio_gang_node_t *
2603 zio_gang_node_alloc(zio_gang_node_t **gnpp)
2604 {
2605 zio_gang_node_t *gn;
2606
2607 ASSERT(*gnpp == NULL);
2608
2609 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
2610 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
2611 *gnpp = gn;
2612
2613 return (gn);
2614 }
2615
2616 static void
2617 zio_gang_node_free(zio_gang_node_t **gnpp)
2618 {
2619 zio_gang_node_t *gn = *gnpp;
2620
2621 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2622 ASSERT(gn->gn_child[g] == NULL);
2623
2624 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2625 kmem_free(gn, sizeof (*gn));
2626 *gnpp = NULL;
2627 }
2628
2629 static void
2630 zio_gang_tree_free(zio_gang_node_t **gnpp)
2631 {
2632 zio_gang_node_t *gn = *gnpp;
2633
2634 if (gn == NULL)
2635 return;
2636
2637 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2638 zio_gang_tree_free(&gn->gn_child[g]);
2639
2640 zio_gang_node_free(gnpp);
2641 }
2642
2643 static void
2644 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
2645 {
2646 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
2647 abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2648
2649 ASSERT(gio->io_gang_leader == gio);
2650 ASSERT(BP_IS_GANG(bp));
2651
2652 zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2653 zio_gang_tree_assemble_done, gn, gio->io_priority,
2654 ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
2655 }
2656
2657 static void
2658 zio_gang_tree_assemble_done(zio_t *zio)
2659 {
2660 zio_t *gio = zio->io_gang_leader;
2661 zio_gang_node_t *gn = zio->io_private;
2662 blkptr_t *bp = zio->io_bp;
2663
2664 ASSERT(gio == zio_unique_parent(zio));
2665 ASSERT(zio->io_child_count == 0);
2666
2667 if (zio->io_error)
2668 return;
2669
2670 /* this ABD was created from a linear buf in zio_gang_tree_assemble */
2671 if (BP_SHOULD_BYTESWAP(bp))
2672 byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size);
2673
2674 ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh);
2675 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
2676 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2677
2678 abd_free(zio->io_abd);
2679
2680 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2681 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2682 if (!BP_IS_GANG(gbp))
2683 continue;
2684 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
2685 }
2686 }
2687
2688 static void
2689 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data,
2690 uint64_t offset)
2691 {
2692 zio_t *gio = pio->io_gang_leader;
2693 zio_t *zio;
2694
2695 ASSERT(BP_IS_GANG(bp) == !!gn);
2696 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
2697 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
2698
2699 /*
2700 * If you're a gang header, your data is in gn->gn_gbh.
2701 * If you're a gang member, your data is in 'data' and gn == NULL.
2702 */
2703 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset);
2704
2705 if (gn != NULL) {
2706 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2707
2708 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2709 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2710 if (BP_IS_HOLE(gbp))
2711 continue;
2712 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data,
2713 offset);
2714 offset += BP_GET_PSIZE(gbp);
2715 }
2716 }
2717
2718 if (gn == gio->io_gang_tree)
2719 ASSERT3U(gio->io_size, ==, offset);
2720
2721 if (zio != pio)
2722 zio_nowait(zio);
2723 }
2724
2725 static zio_t *
2726 zio_gang_assemble(zio_t *zio)
2727 {
2728 blkptr_t *bp = zio->io_bp;
2729
2730 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
2731 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2732
2733 zio->io_gang_leader = zio;
2734
2735 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
2736
2737 return (zio);
2738 }
2739
2740 static zio_t *
2741 zio_gang_issue(zio_t *zio)
2742 {
2743 blkptr_t *bp = zio->io_bp;
2744
2745 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) {
2746 return (NULL);
2747 }
2748
2749 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
2750 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2751
2752 if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
2753 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd,
2754 0);
2755 else
2756 zio_gang_tree_free(&zio->io_gang_tree);
2757
2758 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2759
2760 return (zio);
2761 }
2762
2763 static void
2764 zio_write_gang_member_ready(zio_t *zio)
2765 {
2766 zio_t *pio = zio_unique_parent(zio);
2767 dva_t *cdva = zio->io_bp->blk_dva;
2768 dva_t *pdva = pio->io_bp->blk_dva;
2769 uint64_t asize;
2770 zio_t *gio __maybe_unused = zio->io_gang_leader;
2771
2772 if (BP_IS_HOLE(zio->io_bp))
2773 return;
2774
2775 ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
2776
2777 ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
2778 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
2779 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
2780 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
2781 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
2782
2783 mutex_enter(&pio->io_lock);
2784 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
2785 ASSERT(DVA_GET_GANG(&pdva[d]));
2786 asize = DVA_GET_ASIZE(&pdva[d]);
2787 asize += DVA_GET_ASIZE(&cdva[d]);
2788 DVA_SET_ASIZE(&pdva[d], asize);
2789 }
2790 mutex_exit(&pio->io_lock);
2791 }
2792
2793 static void
2794 zio_write_gang_done(zio_t *zio)
2795 {
2796 /*
2797 * The io_abd field will be NULL for a zio with no data. The io_flags
2798 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't
2799 * check for it here as it is cleared in zio_ready.
2800 */
2801 if (zio->io_abd != NULL)
2802 abd_free(zio->io_abd);
2803 }
2804
2805 static zio_t *
2806 zio_write_gang_block(zio_t *pio, metaslab_class_t *mc)
2807 {
2808 spa_t *spa = pio->io_spa;
2809 blkptr_t *bp = pio->io_bp;
2810 zio_t *gio = pio->io_gang_leader;
2811 zio_t *zio;
2812 zio_gang_node_t *gn, **gnpp;
2813 zio_gbh_phys_t *gbh;
2814 abd_t *gbh_abd;
2815 uint64_t txg = pio->io_txg;
2816 uint64_t resid = pio->io_size;
2817 uint64_t lsize;
2818 int copies = gio->io_prop.zp_copies;
2819 int gbh_copies;
2820 zio_prop_t zp;
2821 int error;
2822 boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA);
2823
2824 /*
2825 * encrypted blocks need DVA[2] free so encrypted gang headers can't
2826 * have a third copy.
2827 */
2828 gbh_copies = MIN(copies + 1, spa_max_replication(spa));
2829 if (BP_IS_ENCRYPTED(bp) && gbh_copies >= SPA_DVAS_PER_BP)
2830 gbh_copies = SPA_DVAS_PER_BP - 1;
2831
2832 int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER;
2833 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2834 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2835 ASSERT(has_data);
2836
2837 flags |= METASLAB_ASYNC_ALLOC;
2838 VERIFY(zfs_refcount_held(&mc->mc_allocator[pio->io_allocator].
2839 mca_alloc_slots, pio));
2840
2841 /*
2842 * The logical zio has already placed a reservation for
2843 * 'copies' allocation slots but gang blocks may require
2844 * additional copies. These additional copies
2845 * (i.e. gbh_copies - copies) are guaranteed to succeed
2846 * since metaslab_class_throttle_reserve() always allows
2847 * additional reservations for gang blocks.
2848 */
2849 VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies,
2850 pio->io_allocator, pio, flags));
2851 }
2852
2853 error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE,
2854 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags,
2855 &pio->io_alloc_list, pio, pio->io_allocator);
2856 if (error) {
2857 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2858 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2859 ASSERT(has_data);
2860
2861 /*
2862 * If we failed to allocate the gang block header then
2863 * we remove any additional allocation reservations that
2864 * we placed here. The original reservation will
2865 * be removed when the logical I/O goes to the ready
2866 * stage.
2867 */
2868 metaslab_class_throttle_unreserve(mc,
2869 gbh_copies - copies, pio->io_allocator, pio);
2870 }
2871
2872 pio->io_error = error;
2873 return (pio);
2874 }
2875
2876 if (pio == gio) {
2877 gnpp = &gio->io_gang_tree;
2878 } else {
2879 gnpp = pio->io_private;
2880 ASSERT(pio->io_ready == zio_write_gang_member_ready);
2881 }
2882
2883 gn = zio_gang_node_alloc(gnpp);
2884 gbh = gn->gn_gbh;
2885 memset(gbh, 0, SPA_GANGBLOCKSIZE);
2886 gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE);
2887
2888 /*
2889 * Create the gang header.
2890 */
2891 zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2892 zio_write_gang_done, NULL, pio->io_priority,
2893 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2894
2895 /*
2896 * Create and nowait the gang children.
2897 */
2898 for (int g = 0; resid != 0; resid -= lsize, g++) {
2899 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
2900 SPA_MINBLOCKSIZE);
2901 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
2902
2903 zp.zp_checksum = gio->io_prop.zp_checksum;
2904 zp.zp_compress = ZIO_COMPRESS_OFF;
2905 zp.zp_complevel = gio->io_prop.zp_complevel;
2906 zp.zp_type = DMU_OT_NONE;
2907 zp.zp_level = 0;
2908 zp.zp_copies = gio->io_prop.zp_copies;
2909 zp.zp_dedup = B_FALSE;
2910 zp.zp_dedup_verify = B_FALSE;
2911 zp.zp_nopwrite = B_FALSE;
2912 zp.zp_encrypt = gio->io_prop.zp_encrypt;
2913 zp.zp_byteorder = gio->io_prop.zp_byteorder;
2914 memset(zp.zp_salt, 0, ZIO_DATA_SALT_LEN);
2915 memset(zp.zp_iv, 0, ZIO_DATA_IV_LEN);
2916 memset(zp.zp_mac, 0, ZIO_DATA_MAC_LEN);
2917
2918 zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
2919 has_data ? abd_get_offset(pio->io_abd, pio->io_size -
2920 resid) : NULL, lsize, lsize, &zp,
2921 zio_write_gang_member_ready, NULL, NULL,
2922 zio_write_gang_done, &gn->gn_child[g], pio->io_priority,
2923 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2924
2925 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2926 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2927 ASSERT(has_data);
2928
2929 /*
2930 * Gang children won't throttle but we should
2931 * account for their work, so reserve an allocation
2932 * slot for them here.
2933 */
2934 VERIFY(metaslab_class_throttle_reserve(mc,
2935 zp.zp_copies, cio->io_allocator, cio, flags));
2936 }
2937 zio_nowait(cio);
2938 }
2939
2940 /*
2941 * Set pio's pipeline to just wait for zio to finish.
2942 */
2943 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2944
2945 /*
2946 * We didn't allocate this bp, so make sure it doesn't get unmarked.
2947 */
2948 pio->io_flags &= ~ZIO_FLAG_FASTWRITE;
2949
2950 zio_nowait(zio);
2951
2952 return (pio);
2953 }
2954
2955 /*
2956 * The zio_nop_write stage in the pipeline determines if allocating a
2957 * new bp is necessary. The nopwrite feature can handle writes in
2958 * either syncing or open context (i.e. zil writes) and as a result is
2959 * mutually exclusive with dedup.
2960 *
2961 * By leveraging a cryptographically secure checksum, such as SHA256, we
2962 * can compare the checksums of the new data and the old to determine if
2963 * allocating a new block is required. Note that our requirements for
2964 * cryptographic strength are fairly weak: there can't be any accidental
2965 * hash collisions, but we don't need to be secure against intentional
2966 * (malicious) collisions. To trigger a nopwrite, you have to be able
2967 * to write the file to begin with, and triggering an incorrect (hash
2968 * collision) nopwrite is no worse than simply writing to the file.
2969 * That said, there are no known attacks against the checksum algorithms
2970 * used for nopwrite, assuming that the salt and the checksums
2971 * themselves remain secret.
2972 */
2973 static zio_t *
2974 zio_nop_write(zio_t *zio)
2975 {
2976 blkptr_t *bp = zio->io_bp;
2977 blkptr_t *bp_orig = &zio->io_bp_orig;
2978 zio_prop_t *zp = &zio->io_prop;
2979
2980 ASSERT(BP_IS_HOLE(bp));
2981 ASSERT(BP_GET_LEVEL(bp) == 0);
2982 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2983 ASSERT(zp->zp_nopwrite);
2984 ASSERT(!zp->zp_dedup);
2985 ASSERT(zio->io_bp_override == NULL);
2986 ASSERT(IO_IS_ALLOCATING(zio));
2987
2988 /*
2989 * Check to see if the original bp and the new bp have matching
2990 * characteristics (i.e. same checksum, compression algorithms, etc).
2991 * If they don't then just continue with the pipeline which will
2992 * allocate a new bp.
2993 */
2994 if (BP_IS_HOLE(bp_orig) ||
2995 !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
2996 ZCHECKSUM_FLAG_NOPWRITE) ||
2997 BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) ||
2998 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
2999 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
3000 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
3001 zp->zp_copies != BP_GET_NDVAS(bp_orig))
3002 return (zio);
3003
3004 /*
3005 * If the checksums match then reset the pipeline so that we
3006 * avoid allocating a new bp and issuing any I/O.
3007 */
3008 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
3009 ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
3010 ZCHECKSUM_FLAG_NOPWRITE);
3011 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
3012 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
3013 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
3014 ASSERT3U(bp->blk_prop, ==, bp_orig->blk_prop);
3015
3016 /*
3017 * If we're overwriting a block that is currently on an
3018 * indirect vdev, then ignore the nopwrite request and
3019 * allow a new block to be allocated on a concrete vdev.
3020 */
3021 spa_config_enter(zio->io_spa, SCL_VDEV, FTAG, RW_READER);
3022 for (int d = 0; d < BP_GET_NDVAS(bp_orig); d++) {
3023 vdev_t *tvd = vdev_lookup_top(zio->io_spa,
3024 DVA_GET_VDEV(&bp_orig->blk_dva[d]));
3025 if (tvd->vdev_ops == &vdev_indirect_ops) {
3026 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
3027 return (zio);
3028 }
3029 }
3030 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
3031
3032 *bp = *bp_orig;
3033 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3034 zio->io_flags |= ZIO_FLAG_NOPWRITE;
3035 }
3036
3037 return (zio);
3038 }
3039
3040 /*
3041 * ==========================================================================
3042 * Dedup
3043 * ==========================================================================
3044 */
3045 static void
3046 zio_ddt_child_read_done(zio_t *zio)
3047 {
3048 blkptr_t *bp = zio->io_bp;
3049 ddt_entry_t *dde = zio->io_private;
3050 ddt_phys_t *ddp;
3051 zio_t *pio = zio_unique_parent(zio);
3052
3053 mutex_enter(&pio->io_lock);
3054 ddp = ddt_phys_select(dde, bp);
3055 if (zio->io_error == 0)
3056 ddt_phys_clear(ddp); /* this ddp doesn't need repair */
3057
3058 if (zio->io_error == 0 && dde->dde_repair_abd == NULL)
3059 dde->dde_repair_abd = zio->io_abd;
3060 else
3061 abd_free(zio->io_abd);
3062 mutex_exit(&pio->io_lock);
3063 }
3064
3065 static zio_t *
3066 zio_ddt_read_start(zio_t *zio)
3067 {
3068 blkptr_t *bp = zio->io_bp;
3069
3070 ASSERT(BP_GET_DEDUP(bp));
3071 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3072 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3073
3074 if (zio->io_child_error[ZIO_CHILD_DDT]) {
3075 ddt_t *ddt = ddt_select(zio->io_spa, bp);
3076 ddt_entry_t *dde = ddt_repair_start(ddt, bp);
3077 ddt_phys_t *ddp = dde->dde_phys;
3078 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
3079 blkptr_t blk;
3080
3081 ASSERT(zio->io_vsd == NULL);
3082 zio->io_vsd = dde;
3083
3084 if (ddp_self == NULL)
3085 return (zio);
3086
3087 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
3088 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
3089 continue;
3090 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
3091 &blk);
3092 zio_nowait(zio_read(zio, zio->io_spa, &blk,
3093 abd_alloc_for_io(zio->io_size, B_TRUE),
3094 zio->io_size, zio_ddt_child_read_done, dde,
3095 zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) |
3096 ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark));
3097 }
3098 return (zio);
3099 }
3100
3101 zio_nowait(zio_read(zio, zio->io_spa, bp,
3102 zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority,
3103 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
3104
3105 return (zio);
3106 }
3107
3108 static zio_t *
3109 zio_ddt_read_done(zio_t *zio)
3110 {
3111 blkptr_t *bp = zio->io_bp;
3112
3113 if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) {
3114 return (NULL);
3115 }
3116
3117 ASSERT(BP_GET_DEDUP(bp));
3118 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3119 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3120
3121 if (zio->io_child_error[ZIO_CHILD_DDT]) {
3122 ddt_t *ddt = ddt_select(zio->io_spa, bp);
3123 ddt_entry_t *dde = zio->io_vsd;
3124 if (ddt == NULL) {
3125 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
3126 return (zio);
3127 }
3128 if (dde == NULL) {
3129 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
3130 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
3131 return (NULL);
3132 }
3133 if (dde->dde_repair_abd != NULL) {
3134 abd_copy(zio->io_abd, dde->dde_repair_abd,
3135 zio->io_size);
3136 zio->io_child_error[ZIO_CHILD_DDT] = 0;
3137 }
3138 ddt_repair_done(ddt, dde);
3139 zio->io_vsd = NULL;
3140 }
3141
3142 ASSERT(zio->io_vsd == NULL);
3143
3144 return (zio);
3145 }
3146
3147 static boolean_t
3148 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
3149 {
3150 spa_t *spa = zio->io_spa;
3151 boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW);
3152
3153 ASSERT(!(zio->io_bp_override && do_raw));
3154
3155 /*
3156 * Note: we compare the original data, not the transformed data,
3157 * because when zio->io_bp is an override bp, we will not have
3158 * pushed the I/O transforms. That's an important optimization
3159 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
3160 * However, we should never get a raw, override zio so in these
3161 * cases we can compare the io_abd directly. This is useful because
3162 * it allows us to do dedup verification even if we don't have access
3163 * to the original data (for instance, if the encryption keys aren't
3164 * loaded).
3165 */
3166
3167 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
3168 zio_t *lio = dde->dde_lead_zio[p];
3169
3170 if (lio != NULL && do_raw) {
3171 return (lio->io_size != zio->io_size ||
3172 abd_cmp(zio->io_abd, lio->io_abd) != 0);
3173 } else if (lio != NULL) {
3174 return (lio->io_orig_size != zio->io_orig_size ||
3175 abd_cmp(zio->io_orig_abd, lio->io_orig_abd) != 0);
3176 }
3177 }
3178
3179 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
3180 ddt_phys_t *ddp = &dde->dde_phys[p];
3181
3182 if (ddp->ddp_phys_birth != 0 && do_raw) {
3183 blkptr_t blk = *zio->io_bp;
3184 uint64_t psize;
3185 abd_t *tmpabd;
3186 int error;
3187
3188 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
3189 psize = BP_GET_PSIZE(&blk);
3190
3191 if (psize != zio->io_size)
3192 return (B_TRUE);
3193
3194 ddt_exit(ddt);
3195
3196 tmpabd = abd_alloc_for_io(psize, B_TRUE);
3197
3198 error = zio_wait(zio_read(NULL, spa, &blk, tmpabd,
3199 psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
3200 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3201 ZIO_FLAG_RAW, &zio->io_bookmark));
3202
3203 if (error == 0) {
3204 if (abd_cmp(tmpabd, zio->io_abd) != 0)
3205 error = SET_ERROR(ENOENT);
3206 }
3207
3208 abd_free(tmpabd);
3209 ddt_enter(ddt);
3210 return (error != 0);
3211 } else if (ddp->ddp_phys_birth != 0) {
3212 arc_buf_t *abuf = NULL;
3213 arc_flags_t aflags = ARC_FLAG_WAIT;
3214 blkptr_t blk = *zio->io_bp;
3215 int error;
3216
3217 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
3218
3219 if (BP_GET_LSIZE(&blk) != zio->io_orig_size)
3220 return (B_TRUE);
3221
3222 ddt_exit(ddt);
3223
3224 error = arc_read(NULL, spa, &blk,
3225 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
3226 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3227 &aflags, &zio->io_bookmark);
3228
3229 if (error == 0) {
3230 if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data,
3231 zio->io_orig_size) != 0)
3232 error = SET_ERROR(ENOENT);
3233 arc_buf_destroy(abuf, &abuf);
3234 }
3235
3236 ddt_enter(ddt);
3237 return (error != 0);
3238 }
3239 }
3240
3241 return (B_FALSE);
3242 }
3243
3244 static void
3245 zio_ddt_child_write_ready(zio_t *zio)
3246 {
3247 int p = zio->io_prop.zp_copies;
3248 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3249 ddt_entry_t *dde = zio->io_private;
3250 ddt_phys_t *ddp = &dde->dde_phys[p];
3251 zio_t *pio;
3252
3253 if (zio->io_error)
3254 return;
3255
3256 ddt_enter(ddt);
3257
3258 ASSERT(dde->dde_lead_zio[p] == zio);
3259
3260 ddt_phys_fill(ddp, zio->io_bp);
3261
3262 zio_link_t *zl = NULL;
3263 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
3264 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
3265
3266 ddt_exit(ddt);
3267 }
3268
3269 static void
3270 zio_ddt_child_write_done(zio_t *zio)
3271 {
3272 int p = zio->io_prop.zp_copies;
3273 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3274 ddt_entry_t *dde = zio->io_private;
3275 ddt_phys_t *ddp = &dde->dde_phys[p];
3276
3277 ddt_enter(ddt);
3278
3279 ASSERT(ddp->ddp_refcnt == 0);
3280 ASSERT(dde->dde_lead_zio[p] == zio);
3281 dde->dde_lead_zio[p] = NULL;
3282
3283 if (zio->io_error == 0) {
3284 zio_link_t *zl = NULL;
3285 while (zio_walk_parents(zio, &zl) != NULL)
3286 ddt_phys_addref(ddp);
3287 } else {
3288 ddt_phys_clear(ddp);
3289 }
3290
3291 ddt_exit(ddt);
3292 }
3293
3294 static zio_t *
3295 zio_ddt_write(zio_t *zio)
3296 {
3297 spa_t *spa = zio->io_spa;
3298 blkptr_t *bp = zio->io_bp;
3299 uint64_t txg = zio->io_txg;
3300 zio_prop_t *zp = &zio->io_prop;
3301 int p = zp->zp_copies;
3302 zio_t *cio = NULL;
3303 ddt_t *ddt = ddt_select(spa, bp);
3304 ddt_entry_t *dde;
3305 ddt_phys_t *ddp;
3306
3307 ASSERT(BP_GET_DEDUP(bp));
3308 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
3309 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
3310 ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW)));
3311
3312 ddt_enter(ddt);
3313 dde = ddt_lookup(ddt, bp, B_TRUE);
3314 ddp = &dde->dde_phys[p];
3315
3316 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
3317 /*
3318 * If we're using a weak checksum, upgrade to a strong checksum
3319 * and try again. If we're already using a strong checksum,
3320 * we can't resolve it, so just convert to an ordinary write.
3321 * (And automatically e-mail a paper to Nature?)
3322 */
3323 if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
3324 ZCHECKSUM_FLAG_DEDUP)) {
3325 zp->zp_checksum = spa_dedup_checksum(spa);
3326 zio_pop_transforms(zio);
3327 zio->io_stage = ZIO_STAGE_OPEN;
3328 BP_ZERO(bp);
3329 } else {
3330 zp->zp_dedup = B_FALSE;
3331 BP_SET_DEDUP(bp, B_FALSE);
3332 }
3333 ASSERT(!BP_GET_DEDUP(bp));
3334 zio->io_pipeline = ZIO_WRITE_PIPELINE;
3335 ddt_exit(ddt);
3336 return (zio);
3337 }
3338
3339 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
3340 if (ddp->ddp_phys_birth != 0)
3341 ddt_bp_fill(ddp, bp, txg);
3342 if (dde->dde_lead_zio[p] != NULL)
3343 zio_add_child(zio, dde->dde_lead_zio[p]);
3344 else
3345 ddt_phys_addref(ddp);
3346 } else if (zio->io_bp_override) {
3347 ASSERT(bp->blk_birth == txg);
3348 ASSERT(BP_EQUAL(bp, zio->io_bp_override));
3349 ddt_phys_fill(ddp, bp);
3350 ddt_phys_addref(ddp);
3351 } else {
3352 cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
3353 zio->io_orig_size, zio->io_orig_size, zp,
3354 zio_ddt_child_write_ready, NULL, NULL,
3355 zio_ddt_child_write_done, dde, zio->io_priority,
3356 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
3357
3358 zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL);
3359 dde->dde_lead_zio[p] = cio;
3360 }
3361
3362 ddt_exit(ddt);
3363
3364 zio_nowait(cio);
3365
3366 return (zio);
3367 }
3368
3369 static ddt_entry_t *freedde; /* for debugging */
3370
3371 static zio_t *
3372 zio_ddt_free(zio_t *zio)
3373 {
3374 spa_t *spa = zio->io_spa;
3375 blkptr_t *bp = zio->io_bp;
3376 ddt_t *ddt = ddt_select(spa, bp);
3377 ddt_entry_t *dde;
3378 ddt_phys_t *ddp;
3379
3380 ASSERT(BP_GET_DEDUP(bp));
3381 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3382
3383 ddt_enter(ddt);
3384 freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
3385 if (dde) {
3386 ddp = ddt_phys_select(dde, bp);
3387 if (ddp)
3388 ddt_phys_decref(ddp);
3389 }
3390 ddt_exit(ddt);
3391
3392 return (zio);
3393 }
3394
3395 /*
3396 * ==========================================================================
3397 * Allocate and free blocks
3398 * ==========================================================================
3399 */
3400
3401 static zio_t *
3402 zio_io_to_allocate(spa_t *spa, int allocator)
3403 {
3404 zio_t *zio;
3405
3406 ASSERT(MUTEX_HELD(&spa->spa_allocs[allocator].spaa_lock));
3407
3408 zio = avl_first(&spa->spa_allocs[allocator].spaa_tree);
3409 if (zio == NULL)
3410 return (NULL);
3411
3412 ASSERT(IO_IS_ALLOCATING(zio));
3413
3414 /*
3415 * Try to place a reservation for this zio. If we're unable to
3416 * reserve then we throttle.
3417 */
3418 ASSERT3U(zio->io_allocator, ==, allocator);
3419 if (!metaslab_class_throttle_reserve(zio->io_metaslab_class,
3420 zio->io_prop.zp_copies, allocator, zio, 0)) {
3421 return (NULL);
3422 }
3423
3424 avl_remove(&spa->spa_allocs[allocator].spaa_tree, zio);
3425 ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE);
3426
3427 return (zio);
3428 }
3429
3430 static zio_t *
3431 zio_dva_throttle(zio_t *zio)
3432 {
3433 spa_t *spa = zio->io_spa;
3434 zio_t *nio;
3435 metaslab_class_t *mc;
3436
3437 /* locate an appropriate allocation class */
3438 mc = spa_preferred_class(spa, zio->io_size, zio->io_prop.zp_type,
3439 zio->io_prop.zp_level, zio->io_prop.zp_zpl_smallblk);
3440
3441 if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE ||
3442 !mc->mc_alloc_throttle_enabled ||
3443 zio->io_child_type == ZIO_CHILD_GANG ||
3444 zio->io_flags & ZIO_FLAG_NODATA) {
3445 return (zio);
3446 }
3447
3448 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3449 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3450 ASSERT3U(zio->io_queued_timestamp, >, 0);
3451 ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE);
3452
3453 zbookmark_phys_t *bm = &zio->io_bookmark;
3454 /*
3455 * We want to try to use as many allocators as possible to help improve
3456 * performance, but we also want logically adjacent IOs to be physically
3457 * adjacent to improve sequential read performance. We chunk each object
3458 * into 2^20 block regions, and then hash based on the objset, object,
3459 * level, and region to accomplish both of these goals.
3460 */
3461 int allocator = (uint_t)cityhash4(bm->zb_objset, bm->zb_object,
3462 bm->zb_level, bm->zb_blkid >> 20) % spa->spa_alloc_count;
3463 zio->io_allocator = allocator;
3464 zio->io_metaslab_class = mc;
3465 mutex_enter(&spa->spa_allocs[allocator].spaa_lock);
3466 avl_add(&spa->spa_allocs[allocator].spaa_tree, zio);
3467 nio = zio_io_to_allocate(spa, allocator);
3468 mutex_exit(&spa->spa_allocs[allocator].spaa_lock);
3469 return (nio);
3470 }
3471
3472 static void
3473 zio_allocate_dispatch(spa_t *spa, int allocator)
3474 {
3475 zio_t *zio;
3476
3477 mutex_enter(&spa->spa_allocs[allocator].spaa_lock);
3478 zio = zio_io_to_allocate(spa, allocator);
3479 mutex_exit(&spa->spa_allocs[allocator].spaa_lock);
3480 if (zio == NULL)
3481 return;
3482
3483 ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE);
3484 ASSERT0(zio->io_error);
3485 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE);
3486 }
3487
3488 static zio_t *
3489 zio_dva_allocate(zio_t *zio)
3490 {
3491 spa_t *spa = zio->io_spa;
3492 metaslab_class_t *mc;
3493 blkptr_t *bp = zio->io_bp;
3494 int error;
3495 int flags = 0;
3496
3497 if (zio->io_gang_leader == NULL) {
3498 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3499 zio->io_gang_leader = zio;
3500 }
3501
3502 ASSERT(BP_IS_HOLE(bp));
3503 ASSERT0(BP_GET_NDVAS(bp));
3504 ASSERT3U(zio->io_prop.zp_copies, >, 0);
3505 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
3506 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
3507
3508 flags |= (zio->io_flags & ZIO_FLAG_FASTWRITE) ? METASLAB_FASTWRITE : 0;
3509 if (zio->io_flags & ZIO_FLAG_NODATA)
3510 flags |= METASLAB_DONT_THROTTLE;
3511 if (zio->io_flags & ZIO_FLAG_GANG_CHILD)
3512 flags |= METASLAB_GANG_CHILD;
3513 if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE)
3514 flags |= METASLAB_ASYNC_ALLOC;
3515
3516 /*
3517 * if not already chosen, locate an appropriate allocation class
3518 */
3519 mc = zio->io_metaslab_class;
3520 if (mc == NULL) {
3521 mc = spa_preferred_class(spa, zio->io_size,
3522 zio->io_prop.zp_type, zio->io_prop.zp_level,
3523 zio->io_prop.zp_zpl_smallblk);
3524 zio->io_metaslab_class = mc;
3525 }
3526
3527 /*
3528 * Try allocating the block in the usual metaslab class.
3529 * If that's full, allocate it in the normal class.
3530 * If that's full, allocate as a gang block,
3531 * and if all are full, the allocation fails (which shouldn't happen).
3532 *
3533 * Note that we do not fall back on embedded slog (ZIL) space, to
3534 * preserve unfragmented slog space, which is critical for decent
3535 * sync write performance. If a log allocation fails, we will fall
3536 * back to spa_sync() which is abysmal for performance.
3537 */
3538 error = metaslab_alloc(spa, mc, zio->io_size, bp,
3539 zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3540 &zio->io_alloc_list, zio, zio->io_allocator);
3541
3542 /*
3543 * Fallback to normal class when an alloc class is full
3544 */
3545 if (error == ENOSPC && mc != spa_normal_class(spa)) {
3546 /*
3547 * If throttling, transfer reservation over to normal class.
3548 * The io_allocator slot can remain the same even though we
3549 * are switching classes.
3550 */
3551 if (mc->mc_alloc_throttle_enabled &&
3552 (zio->io_flags & ZIO_FLAG_IO_ALLOCATING)) {
3553 metaslab_class_throttle_unreserve(mc,
3554 zio->io_prop.zp_copies, zio->io_allocator, zio);
3555 zio->io_flags &= ~ZIO_FLAG_IO_ALLOCATING;
3556
3557 VERIFY(metaslab_class_throttle_reserve(
3558 spa_normal_class(spa),
3559 zio->io_prop.zp_copies, zio->io_allocator, zio,
3560 flags | METASLAB_MUST_RESERVE));
3561 }
3562 zio->io_metaslab_class = mc = spa_normal_class(spa);
3563 if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) {
3564 zfs_dbgmsg("%s: metaslab allocation failure, "
3565 "trying normal class: zio %px, size %llu, error %d",
3566 spa_name(spa), zio, (u_longlong_t)zio->io_size,
3567 error);
3568 }
3569
3570 error = metaslab_alloc(spa, mc, zio->io_size, bp,
3571 zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3572 &zio->io_alloc_list, zio, zio->io_allocator);
3573 }
3574
3575 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) {
3576 if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) {
3577 zfs_dbgmsg("%s: metaslab allocation failure, "
3578 "trying ganging: zio %px, size %llu, error %d",
3579 spa_name(spa), zio, (u_longlong_t)zio->io_size,
3580 error);
3581 }
3582 return (zio_write_gang_block(zio, mc));
3583 }
3584 if (error != 0) {
3585 if (error != ENOSPC ||
3586 (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC)) {
3587 zfs_dbgmsg("%s: metaslab allocation failure: zio %px, "
3588 "size %llu, error %d",
3589 spa_name(spa), zio, (u_longlong_t)zio->io_size,
3590 error);
3591 }
3592 zio->io_error = error;
3593 }
3594
3595 return (zio);
3596 }
3597
3598 static zio_t *
3599 zio_dva_free(zio_t *zio)
3600 {
3601 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
3602
3603 return (zio);
3604 }
3605
3606 static zio_t *
3607 zio_dva_claim(zio_t *zio)
3608 {
3609 int error;
3610
3611 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
3612 if (error)
3613 zio->io_error = error;
3614
3615 return (zio);
3616 }
3617
3618 /*
3619 * Undo an allocation. This is used by zio_done() when an I/O fails
3620 * and we want to give back the block we just allocated.
3621 * This handles both normal blocks and gang blocks.
3622 */
3623 static void
3624 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
3625 {
3626 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
3627 ASSERT(zio->io_bp_override == NULL);
3628
3629 if (!BP_IS_HOLE(bp))
3630 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
3631
3632 if (gn != NULL) {
3633 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
3634 zio_dva_unallocate(zio, gn->gn_child[g],
3635 &gn->gn_gbh->zg_blkptr[g]);
3636 }
3637 }
3638 }
3639
3640 /*
3641 * Try to allocate an intent log block. Return 0 on success, errno on failure.
3642 */
3643 int
3644 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp,
3645 uint64_t size, boolean_t *slog)
3646 {
3647 int error = 1;
3648 zio_alloc_list_t io_alloc_list;
3649
3650 ASSERT(txg > spa_syncing_txg(spa));
3651
3652 metaslab_trace_init(&io_alloc_list);
3653
3654 /*
3655 * Block pointer fields are useful to metaslabs for stats and debugging.
3656 * Fill in the obvious ones before calling into metaslab_alloc().
3657 */
3658 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3659 BP_SET_PSIZE(new_bp, size);
3660 BP_SET_LEVEL(new_bp, 0);
3661
3662 /*
3663 * When allocating a zil block, we don't have information about
3664 * the final destination of the block except the objset it's part
3665 * of, so we just hash the objset ID to pick the allocator to get
3666 * some parallelism.
3667 */
3668 int flags = METASLAB_FASTWRITE | METASLAB_ZIL;
3669 int allocator = (uint_t)cityhash4(0, 0, 0,
3670 os->os_dsl_dataset->ds_object) % spa->spa_alloc_count;
3671 error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1,
3672 txg, NULL, flags, &io_alloc_list, NULL, allocator);
3673 *slog = (error == 0);
3674 if (error != 0) {
3675 error = metaslab_alloc(spa, spa_embedded_log_class(spa), size,
3676 new_bp, 1, txg, NULL, flags,
3677 &io_alloc_list, NULL, allocator);
3678 }
3679 if (error != 0) {
3680 error = metaslab_alloc(spa, spa_normal_class(spa), size,
3681 new_bp, 1, txg, NULL, flags,
3682 &io_alloc_list, NULL, allocator);
3683 }
3684 metaslab_trace_fini(&io_alloc_list);
3685
3686 if (error == 0) {
3687 BP_SET_LSIZE(new_bp, size);
3688 BP_SET_PSIZE(new_bp, size);
3689 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
3690 BP_SET_CHECKSUM(new_bp,
3691 spa_version(spa) >= SPA_VERSION_SLIM_ZIL
3692 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
3693 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3694 BP_SET_LEVEL(new_bp, 0);
3695 BP_SET_DEDUP(new_bp, 0);
3696 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
3697
3698 /*
3699 * encrypted blocks will require an IV and salt. We generate
3700 * these now since we will not be rewriting the bp at
3701 * rewrite time.
3702 */
3703 if (os->os_encrypted) {
3704 uint8_t iv[ZIO_DATA_IV_LEN];
3705 uint8_t salt[ZIO_DATA_SALT_LEN];
3706
3707 BP_SET_CRYPT(new_bp, B_TRUE);
3708 VERIFY0(spa_crypt_get_salt(spa,
3709 dmu_objset_id(os), salt));
3710 VERIFY0(zio_crypt_generate_iv(iv));
3711
3712 zio_crypt_encode_params_bp(new_bp, salt, iv);
3713 }
3714 } else {
3715 zfs_dbgmsg("%s: zil block allocation failure: "
3716 "size %llu, error %d", spa_name(spa), (u_longlong_t)size,
3717 error);
3718 }
3719
3720 return (error);
3721 }
3722
3723 /*
3724 * ==========================================================================
3725 * Read and write to physical devices
3726 * ==========================================================================
3727 */
3728
3729 /*
3730 * Issue an I/O to the underlying vdev. Typically the issue pipeline
3731 * stops after this stage and will resume upon I/O completion.
3732 * However, there are instances where the vdev layer may need to
3733 * continue the pipeline when an I/O was not issued. Since the I/O
3734 * that was sent to the vdev layer might be different than the one
3735 * currently active in the pipeline (see vdev_queue_io()), we explicitly
3736 * force the underlying vdev layers to call either zio_execute() or
3737 * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
3738 */
3739 static zio_t *
3740 zio_vdev_io_start(zio_t *zio)
3741 {
3742 vdev_t *vd = zio->io_vd;
3743 uint64_t align;
3744 spa_t *spa = zio->io_spa;
3745
3746 zio->io_delay = 0;
3747
3748 ASSERT(zio->io_error == 0);
3749 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
3750
3751 if (vd == NULL) {
3752 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3753 spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
3754
3755 /*
3756 * The mirror_ops handle multiple DVAs in a single BP.
3757 */
3758 vdev_mirror_ops.vdev_op_io_start(zio);
3759 return (NULL);
3760 }
3761
3762 ASSERT3P(zio->io_logical, !=, zio);
3763 if (zio->io_type == ZIO_TYPE_WRITE) {
3764 ASSERT(spa->spa_trust_config);
3765
3766 /*
3767 * Note: the code can handle other kinds of writes,
3768 * but we don't expect them.
3769 */
3770 if (zio->io_vd->vdev_noalloc) {
3771 ASSERT(zio->io_flags &
3772 (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL |
3773 ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE));
3774 }
3775 }
3776
3777 align = 1ULL << vd->vdev_top->vdev_ashift;
3778
3779 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
3780 P2PHASE(zio->io_size, align) != 0) {
3781 /* Transform logical writes to be a full physical block size. */
3782 uint64_t asize = P2ROUNDUP(zio->io_size, align);
3783 abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize);
3784 ASSERT(vd == vd->vdev_top);
3785 if (zio->io_type == ZIO_TYPE_WRITE) {
3786 abd_copy(abuf, zio->io_abd, zio->io_size);
3787 abd_zero_off(abuf, zio->io_size, asize - zio->io_size);
3788 }
3789 zio_push_transform(zio, abuf, asize, asize, zio_subblock);
3790 }
3791
3792 /*
3793 * If this is not a physical io, make sure that it is properly aligned
3794 * before proceeding.
3795 */
3796 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
3797 ASSERT0(P2PHASE(zio->io_offset, align));
3798 ASSERT0(P2PHASE(zio->io_size, align));
3799 } else {
3800 /*
3801 * For physical writes, we allow 512b aligned writes and assume
3802 * the device will perform a read-modify-write as necessary.
3803 */
3804 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
3805 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
3806 }
3807
3808 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
3809
3810 /*
3811 * If this is a repair I/O, and there's no self-healing involved --
3812 * that is, we're just resilvering what we expect to resilver --
3813 * then don't do the I/O unless zio's txg is actually in vd's DTL.
3814 * This prevents spurious resilvering.
3815 *
3816 * There are a few ways that we can end up creating these spurious
3817 * resilver i/os:
3818 *
3819 * 1. A resilver i/o will be issued if any DVA in the BP has a
3820 * dirty DTL. The mirror code will issue resilver writes to
3821 * each DVA, including the one(s) that are not on vdevs with dirty
3822 * DTLs.
3823 *
3824 * 2. With nested replication, which happens when we have a
3825 * "replacing" or "spare" vdev that's a child of a mirror or raidz.
3826 * For example, given mirror(replacing(A+B), C), it's likely that
3827 * only A is out of date (it's the new device). In this case, we'll
3828 * read from C, then use the data to resilver A+B -- but we don't
3829 * actually want to resilver B, just A. The top-level mirror has no
3830 * way to know this, so instead we just discard unnecessary repairs
3831 * as we work our way down the vdev tree.
3832 *
3833 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc.
3834 * The same logic applies to any form of nested replication: ditto
3835 * + mirror, RAID-Z + replacing, etc.
3836 *
3837 * However, indirect vdevs point off to other vdevs which may have
3838 * DTL's, so we never bypass them. The child i/os on concrete vdevs
3839 * will be properly bypassed instead.
3840 *
3841 * Leaf DTL_PARTIAL can be empty when a legitimate write comes from
3842 * a dRAID spare vdev. For example, when a dRAID spare is first
3843 * used, its spare blocks need to be written to but the leaf vdev's
3844 * of such blocks can have empty DTL_PARTIAL.
3845 *
3846 * There seemed no clean way to allow such writes while bypassing
3847 * spurious ones. At this point, just avoid all bypassing for dRAID
3848 * for correctness.
3849 */
3850 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
3851 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
3852 zio->io_txg != 0 && /* not a delegated i/o */
3853 vd->vdev_ops != &vdev_indirect_ops &&
3854 vd->vdev_top->vdev_ops != &vdev_draid_ops &&
3855 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
3856 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3857 zio_vdev_io_bypass(zio);
3858 return (zio);
3859 }
3860
3861 /*
3862 * Select the next best leaf I/O to process. Distributed spares are
3863 * excluded since they dispatch the I/O directly to a leaf vdev after
3864 * applying the dRAID mapping.
3865 */
3866 if (vd->vdev_ops->vdev_op_leaf &&
3867 vd->vdev_ops != &vdev_draid_spare_ops &&
3868 (zio->io_type == ZIO_TYPE_READ ||
3869 zio->io_type == ZIO_TYPE_WRITE ||
3870 zio->io_type == ZIO_TYPE_TRIM)) {
3871
3872 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio))
3873 return (zio);
3874
3875 if ((zio = vdev_queue_io(zio)) == NULL)
3876 return (NULL);
3877
3878 if (!vdev_accessible(vd, zio)) {
3879 zio->io_error = SET_ERROR(ENXIO);
3880 zio_interrupt(zio);
3881 return (NULL);
3882 }
3883 zio->io_delay = gethrtime();
3884 }
3885
3886 vd->vdev_ops->vdev_op_io_start(zio);
3887 return (NULL);
3888 }
3889
3890 static zio_t *
3891 zio_vdev_io_done(zio_t *zio)
3892 {
3893 vdev_t *vd = zio->io_vd;
3894 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
3895 boolean_t unexpected_error = B_FALSE;
3896
3897 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3898 return (NULL);
3899 }
3900
3901 ASSERT(zio->io_type == ZIO_TYPE_READ ||
3902 zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM);
3903
3904 if (zio->io_delay)
3905 zio->io_delay = gethrtime() - zio->io_delay;
3906
3907 if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3908 vd->vdev_ops != &vdev_draid_spare_ops) {
3909 vdev_queue_io_done(zio);
3910
3911 if (zio->io_type == ZIO_TYPE_WRITE)
3912 vdev_cache_write(zio);
3913
3914 if (zio_injection_enabled && zio->io_error == 0)
3915 zio->io_error = zio_handle_device_injections(vd, zio,
3916 EIO, EILSEQ);
3917
3918 if (zio_injection_enabled && zio->io_error == 0)
3919 zio->io_error = zio_handle_label_injection(zio, EIO);
3920
3921 if (zio->io_error && zio->io_type != ZIO_TYPE_TRIM) {
3922 if (!vdev_accessible(vd, zio)) {
3923 zio->io_error = SET_ERROR(ENXIO);
3924 } else {
3925 unexpected_error = B_TRUE;
3926 }
3927 }
3928 }
3929
3930 ops->vdev_op_io_done(zio);
3931
3932 if (unexpected_error && vd->vdev_remove_wanted == B_FALSE)
3933 VERIFY(vdev_probe(vd, zio) == NULL);
3934
3935 return (zio);
3936 }
3937
3938 /*
3939 * This function is used to change the priority of an existing zio that is
3940 * currently in-flight. This is used by the arc to upgrade priority in the
3941 * event that a demand read is made for a block that is currently queued
3942 * as a scrub or async read IO. Otherwise, the high priority read request
3943 * would end up having to wait for the lower priority IO.
3944 */
3945 void
3946 zio_change_priority(zio_t *pio, zio_priority_t priority)
3947 {
3948 zio_t *cio, *cio_next;
3949 zio_link_t *zl = NULL;
3950
3951 ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
3952
3953 if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) {
3954 vdev_queue_change_io_priority(pio, priority);
3955 } else {
3956 pio->io_priority = priority;
3957 }
3958
3959 mutex_enter(&pio->io_lock);
3960 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
3961 cio_next = zio_walk_children(pio, &zl);
3962 zio_change_priority(cio, priority);
3963 }
3964 mutex_exit(&pio->io_lock);
3965 }
3966
3967 /*
3968 * For non-raidz ZIOs, we can just copy aside the bad data read from the
3969 * disk, and use that to finish the checksum ereport later.
3970 */
3971 static void
3972 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
3973 const abd_t *good_buf)
3974 {
3975 /* no processing needed */
3976 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
3977 }
3978
3979 void
3980 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr)
3981 {
3982 void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size);
3983
3984 abd_copy(abd, zio->io_abd, zio->io_size);
3985
3986 zcr->zcr_cbinfo = zio->io_size;
3987 zcr->zcr_cbdata = abd;
3988 zcr->zcr_finish = zio_vsd_default_cksum_finish;
3989 zcr->zcr_free = zio_abd_free;
3990 }
3991
3992 static zio_t *
3993 zio_vdev_io_assess(zio_t *zio)
3994 {
3995 vdev_t *vd = zio->io_vd;
3996
3997 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3998 return (NULL);
3999 }
4000
4001 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
4002 spa_config_exit(zio->io_spa, SCL_ZIO, zio);
4003
4004 if (zio->io_vsd != NULL) {
4005 zio->io_vsd_ops->vsd_free(zio);
4006 zio->io_vsd = NULL;
4007 }
4008
4009 if (zio_injection_enabled && zio->io_error == 0)
4010 zio->io_error = zio_handle_fault_injection(zio, EIO);
4011
4012 /*
4013 * If the I/O failed, determine whether we should attempt to retry it.
4014 *
4015 * On retry, we cut in line in the issue queue, since we don't want
4016 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
4017 */
4018 if (zio->io_error && vd == NULL &&
4019 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
4020 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */
4021 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */
4022 zio->io_error = 0;
4023 zio->io_flags |= ZIO_FLAG_IO_RETRY |
4024 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
4025 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
4026 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
4027 zio_requeue_io_start_cut_in_line);
4028 return (NULL);
4029 }
4030
4031 /*
4032 * If we got an error on a leaf device, convert it to ENXIO
4033 * if the device is not accessible at all.
4034 */
4035 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
4036 !vdev_accessible(vd, zio))
4037 zio->io_error = SET_ERROR(ENXIO);
4038
4039 /*
4040 * If we can't write to an interior vdev (mirror or RAID-Z),
4041 * set vdev_cant_write so that we stop trying to allocate from it.
4042 */
4043 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
4044 vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
4045 vdev_dbgmsg(vd, "zio_vdev_io_assess(zio=%px) setting "
4046 "cant_write=TRUE due to write failure with ENXIO",
4047 zio);
4048 vd->vdev_cant_write = B_TRUE;
4049 }
4050
4051 /*
4052 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future
4053 * attempts will ever succeed. In this case we set a persistent
4054 * boolean flag so that we don't bother with it in the future.
4055 */
4056 if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) &&
4057 zio->io_type == ZIO_TYPE_IOCTL &&
4058 zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL)
4059 vd->vdev_nowritecache = B_TRUE;
4060
4061 if (zio->io_error)
4062 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4063
4064 if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
4065 zio->io_physdone != NULL) {
4066 ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
4067 ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
4068 zio->io_physdone(zio->io_logical);
4069 }
4070
4071 return (zio);
4072 }
4073
4074 void
4075 zio_vdev_io_reissue(zio_t *zio)
4076 {
4077 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
4078 ASSERT(zio->io_error == 0);
4079
4080 zio->io_stage >>= 1;
4081 }
4082
4083 void
4084 zio_vdev_io_redone(zio_t *zio)
4085 {
4086 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
4087
4088 zio->io_stage >>= 1;
4089 }
4090
4091 void
4092 zio_vdev_io_bypass(zio_t *zio)
4093 {
4094 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
4095 ASSERT(zio->io_error == 0);
4096
4097 zio->io_flags |= ZIO_FLAG_IO_BYPASS;
4098 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
4099 }
4100
4101 /*
4102 * ==========================================================================
4103 * Encrypt and store encryption parameters
4104 * ==========================================================================
4105 */
4106
4107
4108 /*
4109 * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for
4110 * managing the storage of encryption parameters and passing them to the
4111 * lower-level encryption functions.
4112 */
4113 static zio_t *
4114 zio_encrypt(zio_t *zio)
4115 {
4116 zio_prop_t *zp = &zio->io_prop;
4117 spa_t *spa = zio->io_spa;
4118 blkptr_t *bp = zio->io_bp;
4119 uint64_t psize = BP_GET_PSIZE(bp);
4120 uint64_t dsobj = zio->io_bookmark.zb_objset;
4121 dmu_object_type_t ot = BP_GET_TYPE(bp);
4122 void *enc_buf = NULL;
4123 abd_t *eabd = NULL;
4124 uint8_t salt[ZIO_DATA_SALT_LEN];
4125 uint8_t iv[ZIO_DATA_IV_LEN];
4126 uint8_t mac[ZIO_DATA_MAC_LEN];
4127 boolean_t no_crypt = B_FALSE;
4128
4129 /* the root zio already encrypted the data */
4130 if (zio->io_child_type == ZIO_CHILD_GANG)
4131 return (zio);
4132
4133 /* only ZIL blocks are re-encrypted on rewrite */
4134 if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG)
4135 return (zio);
4136
4137 if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) {
4138 BP_SET_CRYPT(bp, B_FALSE);
4139 return (zio);
4140 }
4141
4142 /* if we are doing raw encryption set the provided encryption params */
4143 if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) {
4144 ASSERT0(BP_GET_LEVEL(bp));
4145 BP_SET_CRYPT(bp, B_TRUE);
4146 BP_SET_BYTEORDER(bp, zp->zp_byteorder);
4147 if (ot != DMU_OT_OBJSET)
4148 zio_crypt_encode_mac_bp(bp, zp->zp_mac);
4149
4150 /* dnode blocks must be written out in the provided byteorder */
4151 if (zp->zp_byteorder != ZFS_HOST_BYTEORDER &&
4152 ot == DMU_OT_DNODE) {
4153 void *bswap_buf = zio_buf_alloc(psize);
4154 abd_t *babd = abd_get_from_buf(bswap_buf, psize);
4155
4156 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4157 abd_copy_to_buf(bswap_buf, zio->io_abd, psize);
4158 dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf,
4159 psize);
4160
4161 abd_take_ownership_of_buf(babd, B_TRUE);
4162 zio_push_transform(zio, babd, psize, psize, NULL);
4163 }
4164
4165 if (DMU_OT_IS_ENCRYPTED(ot))
4166 zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv);
4167 return (zio);
4168 }
4169
4170 /* indirect blocks only maintain a cksum of the lower level MACs */
4171 if (BP_GET_LEVEL(bp) > 0) {
4172 BP_SET_CRYPT(bp, B_TRUE);
4173 VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE,
4174 zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp),
4175 mac));
4176 zio_crypt_encode_mac_bp(bp, mac);
4177 return (zio);
4178 }
4179
4180 /*
4181 * Objset blocks are a special case since they have 2 256-bit MACs
4182 * embedded within them.
4183 */
4184 if (ot == DMU_OT_OBJSET) {
4185 ASSERT0(DMU_OT_IS_ENCRYPTED(ot));
4186 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4187 BP_SET_CRYPT(bp, B_TRUE);
4188 VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj,
4189 zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp)));
4190 return (zio);
4191 }
4192
4193 /* unencrypted object types are only authenticated with a MAC */
4194 if (!DMU_OT_IS_ENCRYPTED(ot)) {
4195 BP_SET_CRYPT(bp, B_TRUE);
4196 VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj,
4197 zio->io_abd, psize, mac));
4198 zio_crypt_encode_mac_bp(bp, mac);
4199 return (zio);
4200 }
4201
4202 /*
4203 * Later passes of sync-to-convergence may decide to rewrite data
4204 * in place to avoid more disk reallocations. This presents a problem
4205 * for encryption because this constitutes rewriting the new data with
4206 * the same encryption key and IV. However, this only applies to blocks
4207 * in the MOS (particularly the spacemaps) and we do not encrypt the
4208 * MOS. We assert that the zio is allocating or an intent log write
4209 * to enforce this.
4210 */
4211 ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG);
4212 ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG);
4213 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION));
4214 ASSERT3U(psize, !=, 0);
4215
4216 enc_buf = zio_buf_alloc(psize);
4217 eabd = abd_get_from_buf(enc_buf, psize);
4218 abd_take_ownership_of_buf(eabd, B_TRUE);
4219
4220 /*
4221 * For an explanation of what encryption parameters are stored
4222 * where, see the block comment in zio_crypt.c.
4223 */
4224 if (ot == DMU_OT_INTENT_LOG) {
4225 zio_crypt_decode_params_bp(bp, salt, iv);
4226 } else {
4227 BP_SET_CRYPT(bp, B_TRUE);
4228 }
4229
4230 /* Perform the encryption. This should not fail */
4231 VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark,
4232 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
4233 salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt));
4234
4235 /* encode encryption metadata into the bp */
4236 if (ot == DMU_OT_INTENT_LOG) {
4237 /*
4238 * ZIL blocks store the MAC in the embedded checksum, so the
4239 * transform must always be applied.
4240 */
4241 zio_crypt_encode_mac_zil(enc_buf, mac);
4242 zio_push_transform(zio, eabd, psize, psize, NULL);
4243 } else {
4244 BP_SET_CRYPT(bp, B_TRUE);
4245 zio_crypt_encode_params_bp(bp, salt, iv);
4246 zio_crypt_encode_mac_bp(bp, mac);
4247
4248 if (no_crypt) {
4249 ASSERT3U(ot, ==, DMU_OT_DNODE);
4250 abd_free(eabd);
4251 } else {
4252 zio_push_transform(zio, eabd, psize, psize, NULL);
4253 }
4254 }
4255
4256 return (zio);
4257 }
4258
4259 /*
4260 * ==========================================================================
4261 * Generate and verify checksums
4262 * ==========================================================================
4263 */
4264 static zio_t *
4265 zio_checksum_generate(zio_t *zio)
4266 {
4267 blkptr_t *bp = zio->io_bp;
4268 enum zio_checksum checksum;
4269
4270 if (bp == NULL) {
4271 /*
4272 * This is zio_write_phys().
4273 * We're either generating a label checksum, or none at all.
4274 */
4275 checksum = zio->io_prop.zp_checksum;
4276
4277 if (checksum == ZIO_CHECKSUM_OFF)
4278 return (zio);
4279
4280 ASSERT(checksum == ZIO_CHECKSUM_LABEL);
4281 } else {
4282 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
4283 ASSERT(!IO_IS_ALLOCATING(zio));
4284 checksum = ZIO_CHECKSUM_GANG_HEADER;
4285 } else {
4286 checksum = BP_GET_CHECKSUM(bp);
4287 }
4288 }
4289
4290 zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size);
4291
4292 return (zio);
4293 }
4294
4295 static zio_t *
4296 zio_checksum_verify(zio_t *zio)
4297 {
4298 zio_bad_cksum_t info;
4299 blkptr_t *bp = zio->io_bp;
4300 int error;
4301
4302 ASSERT(zio->io_vd != NULL);
4303
4304 if (bp == NULL) {
4305 /*
4306 * This is zio_read_phys().
4307 * We're either verifying a label checksum, or nothing at all.
4308 */
4309 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
4310 return (zio);
4311
4312 ASSERT3U(zio->io_prop.zp_checksum, ==, ZIO_CHECKSUM_LABEL);
4313 }
4314
4315 if ((error = zio_checksum_error(zio, &info)) != 0) {
4316 zio->io_error = error;
4317 if (error == ECKSUM &&
4318 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
4319 mutex_enter(&zio->io_vd->vdev_stat_lock);
4320 zio->io_vd->vdev_stat.vs_checksum_errors++;
4321 mutex_exit(&zio->io_vd->vdev_stat_lock);
4322 (void) zfs_ereport_start_checksum(zio->io_spa,
4323 zio->io_vd, &zio->io_bookmark, zio,
4324 zio->io_offset, zio->io_size, &info);
4325 }
4326 }
4327
4328 return (zio);
4329 }
4330
4331 /*
4332 * Called by RAID-Z to ensure we don't compute the checksum twice.
4333 */
4334 void
4335 zio_checksum_verified(zio_t *zio)
4336 {
4337 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
4338 }
4339
4340 /*
4341 * ==========================================================================
4342 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
4343 * An error of 0 indicates success. ENXIO indicates whole-device failure,
4344 * which may be transient (e.g. unplugged) or permanent. ECKSUM and EIO
4345 * indicate errors that are specific to one I/O, and most likely permanent.
4346 * Any other error is presumed to be worse because we weren't expecting it.
4347 * ==========================================================================
4348 */
4349 int
4350 zio_worst_error(int e1, int e2)
4351 {
4352 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
4353 int r1, r2;
4354
4355 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
4356 if (e1 == zio_error_rank[r1])
4357 break;
4358
4359 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
4360 if (e2 == zio_error_rank[r2])
4361 break;
4362
4363 return (r1 > r2 ? e1 : e2);
4364 }
4365
4366 /*
4367 * ==========================================================================
4368 * I/O completion
4369 * ==========================================================================
4370 */
4371 static zio_t *
4372 zio_ready(zio_t *zio)
4373 {
4374 blkptr_t *bp = zio->io_bp;
4375 zio_t *pio, *pio_next;
4376 zio_link_t *zl = NULL;
4377
4378 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT,
4379 ZIO_WAIT_READY)) {
4380 return (NULL);
4381 }
4382
4383 if (zio->io_ready) {
4384 ASSERT(IO_IS_ALLOCATING(zio));
4385 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
4386 (zio->io_flags & ZIO_FLAG_NOPWRITE));
4387 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
4388
4389 zio->io_ready(zio);
4390 }
4391
4392 if (bp != NULL && bp != &zio->io_bp_copy)
4393 zio->io_bp_copy = *bp;
4394
4395 if (zio->io_error != 0) {
4396 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4397
4398 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4399 ASSERT(IO_IS_ALLOCATING(zio));
4400 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4401 ASSERT(zio->io_metaslab_class != NULL);
4402
4403 /*
4404 * We were unable to allocate anything, unreserve and
4405 * issue the next I/O to allocate.
4406 */
4407 metaslab_class_throttle_unreserve(
4408 zio->io_metaslab_class, zio->io_prop.zp_copies,
4409 zio->io_allocator, zio);
4410 zio_allocate_dispatch(zio->io_spa, zio->io_allocator);
4411 }
4412 }
4413
4414 mutex_enter(&zio->io_lock);
4415 zio->io_state[ZIO_WAIT_READY] = 1;
4416 pio = zio_walk_parents(zio, &zl);
4417 mutex_exit(&zio->io_lock);
4418
4419 /*
4420 * As we notify zio's parents, new parents could be added.
4421 * New parents go to the head of zio's io_parent_list, however,
4422 * so we will (correctly) not notify them. The remainder of zio's
4423 * io_parent_list, from 'pio_next' onward, cannot change because
4424 * all parents must wait for us to be done before they can be done.
4425 */
4426 for (; pio != NULL; pio = pio_next) {
4427 pio_next = zio_walk_parents(zio, &zl);
4428 zio_notify_parent(pio, zio, ZIO_WAIT_READY, NULL);
4429 }
4430
4431 if (zio->io_flags & ZIO_FLAG_NODATA) {
4432 if (BP_IS_GANG(bp)) {
4433 zio->io_flags &= ~ZIO_FLAG_NODATA;
4434 } else {
4435 ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE);
4436 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
4437 }
4438 }
4439
4440 if (zio_injection_enabled &&
4441 zio->io_spa->spa_syncing_txg == zio->io_txg)
4442 zio_handle_ignored_writes(zio);
4443
4444 return (zio);
4445 }
4446
4447 /*
4448 * Update the allocation throttle accounting.
4449 */
4450 static void
4451 zio_dva_throttle_done(zio_t *zio)
4452 {
4453 zio_t *lio __maybe_unused = zio->io_logical;
4454 zio_t *pio = zio_unique_parent(zio);
4455 vdev_t *vd = zio->io_vd;
4456 int flags = METASLAB_ASYNC_ALLOC;
4457
4458 ASSERT3P(zio->io_bp, !=, NULL);
4459 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
4460 ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE);
4461 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
4462 ASSERT(vd != NULL);
4463 ASSERT3P(vd, ==, vd->vdev_top);
4464 ASSERT(zio_injection_enabled || !(zio->io_flags & ZIO_FLAG_IO_RETRY));
4465 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4466 ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING);
4467 ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE));
4468 ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA));
4469
4470 /*
4471 * Parents of gang children can have two flavors -- ones that
4472 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
4473 * and ones that allocated the constituent blocks. The allocation
4474 * throttle needs to know the allocating parent zio so we must find
4475 * it here.
4476 */
4477 if (pio->io_child_type == ZIO_CHILD_GANG) {
4478 /*
4479 * If our parent is a rewrite gang child then our grandparent
4480 * would have been the one that performed the allocation.
4481 */
4482 if (pio->io_flags & ZIO_FLAG_IO_REWRITE)
4483 pio = zio_unique_parent(pio);
4484 flags |= METASLAB_GANG_CHILD;
4485 }
4486
4487 ASSERT(IO_IS_ALLOCATING(pio));
4488 ASSERT3P(zio, !=, zio->io_logical);
4489 ASSERT(zio->io_logical != NULL);
4490 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4491 ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE);
4492 ASSERT(zio->io_metaslab_class != NULL);
4493
4494 mutex_enter(&pio->io_lock);
4495 metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags,
4496 pio->io_allocator, B_TRUE);
4497 mutex_exit(&pio->io_lock);
4498
4499 metaslab_class_throttle_unreserve(zio->io_metaslab_class, 1,
4500 pio->io_allocator, pio);
4501
4502 /*
4503 * Call into the pipeline to see if there is more work that
4504 * needs to be done. If there is work to be done it will be
4505 * dispatched to another taskq thread.
4506 */
4507 zio_allocate_dispatch(zio->io_spa, pio->io_allocator);
4508 }
4509
4510 static zio_t *
4511 zio_done(zio_t *zio)
4512 {
4513 /*
4514 * Always attempt to keep stack usage minimal here since
4515 * we can be called recursively up to 19 levels deep.
4516 */
4517 const uint64_t psize = zio->io_size;
4518 zio_t *pio, *pio_next;
4519 zio_link_t *zl = NULL;
4520
4521 /*
4522 * If our children haven't all completed,
4523 * wait for them and then repeat this pipeline stage.
4524 */
4525 if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) {
4526 return (NULL);
4527 }
4528
4529 /*
4530 * If the allocation throttle is enabled, then update the accounting.
4531 * We only track child I/Os that are part of an allocating async
4532 * write. We must do this since the allocation is performed
4533 * by the logical I/O but the actual write is done by child I/Os.
4534 */
4535 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING &&
4536 zio->io_child_type == ZIO_CHILD_VDEV) {
4537 ASSERT(zio->io_metaslab_class != NULL);
4538 ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled);
4539 zio_dva_throttle_done(zio);
4540 }
4541
4542 /*
4543 * If the allocation throttle is enabled, verify that
4544 * we have decremented the refcounts for every I/O that was throttled.
4545 */
4546 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4547 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
4548 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4549 ASSERT(zio->io_bp != NULL);
4550
4551 metaslab_group_alloc_verify(zio->io_spa, zio->io_bp, zio,
4552 zio->io_allocator);
4553 VERIFY(zfs_refcount_not_held(&zio->io_metaslab_class->
4554 mc_allocator[zio->io_allocator].mca_alloc_slots, zio));
4555 }
4556
4557
4558 for (int c = 0; c < ZIO_CHILD_TYPES; c++)
4559 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
4560 ASSERT(zio->io_children[c][w] == 0);
4561
4562 if (zio->io_bp != NULL && !BP_IS_EMBEDDED(zio->io_bp)) {
4563 ASSERT(zio->io_bp->blk_pad[0] == 0);
4564 ASSERT(zio->io_bp->blk_pad[1] == 0);
4565 ASSERT(memcmp(zio->io_bp, &zio->io_bp_copy,
4566 sizeof (blkptr_t)) == 0 ||
4567 (zio->io_bp == zio_unique_parent(zio)->io_bp));
4568 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) &&
4569 zio->io_bp_override == NULL &&
4570 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
4571 ASSERT3U(zio->io_prop.zp_copies, <=,
4572 BP_GET_NDVAS(zio->io_bp));
4573 ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 ||
4574 (BP_COUNT_GANG(zio->io_bp) ==
4575 BP_GET_NDVAS(zio->io_bp)));
4576 }
4577 if (zio->io_flags & ZIO_FLAG_NOPWRITE)
4578 VERIFY(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
4579 }
4580
4581 /*
4582 * If there were child vdev/gang/ddt errors, they apply to us now.
4583 */
4584 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
4585 zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
4586 zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
4587
4588 /*
4589 * If the I/O on the transformed data was successful, generate any
4590 * checksum reports now while we still have the transformed data.
4591 */
4592 if (zio->io_error == 0) {
4593 while (zio->io_cksum_report != NULL) {
4594 zio_cksum_report_t *zcr = zio->io_cksum_report;
4595 uint64_t align = zcr->zcr_align;
4596 uint64_t asize = P2ROUNDUP(psize, align);
4597 abd_t *adata = zio->io_abd;
4598
4599 if (adata != NULL && asize != psize) {
4600 adata = abd_alloc(asize, B_TRUE);
4601 abd_copy(adata, zio->io_abd, psize);
4602 abd_zero_off(adata, psize, asize - psize);
4603 }
4604
4605 zio->io_cksum_report = zcr->zcr_next;
4606 zcr->zcr_next = NULL;
4607 zcr->zcr_finish(zcr, adata);
4608 zfs_ereport_free_checksum(zcr);
4609
4610 if (adata != NULL && asize != psize)
4611 abd_free(adata);
4612 }
4613 }
4614
4615 zio_pop_transforms(zio); /* note: may set zio->io_error */
4616
4617 vdev_stat_update(zio, psize);
4618
4619 /*
4620 * If this I/O is attached to a particular vdev is slow, exceeding
4621 * 30 seconds to complete, post an error described the I/O delay.
4622 * We ignore these errors if the device is currently unavailable.
4623 */
4624 if (zio->io_delay >= MSEC2NSEC(zio_slow_io_ms)) {
4625 if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) {
4626 /*
4627 * We want to only increment our slow IO counters if
4628 * the IO is valid (i.e. not if the drive is removed).
4629 *
4630 * zfs_ereport_post() will also do these checks, but
4631 * it can also ratelimit and have other failures, so we
4632 * need to increment the slow_io counters independent
4633 * of it.
4634 */
4635 if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY,
4636 zio->io_spa, zio->io_vd, zio)) {
4637 mutex_enter(&zio->io_vd->vdev_stat_lock);
4638 zio->io_vd->vdev_stat.vs_slow_ios++;
4639 mutex_exit(&zio->io_vd->vdev_stat_lock);
4640
4641 (void) zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
4642 zio->io_spa, zio->io_vd, &zio->io_bookmark,
4643 zio, 0);
4644 }
4645 }
4646 }
4647
4648 if (zio->io_error) {
4649 /*
4650 * If this I/O is attached to a particular vdev,
4651 * generate an error message describing the I/O failure
4652 * at the block level. We ignore these errors if the
4653 * device is currently unavailable.
4654 */
4655 if (zio->io_error != ECKSUM && zio->io_vd != NULL &&
4656 !vdev_is_dead(zio->io_vd)) {
4657 int ret = zfs_ereport_post(FM_EREPORT_ZFS_IO,
4658 zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0);
4659 if (ret != EALREADY) {
4660 mutex_enter(&zio->io_vd->vdev_stat_lock);
4661 if (zio->io_type == ZIO_TYPE_READ)
4662 zio->io_vd->vdev_stat.vs_read_errors++;
4663 else if (zio->io_type == ZIO_TYPE_WRITE)
4664 zio->io_vd->vdev_stat.vs_write_errors++;
4665 mutex_exit(&zio->io_vd->vdev_stat_lock);
4666 }
4667 }
4668
4669 if ((zio->io_error == EIO || !(zio->io_flags &
4670 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
4671 zio == zio->io_logical) {
4672 /*
4673 * For logical I/O requests, tell the SPA to log the
4674 * error and generate a logical data ereport.
4675 */
4676 spa_log_error(zio->io_spa, &zio->io_bookmark);
4677 (void) zfs_ereport_post(FM_EREPORT_ZFS_DATA,
4678 zio->io_spa, NULL, &zio->io_bookmark, zio, 0);
4679 }
4680 }
4681
4682 if (zio->io_error && zio == zio->io_logical) {
4683 /*
4684 * Determine whether zio should be reexecuted. This will
4685 * propagate all the way to the root via zio_notify_parent().
4686 */
4687 ASSERT(zio->io_vd == NULL && zio->io_bp != NULL);
4688 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4689
4690 if (IO_IS_ALLOCATING(zio) &&
4691 !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
4692 if (zio->io_error != ENOSPC)
4693 zio->io_reexecute |= ZIO_REEXECUTE_NOW;
4694 else
4695 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4696 }
4697
4698 if ((zio->io_type == ZIO_TYPE_READ ||
4699 zio->io_type == ZIO_TYPE_FREE) &&
4700 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
4701 zio->io_error == ENXIO &&
4702 spa_load_state(zio->io_spa) == SPA_LOAD_NONE &&
4703 spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE)
4704 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4705
4706 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
4707 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4708
4709 /*
4710 * Here is a possibly good place to attempt to do
4711 * either combinatorial reconstruction or error correction
4712 * based on checksums. It also might be a good place
4713 * to send out preliminary ereports before we suspend
4714 * processing.
4715 */
4716 }
4717
4718 /*
4719 * If there were logical child errors, they apply to us now.
4720 * We defer this until now to avoid conflating logical child
4721 * errors with errors that happened to the zio itself when
4722 * updating vdev stats and reporting FMA events above.
4723 */
4724 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
4725
4726 if ((zio->io_error || zio->io_reexecute) &&
4727 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
4728 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
4729 zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp);
4730
4731 zio_gang_tree_free(&zio->io_gang_tree);
4732
4733 /*
4734 * Godfather I/Os should never suspend.
4735 */
4736 if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
4737 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
4738 zio->io_reexecute &= ~ZIO_REEXECUTE_SUSPEND;
4739
4740 if (zio->io_reexecute) {
4741 /*
4742 * This is a logical I/O that wants to reexecute.
4743 *
4744 * Reexecute is top-down. When an i/o fails, if it's not
4745 * the root, it simply notifies its parent and sticks around.
4746 * The parent, seeing that it still has children in zio_done(),
4747 * does the same. This percolates all the way up to the root.
4748 * The root i/o will reexecute or suspend the entire tree.
4749 *
4750 * This approach ensures that zio_reexecute() honors
4751 * all the original i/o dependency relationships, e.g.
4752 * parents not executing until children are ready.
4753 */
4754 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4755
4756 zio->io_gang_leader = NULL;
4757
4758 mutex_enter(&zio->io_lock);
4759 zio->io_state[ZIO_WAIT_DONE] = 1;
4760 mutex_exit(&zio->io_lock);
4761
4762 /*
4763 * "The Godfather" I/O monitors its children but is
4764 * not a true parent to them. It will track them through
4765 * the pipeline but severs its ties whenever they get into
4766 * trouble (e.g. suspended). This allows "The Godfather"
4767 * I/O to return status without blocking.
4768 */
4769 zl = NULL;
4770 for (pio = zio_walk_parents(zio, &zl); pio != NULL;
4771 pio = pio_next) {
4772 zio_link_t *remove_zl = zl;
4773 pio_next = zio_walk_parents(zio, &zl);
4774
4775 if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
4776 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
4777 zio_remove_child(pio, zio, remove_zl);
4778 /*
4779 * This is a rare code path, so we don't
4780 * bother with "next_to_execute".
4781 */
4782 zio_notify_parent(pio, zio, ZIO_WAIT_DONE,
4783 NULL);
4784 }
4785 }
4786
4787 if ((pio = zio_unique_parent(zio)) != NULL) {
4788 /*
4789 * We're not a root i/o, so there's nothing to do
4790 * but notify our parent. Don't propagate errors
4791 * upward since we haven't permanently failed yet.
4792 */
4793 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
4794 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
4795 /*
4796 * This is a rare code path, so we don't bother with
4797 * "next_to_execute".
4798 */
4799 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, NULL);
4800 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
4801 /*
4802 * We'd fail again if we reexecuted now, so suspend
4803 * until conditions improve (e.g. device comes online).
4804 */
4805 zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR);
4806 } else {
4807 /*
4808 * Reexecution is potentially a huge amount of work.
4809 * Hand it off to the otherwise-unused claim taskq.
4810 */
4811 ASSERT(taskq_empty_ent(&zio->io_tqent));
4812 spa_taskq_dispatch_ent(zio->io_spa,
4813 ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE,
4814 zio_reexecute, zio, 0, &zio->io_tqent);
4815 }
4816 return (NULL);
4817 }
4818
4819 ASSERT(zio->io_child_count == 0);
4820 ASSERT(zio->io_reexecute == 0);
4821 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
4822
4823 /*
4824 * Report any checksum errors, since the I/O is complete.
4825 */
4826 while (zio->io_cksum_report != NULL) {
4827 zio_cksum_report_t *zcr = zio->io_cksum_report;
4828 zio->io_cksum_report = zcr->zcr_next;
4829 zcr->zcr_next = NULL;
4830 zcr->zcr_finish(zcr, NULL);
4831 zfs_ereport_free_checksum(zcr);
4832 }
4833
4834 if (zio->io_flags & ZIO_FLAG_FASTWRITE && zio->io_bp &&
4835 !BP_IS_HOLE(zio->io_bp) && !BP_IS_EMBEDDED(zio->io_bp) &&
4836 !(zio->io_flags & ZIO_FLAG_NOPWRITE)) {
4837 metaslab_fastwrite_unmark(zio->io_spa, zio->io_bp);
4838 }
4839
4840 /*
4841 * It is the responsibility of the done callback to ensure that this
4842 * particular zio is no longer discoverable for adoption, and as
4843 * such, cannot acquire any new parents.
4844 */
4845 if (zio->io_done)
4846 zio->io_done(zio);
4847
4848 mutex_enter(&zio->io_lock);
4849 zio->io_state[ZIO_WAIT_DONE] = 1;
4850 mutex_exit(&zio->io_lock);
4851
4852 /*
4853 * We are done executing this zio. We may want to execute a parent
4854 * next. See the comment in zio_notify_parent().
4855 */
4856 zio_t *next_to_execute = NULL;
4857 zl = NULL;
4858 for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) {
4859 zio_link_t *remove_zl = zl;
4860 pio_next = zio_walk_parents(zio, &zl);
4861 zio_remove_child(pio, zio, remove_zl);
4862 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, &next_to_execute);
4863 }
4864
4865 if (zio->io_waiter != NULL) {
4866 mutex_enter(&zio->io_lock);
4867 zio->io_executor = NULL;
4868 cv_broadcast(&zio->io_cv);
4869 mutex_exit(&zio->io_lock);
4870 } else {
4871 zio_destroy(zio);
4872 }
4873
4874 return (next_to_execute);
4875 }
4876
4877 /*
4878 * ==========================================================================
4879 * I/O pipeline definition
4880 * ==========================================================================
4881 */
4882 static zio_pipe_stage_t *zio_pipeline[] = {
4883 NULL,
4884 zio_read_bp_init,
4885 zio_write_bp_init,
4886 zio_free_bp_init,
4887 zio_issue_async,
4888 zio_write_compress,
4889 zio_encrypt,
4890 zio_checksum_generate,
4891 zio_nop_write,
4892 zio_ddt_read_start,
4893 zio_ddt_read_done,
4894 zio_ddt_write,
4895 zio_ddt_free,
4896 zio_gang_assemble,
4897 zio_gang_issue,
4898 zio_dva_throttle,
4899 zio_dva_allocate,
4900 zio_dva_free,
4901 zio_dva_claim,
4902 zio_ready,
4903 zio_vdev_io_start,
4904 zio_vdev_io_done,
4905 zio_vdev_io_assess,
4906 zio_checksum_verify,
4907 zio_done
4908 };
4909
4910
4911
4912
4913 /*
4914 * Compare two zbookmark_phys_t's to see which we would reach first in a
4915 * pre-order traversal of the object tree.
4916 *
4917 * This is simple in every case aside from the meta-dnode object. For all other
4918 * objects, we traverse them in order (object 1 before object 2, and so on).
4919 * However, all of these objects are traversed while traversing object 0, since
4920 * the data it points to is the list of objects. Thus, we need to convert to a
4921 * canonical representation so we can compare meta-dnode bookmarks to
4922 * non-meta-dnode bookmarks.
4923 *
4924 * We do this by calculating "equivalents" for each field of the zbookmark.
4925 * zbookmarks outside of the meta-dnode use their own object and level, and
4926 * calculate the level 0 equivalent (the first L0 blkid that is contained in the
4927 * blocks this bookmark refers to) by multiplying their blkid by their span
4928 * (the number of L0 blocks contained within one block at their level).
4929 * zbookmarks inside the meta-dnode calculate their object equivalent
4930 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
4931 * level + 1<<31 (any value larger than a level could ever be) for their level.
4932 * This causes them to always compare before a bookmark in their object
4933 * equivalent, compare appropriately to bookmarks in other objects, and to
4934 * compare appropriately to other bookmarks in the meta-dnode.
4935 */
4936 int
4937 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
4938 const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
4939 {
4940 /*
4941 * These variables represent the "equivalent" values for the zbookmark,
4942 * after converting zbookmarks inside the meta dnode to their
4943 * normal-object equivalents.
4944 */
4945 uint64_t zb1obj, zb2obj;
4946 uint64_t zb1L0, zb2L0;
4947 uint64_t zb1level, zb2level;
4948
4949 if (zb1->zb_object == zb2->zb_object &&
4950 zb1->zb_level == zb2->zb_level &&
4951 zb1->zb_blkid == zb2->zb_blkid)
4952 return (0);
4953
4954 IMPLY(zb1->zb_level > 0, ibs1 >= SPA_MINBLOCKSHIFT);
4955 IMPLY(zb2->zb_level > 0, ibs2 >= SPA_MINBLOCKSHIFT);
4956
4957 /*
4958 * BP_SPANB calculates the span in blocks.
4959 */
4960 zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
4961 zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
4962
4963 if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
4964 zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4965 zb1L0 = 0;
4966 zb1level = zb1->zb_level + COMPARE_META_LEVEL;
4967 } else {
4968 zb1obj = zb1->zb_object;
4969 zb1level = zb1->zb_level;
4970 }
4971
4972 if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
4973 zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4974 zb2L0 = 0;
4975 zb2level = zb2->zb_level + COMPARE_META_LEVEL;
4976 } else {
4977 zb2obj = zb2->zb_object;
4978 zb2level = zb2->zb_level;
4979 }
4980
4981 /* Now that we have a canonical representation, do the comparison. */
4982 if (zb1obj != zb2obj)
4983 return (zb1obj < zb2obj ? -1 : 1);
4984 else if (zb1L0 != zb2L0)
4985 return (zb1L0 < zb2L0 ? -1 : 1);
4986 else if (zb1level != zb2level)
4987 return (zb1level > zb2level ? -1 : 1);
4988 /*
4989 * This can (theoretically) happen if the bookmarks have the same object
4990 * and level, but different blkids, if the block sizes are not the same.
4991 * There is presently no way to change the indirect block sizes
4992 */
4993 return (0);
4994 }
4995
4996 /*
4997 * This function checks the following: given that last_block is the place that
4998 * our traversal stopped last time, does that guarantee that we've visited
4999 * every node under subtree_root? Therefore, we can't just use the raw output
5000 * of zbookmark_compare. We have to pass in a modified version of
5001 * subtree_root; by incrementing the block id, and then checking whether
5002 * last_block is before or equal to that, we can tell whether or not having
5003 * visited last_block implies that all of subtree_root's children have been
5004 * visited.
5005 */
5006 boolean_t
5007 zbookmark_subtree_completed(const dnode_phys_t *dnp,
5008 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
5009 {
5010 zbookmark_phys_t mod_zb = *subtree_root;
5011 mod_zb.zb_blkid++;
5012 ASSERT0(last_block->zb_level);
5013
5014 /* The objset_phys_t isn't before anything. */
5015 if (dnp == NULL)
5016 return (B_FALSE);
5017
5018 /*
5019 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
5020 * data block size in sectors, because that variable is only used if
5021 * the bookmark refers to a block in the meta-dnode. Since we don't
5022 * know without examining it what object it refers to, and there's no
5023 * harm in passing in this value in other cases, we always pass it in.
5024 *
5025 * We pass in 0 for the indirect block size shift because zb2 must be
5026 * level 0. The indirect block size is only used to calculate the span
5027 * of the bookmark, but since the bookmark must be level 0, the span is
5028 * always 1, so the math works out.
5029 *
5030 * If you make changes to how the zbookmark_compare code works, be sure
5031 * to make sure that this code still works afterwards.
5032 */
5033 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
5034 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
5035 last_block) <= 0);
5036 }
5037
5038 /*
5039 * This function is similar to zbookmark_subtree_completed(), but returns true
5040 * if subtree_root is equal or ahead of last_block, i.e. still to be done.
5041 */
5042 boolean_t
5043 zbookmark_subtree_tbd(const dnode_phys_t *dnp,
5044 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
5045 {
5046 ASSERT0(last_block->zb_level);
5047 if (dnp == NULL)
5048 return (B_FALSE);
5049 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
5050 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, subtree_root,
5051 last_block) >= 0);
5052 }
5053
5054 EXPORT_SYMBOL(zio_type_name);
5055 EXPORT_SYMBOL(zio_buf_alloc);
5056 EXPORT_SYMBOL(zio_data_buf_alloc);
5057 EXPORT_SYMBOL(zio_buf_free);
5058 EXPORT_SYMBOL(zio_data_buf_free);
5059
5060 ZFS_MODULE_PARAM(zfs_zio, zio_, slow_io_ms, INT, ZMOD_RW,
5061 "Max I/O completion time (milliseconds) before marking it as slow");
5062
5063 ZFS_MODULE_PARAM(zfs_zio, zio_, requeue_io_start_cut_in_line, INT, ZMOD_RW,
5064 "Prioritize requeued I/O");
5065
5066 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_deferred_free, UINT, ZMOD_RW,
5067 "Defer frees starting in this pass");
5068
5069 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_dont_compress, UINT, ZMOD_RW,
5070 "Don't compress starting in this pass");
5071
5072 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_rewrite, UINT, ZMOD_RW,
5073 "Rewrite new bps starting in this pass");
5074
5075 ZFS_MODULE_PARAM(zfs_zio, zio_, dva_throttle_enabled, INT, ZMOD_RW,
5076 "Throttle block allocations in the ZIO pipeline");
5077
5078 ZFS_MODULE_PARAM(zfs_zio, zio_, deadman_log_all, INT, ZMOD_RW,
5079 "Log all slow ZIOs, not just those with vdevs");
Cache object: 3a3b0b54d0049aaa26107d9201f3c87d
|