The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/contrib/openzfs/module/zfs/zio_checksum.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * CDDL HEADER START
    3  *
    4  * The contents of this file are subject to the terms of the
    5  * Common Development and Distribution License (the "License").
    6  * You may not use this file except in compliance with the License.
    7  *
    8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
    9  * or https://opensource.org/licenses/CDDL-1.0.
   10  * See the License for the specific language governing permissions
   11  * and limitations under the License.
   12  *
   13  * When distributing Covered Code, include this CDDL HEADER in each
   14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
   15  * If applicable, add the following below this CDDL HEADER, with the
   16  * fields enclosed by brackets "[]" replaced with your own identifying
   17  * information: Portions Copyright [yyyy] [name of copyright owner]
   18  *
   19  * CDDL HEADER END
   20  */
   21 /*
   22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
   23  * Copyright (c) 2013, 2016 by Delphix. All rights reserved.
   24  * Copyright 2013 Saso Kiselkov. All rights reserved.
   25  */
   26 
   27 #include <sys/zfs_context.h>
   28 #include <sys/spa.h>
   29 #include <sys/spa_impl.h>
   30 #include <sys/zio.h>
   31 #include <sys/zio_checksum.h>
   32 #include <sys/zil.h>
   33 #include <sys/abd.h>
   34 #include <zfs_fletcher.h>
   35 
   36 /*
   37  * Checksum vectors.
   38  *
   39  * In the SPA, everything is checksummed.  We support checksum vectors
   40  * for three distinct reasons:
   41  *
   42  *   1. Different kinds of data need different levels of protection.
   43  *      For SPA metadata, we always want a very strong checksum.
   44  *      For user data, we let users make the trade-off between speed
   45  *      and checksum strength.
   46  *
   47  *   2. Cryptographic hash and MAC algorithms are an area of active research.
   48  *      It is likely that in future hash functions will be at least as strong
   49  *      as current best-of-breed, and may be substantially faster as well.
   50  *      We want the ability to take advantage of these new hashes as soon as
   51  *      they become available.
   52  *
   53  *   3. If someone develops hardware that can compute a strong hash quickly,
   54  *      we want the ability to take advantage of that hardware.
   55  *
   56  * Of course, we don't want a checksum upgrade to invalidate existing
   57  * data, so we store the checksum *function* in eight bits of the bp.
   58  * This gives us room for up to 256 different checksum functions.
   59  *
   60  * When writing a block, we always checksum it with the latest-and-greatest
   61  * checksum function of the appropriate strength.  When reading a block,
   62  * we compare the expected checksum against the actual checksum, which we
   63  * compute via the checksum function specified by BP_GET_CHECKSUM(bp).
   64  *
   65  * SALTED CHECKSUMS
   66  *
   67  * To enable the use of less secure hash algorithms with dedup, we
   68  * introduce the notion of salted checksums (MACs, really).  A salted
   69  * checksum is fed both a random 256-bit value (the salt) and the data
   70  * to be checksummed.  This salt is kept secret (stored on the pool, but
   71  * never shown to the user).  Thus even if an attacker knew of collision
   72  * weaknesses in the hash algorithm, they won't be able to mount a known
   73  * plaintext attack on the DDT, since the actual hash value cannot be
   74  * known ahead of time.  How the salt is used is algorithm-specific
   75  * (some might simply prefix it to the data block, others might need to
   76  * utilize a full-blown HMAC).  On disk the salt is stored in a ZAP
   77  * object in the MOS (DMU_POOL_CHECKSUM_SALT).
   78  *
   79  * CONTEXT TEMPLATES
   80  *
   81  * Some hashing algorithms need to perform a substantial amount of
   82  * initialization work (e.g. salted checksums above may need to pre-hash
   83  * the salt) before being able to process data.  Performing this
   84  * redundant work for each block would be wasteful, so we instead allow
   85  * a checksum algorithm to do the work once (the first time it's used)
   86  * and then keep this pre-initialized context as a template inside the
   87  * spa_t (spa_cksum_tmpls).  If the zio_checksum_info_t contains
   88  * non-NULL ci_tmpl_init and ci_tmpl_free callbacks, they are used to
   89  * construct and destruct the pre-initialized checksum context.  The
   90  * pre-initialized context is then reused during each checksum
   91  * invocation and passed to the checksum function.
   92  */
   93 
   94 static void
   95 abd_checksum_off(abd_t *abd, uint64_t size,
   96     const void *ctx_template, zio_cksum_t *zcp)
   97 {
   98         (void) abd, (void) size, (void) ctx_template;
   99         ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
  100 }
  101 
  102 static void
  103 abd_fletcher_2_native(abd_t *abd, uint64_t size,
  104     const void *ctx_template, zio_cksum_t *zcp)
  105 {
  106         (void) ctx_template;
  107         fletcher_init(zcp);
  108         (void) abd_iterate_func(abd, 0, size,
  109             fletcher_2_incremental_native, zcp);
  110 }
  111 
  112 static void
  113 abd_fletcher_2_byteswap(abd_t *abd, uint64_t size,
  114     const void *ctx_template, zio_cksum_t *zcp)
  115 {
  116         (void) ctx_template;
  117         fletcher_init(zcp);
  118         (void) abd_iterate_func(abd, 0, size,
  119             fletcher_2_incremental_byteswap, zcp);
  120 }
  121 
  122 static inline void
  123 abd_fletcher_4_impl(abd_t *abd, uint64_t size, zio_abd_checksum_data_t *acdp)
  124 {
  125         fletcher_4_abd_ops.acf_init(acdp);
  126         abd_iterate_func(abd, 0, size, fletcher_4_abd_ops.acf_iter, acdp);
  127         fletcher_4_abd_ops.acf_fini(acdp);
  128 }
  129 
  130 void
  131 abd_fletcher_4_native(abd_t *abd, uint64_t size,
  132     const void *ctx_template, zio_cksum_t *zcp)
  133 {
  134         (void) ctx_template;
  135         fletcher_4_ctx_t ctx;
  136 
  137         zio_abd_checksum_data_t acd = {
  138                 .acd_byteorder  = ZIO_CHECKSUM_NATIVE,
  139                 .acd_zcp        = zcp,
  140                 .acd_ctx        = &ctx
  141         };
  142 
  143         abd_fletcher_4_impl(abd, size, &acd);
  144 
  145 }
  146 
  147 void
  148 abd_fletcher_4_byteswap(abd_t *abd, uint64_t size,
  149     const void *ctx_template, zio_cksum_t *zcp)
  150 {
  151         (void) ctx_template;
  152         fletcher_4_ctx_t ctx;
  153 
  154         zio_abd_checksum_data_t acd = {
  155                 .acd_byteorder  = ZIO_CHECKSUM_BYTESWAP,
  156                 .acd_zcp        = zcp,
  157                 .acd_ctx        = &ctx
  158         };
  159 
  160         abd_fletcher_4_impl(abd, size, &acd);
  161 }
  162 
  163 zio_checksum_info_t zio_checksum_table[ZIO_CHECKSUM_FUNCTIONS] = {
  164         {{NULL, NULL}, NULL, NULL, 0, "inherit"},
  165         {{NULL, NULL}, NULL, NULL, 0, "on"},
  166         {{abd_checksum_off,             abd_checksum_off},
  167             NULL, NULL, 0, "off"},
  168         {{abd_checksum_SHA256,          abd_checksum_SHA256},
  169             NULL, NULL, ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_EMBEDDED,
  170             "label"},
  171         {{abd_checksum_SHA256,          abd_checksum_SHA256},
  172             NULL, NULL, ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_EMBEDDED,
  173             "gang_header"},
  174         {{abd_fletcher_2_native,        abd_fletcher_2_byteswap},
  175             NULL, NULL, ZCHECKSUM_FLAG_EMBEDDED, "zilog"},
  176         {{abd_fletcher_2_native,        abd_fletcher_2_byteswap},
  177             NULL, NULL, 0, "fletcher2"},
  178         {{abd_fletcher_4_native,        abd_fletcher_4_byteswap},
  179             NULL, NULL, ZCHECKSUM_FLAG_METADATA, "fletcher4"},
  180         {{abd_checksum_SHA256,          abd_checksum_SHA256},
  181             NULL, NULL, ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_DEDUP |
  182             ZCHECKSUM_FLAG_NOPWRITE, "sha256"},
  183         {{abd_fletcher_4_native,        abd_fletcher_4_byteswap},
  184             NULL, NULL, ZCHECKSUM_FLAG_EMBEDDED, "zilog2"},
  185         {{abd_checksum_off,             abd_checksum_off},
  186             NULL, NULL, 0, "noparity"},
  187         {{abd_checksum_SHA512_native,   abd_checksum_SHA512_byteswap},
  188             NULL, NULL, ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_DEDUP |
  189             ZCHECKSUM_FLAG_NOPWRITE, "sha512"},
  190         {{abd_checksum_skein_native,    abd_checksum_skein_byteswap},
  191             abd_checksum_skein_tmpl_init, abd_checksum_skein_tmpl_free,
  192             ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_DEDUP |
  193             ZCHECKSUM_FLAG_SALTED | ZCHECKSUM_FLAG_NOPWRITE, "skein"},
  194         {{abd_checksum_edonr_native,    abd_checksum_edonr_byteswap},
  195             abd_checksum_edonr_tmpl_init, abd_checksum_edonr_tmpl_free,
  196             ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_SALTED |
  197             ZCHECKSUM_FLAG_NOPWRITE, "edonr"},
  198         {{abd_checksum_blake3_native,   abd_checksum_blake3_byteswap},
  199             abd_checksum_blake3_tmpl_init, abd_checksum_blake3_tmpl_free,
  200             ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_DEDUP |
  201             ZCHECKSUM_FLAG_SALTED | ZCHECKSUM_FLAG_NOPWRITE, "blake3"},
  202 };
  203 
  204 /*
  205  * The flag corresponding to the "verify" in dedup=[checksum,]verify
  206  * must be cleared first, so callers should use ZIO_CHECKSUM_MASK.
  207  */
  208 spa_feature_t
  209 zio_checksum_to_feature(enum zio_checksum cksum)
  210 {
  211         VERIFY((cksum & ~ZIO_CHECKSUM_MASK) == 0);
  212 
  213         switch (cksum) {
  214         case ZIO_CHECKSUM_BLAKE3:
  215                 return (SPA_FEATURE_BLAKE3);
  216         case ZIO_CHECKSUM_SHA512:
  217                 return (SPA_FEATURE_SHA512);
  218         case ZIO_CHECKSUM_SKEIN:
  219                 return (SPA_FEATURE_SKEIN);
  220         case ZIO_CHECKSUM_EDONR:
  221                 return (SPA_FEATURE_EDONR);
  222         default:
  223                 return (SPA_FEATURE_NONE);
  224         }
  225 }
  226 
  227 enum zio_checksum
  228 zio_checksum_select(enum zio_checksum child, enum zio_checksum parent)
  229 {
  230         ASSERT(child < ZIO_CHECKSUM_FUNCTIONS);
  231         ASSERT(parent < ZIO_CHECKSUM_FUNCTIONS);
  232         ASSERT(parent != ZIO_CHECKSUM_INHERIT && parent != ZIO_CHECKSUM_ON);
  233 
  234         if (child == ZIO_CHECKSUM_INHERIT)
  235                 return (parent);
  236 
  237         if (child == ZIO_CHECKSUM_ON)
  238                 return (ZIO_CHECKSUM_ON_VALUE);
  239 
  240         return (child);
  241 }
  242 
  243 enum zio_checksum
  244 zio_checksum_dedup_select(spa_t *spa, enum zio_checksum child,
  245     enum zio_checksum parent)
  246 {
  247         ASSERT((child & ZIO_CHECKSUM_MASK) < ZIO_CHECKSUM_FUNCTIONS);
  248         ASSERT((parent & ZIO_CHECKSUM_MASK) < ZIO_CHECKSUM_FUNCTIONS);
  249         ASSERT(parent != ZIO_CHECKSUM_INHERIT && parent != ZIO_CHECKSUM_ON);
  250 
  251         if (child == ZIO_CHECKSUM_INHERIT)
  252                 return (parent);
  253 
  254         if (child == ZIO_CHECKSUM_ON)
  255                 return (spa_dedup_checksum(spa));
  256 
  257         if (child == (ZIO_CHECKSUM_ON | ZIO_CHECKSUM_VERIFY))
  258                 return (spa_dedup_checksum(spa) | ZIO_CHECKSUM_VERIFY);
  259 
  260         ASSERT((zio_checksum_table[child & ZIO_CHECKSUM_MASK].ci_flags &
  261             ZCHECKSUM_FLAG_DEDUP) ||
  262             (child & ZIO_CHECKSUM_VERIFY) || child == ZIO_CHECKSUM_OFF);
  263 
  264         return (child);
  265 }
  266 
  267 /*
  268  * Set the external verifier for a gang block based on <vdev, offset, txg>,
  269  * a tuple which is guaranteed to be unique for the life of the pool.
  270  */
  271 static void
  272 zio_checksum_gang_verifier(zio_cksum_t *zcp, const blkptr_t *bp)
  273 {
  274         const dva_t *dva = BP_IDENTITY(bp);
  275         uint64_t txg = BP_PHYSICAL_BIRTH(bp);
  276 
  277         ASSERT(BP_IS_GANG(bp));
  278 
  279         ZIO_SET_CHECKSUM(zcp, DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva), txg, 0);
  280 }
  281 
  282 /*
  283  * Set the external verifier for a label block based on its offset.
  284  * The vdev is implicit, and the txg is unknowable at pool open time --
  285  * hence the logic in vdev_uberblock_load() to find the most recent copy.
  286  */
  287 static void
  288 zio_checksum_label_verifier(zio_cksum_t *zcp, uint64_t offset)
  289 {
  290         ZIO_SET_CHECKSUM(zcp, offset, 0, 0, 0);
  291 }
  292 
  293 /*
  294  * Calls the template init function of a checksum which supports context
  295  * templates and installs the template into the spa_t.
  296  */
  297 static void
  298 zio_checksum_template_init(enum zio_checksum checksum, spa_t *spa)
  299 {
  300         zio_checksum_info_t *ci = &zio_checksum_table[checksum];
  301 
  302         if (ci->ci_tmpl_init == NULL)
  303                 return;
  304         if (spa->spa_cksum_tmpls[checksum] != NULL)
  305                 return;
  306 
  307         VERIFY(ci->ci_tmpl_free != NULL);
  308         mutex_enter(&spa->spa_cksum_tmpls_lock);
  309         if (spa->spa_cksum_tmpls[checksum] == NULL) {
  310                 spa->spa_cksum_tmpls[checksum] =
  311                     ci->ci_tmpl_init(&spa->spa_cksum_salt);
  312                 VERIFY(spa->spa_cksum_tmpls[checksum] != NULL);
  313         }
  314         mutex_exit(&spa->spa_cksum_tmpls_lock);
  315 }
  316 
  317 /* convenience function to update a checksum to accommodate an encryption MAC */
  318 static void
  319 zio_checksum_handle_crypt(zio_cksum_t *cksum, zio_cksum_t *saved, boolean_t xor)
  320 {
  321         /*
  322          * Weak checksums do not have their entropy spread evenly
  323          * across the bits of the checksum. Therefore, when truncating
  324          * a weak checksum we XOR the first 2 words with the last 2 so
  325          * that we don't "lose" any entropy unnecessarily.
  326          */
  327         if (xor) {
  328                 cksum->zc_word[0] ^= cksum->zc_word[2];
  329                 cksum->zc_word[1] ^= cksum->zc_word[3];
  330         }
  331 
  332         cksum->zc_word[2] = saved->zc_word[2];
  333         cksum->zc_word[3] = saved->zc_word[3];
  334 }
  335 
  336 /*
  337  * Generate the checksum.
  338  */
  339 void
  340 zio_checksum_compute(zio_t *zio, enum zio_checksum checksum,
  341     abd_t *abd, uint64_t size)
  342 {
  343         static const uint64_t zec_magic = ZEC_MAGIC;
  344         blkptr_t *bp = zio->io_bp;
  345         uint64_t offset = zio->io_offset;
  346         zio_checksum_info_t *ci = &zio_checksum_table[checksum];
  347         zio_cksum_t cksum, saved;
  348         spa_t *spa = zio->io_spa;
  349         boolean_t insecure = (ci->ci_flags & ZCHECKSUM_FLAG_DEDUP) == 0;
  350 
  351         ASSERT((uint_t)checksum < ZIO_CHECKSUM_FUNCTIONS);
  352         ASSERT(ci->ci_func[0] != NULL);
  353 
  354         zio_checksum_template_init(checksum, spa);
  355 
  356         if (ci->ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
  357                 zio_eck_t eck;
  358                 size_t eck_offset;
  359 
  360                 memset(&saved, 0, sizeof (zio_cksum_t));
  361 
  362                 if (checksum == ZIO_CHECKSUM_ZILOG2) {
  363                         zil_chain_t zilc;
  364                         abd_copy_to_buf(&zilc, abd, sizeof (zil_chain_t));
  365 
  366                         size = P2ROUNDUP_TYPED(zilc.zc_nused, ZIL_MIN_BLKSZ,
  367                             uint64_t);
  368                         eck = zilc.zc_eck;
  369                         eck_offset = offsetof(zil_chain_t, zc_eck);
  370                 } else {
  371                         eck_offset = size - sizeof (zio_eck_t);
  372                         abd_copy_to_buf_off(&eck, abd, eck_offset,
  373                             sizeof (zio_eck_t));
  374                 }
  375 
  376                 if (checksum == ZIO_CHECKSUM_GANG_HEADER) {
  377                         zio_checksum_gang_verifier(&eck.zec_cksum, bp);
  378                 } else if (checksum == ZIO_CHECKSUM_LABEL) {
  379                         zio_checksum_label_verifier(&eck.zec_cksum, offset);
  380                 } else {
  381                         saved = eck.zec_cksum;
  382                         eck.zec_cksum = bp->blk_cksum;
  383                 }
  384 
  385                 abd_copy_from_buf_off(abd, &zec_magic,
  386                     eck_offset + offsetof(zio_eck_t, zec_magic),
  387                     sizeof (zec_magic));
  388                 abd_copy_from_buf_off(abd, &eck.zec_cksum,
  389                     eck_offset + offsetof(zio_eck_t, zec_cksum),
  390                     sizeof (zio_cksum_t));
  391 
  392                 ci->ci_func[0](abd, size, spa->spa_cksum_tmpls[checksum],
  393                     &cksum);
  394                 if (bp != NULL && BP_USES_CRYPT(bp) &&
  395                     BP_GET_TYPE(bp) != DMU_OT_OBJSET)
  396                         zio_checksum_handle_crypt(&cksum, &saved, insecure);
  397 
  398                 abd_copy_from_buf_off(abd, &cksum,
  399                     eck_offset + offsetof(zio_eck_t, zec_cksum),
  400                     sizeof (zio_cksum_t));
  401         } else {
  402                 saved = bp->blk_cksum;
  403                 ci->ci_func[0](abd, size, spa->spa_cksum_tmpls[checksum],
  404                     &cksum);
  405                 if (BP_USES_CRYPT(bp) && BP_GET_TYPE(bp) != DMU_OT_OBJSET)
  406                         zio_checksum_handle_crypt(&cksum, &saved, insecure);
  407                 bp->blk_cksum = cksum;
  408         }
  409 }
  410 
  411 int
  412 zio_checksum_error_impl(spa_t *spa, const blkptr_t *bp,
  413     enum zio_checksum checksum, abd_t *abd, uint64_t size, uint64_t offset,
  414     zio_bad_cksum_t *info)
  415 {
  416         zio_checksum_info_t *ci = &zio_checksum_table[checksum];
  417         zio_cksum_t actual_cksum, expected_cksum;
  418         zio_eck_t eck;
  419         int byteswap;
  420 
  421         if (checksum >= ZIO_CHECKSUM_FUNCTIONS || ci->ci_func[0] == NULL)
  422                 return (SET_ERROR(EINVAL));
  423 
  424         zio_checksum_template_init(checksum, spa);
  425 
  426         if (ci->ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
  427                 zio_cksum_t verifier;
  428                 size_t eck_offset;
  429 
  430                 if (checksum == ZIO_CHECKSUM_ZILOG2) {
  431                         zil_chain_t zilc;
  432                         uint64_t nused;
  433 
  434                         abd_copy_to_buf(&zilc, abd, sizeof (zil_chain_t));
  435 
  436                         eck = zilc.zc_eck;
  437                         eck_offset = offsetof(zil_chain_t, zc_eck) +
  438                             offsetof(zio_eck_t, zec_cksum);
  439 
  440                         if (eck.zec_magic == ZEC_MAGIC) {
  441                                 nused = zilc.zc_nused;
  442                         } else if (eck.zec_magic == BSWAP_64(ZEC_MAGIC)) {
  443                                 nused = BSWAP_64(zilc.zc_nused);
  444                         } else {
  445                                 return (SET_ERROR(ECKSUM));
  446                         }
  447 
  448                         if (nused > size) {
  449                                 return (SET_ERROR(ECKSUM));
  450                         }
  451 
  452                         size = P2ROUNDUP_TYPED(nused, ZIL_MIN_BLKSZ, uint64_t);
  453                 } else {
  454                         eck_offset = size - sizeof (zio_eck_t);
  455                         abd_copy_to_buf_off(&eck, abd, eck_offset,
  456                             sizeof (zio_eck_t));
  457                         eck_offset += offsetof(zio_eck_t, zec_cksum);
  458                 }
  459 
  460                 if (checksum == ZIO_CHECKSUM_GANG_HEADER)
  461                         zio_checksum_gang_verifier(&verifier, bp);
  462                 else if (checksum == ZIO_CHECKSUM_LABEL)
  463                         zio_checksum_label_verifier(&verifier, offset);
  464                 else
  465                         verifier = bp->blk_cksum;
  466 
  467                 byteswap = (eck.zec_magic == BSWAP_64(ZEC_MAGIC));
  468 
  469                 if (byteswap)
  470                         byteswap_uint64_array(&verifier, sizeof (zio_cksum_t));
  471 
  472                 expected_cksum = eck.zec_cksum;
  473 
  474                 abd_copy_from_buf_off(abd, &verifier, eck_offset,
  475                     sizeof (zio_cksum_t));
  476 
  477                 ci->ci_func[byteswap](abd, size,
  478                     spa->spa_cksum_tmpls[checksum], &actual_cksum);
  479 
  480                 abd_copy_from_buf_off(abd, &expected_cksum, eck_offset,
  481                     sizeof (zio_cksum_t));
  482 
  483                 if (byteswap) {
  484                         byteswap_uint64_array(&expected_cksum,
  485                             sizeof (zio_cksum_t));
  486                 }
  487         } else {
  488                 byteswap = BP_SHOULD_BYTESWAP(bp);
  489                 expected_cksum = bp->blk_cksum;
  490                 ci->ci_func[byteswap](abd, size,
  491                     spa->spa_cksum_tmpls[checksum], &actual_cksum);
  492         }
  493 
  494         /*
  495          * MAC checksums are a special case since half of this checksum will
  496          * actually be the encryption MAC. This will be verified by the
  497          * decryption process, so we just check the truncated checksum now.
  498          * Objset blocks use embedded MACs so we don't truncate the checksum
  499          * for them.
  500          */
  501         if (bp != NULL && BP_USES_CRYPT(bp) &&
  502             BP_GET_TYPE(bp) != DMU_OT_OBJSET) {
  503                 if (!(ci->ci_flags & ZCHECKSUM_FLAG_DEDUP)) {
  504                         actual_cksum.zc_word[0] ^= actual_cksum.zc_word[2];
  505                         actual_cksum.zc_word[1] ^= actual_cksum.zc_word[3];
  506                 }
  507 
  508                 actual_cksum.zc_word[2] = 0;
  509                 actual_cksum.zc_word[3] = 0;
  510                 expected_cksum.zc_word[2] = 0;
  511                 expected_cksum.zc_word[3] = 0;
  512         }
  513 
  514         if (info != NULL) {
  515                 info->zbc_expected = expected_cksum;
  516                 info->zbc_actual = actual_cksum;
  517                 info->zbc_checksum_name = ci->ci_name;
  518                 info->zbc_byteswapped = byteswap;
  519                 info->zbc_injected = 0;
  520                 info->zbc_has_cksum = 1;
  521         }
  522 
  523         if (!ZIO_CHECKSUM_EQUAL(actual_cksum, expected_cksum))
  524                 return (SET_ERROR(ECKSUM));
  525 
  526         return (0);
  527 }
  528 
  529 int
  530 zio_checksum_error(zio_t *zio, zio_bad_cksum_t *info)
  531 {
  532         blkptr_t *bp = zio->io_bp;
  533         uint_t checksum = (bp == NULL ? zio->io_prop.zp_checksum :
  534             (BP_IS_GANG(bp) ? ZIO_CHECKSUM_GANG_HEADER : BP_GET_CHECKSUM(bp)));
  535         int error;
  536         uint64_t size = (bp == NULL ? zio->io_size :
  537             (BP_IS_GANG(bp) ? SPA_GANGBLOCKSIZE : BP_GET_PSIZE(bp)));
  538         uint64_t offset = zio->io_offset;
  539         abd_t *data = zio->io_abd;
  540         spa_t *spa = zio->io_spa;
  541 
  542         error = zio_checksum_error_impl(spa, bp, checksum, data, size,
  543             offset, info);
  544 
  545         if (zio_injection_enabled && error == 0 && zio->io_error == 0) {
  546                 error = zio_handle_fault_injection(zio, ECKSUM);
  547                 if (error != 0)
  548                         info->zbc_injected = 1;
  549         }
  550 
  551         return (error);
  552 }
  553 
  554 /*
  555  * Called by a spa_t that's about to be deallocated. This steps through
  556  * all of the checksum context templates and deallocates any that were
  557  * initialized using the algorithm-specific template init function.
  558  */
  559 void
  560 zio_checksum_templates_free(spa_t *spa)
  561 {
  562         for (enum zio_checksum checksum = 0;
  563             checksum < ZIO_CHECKSUM_FUNCTIONS; checksum++) {
  564                 if (spa->spa_cksum_tmpls[checksum] != NULL) {
  565                         zio_checksum_info_t *ci = &zio_checksum_table[checksum];
  566 
  567                         VERIFY(ci->ci_tmpl_free != NULL);
  568                         ci->ci_tmpl_free(spa->spa_cksum_tmpls[checksum]);
  569                         spa->spa_cksum_tmpls[checksum] = NULL;
  570                 }
  571         }
  572 }

Cache object: f6fa6db405c66b116000d24ea554bcb9


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.