The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/contrib/zlib/trees.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /* trees.c -- output deflated data using Huffman coding
    2  * Copyright (C) 1995-2021 Jean-loup Gailly
    3  * detect_data_type() function provided freely by Cosmin Truta, 2006
    4  * For conditions of distribution and use, see copyright notice in zlib.h
    5  */
    6 
    7 /*
    8  *  ALGORITHM
    9  *
   10  *      The "deflation" process uses several Huffman trees. The more
   11  *      common source values are represented by shorter bit sequences.
   12  *
   13  *      Each code tree is stored in a compressed form which is itself
   14  * a Huffman encoding of the lengths of all the code strings (in
   15  * ascending order by source values).  The actual code strings are
   16  * reconstructed from the lengths in the inflate process, as described
   17  * in the deflate specification.
   18  *
   19  *  REFERENCES
   20  *
   21  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
   22  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
   23  *
   24  *      Storer, James A.
   25  *          Data Compression:  Methods and Theory, pp. 49-50.
   26  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
   27  *
   28  *      Sedgewick, R.
   29  *          Algorithms, p290.
   30  *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
   31  */
   32 
   33 /* @(#) $Id$ */
   34 
   35 /* #define GEN_TREES_H */
   36 
   37 #include "deflate.h"
   38 
   39 #ifdef ZLIB_DEBUG
   40 #  include <ctype.h>
   41 #endif
   42 
   43 /* ===========================================================================
   44  * Constants
   45  */
   46 
   47 #define MAX_BL_BITS 7
   48 /* Bit length codes must not exceed MAX_BL_BITS bits */
   49 
   50 #define END_BLOCK 256
   51 /* end of block literal code */
   52 
   53 #define REP_3_6      16
   54 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
   55 
   56 #define REPZ_3_10    17
   57 /* repeat a zero length 3-10 times  (3 bits of repeat count) */
   58 
   59 #define REPZ_11_138  18
   60 /* repeat a zero length 11-138 times  (7 bits of repeat count) */
   61 
   62 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
   63    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
   64 
   65 local const int extra_dbits[D_CODES] /* extra bits for each distance code */
   66    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
   67 
   68 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
   69    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
   70 
   71 local const uch bl_order[BL_CODES]
   72    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
   73 /* The lengths of the bit length codes are sent in order of decreasing
   74  * probability, to avoid transmitting the lengths for unused bit length codes.
   75  */
   76 
   77 /* ===========================================================================
   78  * Local data. These are initialized only once.
   79  */
   80 
   81 #define DIST_CODE_LEN  512 /* see definition of array dist_code below */
   82 
   83 #if defined(GEN_TREES_H) || !defined(STDC)
   84 /* non ANSI compilers may not accept trees.h */
   85 
   86 local ct_data static_ltree[L_CODES+2];
   87 /* The static literal tree. Since the bit lengths are imposed, there is no
   88  * need for the L_CODES extra codes used during heap construction. However
   89  * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
   90  * below).
   91  */
   92 
   93 local ct_data static_dtree[D_CODES];
   94 /* The static distance tree. (Actually a trivial tree since all codes use
   95  * 5 bits.)
   96  */
   97 
   98 uch _dist_code[DIST_CODE_LEN];
   99 /* Distance codes. The first 256 values correspond to the distances
  100  * 3 .. 258, the last 256 values correspond to the top 8 bits of
  101  * the 15 bit distances.
  102  */
  103 
  104 uch _length_code[MAX_MATCH-MIN_MATCH+1];
  105 /* length code for each normalized match length (0 == MIN_MATCH) */
  106 
  107 local int base_length[LENGTH_CODES];
  108 /* First normalized length for each code (0 = MIN_MATCH) */
  109 
  110 local int base_dist[D_CODES];
  111 /* First normalized distance for each code (0 = distance of 1) */
  112 
  113 #else
  114 #  include "trees.h"
  115 #endif /* GEN_TREES_H */
  116 
  117 struct static_tree_desc_s {
  118     const ct_data *static_tree;  /* static tree or NULL */
  119     const intf *extra_bits;      /* extra bits for each code or NULL */
  120     int     extra_base;          /* base index for extra_bits */
  121     int     elems;               /* max number of elements in the tree */
  122     int     max_length;          /* max bit length for the codes */
  123 };
  124 
  125 local const static_tree_desc  static_l_desc =
  126 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
  127 
  128 local const static_tree_desc  static_d_desc =
  129 {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
  130 
  131 local const static_tree_desc  static_bl_desc =
  132 {(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
  133 
  134 /* ===========================================================================
  135  * Local (static) routines in this file.
  136  */
  137 
  138 local void tr_static_init OF((void));
  139 local void init_block     OF((deflate_state *s));
  140 local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));
  141 local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));
  142 local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));
  143 local void build_tree     OF((deflate_state *s, tree_desc *desc));
  144 local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
  145 local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
  146 local int  build_bl_tree  OF((deflate_state *s));
  147 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
  148                               int blcodes));
  149 local void compress_block OF((deflate_state *s, const ct_data *ltree,
  150                               const ct_data *dtree));
  151 local int  detect_data_type OF((deflate_state *s));
  152 local unsigned bi_reverse OF((unsigned code, int len));
  153 local void bi_windup      OF((deflate_state *s));
  154 local void bi_flush       OF((deflate_state *s));
  155 
  156 #ifdef GEN_TREES_H
  157 local void gen_trees_header OF((void));
  158 #endif
  159 
  160 #ifndef ZLIB_DEBUG
  161 #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
  162    /* Send a code of the given tree. c and tree must not have side effects */
  163 
  164 #else /* !ZLIB_DEBUG */
  165 #  define send_code(s, c, tree) \
  166      { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
  167        send_bits(s, tree[c].Code, tree[c].Len); }
  168 #endif
  169 
  170 /* ===========================================================================
  171  * Output a short LSB first on the stream.
  172  * IN assertion: there is enough room in pendingBuf.
  173  */
  174 #define put_short(s, w) { \
  175     put_byte(s, (uch)((w) & 0xff)); \
  176     put_byte(s, (uch)((ush)(w) >> 8)); \
  177 }
  178 
  179 /* ===========================================================================
  180  * Send a value on a given number of bits.
  181  * IN assertion: length <= 16 and value fits in length bits.
  182  */
  183 #ifdef ZLIB_DEBUG
  184 local void send_bits      OF((deflate_state *s, int value, int length));
  185 
  186 local void send_bits(s, value, length)
  187     deflate_state *s;
  188     int value;  /* value to send */
  189     int length; /* number of bits */
  190 {
  191     Tracevv((stderr," l %2d v %4x ", length, value));
  192     Assert(length > 0 && length <= 15, "invalid length");
  193     s->bits_sent += (ulg)length;
  194 
  195     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
  196      * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
  197      * unused bits in value.
  198      */
  199     if (s->bi_valid > (int)Buf_size - length) {
  200         s->bi_buf |= (ush)value << s->bi_valid;
  201         put_short(s, s->bi_buf);
  202         s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
  203         s->bi_valid += length - Buf_size;
  204     } else {
  205         s->bi_buf |= (ush)value << s->bi_valid;
  206         s->bi_valid += length;
  207     }
  208 }
  209 #else /* !ZLIB_DEBUG */
  210 
  211 #define send_bits(s, value, length) \
  212 { int len = length;\
  213   if (s->bi_valid > (int)Buf_size - len) {\
  214     int val = (int)value;\
  215     s->bi_buf |= (ush)val << s->bi_valid;\
  216     put_short(s, s->bi_buf);\
  217     s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
  218     s->bi_valid += len - Buf_size;\
  219   } else {\
  220     s->bi_buf |= (ush)(value) << s->bi_valid;\
  221     s->bi_valid += len;\
  222   }\
  223 }
  224 #endif /* ZLIB_DEBUG */
  225 
  226 
  227 /* the arguments must not have side effects */
  228 
  229 /* ===========================================================================
  230  * Initialize the various 'constant' tables.
  231  */
  232 local void tr_static_init()
  233 {
  234 #if defined(GEN_TREES_H) || !defined(STDC)
  235     static int static_init_done = 0;
  236     int n;        /* iterates over tree elements */
  237     int bits;     /* bit counter */
  238     int length;   /* length value */
  239     int code;     /* code value */
  240     int dist;     /* distance index */
  241     ush bl_count[MAX_BITS+1];
  242     /* number of codes at each bit length for an optimal tree */
  243 
  244     if (static_init_done) return;
  245 
  246     /* For some embedded targets, global variables are not initialized: */
  247 #ifdef NO_INIT_GLOBAL_POINTERS
  248     static_l_desc.static_tree = static_ltree;
  249     static_l_desc.extra_bits = extra_lbits;
  250     static_d_desc.static_tree = static_dtree;
  251     static_d_desc.extra_bits = extra_dbits;
  252     static_bl_desc.extra_bits = extra_blbits;
  253 #endif
  254 
  255     /* Initialize the mapping length (0..255) -> length code (0..28) */
  256     length = 0;
  257     for (code = 0; code < LENGTH_CODES-1; code++) {
  258         base_length[code] = length;
  259         for (n = 0; n < (1<<extra_lbits[code]); n++) {
  260             _length_code[length++] = (uch)code;
  261         }
  262     }
  263     Assert (length == 256, "tr_static_init: length != 256");
  264     /* Note that the length 255 (match length 258) can be represented
  265      * in two different ways: code 284 + 5 bits or code 285, so we
  266      * overwrite length_code[255] to use the best encoding:
  267      */
  268     _length_code[length-1] = (uch)code;
  269 
  270     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
  271     dist = 0;
  272     for (code = 0 ; code < 16; code++) {
  273         base_dist[code] = dist;
  274         for (n = 0; n < (1<<extra_dbits[code]); n++) {
  275             _dist_code[dist++] = (uch)code;
  276         }
  277     }
  278     Assert (dist == 256, "tr_static_init: dist != 256");
  279     dist >>= 7; /* from now on, all distances are divided by 128 */
  280     for ( ; code < D_CODES; code++) {
  281         base_dist[code] = dist << 7;
  282         for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
  283             _dist_code[256 + dist++] = (uch)code;
  284         }
  285     }
  286     Assert (dist == 256, "tr_static_init: 256+dist != 512");
  287 
  288     /* Construct the codes of the static literal tree */
  289     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
  290     n = 0;
  291     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
  292     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
  293     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
  294     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
  295     /* Codes 286 and 287 do not exist, but we must include them in the
  296      * tree construction to get a canonical Huffman tree (longest code
  297      * all ones)
  298      */
  299     gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
  300 
  301     /* The static distance tree is trivial: */
  302     for (n = 0; n < D_CODES; n++) {
  303         static_dtree[n].Len = 5;
  304         static_dtree[n].Code = bi_reverse((unsigned)n, 5);
  305     }
  306     static_init_done = 1;
  307 
  308 #  ifdef GEN_TREES_H
  309     gen_trees_header();
  310 #  endif
  311 #endif /* defined(GEN_TREES_H) || !defined(STDC) */
  312 }
  313 
  314 /* ===========================================================================
  315  * Genererate the file trees.h describing the static trees.
  316  */
  317 #ifdef GEN_TREES_H
  318 #  ifndef ZLIB_DEBUG
  319 #    include <stdio.h>
  320 #  endif
  321 
  322 #  define SEPARATOR(i, last, width) \
  323       ((i) == (last)? "\n};\n\n" :    \
  324        ((i) % (width) == (width)-1 ? ",\n" : ", "))
  325 
  326 void gen_trees_header()
  327 {
  328     FILE *header = fopen("trees.h", "w");
  329     int i;
  330 
  331     Assert (header != NULL, "Can't open trees.h");
  332     fprintf(header,
  333             "/* header created automatically with -DGEN_TREES_H */\n\n");
  334 
  335     fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
  336     for (i = 0; i < L_CODES+2; i++) {
  337         fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
  338                 static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
  339     }
  340 
  341     fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
  342     for (i = 0; i < D_CODES; i++) {
  343         fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
  344                 static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
  345     }
  346 
  347     fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");
  348     for (i = 0; i < DIST_CODE_LEN; i++) {
  349         fprintf(header, "%2u%s", _dist_code[i],
  350                 SEPARATOR(i, DIST_CODE_LEN-1, 20));
  351     }
  352 
  353     fprintf(header,
  354         "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
  355     for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
  356         fprintf(header, "%2u%s", _length_code[i],
  357                 SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
  358     }
  359 
  360     fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
  361     for (i = 0; i < LENGTH_CODES; i++) {
  362         fprintf(header, "%1u%s", base_length[i],
  363                 SEPARATOR(i, LENGTH_CODES-1, 20));
  364     }
  365 
  366     fprintf(header, "local const int base_dist[D_CODES] = {\n");
  367     for (i = 0; i < D_CODES; i++) {
  368         fprintf(header, "%5u%s", base_dist[i],
  369                 SEPARATOR(i, D_CODES-1, 10));
  370     }
  371 
  372     fclose(header);
  373 }
  374 #endif /* GEN_TREES_H */
  375 
  376 /* ===========================================================================
  377  * Initialize the tree data structures for a new zlib stream.
  378  */
  379 void ZLIB_INTERNAL _tr_init(s)
  380     deflate_state *s;
  381 {
  382     tr_static_init();
  383 
  384     s->l_desc.dyn_tree = s->dyn_ltree;
  385     s->l_desc.stat_desc = &static_l_desc;
  386 
  387     s->d_desc.dyn_tree = s->dyn_dtree;
  388     s->d_desc.stat_desc = &static_d_desc;
  389 
  390     s->bl_desc.dyn_tree = s->bl_tree;
  391     s->bl_desc.stat_desc = &static_bl_desc;
  392 
  393     s->bi_buf = 0;
  394     s->bi_valid = 0;
  395 #ifdef ZLIB_DEBUG
  396     s->compressed_len = 0L;
  397     s->bits_sent = 0L;
  398 #endif
  399 
  400     /* Initialize the first block of the first file: */
  401     init_block(s);
  402 }
  403 
  404 /* ===========================================================================
  405  * Initialize a new block.
  406  */
  407 local void init_block(s)
  408     deflate_state *s;
  409 {
  410     int n; /* iterates over tree elements */
  411 
  412     /* Initialize the trees. */
  413     for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
  414     for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
  415     for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
  416 
  417     s->dyn_ltree[END_BLOCK].Freq = 1;
  418     s->opt_len = s->static_len = 0L;
  419     s->sym_next = s->matches = 0;
  420 }
  421 
  422 #define SMALLEST 1
  423 /* Index within the heap array of least frequent node in the Huffman tree */
  424 
  425 
  426 /* ===========================================================================
  427  * Remove the smallest element from the heap and recreate the heap with
  428  * one less element. Updates heap and heap_len.
  429  */
  430 #define pqremove(s, tree, top) \
  431 {\
  432     top = s->heap[SMALLEST]; \
  433     s->heap[SMALLEST] = s->heap[s->heap_len--]; \
  434     pqdownheap(s, tree, SMALLEST); \
  435 }
  436 
  437 /* ===========================================================================
  438  * Compares to subtrees, using the tree depth as tie breaker when
  439  * the subtrees have equal frequency. This minimizes the worst case length.
  440  */
  441 #define smaller(tree, n, m, depth) \
  442    (tree[n].Freq < tree[m].Freq || \
  443    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
  444 
  445 /* ===========================================================================
  446  * Restore the heap property by moving down the tree starting at node k,
  447  * exchanging a node with the smallest of its two sons if necessary, stopping
  448  * when the heap property is re-established (each father smaller than its
  449  * two sons).
  450  */
  451 local void pqdownheap(s, tree, k)
  452     deflate_state *s;
  453     ct_data *tree;  /* the tree to restore */
  454     int k;               /* node to move down */
  455 {
  456     int v = s->heap[k];
  457     int j = k << 1;  /* left son of k */
  458     while (j <= s->heap_len) {
  459         /* Set j to the smallest of the two sons: */
  460         if (j < s->heap_len &&
  461             smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
  462             j++;
  463         }
  464         /* Exit if v is smaller than both sons */
  465         if (smaller(tree, v, s->heap[j], s->depth)) break;
  466 
  467         /* Exchange v with the smallest son */
  468         s->heap[k] = s->heap[j];  k = j;
  469 
  470         /* And continue down the tree, setting j to the left son of k */
  471         j <<= 1;
  472     }
  473     s->heap[k] = v;
  474 }
  475 
  476 /* ===========================================================================
  477  * Compute the optimal bit lengths for a tree and update the total bit length
  478  * for the current block.
  479  * IN assertion: the fields freq and dad are set, heap[heap_max] and
  480  *    above are the tree nodes sorted by increasing frequency.
  481  * OUT assertions: the field len is set to the optimal bit length, the
  482  *     array bl_count contains the frequencies for each bit length.
  483  *     The length opt_len is updated; static_len is also updated if stree is
  484  *     not null.
  485  */
  486 local void gen_bitlen(s, desc)
  487     deflate_state *s;
  488     tree_desc *desc;    /* the tree descriptor */
  489 {
  490     ct_data *tree        = desc->dyn_tree;
  491     int max_code         = desc->max_code;
  492     const ct_data *stree = desc->stat_desc->static_tree;
  493     const intf *extra    = desc->stat_desc->extra_bits;
  494     int base             = desc->stat_desc->extra_base;
  495     int max_length       = desc->stat_desc->max_length;
  496     int h;              /* heap index */
  497     int n, m;           /* iterate over the tree elements */
  498     int bits;           /* bit length */
  499     int xbits;          /* extra bits */
  500     ush f;              /* frequency */
  501     int overflow = 0;   /* number of elements with bit length too large */
  502 
  503     for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
  504 
  505     /* In a first pass, compute the optimal bit lengths (which may
  506      * overflow in the case of the bit length tree).
  507      */
  508     tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
  509 
  510     for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
  511         n = s->heap[h];
  512         bits = tree[tree[n].Dad].Len + 1;
  513         if (bits > max_length) bits = max_length, overflow++;
  514         tree[n].Len = (ush)bits;
  515         /* We overwrite tree[n].Dad which is no longer needed */
  516 
  517         if (n > max_code) continue; /* not a leaf node */
  518 
  519         s->bl_count[bits]++;
  520         xbits = 0;
  521         if (n >= base) xbits = extra[n-base];
  522         f = tree[n].Freq;
  523         s->opt_len += (ulg)f * (unsigned)(bits + xbits);
  524         if (stree) s->static_len += (ulg)f * (unsigned)(stree[n].Len + xbits);
  525     }
  526     if (overflow == 0) return;
  527 
  528     Tracev((stderr,"\nbit length overflow\n"));
  529     /* This happens for example on obj2 and pic of the Calgary corpus */
  530 
  531     /* Find the first bit length which could increase: */
  532     do {
  533         bits = max_length-1;
  534         while (s->bl_count[bits] == 0) bits--;
  535         s->bl_count[bits]--;      /* move one leaf down the tree */
  536         s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
  537         s->bl_count[max_length]--;
  538         /* The brother of the overflow item also moves one step up,
  539          * but this does not affect bl_count[max_length]
  540          */
  541         overflow -= 2;
  542     } while (overflow > 0);
  543 
  544     /* Now recompute all bit lengths, scanning in increasing frequency.
  545      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
  546      * lengths instead of fixing only the wrong ones. This idea is taken
  547      * from 'ar' written by Haruhiko Okumura.)
  548      */
  549     for (bits = max_length; bits != 0; bits--) {
  550         n = s->bl_count[bits];
  551         while (n != 0) {
  552             m = s->heap[--h];
  553             if (m > max_code) continue;
  554             if ((unsigned) tree[m].Len != (unsigned) bits) {
  555                 Tracev((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
  556                 s->opt_len += ((ulg)bits - tree[m].Len) * tree[m].Freq;
  557                 tree[m].Len = (ush)bits;
  558             }
  559             n--;
  560         }
  561     }
  562 }
  563 
  564 /* ===========================================================================
  565  * Generate the codes for a given tree and bit counts (which need not be
  566  * optimal).
  567  * IN assertion: the array bl_count contains the bit length statistics for
  568  * the given tree and the field len is set for all tree elements.
  569  * OUT assertion: the field code is set for all tree elements of non
  570  *     zero code length.
  571  */
  572 local void gen_codes (tree, max_code, bl_count)
  573     ct_data *tree;             /* the tree to decorate */
  574     int max_code;              /* largest code with non zero frequency */
  575     ushf *bl_count;            /* number of codes at each bit length */
  576 {
  577     ush next_code[MAX_BITS+1]; /* next code value for each bit length */
  578     unsigned code = 0;         /* running code value */
  579     int bits;                  /* bit index */
  580     int n;                     /* code index */
  581 
  582     /* The distribution counts are first used to generate the code values
  583      * without bit reversal.
  584      */
  585     for (bits = 1; bits <= MAX_BITS; bits++) {
  586         code = (code + bl_count[bits-1]) << 1;
  587         next_code[bits] = (ush)code;
  588     }
  589     /* Check that the bit counts in bl_count are consistent. The last code
  590      * must be all ones.
  591      */
  592     Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
  593             "inconsistent bit counts");
  594     Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
  595 
  596     for (n = 0;  n <= max_code; n++) {
  597         int len = tree[n].Len;
  598         if (len == 0) continue;
  599         /* Now reverse the bits */
  600         tree[n].Code = (ush)bi_reverse(next_code[len]++, len);
  601 
  602         Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
  603              n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
  604     }
  605 }
  606 
  607 /* ===========================================================================
  608  * Construct one Huffman tree and assigns the code bit strings and lengths.
  609  * Update the total bit length for the current block.
  610  * IN assertion: the field freq is set for all tree elements.
  611  * OUT assertions: the fields len and code are set to the optimal bit length
  612  *     and corresponding code. The length opt_len is updated; static_len is
  613  *     also updated if stree is not null. The field max_code is set.
  614  */
  615 local void build_tree(s, desc)
  616     deflate_state *s;
  617     tree_desc *desc; /* the tree descriptor */
  618 {
  619     ct_data *tree         = desc->dyn_tree;
  620     const ct_data *stree  = desc->stat_desc->static_tree;
  621     int elems             = desc->stat_desc->elems;
  622     int n, m;          /* iterate over heap elements */
  623     int max_code = -1; /* largest code with non zero frequency */
  624     int node;          /* new node being created */
  625 
  626     /* Construct the initial heap, with least frequent element in
  627      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
  628      * heap[0] is not used.
  629      */
  630     s->heap_len = 0, s->heap_max = HEAP_SIZE;
  631 
  632     for (n = 0; n < elems; n++) {
  633         if (tree[n].Freq != 0) {
  634             s->heap[++(s->heap_len)] = max_code = n;
  635             s->depth[n] = 0;
  636         } else {
  637             tree[n].Len = 0;
  638         }
  639     }
  640 
  641     /* The pkzip format requires that at least one distance code exists,
  642      * and that at least one bit should be sent even if there is only one
  643      * possible code. So to avoid special checks later on we force at least
  644      * two codes of non zero frequency.
  645      */
  646     while (s->heap_len < 2) {
  647         node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
  648         tree[node].Freq = 1;
  649         s->depth[node] = 0;
  650         s->opt_len--; if (stree) s->static_len -= stree[node].Len;
  651         /* node is 0 or 1 so it does not have extra bits */
  652     }
  653     desc->max_code = max_code;
  654 
  655     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
  656      * establish sub-heaps of increasing lengths:
  657      */
  658     for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
  659 
  660     /* Construct the Huffman tree by repeatedly combining the least two
  661      * frequent nodes.
  662      */
  663     node = elems;              /* next internal node of the tree */
  664     do {
  665         pqremove(s, tree, n);  /* n = node of least frequency */
  666         m = s->heap[SMALLEST]; /* m = node of next least frequency */
  667 
  668         s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
  669         s->heap[--(s->heap_max)] = m;
  670 
  671         /* Create a new node father of n and m */
  672         tree[node].Freq = tree[n].Freq + tree[m].Freq;
  673         s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
  674                                 s->depth[n] : s->depth[m]) + 1);
  675         tree[n].Dad = tree[m].Dad = (ush)node;
  676 #ifdef DUMP_BL_TREE
  677         if (tree == s->bl_tree) {
  678             fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
  679                     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
  680         }
  681 #endif
  682         /* and insert the new node in the heap */
  683         s->heap[SMALLEST] = node++;
  684         pqdownheap(s, tree, SMALLEST);
  685 
  686     } while (s->heap_len >= 2);
  687 
  688     s->heap[--(s->heap_max)] = s->heap[SMALLEST];
  689 
  690     /* At this point, the fields freq and dad are set. We can now
  691      * generate the bit lengths.
  692      */
  693     gen_bitlen(s, (tree_desc *)desc);
  694 
  695     /* The field len is now set, we can generate the bit codes */
  696     gen_codes ((ct_data *)tree, max_code, s->bl_count);
  697 }
  698 
  699 /* ===========================================================================
  700  * Scan a literal or distance tree to determine the frequencies of the codes
  701  * in the bit length tree.
  702  */
  703 local void scan_tree (s, tree, max_code)
  704     deflate_state *s;
  705     ct_data *tree;   /* the tree to be scanned */
  706     int max_code;    /* and its largest code of non zero frequency */
  707 {
  708     int n;                     /* iterates over all tree elements */
  709     int prevlen = -1;          /* last emitted length */
  710     int curlen;                /* length of current code */
  711     int nextlen = tree[0].Len; /* length of next code */
  712     int count = 0;             /* repeat count of the current code */
  713     int max_count = 7;         /* max repeat count */
  714     int min_count = 4;         /* min repeat count */
  715 
  716     if (nextlen == 0) max_count = 138, min_count = 3;
  717     tree[max_code+1].Len = (ush)0xffff; /* guard */
  718 
  719     for (n = 0; n <= max_code; n++) {
  720         curlen = nextlen; nextlen = tree[n+1].Len;
  721         if (++count < max_count && curlen == nextlen) {
  722             continue;
  723         } else if (count < min_count) {
  724             s->bl_tree[curlen].Freq += count;
  725         } else if (curlen != 0) {
  726             if (curlen != prevlen) s->bl_tree[curlen].Freq++;
  727             s->bl_tree[REP_3_6].Freq++;
  728         } else if (count <= 10) {
  729             s->bl_tree[REPZ_3_10].Freq++;
  730         } else {
  731             s->bl_tree[REPZ_11_138].Freq++;
  732         }
  733         count = 0; prevlen = curlen;
  734         if (nextlen == 0) {
  735             max_count = 138, min_count = 3;
  736         } else if (curlen == nextlen) {
  737             max_count = 6, min_count = 3;
  738         } else {
  739             max_count = 7, min_count = 4;
  740         }
  741     }
  742 }
  743 
  744 /* ===========================================================================
  745  * Send a literal or distance tree in compressed form, using the codes in
  746  * bl_tree.
  747  */
  748 local void send_tree (s, tree, max_code)
  749     deflate_state *s;
  750     ct_data *tree; /* the tree to be scanned */
  751     int max_code;       /* and its largest code of non zero frequency */
  752 {
  753     int n;                     /* iterates over all tree elements */
  754     int prevlen = -1;          /* last emitted length */
  755     int curlen;                /* length of current code */
  756     int nextlen = tree[0].Len; /* length of next code */
  757     int count = 0;             /* repeat count of the current code */
  758     int max_count = 7;         /* max repeat count */
  759     int min_count = 4;         /* min repeat count */
  760 
  761     /* tree[max_code+1].Len = -1; */  /* guard already set */
  762     if (nextlen == 0) max_count = 138, min_count = 3;
  763 
  764     for (n = 0; n <= max_code; n++) {
  765         curlen = nextlen; nextlen = tree[n+1].Len;
  766         if (++count < max_count && curlen == nextlen) {
  767             continue;
  768         } else if (count < min_count) {
  769             do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
  770 
  771         } else if (curlen != 0) {
  772             if (curlen != prevlen) {
  773                 send_code(s, curlen, s->bl_tree); count--;
  774             }
  775             Assert(count >= 3 && count <= 6, " 3_6?");
  776             send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
  777 
  778         } else if (count <= 10) {
  779             send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
  780 
  781         } else {
  782             send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
  783         }
  784         count = 0; prevlen = curlen;
  785         if (nextlen == 0) {
  786             max_count = 138, min_count = 3;
  787         } else if (curlen == nextlen) {
  788             max_count = 6, min_count = 3;
  789         } else {
  790             max_count = 7, min_count = 4;
  791         }
  792     }
  793 }
  794 
  795 /* ===========================================================================
  796  * Construct the Huffman tree for the bit lengths and return the index in
  797  * bl_order of the last bit length code to send.
  798  */
  799 local int build_bl_tree(s)
  800     deflate_state *s;
  801 {
  802     int max_blindex;  /* index of last bit length code of non zero freq */
  803 
  804     /* Determine the bit length frequencies for literal and distance trees */
  805     scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
  806     scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
  807 
  808     /* Build the bit length tree: */
  809     build_tree(s, (tree_desc *)(&(s->bl_desc)));
  810     /* opt_len now includes the length of the tree representations, except
  811      * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
  812      */
  813 
  814     /* Determine the number of bit length codes to send. The pkzip format
  815      * requires that at least 4 bit length codes be sent. (appnote.txt says
  816      * 3 but the actual value used is 4.)
  817      */
  818     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
  819         if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
  820     }
  821     /* Update opt_len to include the bit length tree and counts */
  822     s->opt_len += 3*((ulg)max_blindex+1) + 5+5+4;
  823     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
  824             s->opt_len, s->static_len));
  825 
  826     return max_blindex;
  827 }
  828 
  829 /* ===========================================================================
  830  * Send the header for a block using dynamic Huffman trees: the counts, the
  831  * lengths of the bit length codes, the literal tree and the distance tree.
  832  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
  833  */
  834 local void send_all_trees(s, lcodes, dcodes, blcodes)
  835     deflate_state *s;
  836     int lcodes, dcodes, blcodes; /* number of codes for each tree */
  837 {
  838     int rank;                    /* index in bl_order */
  839 
  840     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
  841     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
  842             "too many codes");
  843     Tracev((stderr, "\nbl counts: "));
  844     send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
  845     send_bits(s, dcodes-1,   5);
  846     send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
  847     for (rank = 0; rank < blcodes; rank++) {
  848         Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
  849         send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
  850     }
  851     Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
  852 
  853     send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
  854     Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
  855 
  856     send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
  857     Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
  858 }
  859 
  860 /* ===========================================================================
  861  * Send a stored block
  862  */
  863 void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last)
  864     deflate_state *s;
  865     charf *buf;       /* input block */
  866     ulg stored_len;   /* length of input block */
  867     int last;         /* one if this is the last block for a file */
  868 {
  869     send_bits(s, (STORED_BLOCK<<1)+last, 3);    /* send block type */
  870     bi_windup(s);        /* align on byte boundary */
  871     put_short(s, (ush)stored_len);
  872     put_short(s, (ush)~stored_len);
  873     if (stored_len)
  874         zmemcpy(s->pending_buf + s->pending, (Bytef *)buf, stored_len);
  875     s->pending += stored_len;
  876 #ifdef ZLIB_DEBUG
  877     s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
  878     s->compressed_len += (stored_len + 4) << 3;
  879     s->bits_sent += 2*16;
  880     s->bits_sent += stored_len<<3;
  881 #endif
  882 }
  883 
  884 /* ===========================================================================
  885  * Flush the bits in the bit buffer to pending output (leaves at most 7 bits)
  886  */
  887 void ZLIB_INTERNAL _tr_flush_bits(s)
  888     deflate_state *s;
  889 {
  890     bi_flush(s);
  891 }
  892 
  893 /* ===========================================================================
  894  * Send one empty static block to give enough lookahead for inflate.
  895  * This takes 10 bits, of which 7 may remain in the bit buffer.
  896  */
  897 void ZLIB_INTERNAL _tr_align(s)
  898     deflate_state *s;
  899 {
  900     send_bits(s, STATIC_TREES<<1, 3);
  901     send_code(s, END_BLOCK, static_ltree);
  902 #ifdef ZLIB_DEBUG
  903     s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
  904 #endif
  905     bi_flush(s);
  906 }
  907 
  908 /* ===========================================================================
  909  * Determine the best encoding for the current block: dynamic trees, static
  910  * trees or store, and write out the encoded block.
  911  */
  912 void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last)
  913     deflate_state *s;
  914     charf *buf;       /* input block, or NULL if too old */
  915     ulg stored_len;   /* length of input block */
  916     int last;         /* one if this is the last block for a file */
  917 {
  918     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
  919     int max_blindex = 0;  /* index of last bit length code of non zero freq */
  920 
  921     /* Build the Huffman trees unless a stored block is forced */
  922     if (s->level > 0) {
  923 
  924         /* Check if the file is binary or text */
  925         if (s->strm->data_type == Z_UNKNOWN)
  926             s->strm->data_type = detect_data_type(s);
  927 
  928         /* Construct the literal and distance trees */
  929         build_tree(s, (tree_desc *)(&(s->l_desc)));
  930         Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
  931                 s->static_len));
  932 
  933         build_tree(s, (tree_desc *)(&(s->d_desc)));
  934         Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
  935                 s->static_len));
  936         /* At this point, opt_len and static_len are the total bit lengths of
  937          * the compressed block data, excluding the tree representations.
  938          */
  939 
  940         /* Build the bit length tree for the above two trees, and get the index
  941          * in bl_order of the last bit length code to send.
  942          */
  943         max_blindex = build_bl_tree(s);
  944 
  945         /* Determine the best encoding. Compute the block lengths in bytes. */
  946         opt_lenb = (s->opt_len+3+7)>>3;
  947         static_lenb = (s->static_len+3+7)>>3;
  948 
  949         Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
  950                 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
  951                 s->sym_next / 3));
  952 
  953         if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
  954 
  955     } else {
  956         Assert(buf != (char*)0, "lost buf");
  957         opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
  958     }
  959 
  960 #ifdef FORCE_STORED
  961     if (buf != (char*)0) { /* force stored block */
  962 #else
  963     if (stored_len+4 <= opt_lenb && buf != (char*)0) {
  964                        /* 4: two words for the lengths */
  965 #endif
  966         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
  967          * Otherwise we can't have processed more than WSIZE input bytes since
  968          * the last block flush, because compression would have been
  969          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
  970          * transform a block into a stored block.
  971          */
  972         _tr_stored_block(s, buf, stored_len, last);
  973 
  974 #ifdef FORCE_STATIC
  975     } else if (static_lenb >= 0) { /* force static trees */
  976 #else
  977     } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) {
  978 #endif
  979         send_bits(s, (STATIC_TREES<<1)+last, 3);
  980         compress_block(s, (const ct_data *)static_ltree,
  981                        (const ct_data *)static_dtree);
  982 #ifdef ZLIB_DEBUG
  983         s->compressed_len += 3 + s->static_len;
  984 #endif
  985     } else {
  986         send_bits(s, (DYN_TREES<<1)+last, 3);
  987         send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
  988                        max_blindex+1);
  989         compress_block(s, (const ct_data *)s->dyn_ltree,
  990                        (const ct_data *)s->dyn_dtree);
  991 #ifdef ZLIB_DEBUG
  992         s->compressed_len += 3 + s->opt_len;
  993 #endif
  994     }
  995     Assert (s->compressed_len == s->bits_sent, "bad compressed size");
  996     /* The above check is made mod 2^32, for files larger than 512 MB
  997      * and uLong implemented on 32 bits.
  998      */
  999     init_block(s);
 1000 
 1001     if (last) {
 1002         bi_windup(s);
 1003 #ifdef ZLIB_DEBUG
 1004         s->compressed_len += 7;  /* align on byte boundary */
 1005 #endif
 1006     }
 1007     Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
 1008            s->compressed_len-7*last));
 1009 }
 1010 
 1011 /* ===========================================================================
 1012  * Save the match info and tally the frequency counts. Return true if
 1013  * the current block must be flushed.
 1014  */
 1015 int ZLIB_INTERNAL _tr_tally (s, dist, lc)
 1016     deflate_state *s;
 1017     unsigned dist;  /* distance of matched string */
 1018     unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
 1019 {
 1020     s->sym_buf[s->sym_next++] = dist;
 1021     s->sym_buf[s->sym_next++] = dist >> 8;
 1022     s->sym_buf[s->sym_next++] = lc;
 1023     if (dist == 0) {
 1024         /* lc is the unmatched char */
 1025         s->dyn_ltree[lc].Freq++;
 1026     } else {
 1027         s->matches++;
 1028         /* Here, lc is the match length - MIN_MATCH */
 1029         dist--;             /* dist = match distance - 1 */
 1030         Assert((ush)dist < (ush)MAX_DIST(s) &&
 1031                (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
 1032                (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
 1033 
 1034         s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
 1035         s->dyn_dtree[d_code(dist)].Freq++;
 1036     }
 1037     return (s->sym_next == s->sym_end);
 1038 }
 1039 
 1040 /* ===========================================================================
 1041  * Send the block data compressed using the given Huffman trees
 1042  */
 1043 local void compress_block(s, ltree, dtree)
 1044     deflate_state *s;
 1045     const ct_data *ltree; /* literal tree */
 1046     const ct_data *dtree; /* distance tree */
 1047 {
 1048     unsigned dist;      /* distance of matched string */
 1049     int lc;             /* match length or unmatched char (if dist == 0) */
 1050     unsigned sx = 0;    /* running index in sym_buf */
 1051     unsigned code;      /* the code to send */
 1052     int extra;          /* number of extra bits to send */
 1053 
 1054     if (s->sym_next != 0) do {
 1055         dist = s->sym_buf[sx++] & 0xff;
 1056         dist += (unsigned)(s->sym_buf[sx++] & 0xff) << 8;
 1057         lc = s->sym_buf[sx++];
 1058         if (dist == 0) {
 1059             send_code(s, lc, ltree); /* send a literal byte */
 1060             Tracecv(isgraph(lc), (stderr," '%c' ", lc));
 1061         } else {
 1062             /* Here, lc is the match length - MIN_MATCH */
 1063             code = _length_code[lc];
 1064             send_code(s, code+LITERALS+1, ltree); /* send the length code */
 1065             extra = extra_lbits[code];
 1066             if (extra != 0) {
 1067                 lc -= base_length[code];
 1068                 send_bits(s, lc, extra);       /* send the extra length bits */
 1069             }
 1070             dist--; /* dist is now the match distance - 1 */
 1071             code = d_code(dist);
 1072             Assert (code < D_CODES, "bad d_code");
 1073 
 1074             send_code(s, code, dtree);       /* send the distance code */
 1075             extra = extra_dbits[code];
 1076             if (extra != 0) {
 1077                 dist -= (unsigned)base_dist[code];
 1078                 send_bits(s, dist, extra);   /* send the extra distance bits */
 1079             }
 1080         } /* literal or match pair ? */
 1081 
 1082         /* Check that the overlay between pending_buf and sym_buf is ok: */
 1083         Assert(s->pending < s->lit_bufsize + sx, "pendingBuf overflow");
 1084 
 1085     } while (sx < s->sym_next);
 1086 
 1087     send_code(s, END_BLOCK, ltree);
 1088 }
 1089 
 1090 /* ===========================================================================
 1091  * Check if the data type is TEXT or BINARY, using the following algorithm:
 1092  * - TEXT if the two conditions below are satisfied:
 1093  *    a) There are no non-portable control characters belonging to the
 1094  *       "block list" (0..6, 14..25, 28..31).
 1095  *    b) There is at least one printable character belonging to the
 1096  *       "allow list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
 1097  * - BINARY otherwise.
 1098  * - The following partially-portable control characters form a
 1099  *   "gray list" that is ignored in this detection algorithm:
 1100  *   (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
 1101  * IN assertion: the fields Freq of dyn_ltree are set.
 1102  */
 1103 local int detect_data_type(s)
 1104     deflate_state *s;
 1105 {
 1106     /* block_mask is the bit mask of block-listed bytes
 1107      * set bits 0..6, 14..25, and 28..31
 1108      * 0xf3ffc07f = binary 11110011111111111100000001111111
 1109      */
 1110     unsigned long block_mask = 0xf3ffc07fUL;
 1111     int n;
 1112 
 1113     /* Check for non-textual ("block-listed") bytes. */
 1114     for (n = 0; n <= 31; n++, block_mask >>= 1)
 1115         if ((block_mask & 1) && (s->dyn_ltree[n].Freq != 0))
 1116             return Z_BINARY;
 1117 
 1118     /* Check for textual ("allow-listed") bytes. */
 1119     if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
 1120             || s->dyn_ltree[13].Freq != 0)
 1121         return Z_TEXT;
 1122     for (n = 32; n < LITERALS; n++)
 1123         if (s->dyn_ltree[n].Freq != 0)
 1124             return Z_TEXT;
 1125 
 1126     /* There are no "block-listed" or "allow-listed" bytes:
 1127      * this stream either is empty or has tolerated ("gray-listed") bytes only.
 1128      */
 1129     return Z_BINARY;
 1130 }
 1131 
 1132 /* ===========================================================================
 1133  * Reverse the first len bits of a code, using straightforward code (a faster
 1134  * method would use a table)
 1135  * IN assertion: 1 <= len <= 15
 1136  */
 1137 local unsigned bi_reverse(code, len)
 1138     unsigned code; /* the value to invert */
 1139     int len;       /* its bit length */
 1140 {
 1141     register unsigned res = 0;
 1142     do {
 1143         res |= code & 1;
 1144         code >>= 1, res <<= 1;
 1145     } while (--len > 0);
 1146     return res >> 1;
 1147 }
 1148 
 1149 /* ===========================================================================
 1150  * Flush the bit buffer, keeping at most 7 bits in it.
 1151  */
 1152 local void bi_flush(s)
 1153     deflate_state *s;
 1154 {
 1155     if (s->bi_valid == 16) {
 1156         put_short(s, s->bi_buf);
 1157         s->bi_buf = 0;
 1158         s->bi_valid = 0;
 1159     } else if (s->bi_valid >= 8) {
 1160         put_byte(s, (Byte)s->bi_buf);
 1161         s->bi_buf >>= 8;
 1162         s->bi_valid -= 8;
 1163     }
 1164 }
 1165 
 1166 /* ===========================================================================
 1167  * Flush the bit buffer and align the output on a byte boundary
 1168  */
 1169 local void bi_windup(s)
 1170     deflate_state *s;
 1171 {
 1172     if (s->bi_valid > 8) {
 1173         put_short(s, s->bi_buf);
 1174     } else if (s->bi_valid > 0) {
 1175         put_byte(s, (Byte)s->bi_buf);
 1176     }
 1177     s->bi_buf = 0;
 1178     s->bi_valid = 0;
 1179 #ifdef ZLIB_DEBUG
 1180     s->bits_sent = (s->bits_sent+7) & ~7;
 1181 #endif
 1182 }

Cache object: ee883a92a72b0e055b1897bfbd39a408


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.