The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/contrib/zstd/lib/compress/huf_compress.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /* ******************************************************************
    2  * Huffman encoder, part of New Generation Entropy library
    3  * Copyright (c) Yann Collet, Facebook, Inc.
    4  *
    5  *  You can contact the author at :
    6  *  - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
    7  *  - Public forum : https://groups.google.com/forum/#!forum/lz4c
    8  *
    9  * This source code is licensed under both the BSD-style license (found in the
   10  * LICENSE file in the root directory of this source tree) and the GPLv2 (found
   11  * in the COPYING file in the root directory of this source tree).
   12  * You may select, at your option, one of the above-listed licenses.
   13 ****************************************************************** */
   14 
   15 /* **************************************************************
   16 *  Compiler specifics
   17 ****************************************************************/
   18 #ifdef _MSC_VER    /* Visual Studio */
   19 #  pragma warning(disable : 4127)        /* disable: C4127: conditional expression is constant */
   20 #endif
   21 
   22 
   23 /* **************************************************************
   24 *  Includes
   25 ****************************************************************/
   26 #include "../common/zstd_deps.h"     /* ZSTD_memcpy, ZSTD_memset */
   27 #include "../common/compiler.h"
   28 #include "../common/bitstream.h"
   29 #include "hist.h"
   30 #define FSE_STATIC_LINKING_ONLY   /* FSE_optimalTableLog_internal */
   31 #include "../common/fse.h"        /* header compression */
   32 #define HUF_STATIC_LINKING_ONLY
   33 #include "../common/huf.h"
   34 #include "../common/error_private.h"
   35 
   36 
   37 /* **************************************************************
   38 *  Error Management
   39 ****************************************************************/
   40 #define HUF_isError ERR_isError
   41 #define HUF_STATIC_ASSERT(c) DEBUG_STATIC_ASSERT(c)   /* use only *after* variable declarations */
   42 
   43 
   44 /* **************************************************************
   45 *  Utils
   46 ****************************************************************/
   47 unsigned HUF_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue)
   48 {
   49     return FSE_optimalTableLog_internal(maxTableLog, srcSize, maxSymbolValue, 1);
   50 }
   51 
   52 
   53 /* *******************************************************
   54 *  HUF : Huffman block compression
   55 *********************************************************/
   56 #define HUF_WORKSPACE_MAX_ALIGNMENT 8
   57 
   58 static void* HUF_alignUpWorkspace(void* workspace, size_t* workspaceSizePtr, size_t align)
   59 {
   60     size_t const mask = align - 1;
   61     size_t const rem = (size_t)workspace & mask;
   62     size_t const add = (align - rem) & mask;
   63     BYTE* const aligned = (BYTE*)workspace + add;
   64     assert((align & (align - 1)) == 0); /* pow 2 */
   65     assert(align <= HUF_WORKSPACE_MAX_ALIGNMENT);
   66     if (*workspaceSizePtr >= add) {
   67         assert(add < align);
   68         assert(((size_t)aligned & mask) == 0);
   69         *workspaceSizePtr -= add;
   70         return aligned;
   71     } else {
   72         *workspaceSizePtr = 0;
   73         return NULL;
   74     }
   75 }
   76 
   77 
   78 /* HUF_compressWeights() :
   79  * Same as FSE_compress(), but dedicated to huff0's weights compression.
   80  * The use case needs much less stack memory.
   81  * Note : all elements within weightTable are supposed to be <= HUF_TABLELOG_MAX.
   82  */
   83 #define MAX_FSE_TABLELOG_FOR_HUFF_HEADER 6
   84 
   85 typedef struct {
   86     FSE_CTable CTable[FSE_CTABLE_SIZE_U32(MAX_FSE_TABLELOG_FOR_HUFF_HEADER, HUF_TABLELOG_MAX)];
   87     U32 scratchBuffer[FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(HUF_TABLELOG_MAX, MAX_FSE_TABLELOG_FOR_HUFF_HEADER)];
   88     unsigned count[HUF_TABLELOG_MAX+1];
   89     S16 norm[HUF_TABLELOG_MAX+1];
   90 } HUF_CompressWeightsWksp;
   91 
   92 static size_t HUF_compressWeights(void* dst, size_t dstSize, const void* weightTable, size_t wtSize, void* workspace, size_t workspaceSize)
   93 {
   94     BYTE* const ostart = (BYTE*) dst;
   95     BYTE* op = ostart;
   96     BYTE* const oend = ostart + dstSize;
   97 
   98     unsigned maxSymbolValue = HUF_TABLELOG_MAX;
   99     U32 tableLog = MAX_FSE_TABLELOG_FOR_HUFF_HEADER;
  100     HUF_CompressWeightsWksp* wksp = (HUF_CompressWeightsWksp*)HUF_alignUpWorkspace(workspace, &workspaceSize, ZSTD_ALIGNOF(U32));
  101 
  102     if (workspaceSize < sizeof(HUF_CompressWeightsWksp)) return ERROR(GENERIC);
  103 
  104     /* init conditions */
  105     if (wtSize <= 1) return 0;  /* Not compressible */
  106 
  107     /* Scan input and build symbol stats */
  108     {   unsigned const maxCount = HIST_count_simple(wksp->count, &maxSymbolValue, weightTable, wtSize);   /* never fails */
  109         if (maxCount == wtSize) return 1;   /* only a single symbol in src : rle */
  110         if (maxCount == 1) return 0;        /* each symbol present maximum once => not compressible */
  111     }
  112 
  113     tableLog = FSE_optimalTableLog(tableLog, wtSize, maxSymbolValue);
  114     CHECK_F( FSE_normalizeCount(wksp->norm, tableLog, wksp->count, wtSize, maxSymbolValue, /* useLowProbCount */ 0) );
  115 
  116     /* Write table description header */
  117     {   CHECK_V_F(hSize, FSE_writeNCount(op, (size_t)(oend-op), wksp->norm, maxSymbolValue, tableLog) );
  118         op += hSize;
  119     }
  120 
  121     /* Compress */
  122     CHECK_F( FSE_buildCTable_wksp(wksp->CTable, wksp->norm, maxSymbolValue, tableLog, wksp->scratchBuffer, sizeof(wksp->scratchBuffer)) );
  123     {   CHECK_V_F(cSize, FSE_compress_usingCTable(op, (size_t)(oend - op), weightTable, wtSize, wksp->CTable) );
  124         if (cSize == 0) return 0;   /* not enough space for compressed data */
  125         op += cSize;
  126     }
  127 
  128     return (size_t)(op-ostart);
  129 }
  130 
  131 static size_t HUF_getNbBits(HUF_CElt elt)
  132 {
  133     return elt & 0xFF;
  134 }
  135 
  136 static size_t HUF_getNbBitsFast(HUF_CElt elt)
  137 {
  138     return elt;
  139 }
  140 
  141 static size_t HUF_getValue(HUF_CElt elt)
  142 {
  143     return elt & ~0xFF;
  144 }
  145 
  146 static size_t HUF_getValueFast(HUF_CElt elt)
  147 {
  148     return elt;
  149 }
  150 
  151 static void HUF_setNbBits(HUF_CElt* elt, size_t nbBits)
  152 {
  153     assert(nbBits <= HUF_TABLELOG_ABSOLUTEMAX);
  154     *elt = nbBits;
  155 }
  156 
  157 static void HUF_setValue(HUF_CElt* elt, size_t value)
  158 {
  159     size_t const nbBits = HUF_getNbBits(*elt);
  160     if (nbBits > 0) {
  161         assert((value >> nbBits) == 0);
  162         *elt |= value << (sizeof(HUF_CElt) * 8 - nbBits);
  163     }
  164 }
  165 
  166 typedef struct {
  167     HUF_CompressWeightsWksp wksp;
  168     BYTE bitsToWeight[HUF_TABLELOG_MAX + 1];   /* precomputed conversion table */
  169     BYTE huffWeight[HUF_SYMBOLVALUE_MAX];
  170 } HUF_WriteCTableWksp;
  171 
  172 size_t HUF_writeCTable_wksp(void* dst, size_t maxDstSize,
  173                             const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog,
  174                             void* workspace, size_t workspaceSize)
  175 {
  176     HUF_CElt const* const ct = CTable + 1;
  177     BYTE* op = (BYTE*)dst;
  178     U32 n;
  179     HUF_WriteCTableWksp* wksp = (HUF_WriteCTableWksp*)HUF_alignUpWorkspace(workspace, &workspaceSize, ZSTD_ALIGNOF(U32));
  180 
  181     /* check conditions */
  182     if (workspaceSize < sizeof(HUF_WriteCTableWksp)) return ERROR(GENERIC);
  183     if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge);
  184 
  185     /* convert to weight */
  186     wksp->bitsToWeight[0] = 0;
  187     for (n=1; n<huffLog+1; n++)
  188         wksp->bitsToWeight[n] = (BYTE)(huffLog + 1 - n);
  189     for (n=0; n<maxSymbolValue; n++)
  190         wksp->huffWeight[n] = wksp->bitsToWeight[HUF_getNbBits(ct[n])];
  191 
  192     /* attempt weights compression by FSE */
  193     if (maxDstSize < 1) return ERROR(dstSize_tooSmall);
  194     {   CHECK_V_F(hSize, HUF_compressWeights(op+1, maxDstSize-1, wksp->huffWeight, maxSymbolValue, &wksp->wksp, sizeof(wksp->wksp)) );
  195         if ((hSize>1) & (hSize < maxSymbolValue/2)) {   /* FSE compressed */
  196             op[0] = (BYTE)hSize;
  197             return hSize+1;
  198     }   }
  199 
  200     /* write raw values as 4-bits (max : 15) */
  201     if (maxSymbolValue > (256-128)) return ERROR(GENERIC);   /* should not happen : likely means source cannot be compressed */
  202     if (((maxSymbolValue+1)/2) + 1 > maxDstSize) return ERROR(dstSize_tooSmall);   /* not enough space within dst buffer */
  203     op[0] = (BYTE)(128 /*special case*/ + (maxSymbolValue-1));
  204     wksp->huffWeight[maxSymbolValue] = 0;   /* to be sure it doesn't cause msan issue in final combination */
  205     for (n=0; n<maxSymbolValue; n+=2)
  206         op[(n/2)+1] = (BYTE)((wksp->huffWeight[n] << 4) + wksp->huffWeight[n+1]);
  207     return ((maxSymbolValue+1)/2) + 1;
  208 }
  209 
  210 /*! HUF_writeCTable() :
  211     `CTable` : Huffman tree to save, using huf representation.
  212     @return : size of saved CTable */
  213 size_t HUF_writeCTable (void* dst, size_t maxDstSize,
  214                         const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog)
  215 {
  216     HUF_WriteCTableWksp wksp;
  217     return HUF_writeCTable_wksp(dst, maxDstSize, CTable, maxSymbolValue, huffLog, &wksp, sizeof(wksp));
  218 }
  219 
  220 
  221 size_t HUF_readCTable (HUF_CElt* CTable, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize, unsigned* hasZeroWeights)
  222 {
  223     BYTE huffWeight[HUF_SYMBOLVALUE_MAX + 1];   /* init not required, even though some static analyzer may complain */
  224     U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1];   /* large enough for values from 0 to 16 */
  225     U32 tableLog = 0;
  226     U32 nbSymbols = 0;
  227     HUF_CElt* const ct = CTable + 1;
  228 
  229     /* get symbol weights */
  230     CHECK_V_F(readSize, HUF_readStats(huffWeight, HUF_SYMBOLVALUE_MAX+1, rankVal, &nbSymbols, &tableLog, src, srcSize));
  231     *hasZeroWeights = (rankVal[0] > 0);
  232 
  233     /* check result */
  234     if (tableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
  235     if (nbSymbols > *maxSymbolValuePtr+1) return ERROR(maxSymbolValue_tooSmall);
  236 
  237     CTable[0] = tableLog;
  238 
  239     /* Prepare base value per rank */
  240     {   U32 n, nextRankStart = 0;
  241         for (n=1; n<=tableLog; n++) {
  242             U32 curr = nextRankStart;
  243             nextRankStart += (rankVal[n] << (n-1));
  244             rankVal[n] = curr;
  245     }   }
  246 
  247     /* fill nbBits */
  248     {   U32 n; for (n=0; n<nbSymbols; n++) {
  249             const U32 w = huffWeight[n];
  250             HUF_setNbBits(ct + n, (BYTE)(tableLog + 1 - w) & -(w != 0));
  251     }   }
  252 
  253     /* fill val */
  254     {   U16 nbPerRank[HUF_TABLELOG_MAX+2]  = {0};  /* support w=0=>n=tableLog+1 */
  255         U16 valPerRank[HUF_TABLELOG_MAX+2] = {0};
  256         { U32 n; for (n=0; n<nbSymbols; n++) nbPerRank[HUF_getNbBits(ct[n])]++; }
  257         /* determine stating value per rank */
  258         valPerRank[tableLog+1] = 0;   /* for w==0 */
  259         {   U16 min = 0;
  260             U32 n; for (n=tableLog; n>0; n--) {  /* start at n=tablelog <-> w=1 */
  261                 valPerRank[n] = min;     /* get starting value within each rank */
  262                 min += nbPerRank[n];
  263                 min >>= 1;
  264         }   }
  265         /* assign value within rank, symbol order */
  266         { U32 n; for (n=0; n<nbSymbols; n++) HUF_setValue(ct + n, valPerRank[HUF_getNbBits(ct[n])]++); }
  267     }
  268 
  269     *maxSymbolValuePtr = nbSymbols - 1;
  270     return readSize;
  271 }
  272 
  273 U32 HUF_getNbBitsFromCTable(HUF_CElt const* CTable, U32 symbolValue)
  274 {
  275     const HUF_CElt* ct = CTable + 1;
  276     assert(symbolValue <= HUF_SYMBOLVALUE_MAX);
  277     return (U32)HUF_getNbBits(ct[symbolValue]);
  278 }
  279 
  280 
  281 typedef struct nodeElt_s {
  282     U32 count;
  283     U16 parent;
  284     BYTE byte;
  285     BYTE nbBits;
  286 } nodeElt;
  287 
  288 /**
  289  * HUF_setMaxHeight():
  290  * Enforces maxNbBits on the Huffman tree described in huffNode.
  291  *
  292  * It sets all nodes with nbBits > maxNbBits to be maxNbBits. Then it adjusts
  293  * the tree to so that it is a valid canonical Huffman tree.
  294  *
  295  * @pre               The sum of the ranks of each symbol == 2^largestBits,
  296  *                    where largestBits == huffNode[lastNonNull].nbBits.
  297  * @post              The sum of the ranks of each symbol == 2^largestBits,
  298  *                    where largestBits is the return value <= maxNbBits.
  299  *
  300  * @param huffNode    The Huffman tree modified in place to enforce maxNbBits.
  301  * @param lastNonNull The symbol with the lowest count in the Huffman tree.
  302  * @param maxNbBits   The maximum allowed number of bits, which the Huffman tree
  303  *                    may not respect. After this function the Huffman tree will
  304  *                    respect maxNbBits.
  305  * @return            The maximum number of bits of the Huffman tree after adjustment,
  306  *                    necessarily no more than maxNbBits.
  307  */
  308 static U32 HUF_setMaxHeight(nodeElt* huffNode, U32 lastNonNull, U32 maxNbBits)
  309 {
  310     const U32 largestBits = huffNode[lastNonNull].nbBits;
  311     /* early exit : no elt > maxNbBits, so the tree is already valid. */
  312     if (largestBits <= maxNbBits) return largestBits;
  313 
  314     /* there are several too large elements (at least >= 2) */
  315     {   int totalCost = 0;
  316         const U32 baseCost = 1 << (largestBits - maxNbBits);
  317         int n = (int)lastNonNull;
  318 
  319         /* Adjust any ranks > maxNbBits to maxNbBits.
  320          * Compute totalCost, which is how far the sum of the ranks is
  321          * we are over 2^largestBits after adjust the offending ranks.
  322          */
  323         while (huffNode[n].nbBits > maxNbBits) {
  324             totalCost += baseCost - (1 << (largestBits - huffNode[n].nbBits));
  325             huffNode[n].nbBits = (BYTE)maxNbBits;
  326             n--;
  327         }
  328         /* n stops at huffNode[n].nbBits <= maxNbBits */
  329         assert(huffNode[n].nbBits <= maxNbBits);
  330         /* n end at index of smallest symbol using < maxNbBits */
  331         while (huffNode[n].nbBits == maxNbBits) --n;
  332 
  333         /* renorm totalCost from 2^largestBits to 2^maxNbBits
  334          * note : totalCost is necessarily a multiple of baseCost */
  335         assert((totalCost & (baseCost - 1)) == 0);
  336         totalCost >>= (largestBits - maxNbBits);
  337         assert(totalCost > 0);
  338 
  339         /* repay normalized cost */
  340         {   U32 const noSymbol = 0xF0F0F0F0;
  341             U32 rankLast[HUF_TABLELOG_MAX+2];
  342 
  343             /* Get pos of last (smallest = lowest cum. count) symbol per rank */
  344             ZSTD_memset(rankLast, 0xF0, sizeof(rankLast));
  345             {   U32 currentNbBits = maxNbBits;
  346                 int pos;
  347                 for (pos=n ; pos >= 0; pos--) {
  348                     if (huffNode[pos].nbBits >= currentNbBits) continue;
  349                     currentNbBits = huffNode[pos].nbBits;   /* < maxNbBits */
  350                     rankLast[maxNbBits-currentNbBits] = (U32)pos;
  351             }   }
  352 
  353             while (totalCost > 0) {
  354                 /* Try to reduce the next power of 2 above totalCost because we
  355                  * gain back half the rank.
  356                  */
  357                 U32 nBitsToDecrease = BIT_highbit32((U32)totalCost) + 1;
  358                 for ( ; nBitsToDecrease > 1; nBitsToDecrease--) {
  359                     U32 const highPos = rankLast[nBitsToDecrease];
  360                     U32 const lowPos = rankLast[nBitsToDecrease-1];
  361                     if (highPos == noSymbol) continue;
  362                     /* Decrease highPos if no symbols of lowPos or if it is
  363                      * not cheaper to remove 2 lowPos than highPos.
  364                      */
  365                     if (lowPos == noSymbol) break;
  366                     {   U32 const highTotal = huffNode[highPos].count;
  367                         U32 const lowTotal = 2 * huffNode[lowPos].count;
  368                         if (highTotal <= lowTotal) break;
  369                 }   }
  370                 /* only triggered when no more rank 1 symbol left => find closest one (note : there is necessarily at least one !) */
  371                 assert(rankLast[nBitsToDecrease] != noSymbol || nBitsToDecrease == 1);
  372                 /* HUF_MAX_TABLELOG test just to please gcc 5+; but it should not be necessary */
  373                 while ((nBitsToDecrease<=HUF_TABLELOG_MAX) && (rankLast[nBitsToDecrease] == noSymbol))
  374                     nBitsToDecrease++;
  375                 assert(rankLast[nBitsToDecrease] != noSymbol);
  376                 /* Increase the number of bits to gain back half the rank cost. */
  377                 totalCost -= 1 << (nBitsToDecrease-1);
  378                 huffNode[rankLast[nBitsToDecrease]].nbBits++;
  379 
  380                 /* Fix up the new rank.
  381                  * If the new rank was empty, this symbol is now its smallest.
  382                  * Otherwise, this symbol will be the largest in the new rank so no adjustment.
  383                  */
  384                 if (rankLast[nBitsToDecrease-1] == noSymbol)
  385                     rankLast[nBitsToDecrease-1] = rankLast[nBitsToDecrease];
  386                 /* Fix up the old rank.
  387                  * If the symbol was at position 0, meaning it was the highest weight symbol in the tree,
  388                  * it must be the only symbol in its rank, so the old rank now has no symbols.
  389                  * Otherwise, since the Huffman nodes are sorted by count, the previous position is now
  390                  * the smallest node in the rank. If the previous position belongs to a different rank,
  391                  * then the rank is now empty.
  392                  */
  393                 if (rankLast[nBitsToDecrease] == 0)    /* special case, reached largest symbol */
  394                     rankLast[nBitsToDecrease] = noSymbol;
  395                 else {
  396                     rankLast[nBitsToDecrease]--;
  397                     if (huffNode[rankLast[nBitsToDecrease]].nbBits != maxNbBits-nBitsToDecrease)
  398                         rankLast[nBitsToDecrease] = noSymbol;   /* this rank is now empty */
  399                 }
  400             }   /* while (totalCost > 0) */
  401 
  402             /* If we've removed too much weight, then we have to add it back.
  403              * To avoid overshooting again, we only adjust the smallest rank.
  404              * We take the largest nodes from the lowest rank 0 and move them
  405              * to rank 1. There's guaranteed to be enough rank 0 symbols because
  406              * TODO.
  407              */
  408             while (totalCost < 0) {  /* Sometimes, cost correction overshoot */
  409                 /* special case : no rank 1 symbol (using maxNbBits-1);
  410                  * let's create one from largest rank 0 (using maxNbBits).
  411                  */
  412                 if (rankLast[1] == noSymbol) {
  413                     while (huffNode[n].nbBits == maxNbBits) n--;
  414                     huffNode[n+1].nbBits--;
  415                     assert(n >= 0);
  416                     rankLast[1] = (U32)(n+1);
  417                     totalCost++;
  418                     continue;
  419                 }
  420                 huffNode[ rankLast[1] + 1 ].nbBits--;
  421                 rankLast[1]++;
  422                 totalCost ++;
  423             }
  424         }   /* repay normalized cost */
  425     }   /* there are several too large elements (at least >= 2) */
  426 
  427     return maxNbBits;
  428 }
  429 
  430 typedef struct {
  431     U16 base;
  432     U16 curr;
  433 } rankPos;
  434 
  435 typedef nodeElt huffNodeTable[HUF_CTABLE_WORKSPACE_SIZE_U32];
  436 
  437 /* Number of buckets available for HUF_sort() */
  438 #define RANK_POSITION_TABLE_SIZE 192
  439 
  440 typedef struct {
  441   huffNodeTable huffNodeTbl;
  442   rankPos rankPosition[RANK_POSITION_TABLE_SIZE];
  443 } HUF_buildCTable_wksp_tables;
  444 
  445 /* RANK_POSITION_DISTINCT_COUNT_CUTOFF == Cutoff point in HUF_sort() buckets for which we use log2 bucketing.
  446  * Strategy is to use as many buckets as possible for representing distinct
  447  * counts while using the remainder to represent all "large" counts.
  448  *
  449  * To satisfy this requirement for 192 buckets, we can do the following:
  450  * Let buckets 0-166 represent distinct counts of [0, 166]
  451  * Let buckets 166 to 192 represent all remaining counts up to RANK_POSITION_MAX_COUNT_LOG using log2 bucketing.
  452  */
  453 #define RANK_POSITION_MAX_COUNT_LOG 32
  454 #define RANK_POSITION_LOG_BUCKETS_BEGIN (RANK_POSITION_TABLE_SIZE - 1) - RANK_POSITION_MAX_COUNT_LOG - 1 /* == 158 */
  455 #define RANK_POSITION_DISTINCT_COUNT_CUTOFF RANK_POSITION_LOG_BUCKETS_BEGIN + BIT_highbit32(RANK_POSITION_LOG_BUCKETS_BEGIN) /* == 166 */
  456 
  457 /* Return the appropriate bucket index for a given count. See definition of
  458  * RANK_POSITION_DISTINCT_COUNT_CUTOFF for explanation of bucketing strategy.
  459  */
  460 static U32 HUF_getIndex(U32 const count) {
  461     return (count < RANK_POSITION_DISTINCT_COUNT_CUTOFF)
  462         ? count
  463         : BIT_highbit32(count) + RANK_POSITION_LOG_BUCKETS_BEGIN;
  464 }
  465 
  466 /* Helper swap function for HUF_quickSortPartition() */
  467 static void HUF_swapNodes(nodeElt* a, nodeElt* b) {
  468         nodeElt tmp = *a;
  469         *a = *b;
  470         *b = tmp;
  471 }
  472 
  473 /* Returns 0 if the huffNode array is not sorted by descending count */
  474 MEM_STATIC int HUF_isSorted(nodeElt huffNode[], U32 const maxSymbolValue1) {
  475     U32 i;
  476     for (i = 1; i < maxSymbolValue1; ++i) {
  477         if (huffNode[i].count > huffNode[i-1].count) {
  478             return 0;
  479         }
  480     }
  481     return 1;
  482 }
  483 
  484 /* Insertion sort by descending order */
  485 HINT_INLINE void HUF_insertionSort(nodeElt huffNode[], int const low, int const high) {
  486     int i;
  487     int const size = high-low+1;
  488     huffNode += low;
  489     for (i = 1; i < size; ++i) {
  490         nodeElt const key = huffNode[i];
  491         int j = i - 1;
  492         while (j >= 0 && huffNode[j].count < key.count) {
  493             huffNode[j + 1] = huffNode[j];
  494             j--;
  495         }
  496         huffNode[j + 1] = key;
  497     }
  498 }
  499 
  500 /* Pivot helper function for quicksort. */
  501 static int HUF_quickSortPartition(nodeElt arr[], int const low, int const high) {
  502     /* Simply select rightmost element as pivot. "Better" selectors like
  503      * median-of-three don't experimentally appear to have any benefit.
  504      */
  505     U32 const pivot = arr[high].count;
  506     int i = low - 1;
  507     int j = low;
  508     for ( ; j < high; j++) {
  509         if (arr[j].count > pivot) {
  510             i++;
  511             HUF_swapNodes(&arr[i], &arr[j]);
  512         }
  513     }
  514     HUF_swapNodes(&arr[i + 1], &arr[high]);
  515     return i + 1;
  516 }
  517 
  518 /* Classic quicksort by descending with partially iterative calls
  519  * to reduce worst case callstack size.
  520  */
  521 static void HUF_simpleQuickSort(nodeElt arr[], int low, int high) {
  522     int const kInsertionSortThreshold = 8;
  523     if (high - low < kInsertionSortThreshold) {
  524         HUF_insertionSort(arr, low, high);
  525         return;
  526     }
  527     while (low < high) {
  528         int const idx = HUF_quickSortPartition(arr, low, high);
  529         if (idx - low < high - idx) {
  530             HUF_simpleQuickSort(arr, low, idx - 1);
  531             low = idx + 1;
  532         } else {
  533             HUF_simpleQuickSort(arr, idx + 1, high);
  534             high = idx - 1;
  535         }
  536     }
  537 }
  538 
  539 /**
  540  * HUF_sort():
  541  * Sorts the symbols [0, maxSymbolValue] by count[symbol] in decreasing order.
  542  * This is a typical bucket sorting strategy that uses either quicksort or insertion sort to sort each bucket.
  543  *
  544  * @param[out] huffNode       Sorted symbols by decreasing count. Only members `.count` and `.byte` are filled.
  545  *                            Must have (maxSymbolValue + 1) entries.
  546  * @param[in]  count          Histogram of the symbols.
  547  * @param[in]  maxSymbolValue Maximum symbol value.
  548  * @param      rankPosition   This is a scratch workspace. Must have RANK_POSITION_TABLE_SIZE entries.
  549  */
  550 static void HUF_sort(nodeElt huffNode[], const unsigned count[], U32 const maxSymbolValue, rankPos rankPosition[]) {
  551     U32 n;
  552     U32 const maxSymbolValue1 = maxSymbolValue+1;
  553 
  554     /* Compute base and set curr to base.
  555      * For symbol s let lowerRank = HUF_getIndex(count[n]) and rank = lowerRank + 1.
  556      * See HUF_getIndex to see bucketing strategy.
  557      * We attribute each symbol to lowerRank's base value, because we want to know where
  558      * each rank begins in the output, so for rank R we want to count ranks R+1 and above.
  559      */
  560     ZSTD_memset(rankPosition, 0, sizeof(*rankPosition) * RANK_POSITION_TABLE_SIZE);
  561     for (n = 0; n < maxSymbolValue1; ++n) {
  562         U32 lowerRank = HUF_getIndex(count[n]);
  563         assert(lowerRank < RANK_POSITION_TABLE_SIZE - 1);
  564         rankPosition[lowerRank].base++;
  565     }
  566 
  567     assert(rankPosition[RANK_POSITION_TABLE_SIZE - 1].base == 0);
  568     /* Set up the rankPosition table */
  569     for (n = RANK_POSITION_TABLE_SIZE - 1; n > 0; --n) {
  570         rankPosition[n-1].base += rankPosition[n].base;
  571         rankPosition[n-1].curr = rankPosition[n-1].base;
  572     }
  573 
  574     /* Insert each symbol into their appropriate bucket, setting up rankPosition table. */
  575     for (n = 0; n < maxSymbolValue1; ++n) {
  576         U32 const c = count[n];
  577         U32 const r = HUF_getIndex(c) + 1;
  578         U32 const pos = rankPosition[r].curr++;
  579         assert(pos < maxSymbolValue1);
  580         huffNode[pos].count = c;
  581         huffNode[pos].byte  = (BYTE)n;
  582     }
  583 
  584     /* Sort each bucket. */
  585     for (n = RANK_POSITION_DISTINCT_COUNT_CUTOFF; n < RANK_POSITION_TABLE_SIZE - 1; ++n) {
  586         U32 const bucketSize = rankPosition[n].curr-rankPosition[n].base;
  587         U32 const bucketStartIdx = rankPosition[n].base;
  588         if (bucketSize > 1) {
  589             assert(bucketStartIdx < maxSymbolValue1);
  590             HUF_simpleQuickSort(huffNode + bucketStartIdx, 0, bucketSize-1);
  591         }
  592     }
  593 
  594     assert(HUF_isSorted(huffNode, maxSymbolValue1));
  595 }
  596 
  597 /** HUF_buildCTable_wksp() :
  598  *  Same as HUF_buildCTable(), but using externally allocated scratch buffer.
  599  *  `workSpace` must be aligned on 4-bytes boundaries, and be at least as large as sizeof(HUF_buildCTable_wksp_tables).
  600  */
  601 #define STARTNODE (HUF_SYMBOLVALUE_MAX+1)
  602 
  603 /* HUF_buildTree():
  604  * Takes the huffNode array sorted by HUF_sort() and builds an unlimited-depth Huffman tree.
  605  *
  606  * @param huffNode        The array sorted by HUF_sort(). Builds the Huffman tree in this array.
  607  * @param maxSymbolValue  The maximum symbol value.
  608  * @return                The smallest node in the Huffman tree (by count).
  609  */
  610 static int HUF_buildTree(nodeElt* huffNode, U32 maxSymbolValue)
  611 {
  612     nodeElt* const huffNode0 = huffNode - 1;
  613     int nonNullRank;
  614     int lowS, lowN;
  615     int nodeNb = STARTNODE;
  616     int n, nodeRoot;
  617     /* init for parents */
  618     nonNullRank = (int)maxSymbolValue;
  619     while(huffNode[nonNullRank].count == 0) nonNullRank--;
  620     lowS = nonNullRank; nodeRoot = nodeNb + lowS - 1; lowN = nodeNb;
  621     huffNode[nodeNb].count = huffNode[lowS].count + huffNode[lowS-1].count;
  622     huffNode[lowS].parent = huffNode[lowS-1].parent = (U16)nodeNb;
  623     nodeNb++; lowS-=2;
  624     for (n=nodeNb; n<=nodeRoot; n++) huffNode[n].count = (U32)(1U<<30);
  625     huffNode0[0].count = (U32)(1U<<31);  /* fake entry, strong barrier */
  626 
  627     /* create parents */
  628     while (nodeNb <= nodeRoot) {
  629         int const n1 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++;
  630         int const n2 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++;
  631         huffNode[nodeNb].count = huffNode[n1].count + huffNode[n2].count;
  632         huffNode[n1].parent = huffNode[n2].parent = (U16)nodeNb;
  633         nodeNb++;
  634     }
  635 
  636     /* distribute weights (unlimited tree height) */
  637     huffNode[nodeRoot].nbBits = 0;
  638     for (n=nodeRoot-1; n>=STARTNODE; n--)
  639         huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1;
  640     for (n=0; n<=nonNullRank; n++)
  641         huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1;
  642 
  643     return nonNullRank;
  644 }
  645 
  646 /**
  647  * HUF_buildCTableFromTree():
  648  * Build the CTable given the Huffman tree in huffNode.
  649  *
  650  * @param[out] CTable         The output Huffman CTable.
  651  * @param      huffNode       The Huffman tree.
  652  * @param      nonNullRank    The last and smallest node in the Huffman tree.
  653  * @param      maxSymbolValue The maximum symbol value.
  654  * @param      maxNbBits      The exact maximum number of bits used in the Huffman tree.
  655  */
  656 static void HUF_buildCTableFromTree(HUF_CElt* CTable, nodeElt const* huffNode, int nonNullRank, U32 maxSymbolValue, U32 maxNbBits)
  657 {
  658     HUF_CElt* const ct = CTable + 1;
  659     /* fill result into ctable (val, nbBits) */
  660     int n;
  661     U16 nbPerRank[HUF_TABLELOG_MAX+1] = {0};
  662     U16 valPerRank[HUF_TABLELOG_MAX+1] = {0};
  663     int const alphabetSize = (int)(maxSymbolValue + 1);
  664     for (n=0; n<=nonNullRank; n++)
  665         nbPerRank[huffNode[n].nbBits]++;
  666     /* determine starting value per rank */
  667     {   U16 min = 0;
  668         for (n=(int)maxNbBits; n>0; n--) {
  669             valPerRank[n] = min;      /* get starting value within each rank */
  670             min += nbPerRank[n];
  671             min >>= 1;
  672     }   }
  673     for (n=0; n<alphabetSize; n++)
  674         HUF_setNbBits(ct + huffNode[n].byte, huffNode[n].nbBits);   /* push nbBits per symbol, symbol order */
  675     for (n=0; n<alphabetSize; n++)
  676         HUF_setValue(ct + n, valPerRank[HUF_getNbBits(ct[n])]++);   /* assign value within rank, symbol order */
  677     CTable[0] = maxNbBits;
  678 }
  679 
  680 size_t HUF_buildCTable_wksp (HUF_CElt* CTable, const unsigned* count, U32 maxSymbolValue, U32 maxNbBits, void* workSpace, size_t wkspSize)
  681 {
  682     HUF_buildCTable_wksp_tables* const wksp_tables = (HUF_buildCTable_wksp_tables*)HUF_alignUpWorkspace(workSpace, &wkspSize, ZSTD_ALIGNOF(U32));
  683     nodeElt* const huffNode0 = wksp_tables->huffNodeTbl;
  684     nodeElt* const huffNode = huffNode0+1;
  685     int nonNullRank;
  686 
  687     /* safety checks */
  688     if (wkspSize < sizeof(HUF_buildCTable_wksp_tables))
  689       return ERROR(workSpace_tooSmall);
  690     if (maxNbBits == 0) maxNbBits = HUF_TABLELOG_DEFAULT;
  691     if (maxSymbolValue > HUF_SYMBOLVALUE_MAX)
  692       return ERROR(maxSymbolValue_tooLarge);
  693     ZSTD_memset(huffNode0, 0, sizeof(huffNodeTable));
  694 
  695     /* sort, decreasing order */
  696     HUF_sort(huffNode, count, maxSymbolValue, wksp_tables->rankPosition);
  697 
  698     /* build tree */
  699     nonNullRank = HUF_buildTree(huffNode, maxSymbolValue);
  700 
  701     /* enforce maxTableLog */
  702     maxNbBits = HUF_setMaxHeight(huffNode, (U32)nonNullRank, maxNbBits);
  703     if (maxNbBits > HUF_TABLELOG_MAX) return ERROR(GENERIC);   /* check fit into table */
  704 
  705     HUF_buildCTableFromTree(CTable, huffNode, nonNullRank, maxSymbolValue, maxNbBits);
  706 
  707     return maxNbBits;
  708 }
  709 
  710 size_t HUF_estimateCompressedSize(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue)
  711 {
  712     HUF_CElt const* ct = CTable + 1;
  713     size_t nbBits = 0;
  714     int s;
  715     for (s = 0; s <= (int)maxSymbolValue; ++s) {
  716         nbBits += HUF_getNbBits(ct[s]) * count[s];
  717     }
  718     return nbBits >> 3;
  719 }
  720 
  721 int HUF_validateCTable(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue) {
  722   HUF_CElt const* ct = CTable + 1;
  723   int bad = 0;
  724   int s;
  725   for (s = 0; s <= (int)maxSymbolValue; ++s) {
  726     bad |= (count[s] != 0) & (HUF_getNbBits(ct[s]) == 0);
  727   }
  728   return !bad;
  729 }
  730 
  731 size_t HUF_compressBound(size_t size) { return HUF_COMPRESSBOUND(size); }
  732 
  733 /** HUF_CStream_t:
  734  * Huffman uses its own BIT_CStream_t implementation.
  735  * There are three major differences from BIT_CStream_t:
  736  *   1. HUF_addBits() takes a HUF_CElt (size_t) which is
  737  *      the pair (nbBits, value) in the format:
  738  *      format:
  739  *        - Bits [0, 4)            = nbBits
  740  *        - Bits [4, 64 - nbBits)  = 0
  741  *        - Bits [64 - nbBits, 64) = value
  742  *   2. The bitContainer is built from the upper bits and
  743  *      right shifted. E.g. to add a new value of N bits
  744  *      you right shift the bitContainer by N, then or in
  745  *      the new value into the N upper bits.
  746  *   3. The bitstream has two bit containers. You can add
  747  *      bits to the second container and merge them into
  748  *      the first container.
  749  */
  750 
  751 #define HUF_BITS_IN_CONTAINER (sizeof(size_t) * 8)
  752 
  753 typedef struct {
  754     size_t bitContainer[2];
  755     size_t bitPos[2];
  756 
  757     BYTE* startPtr;
  758     BYTE* ptr;
  759     BYTE* endPtr;
  760 } HUF_CStream_t;
  761 
  762 /**! HUF_initCStream():
  763  * Initializes the bitstream.
  764  * @returns 0 or an error code.
  765  */
  766 static size_t HUF_initCStream(HUF_CStream_t* bitC,
  767                                   void* startPtr, size_t dstCapacity)
  768 {
  769     ZSTD_memset(bitC, 0, sizeof(*bitC));
  770     bitC->startPtr = (BYTE*)startPtr;
  771     bitC->ptr = bitC->startPtr;
  772     bitC->endPtr = bitC->startPtr + dstCapacity - sizeof(bitC->bitContainer[0]);
  773     if (dstCapacity <= sizeof(bitC->bitContainer[0])) return ERROR(dstSize_tooSmall);
  774     return 0;
  775 }
  776 
  777 /*! HUF_addBits():
  778  * Adds the symbol stored in HUF_CElt elt to the bitstream.
  779  *
  780  * @param elt   The element we're adding. This is a (nbBits, value) pair.
  781  *              See the HUF_CStream_t docs for the format.
  782  * @param idx   Insert into the bitstream at this idx.
  783  * @param kFast This is a template parameter. If the bitstream is guaranteed
  784  *              to have at least 4 unused bits after this call it may be 1,
  785  *              otherwise it must be 0. HUF_addBits() is faster when fast is set.
  786  */
  787 FORCE_INLINE_TEMPLATE void HUF_addBits(HUF_CStream_t* bitC, HUF_CElt elt, int idx, int kFast)
  788 {
  789     assert(idx <= 1);
  790     assert(HUF_getNbBits(elt) <= HUF_TABLELOG_ABSOLUTEMAX);
  791     /* This is efficient on x86-64 with BMI2 because shrx
  792      * only reads the low 6 bits of the register. The compiler
  793      * knows this and elides the mask. When fast is set,
  794      * every operation can use the same value loaded from elt.
  795      */
  796     bitC->bitContainer[idx] >>= HUF_getNbBits(elt);
  797     bitC->bitContainer[idx] |= kFast ? HUF_getValueFast(elt) : HUF_getValue(elt);
  798     /* We only read the low 8 bits of bitC->bitPos[idx] so it
  799      * doesn't matter that the high bits have noise from the value.
  800      */
  801     bitC->bitPos[idx] += HUF_getNbBitsFast(elt);
  802     assert((bitC->bitPos[idx] & 0xFF) <= HUF_BITS_IN_CONTAINER);
  803     /* The last 4-bits of elt are dirty if fast is set,
  804      * so we must not be overwriting bits that have already been
  805      * inserted into the bit container.
  806      */
  807 #if DEBUGLEVEL >= 1
  808     {
  809         size_t const nbBits = HUF_getNbBits(elt);
  810         size_t const dirtyBits = nbBits == 0 ? 0 : BIT_highbit32((U32)nbBits) + 1;
  811         (void)dirtyBits;
  812         /* Middle bits are 0. */
  813         assert(((elt >> dirtyBits) << (dirtyBits + nbBits)) == 0);
  814         /* We didn't overwrite any bits in the bit container. */
  815         assert(!kFast || (bitC->bitPos[idx] & 0xFF) <= HUF_BITS_IN_CONTAINER);
  816         (void)dirtyBits;
  817     }
  818 #endif
  819 }
  820 
  821 FORCE_INLINE_TEMPLATE void HUF_zeroIndex1(HUF_CStream_t* bitC)
  822 {
  823     bitC->bitContainer[1] = 0;
  824     bitC->bitPos[1] = 0;
  825 }
  826 
  827 /*! HUF_mergeIndex1() :
  828  * Merges the bit container @ index 1 into the bit container @ index 0
  829  * and zeros the bit container @ index 1.
  830  */
  831 FORCE_INLINE_TEMPLATE void HUF_mergeIndex1(HUF_CStream_t* bitC)
  832 {
  833     assert((bitC->bitPos[1] & 0xFF) < HUF_BITS_IN_CONTAINER);
  834     bitC->bitContainer[0] >>= (bitC->bitPos[1] & 0xFF);
  835     bitC->bitContainer[0] |= bitC->bitContainer[1];
  836     bitC->bitPos[0] += bitC->bitPos[1];
  837     assert((bitC->bitPos[0] & 0xFF) <= HUF_BITS_IN_CONTAINER);
  838 }
  839 
  840 /*! HUF_flushBits() :
  841 * Flushes the bits in the bit container @ index 0.
  842 *
  843 * @post bitPos will be < 8.
  844 * @param kFast If kFast is set then we must know a-priori that
  845 *              the bit container will not overflow.
  846 */
  847 FORCE_INLINE_TEMPLATE void HUF_flushBits(HUF_CStream_t* bitC, int kFast)
  848 {
  849     /* The upper bits of bitPos are noisy, so we must mask by 0xFF. */
  850     size_t const nbBits = bitC->bitPos[0] & 0xFF;
  851     size_t const nbBytes = nbBits >> 3;
  852     /* The top nbBits bits of bitContainer are the ones we need. */
  853     size_t const bitContainer = bitC->bitContainer[0] >> (HUF_BITS_IN_CONTAINER - nbBits);
  854     /* Mask bitPos to account for the bytes we consumed. */
  855     bitC->bitPos[0] &= 7;
  856     assert(nbBits > 0);
  857     assert(nbBits <= sizeof(bitC->bitContainer[0]) * 8);
  858     assert(bitC->ptr <= bitC->endPtr);
  859     MEM_writeLEST(bitC->ptr, bitContainer);
  860     bitC->ptr += nbBytes;
  861     assert(!kFast || bitC->ptr <= bitC->endPtr);
  862     if (!kFast && bitC->ptr > bitC->endPtr) bitC->ptr = bitC->endPtr;
  863     /* bitContainer doesn't need to be modified because the leftover
  864      * bits are already the top bitPos bits. And we don't care about
  865      * noise in the lower values.
  866      */
  867 }
  868 
  869 /*! HUF_endMark()
  870  * @returns The Huffman stream end mark: A 1-bit value = 1.
  871  */
  872 static HUF_CElt HUF_endMark(void)
  873 {
  874     HUF_CElt endMark;
  875     HUF_setNbBits(&endMark, 1);
  876     HUF_setValue(&endMark, 1);
  877     return endMark;
  878 }
  879 
  880 /*! HUF_closeCStream() :
  881  *  @return Size of CStream, in bytes,
  882  *          or 0 if it could not fit into dstBuffer */
  883 static size_t HUF_closeCStream(HUF_CStream_t* bitC)
  884 {
  885     HUF_addBits(bitC, HUF_endMark(), /* idx */ 0, /* kFast */ 0);
  886     HUF_flushBits(bitC, /* kFast */ 0);
  887     {
  888         size_t const nbBits = bitC->bitPos[0] & 0xFF;
  889         if (bitC->ptr >= bitC->endPtr) return 0; /* overflow detected */
  890         return (bitC->ptr - bitC->startPtr) + (nbBits > 0);
  891     }
  892 }
  893 
  894 FORCE_INLINE_TEMPLATE void
  895 HUF_encodeSymbol(HUF_CStream_t* bitCPtr, U32 symbol, const HUF_CElt* CTable, int idx, int fast)
  896 {
  897     HUF_addBits(bitCPtr, CTable[symbol], idx, fast);
  898 }
  899 
  900 FORCE_INLINE_TEMPLATE void
  901 HUF_compress1X_usingCTable_internal_body_loop(HUF_CStream_t* bitC,
  902                                    const BYTE* ip, size_t srcSize,
  903                                    const HUF_CElt* ct,
  904                                    int kUnroll, int kFastFlush, int kLastFast)
  905 {
  906     /* Join to kUnroll */
  907     int n = (int)srcSize;
  908     int rem = n % kUnroll;
  909     if (rem > 0) {
  910         for (; rem > 0; --rem) {
  911             HUF_encodeSymbol(bitC, ip[--n], ct, 0, /* fast */ 0);
  912         }
  913         HUF_flushBits(bitC, kFastFlush);
  914     }
  915     assert(n % kUnroll == 0);
  916 
  917     /* Join to 2 * kUnroll */
  918     if (n % (2 * kUnroll)) {
  919         int u;
  920         for (u = 1; u < kUnroll; ++u) {
  921             HUF_encodeSymbol(bitC, ip[n - u], ct, 0, 1);
  922         }
  923         HUF_encodeSymbol(bitC, ip[n - kUnroll], ct, 0, kLastFast);
  924         HUF_flushBits(bitC, kFastFlush);
  925         n -= kUnroll;
  926     }
  927     assert(n % (2 * kUnroll) == 0);
  928 
  929     for (; n>0; n-= 2 * kUnroll) {
  930         /* Encode kUnroll symbols into the bitstream @ index 0. */
  931         int u;
  932         for (u = 1; u < kUnroll; ++u) {
  933             HUF_encodeSymbol(bitC, ip[n - u], ct, /* idx */ 0, /* fast */ 1);
  934         }
  935         HUF_encodeSymbol(bitC, ip[n - kUnroll], ct, /* idx */ 0, /* fast */ kLastFast);
  936         HUF_flushBits(bitC, kFastFlush);
  937         /* Encode kUnroll symbols into the bitstream @ index 1.
  938          * This allows us to start filling the bit container
  939          * without any data dependencies.
  940          */
  941         HUF_zeroIndex1(bitC);
  942         for (u = 1; u < kUnroll; ++u) {
  943             HUF_encodeSymbol(bitC, ip[n - kUnroll - u], ct, /* idx */ 1, /* fast */ 1);
  944         }
  945         HUF_encodeSymbol(bitC, ip[n - kUnroll - kUnroll], ct, /* idx */ 1, /* fast */ kLastFast);
  946         /* Merge bitstream @ index 1 into the bitstream @ index 0 */
  947         HUF_mergeIndex1(bitC);
  948         HUF_flushBits(bitC, kFastFlush);
  949     }
  950     assert(n == 0);
  951 
  952 }
  953 
  954 /**
  955  * Returns a tight upper bound on the output space needed by Huffman
  956  * with 8 bytes buffer to handle over-writes. If the output is at least
  957  * this large we don't need to do bounds checks during Huffman encoding.
  958  */
  959 static size_t HUF_tightCompressBound(size_t srcSize, size_t tableLog)
  960 {
  961     return ((srcSize * tableLog) >> 3) + 8;
  962 }
  963 
  964 
  965 FORCE_INLINE_TEMPLATE size_t
  966 HUF_compress1X_usingCTable_internal_body(void* dst, size_t dstSize,
  967                                    const void* src, size_t srcSize,
  968                                    const HUF_CElt* CTable)
  969 {
  970     U32 const tableLog = (U32)CTable[0];
  971     HUF_CElt const* ct = CTable + 1;
  972     const BYTE* ip = (const BYTE*) src;
  973     BYTE* const ostart = (BYTE*)dst;
  974     BYTE* const oend = ostart + dstSize;
  975     BYTE* op = ostart;
  976     HUF_CStream_t bitC;
  977 
  978     /* init */
  979     if (dstSize < 8) return 0;   /* not enough space to compress */
  980     { size_t const initErr = HUF_initCStream(&bitC, op, (size_t)(oend-op));
  981       if (HUF_isError(initErr)) return 0; }
  982 
  983     if (dstSize < HUF_tightCompressBound(srcSize, (size_t)tableLog) || tableLog > 11)
  984         HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ MEM_32bits() ? 2 : 4, /* kFast */ 0, /* kLastFast */ 0);
  985     else {
  986         if (MEM_32bits()) {
  987             switch (tableLog) {
  988             case 11:
  989                 HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 2, /* kFastFlush */ 1, /* kLastFast */ 0);
  990                 break;
  991             case 10: ZSTD_FALLTHROUGH;
  992             case 9: ZSTD_FALLTHROUGH;
  993             case 8:
  994                 HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 2, /* kFastFlush */ 1, /* kLastFast */ 1);
  995                 break;
  996             case 7: ZSTD_FALLTHROUGH;
  997             default:
  998                 HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 3, /* kFastFlush */ 1, /* kLastFast */ 1);
  999                 break;
 1000             }
 1001         } else {
 1002             switch (tableLog) {
 1003             case 11:
 1004                 HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 5, /* kFastFlush */ 1, /* kLastFast */ 0);
 1005                 break;
 1006             case 10:
 1007                 HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 5, /* kFastFlush */ 1, /* kLastFast */ 1);
 1008                 break;
 1009             case 9:
 1010                 HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 6, /* kFastFlush */ 1, /* kLastFast */ 0);
 1011                 break;
 1012             case 8:
 1013                 HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 7, /* kFastFlush */ 1, /* kLastFast */ 0);
 1014                 break;
 1015             case 7:
 1016                 HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 8, /* kFastFlush */ 1, /* kLastFast */ 0);
 1017                 break;
 1018             case 6: ZSTD_FALLTHROUGH;
 1019             default:
 1020                 HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 9, /* kFastFlush */ 1, /* kLastFast */ 1);
 1021                 break;
 1022             }
 1023         }
 1024     }
 1025     assert(bitC.ptr <= bitC.endPtr);
 1026 
 1027     return HUF_closeCStream(&bitC);
 1028 }
 1029 
 1030 #if DYNAMIC_BMI2
 1031 
 1032 static BMI2_TARGET_ATTRIBUTE size_t
 1033 HUF_compress1X_usingCTable_internal_bmi2(void* dst, size_t dstSize,
 1034                                    const void* src, size_t srcSize,
 1035                                    const HUF_CElt* CTable)
 1036 {
 1037     return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
 1038 }
 1039 
 1040 static size_t
 1041 HUF_compress1X_usingCTable_internal_default(void* dst, size_t dstSize,
 1042                                       const void* src, size_t srcSize,
 1043                                       const HUF_CElt* CTable)
 1044 {
 1045     return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
 1046 }
 1047 
 1048 static size_t
 1049 HUF_compress1X_usingCTable_internal(void* dst, size_t dstSize,
 1050                               const void* src, size_t srcSize,
 1051                               const HUF_CElt* CTable, const int bmi2)
 1052 {
 1053     if (bmi2) {
 1054         return HUF_compress1X_usingCTable_internal_bmi2(dst, dstSize, src, srcSize, CTable);
 1055     }
 1056     return HUF_compress1X_usingCTable_internal_default(dst, dstSize, src, srcSize, CTable);
 1057 }
 1058 
 1059 #else
 1060 
 1061 static size_t
 1062 HUF_compress1X_usingCTable_internal(void* dst, size_t dstSize,
 1063                               const void* src, size_t srcSize,
 1064                               const HUF_CElt* CTable, const int bmi2)
 1065 {
 1066     (void)bmi2;
 1067     return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
 1068 }
 1069 
 1070 #endif
 1071 
 1072 size_t HUF_compress1X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable)
 1073 {
 1074     return HUF_compress1X_usingCTable_bmi2(dst, dstSize, src, srcSize, CTable, /* bmi2 */ 0);
 1075 }
 1076 
 1077 size_t HUF_compress1X_usingCTable_bmi2(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable, int bmi2)
 1078 {
 1079     return HUF_compress1X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, bmi2);
 1080 }
 1081 
 1082 static size_t
 1083 HUF_compress4X_usingCTable_internal(void* dst, size_t dstSize,
 1084                               const void* src, size_t srcSize,
 1085                               const HUF_CElt* CTable, int bmi2)
 1086 {
 1087     size_t const segmentSize = (srcSize+3)/4;   /* first 3 segments */
 1088     const BYTE* ip = (const BYTE*) src;
 1089     const BYTE* const iend = ip + srcSize;
 1090     BYTE* const ostart = (BYTE*) dst;
 1091     BYTE* const oend = ostart + dstSize;
 1092     BYTE* op = ostart;
 1093 
 1094     if (dstSize < 6 + 1 + 1 + 1 + 8) return 0;   /* minimum space to compress successfully */
 1095     if (srcSize < 12) return 0;   /* no saving possible : too small input */
 1096     op += 6;   /* jumpTable */
 1097 
 1098     assert(op <= oend);
 1099     {   CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) );
 1100         if (cSize == 0 || cSize > 65535) return 0;
 1101         MEM_writeLE16(ostart, (U16)cSize);
 1102         op += cSize;
 1103     }
 1104 
 1105     ip += segmentSize;
 1106     assert(op <= oend);
 1107     {   CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) );
 1108         if (cSize == 0 || cSize > 65535) return 0;
 1109         MEM_writeLE16(ostart+2, (U16)cSize);
 1110         op += cSize;
 1111     }
 1112 
 1113     ip += segmentSize;
 1114     assert(op <= oend);
 1115     {   CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) );
 1116         if (cSize == 0 || cSize > 65535) return 0;
 1117         MEM_writeLE16(ostart+4, (U16)cSize);
 1118         op += cSize;
 1119     }
 1120 
 1121     ip += segmentSize;
 1122     assert(op <= oend);
 1123     assert(ip <= iend);
 1124     {   CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, (size_t)(iend-ip), CTable, bmi2) );
 1125         if (cSize == 0 || cSize > 65535) return 0;
 1126         op += cSize;
 1127     }
 1128 
 1129     return (size_t)(op-ostart);
 1130 }
 1131 
 1132 size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable)
 1133 {
 1134     return HUF_compress4X_usingCTable_bmi2(dst, dstSize, src, srcSize, CTable, /* bmi2 */ 0);
 1135 }
 1136 
 1137 size_t HUF_compress4X_usingCTable_bmi2(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable, int bmi2)
 1138 {
 1139     return HUF_compress4X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, bmi2);
 1140 }
 1141 
 1142 typedef enum { HUF_singleStream, HUF_fourStreams } HUF_nbStreams_e;
 1143 
 1144 static size_t HUF_compressCTable_internal(
 1145                 BYTE* const ostart, BYTE* op, BYTE* const oend,
 1146                 const void* src, size_t srcSize,
 1147                 HUF_nbStreams_e nbStreams, const HUF_CElt* CTable, const int bmi2)
 1148 {
 1149     size_t const cSize = (nbStreams==HUF_singleStream) ?
 1150                          HUF_compress1X_usingCTable_internal(op, (size_t)(oend - op), src, srcSize, CTable, bmi2) :
 1151                          HUF_compress4X_usingCTable_internal(op, (size_t)(oend - op), src, srcSize, CTable, bmi2);
 1152     if (HUF_isError(cSize)) { return cSize; }
 1153     if (cSize==0) { return 0; }   /* uncompressible */
 1154     op += cSize;
 1155     /* check compressibility */
 1156     assert(op >= ostart);
 1157     if ((size_t)(op-ostart) >= srcSize-1) { return 0; }
 1158     return (size_t)(op-ostart);
 1159 }
 1160 
 1161 typedef struct {
 1162     unsigned count[HUF_SYMBOLVALUE_MAX + 1];
 1163     HUF_CElt CTable[HUF_CTABLE_SIZE_ST(HUF_SYMBOLVALUE_MAX)];
 1164     union {
 1165         HUF_buildCTable_wksp_tables buildCTable_wksp;
 1166         HUF_WriteCTableWksp writeCTable_wksp;
 1167         U32 hist_wksp[HIST_WKSP_SIZE_U32];
 1168     } wksps;
 1169 } HUF_compress_tables_t;
 1170 
 1171 #define SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE 4096
 1172 #define SUSPECT_INCOMPRESSIBLE_SAMPLE_RATIO 10  /* Must be >= 2 */
 1173 
 1174 /* HUF_compress_internal() :
 1175  * `workSpace_align4` must be aligned on 4-bytes boundaries,
 1176  * and occupies the same space as a table of HUF_WORKSPACE_SIZE_U64 unsigned */
 1177 static size_t
 1178 HUF_compress_internal (void* dst, size_t dstSize,
 1179                  const void* src, size_t srcSize,
 1180                        unsigned maxSymbolValue, unsigned huffLog,
 1181                        HUF_nbStreams_e nbStreams,
 1182                        void* workSpace, size_t wkspSize,
 1183                        HUF_CElt* oldHufTable, HUF_repeat* repeat, int preferRepeat,
 1184                  const int bmi2, unsigned suspectUncompressible)
 1185 {
 1186     HUF_compress_tables_t* const table = (HUF_compress_tables_t*)HUF_alignUpWorkspace(workSpace, &wkspSize, ZSTD_ALIGNOF(size_t));
 1187     BYTE* const ostart = (BYTE*)dst;
 1188     BYTE* const oend = ostart + dstSize;
 1189     BYTE* op = ostart;
 1190 
 1191     HUF_STATIC_ASSERT(sizeof(*table) + HUF_WORKSPACE_MAX_ALIGNMENT <= HUF_WORKSPACE_SIZE);
 1192 
 1193     /* checks & inits */
 1194     if (wkspSize < sizeof(*table)) return ERROR(workSpace_tooSmall);
 1195     if (!srcSize) return 0;  /* Uncompressed */
 1196     if (!dstSize) return 0;  /* cannot fit anything within dst budget */
 1197     if (srcSize > HUF_BLOCKSIZE_MAX) return ERROR(srcSize_wrong);   /* current block size limit */
 1198     if (huffLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
 1199     if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge);
 1200     if (!maxSymbolValue) maxSymbolValue = HUF_SYMBOLVALUE_MAX;
 1201     if (!huffLog) huffLog = HUF_TABLELOG_DEFAULT;
 1202 
 1203     /* Heuristic : If old table is valid, use it for small inputs */
 1204     if (preferRepeat && repeat && *repeat == HUF_repeat_valid) {
 1205         return HUF_compressCTable_internal(ostart, op, oend,
 1206                                            src, srcSize,
 1207                                            nbStreams, oldHufTable, bmi2);
 1208     }
 1209 
 1210     /* If uncompressible data is suspected, do a smaller sampling first */
 1211     DEBUG_STATIC_ASSERT(SUSPECT_INCOMPRESSIBLE_SAMPLE_RATIO >= 2);
 1212     if (suspectUncompressible && srcSize >= (SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE * SUSPECT_INCOMPRESSIBLE_SAMPLE_RATIO)) {
 1213         size_t largestTotal = 0;
 1214         {   unsigned maxSymbolValueBegin = maxSymbolValue;
 1215             CHECK_V_F(largestBegin, HIST_count_simple (table->count, &maxSymbolValueBegin, (const BYTE*)src, SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE) );
 1216             largestTotal += largestBegin;
 1217         }
 1218         {   unsigned maxSymbolValueEnd = maxSymbolValue;
 1219             CHECK_V_F(largestEnd, HIST_count_simple (table->count, &maxSymbolValueEnd, (const BYTE*)src + srcSize - SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE, SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE) );
 1220             largestTotal += largestEnd;
 1221         }
 1222         if (largestTotal <= ((2 * SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE) >> 7)+4) return 0;   /* heuristic : probably not compressible enough */
 1223     }
 1224 
 1225     /* Scan input and build symbol stats */
 1226     {   CHECK_V_F(largest, HIST_count_wksp (table->count, &maxSymbolValue, (const BYTE*)src, srcSize, table->wksps.hist_wksp, sizeof(table->wksps.hist_wksp)) );
 1227         if (largest == srcSize) { *ostart = ((const BYTE*)src)[0]; return 1; }   /* single symbol, rle */
 1228         if (largest <= (srcSize >> 7)+4) return 0;   /* heuristic : probably not compressible enough */
 1229     }
 1230 
 1231     /* Check validity of previous table */
 1232     if ( repeat
 1233       && *repeat == HUF_repeat_check
 1234       && !HUF_validateCTable(oldHufTable, table->count, maxSymbolValue)) {
 1235         *repeat = HUF_repeat_none;
 1236     }
 1237     /* Heuristic : use existing table for small inputs */
 1238     if (preferRepeat && repeat && *repeat != HUF_repeat_none) {
 1239         return HUF_compressCTable_internal(ostart, op, oend,
 1240                                            src, srcSize,
 1241                                            nbStreams, oldHufTable, bmi2);
 1242     }
 1243 
 1244     /* Build Huffman Tree */
 1245     huffLog = HUF_optimalTableLog(huffLog, srcSize, maxSymbolValue);
 1246     {   size_t const maxBits = HUF_buildCTable_wksp(table->CTable, table->count,
 1247                                             maxSymbolValue, huffLog,
 1248                                             &table->wksps.buildCTable_wksp, sizeof(table->wksps.buildCTable_wksp));
 1249         CHECK_F(maxBits);
 1250         huffLog = (U32)maxBits;
 1251     }
 1252     /* Zero unused symbols in CTable, so we can check it for validity */
 1253     {
 1254         size_t const ctableSize = HUF_CTABLE_SIZE_ST(maxSymbolValue);
 1255         size_t const unusedSize = sizeof(table->CTable) - ctableSize * sizeof(HUF_CElt);
 1256         ZSTD_memset(table->CTable + ctableSize, 0, unusedSize);
 1257     }
 1258 
 1259     /* Write table description header */
 1260     {   CHECK_V_F(hSize, HUF_writeCTable_wksp(op, dstSize, table->CTable, maxSymbolValue, huffLog,
 1261                                               &table->wksps.writeCTable_wksp, sizeof(table->wksps.writeCTable_wksp)) );
 1262         /* Check if using previous huffman table is beneficial */
 1263         if (repeat && *repeat != HUF_repeat_none) {
 1264             size_t const oldSize = HUF_estimateCompressedSize(oldHufTable, table->count, maxSymbolValue);
 1265             size_t const newSize = HUF_estimateCompressedSize(table->CTable, table->count, maxSymbolValue);
 1266             if (oldSize <= hSize + newSize || hSize + 12 >= srcSize) {
 1267                 return HUF_compressCTable_internal(ostart, op, oend,
 1268                                                    src, srcSize,
 1269                                                    nbStreams, oldHufTable, bmi2);
 1270         }   }
 1271 
 1272         /* Use the new huffman table */
 1273         if (hSize + 12ul >= srcSize) { return 0; }
 1274         op += hSize;
 1275         if (repeat) { *repeat = HUF_repeat_none; }
 1276         if (oldHufTable)
 1277             ZSTD_memcpy(oldHufTable, table->CTable, sizeof(table->CTable));  /* Save new table */
 1278     }
 1279     return HUF_compressCTable_internal(ostart, op, oend,
 1280                                        src, srcSize,
 1281                                        nbStreams, table->CTable, bmi2);
 1282 }
 1283 
 1284 
 1285 size_t HUF_compress1X_wksp (void* dst, size_t dstSize,
 1286                       const void* src, size_t srcSize,
 1287                       unsigned maxSymbolValue, unsigned huffLog,
 1288                       void* workSpace, size_t wkspSize)
 1289 {
 1290     return HUF_compress_internal(dst, dstSize, src, srcSize,
 1291                                  maxSymbolValue, huffLog, HUF_singleStream,
 1292                                  workSpace, wkspSize,
 1293                                  NULL, NULL, 0, 0 /*bmi2*/, 0);
 1294 }
 1295 
 1296 size_t HUF_compress1X_repeat (void* dst, size_t dstSize,
 1297                       const void* src, size_t srcSize,
 1298                       unsigned maxSymbolValue, unsigned huffLog,
 1299                       void* workSpace, size_t wkspSize,
 1300                       HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat,
 1301                       int bmi2, unsigned suspectUncompressible)
 1302 {
 1303     return HUF_compress_internal(dst, dstSize, src, srcSize,
 1304                                  maxSymbolValue, huffLog, HUF_singleStream,
 1305                                  workSpace, wkspSize, hufTable,
 1306                                  repeat, preferRepeat, bmi2, suspectUncompressible);
 1307 }
 1308 
 1309 /* HUF_compress4X_repeat():
 1310  * compress input using 4 streams.
 1311  * provide workspace to generate compression tables */
 1312 size_t HUF_compress4X_wksp (void* dst, size_t dstSize,
 1313                       const void* src, size_t srcSize,
 1314                       unsigned maxSymbolValue, unsigned huffLog,
 1315                       void* workSpace, size_t wkspSize)
 1316 {
 1317     return HUF_compress_internal(dst, dstSize, src, srcSize,
 1318                                  maxSymbolValue, huffLog, HUF_fourStreams,
 1319                                  workSpace, wkspSize,
 1320                                  NULL, NULL, 0, 0 /*bmi2*/, 0);
 1321 }
 1322 
 1323 /* HUF_compress4X_repeat():
 1324  * compress input using 4 streams.
 1325  * consider skipping quickly
 1326  * re-use an existing huffman compression table */
 1327 size_t HUF_compress4X_repeat (void* dst, size_t dstSize,
 1328                       const void* src, size_t srcSize,
 1329                       unsigned maxSymbolValue, unsigned huffLog,
 1330                       void* workSpace, size_t wkspSize,
 1331                       HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2, unsigned suspectUncompressible)
 1332 {
 1333     return HUF_compress_internal(dst, dstSize, src, srcSize,
 1334                                  maxSymbolValue, huffLog, HUF_fourStreams,
 1335                                  workSpace, wkspSize,
 1336                                  hufTable, repeat, preferRepeat, bmi2, suspectUncompressible);
 1337 }
 1338 
 1339 #ifndef ZSTD_NO_UNUSED_FUNCTIONS
 1340 /** HUF_buildCTable() :
 1341  * @return : maxNbBits
 1342  *  Note : count is used before tree is written, so they can safely overlap
 1343  */
 1344 size_t HUF_buildCTable (HUF_CElt* tree, const unsigned* count, unsigned maxSymbolValue, unsigned maxNbBits)
 1345 {
 1346     HUF_buildCTable_wksp_tables workspace;
 1347     return HUF_buildCTable_wksp(tree, count, maxSymbolValue, maxNbBits, &workspace, sizeof(workspace));
 1348 }
 1349 
 1350 size_t HUF_compress1X (void* dst, size_t dstSize,
 1351                  const void* src, size_t srcSize,
 1352                  unsigned maxSymbolValue, unsigned huffLog)
 1353 {
 1354     U64 workSpace[HUF_WORKSPACE_SIZE_U64];
 1355     return HUF_compress1X_wksp(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, workSpace, sizeof(workSpace));
 1356 }
 1357 
 1358 size_t HUF_compress2 (void* dst, size_t dstSize,
 1359                 const void* src, size_t srcSize,
 1360                 unsigned maxSymbolValue, unsigned huffLog)
 1361 {
 1362     U64 workSpace[HUF_WORKSPACE_SIZE_U64];
 1363     return HUF_compress4X_wksp(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, workSpace, sizeof(workSpace));
 1364 }
 1365 
 1366 size_t HUF_compress (void* dst, size_t maxDstSize, const void* src, size_t srcSize)
 1367 {
 1368     return HUF_compress2(dst, maxDstSize, src, srcSize, 255, HUF_TABLELOG_DEFAULT);
 1369 }
 1370 #endif

Cache object: 3f6ba1c90849538c783c7a4ec9c85958


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.