The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/contrib/zstd/lib/compress/zstdmt_compress.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) Yann Collet, Facebook, Inc.
    3  * All rights reserved.
    4  *
    5  * This source code is licensed under both the BSD-style license (found in the
    6  * LICENSE file in the root directory of this source tree) and the GPLv2 (found
    7  * in the COPYING file in the root directory of this source tree).
    8  * You may select, at your option, one of the above-listed licenses.
    9  */
   10 
   11 
   12 /* ======   Compiler specifics   ====== */
   13 #if defined(_MSC_VER)
   14 #  pragma warning(disable : 4204)   /* disable: C4204: non-constant aggregate initializer */
   15 #endif
   16 
   17 
   18 /* ======   Constants   ====== */
   19 #define ZSTDMT_OVERLAPLOG_DEFAULT 0
   20 
   21 
   22 /* ======   Dependencies   ====== */
   23 #include "../common/zstd_deps.h"   /* ZSTD_memcpy, ZSTD_memset, INT_MAX, UINT_MAX */
   24 #include "../common/mem.h"         /* MEM_STATIC */
   25 #include "../common/pool.h"        /* threadpool */
   26 #include "../common/threading.h"   /* mutex */
   27 #include "zstd_compress_internal.h"  /* MIN, ERROR, ZSTD_*, ZSTD_highbit32 */
   28 #include "zstd_ldm.h"
   29 #include "zstdmt_compress.h"
   30 
   31 /* Guards code to support resizing the SeqPool.
   32  * We will want to resize the SeqPool to save memory in the future.
   33  * Until then, comment the code out since it is unused.
   34  */
   35 #define ZSTD_RESIZE_SEQPOOL 0
   36 
   37 /* ======   Debug   ====== */
   38 #if defined(DEBUGLEVEL) && (DEBUGLEVEL>=2) \
   39     && !defined(_MSC_VER) \
   40     && !defined(__MINGW32__)
   41 
   42 #  include <stdio.h>
   43 #  include <unistd.h>
   44 #  include <sys/times.h>
   45 
   46 #  define DEBUG_PRINTHEX(l,p,n) {            \
   47     unsigned debug_u;                        \
   48     for (debug_u=0; debug_u<(n); debug_u++)  \
   49         RAWLOG(l, "%02X ", ((const unsigned char*)(p))[debug_u]); \
   50     RAWLOG(l, " \n");                        \
   51 }
   52 
   53 static unsigned long long GetCurrentClockTimeMicroseconds(void)
   54 {
   55    static clock_t _ticksPerSecond = 0;
   56    if (_ticksPerSecond <= 0) _ticksPerSecond = sysconf(_SC_CLK_TCK);
   57 
   58    {   struct tms junk; clock_t newTicks = (clock_t) times(&junk);
   59        return ((((unsigned long long)newTicks)*(1000000))/_ticksPerSecond);
   60 }  }
   61 
   62 #define MUTEX_WAIT_TIME_DLEVEL 6
   63 #define ZSTD_PTHREAD_MUTEX_LOCK(mutex) {          \
   64     if (DEBUGLEVEL >= MUTEX_WAIT_TIME_DLEVEL) {   \
   65         unsigned long long const beforeTime = GetCurrentClockTimeMicroseconds(); \
   66         ZSTD_pthread_mutex_lock(mutex);           \
   67         {   unsigned long long const afterTime = GetCurrentClockTimeMicroseconds(); \
   68             unsigned long long const elapsedTime = (afterTime-beforeTime); \
   69             if (elapsedTime > 1000) {  /* or whatever threshold you like; I'm using 1 millisecond here */ \
   70                 DEBUGLOG(MUTEX_WAIT_TIME_DLEVEL, "Thread took %llu microseconds to acquire mutex %s \n", \
   71                    elapsedTime, #mutex);          \
   72         }   }                                     \
   73     } else {                                      \
   74         ZSTD_pthread_mutex_lock(mutex);           \
   75     }                                             \
   76 }
   77 
   78 #else
   79 
   80 #  define ZSTD_PTHREAD_MUTEX_LOCK(m) ZSTD_pthread_mutex_lock(m)
   81 #  define DEBUG_PRINTHEX(l,p,n) {}
   82 
   83 #endif
   84 
   85 
   86 /* =====   Buffer Pool   ===== */
   87 /* a single Buffer Pool can be invoked from multiple threads in parallel */
   88 
   89 typedef struct buffer_s {
   90     void* start;
   91     size_t capacity;
   92 } buffer_t;
   93 
   94 static const buffer_t g_nullBuffer = { NULL, 0 };
   95 
   96 typedef struct ZSTDMT_bufferPool_s {
   97     ZSTD_pthread_mutex_t poolMutex;
   98     size_t bufferSize;
   99     unsigned totalBuffers;
  100     unsigned nbBuffers;
  101     ZSTD_customMem cMem;
  102     buffer_t bTable[1];   /* variable size */
  103 } ZSTDMT_bufferPool;
  104 
  105 static ZSTDMT_bufferPool* ZSTDMT_createBufferPool(unsigned maxNbBuffers, ZSTD_customMem cMem)
  106 {
  107     ZSTDMT_bufferPool* const bufPool = (ZSTDMT_bufferPool*)ZSTD_customCalloc(
  108         sizeof(ZSTDMT_bufferPool) + (maxNbBuffers-1) * sizeof(buffer_t), cMem);
  109     if (bufPool==NULL) return NULL;
  110     if (ZSTD_pthread_mutex_init(&bufPool->poolMutex, NULL)) {
  111         ZSTD_customFree(bufPool, cMem);
  112         return NULL;
  113     }
  114     bufPool->bufferSize = 64 KB;
  115     bufPool->totalBuffers = maxNbBuffers;
  116     bufPool->nbBuffers = 0;
  117     bufPool->cMem = cMem;
  118     return bufPool;
  119 }
  120 
  121 static void ZSTDMT_freeBufferPool(ZSTDMT_bufferPool* bufPool)
  122 {
  123     unsigned u;
  124     DEBUGLOG(3, "ZSTDMT_freeBufferPool (address:%08X)", (U32)(size_t)bufPool);
  125     if (!bufPool) return;   /* compatibility with free on NULL */
  126     for (u=0; u<bufPool->totalBuffers; u++) {
  127         DEBUGLOG(4, "free buffer %2u (address:%08X)", u, (U32)(size_t)bufPool->bTable[u].start);
  128         ZSTD_customFree(bufPool->bTable[u].start, bufPool->cMem);
  129     }
  130     ZSTD_pthread_mutex_destroy(&bufPool->poolMutex);
  131     ZSTD_customFree(bufPool, bufPool->cMem);
  132 }
  133 
  134 /* only works at initialization, not during compression */
  135 static size_t ZSTDMT_sizeof_bufferPool(ZSTDMT_bufferPool* bufPool)
  136 {
  137     size_t const poolSize = sizeof(*bufPool)
  138                           + (bufPool->totalBuffers - 1) * sizeof(buffer_t);
  139     unsigned u;
  140     size_t totalBufferSize = 0;
  141     ZSTD_pthread_mutex_lock(&bufPool->poolMutex);
  142     for (u=0; u<bufPool->totalBuffers; u++)
  143         totalBufferSize += bufPool->bTable[u].capacity;
  144     ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
  145 
  146     return poolSize + totalBufferSize;
  147 }
  148 
  149 /* ZSTDMT_setBufferSize() :
  150  * all future buffers provided by this buffer pool will have _at least_ this size
  151  * note : it's better for all buffers to have same size,
  152  * as they become freely interchangeable, reducing malloc/free usages and memory fragmentation */
  153 static void ZSTDMT_setBufferSize(ZSTDMT_bufferPool* const bufPool, size_t const bSize)
  154 {
  155     ZSTD_pthread_mutex_lock(&bufPool->poolMutex);
  156     DEBUGLOG(4, "ZSTDMT_setBufferSize: bSize = %u", (U32)bSize);
  157     bufPool->bufferSize = bSize;
  158     ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
  159 }
  160 
  161 
  162 static ZSTDMT_bufferPool* ZSTDMT_expandBufferPool(ZSTDMT_bufferPool* srcBufPool, unsigned maxNbBuffers)
  163 {
  164     if (srcBufPool==NULL) return NULL;
  165     if (srcBufPool->totalBuffers >= maxNbBuffers) /* good enough */
  166         return srcBufPool;
  167     /* need a larger buffer pool */
  168     {   ZSTD_customMem const cMem = srcBufPool->cMem;
  169         size_t const bSize = srcBufPool->bufferSize;   /* forward parameters */
  170         ZSTDMT_bufferPool* newBufPool;
  171         ZSTDMT_freeBufferPool(srcBufPool);
  172         newBufPool = ZSTDMT_createBufferPool(maxNbBuffers, cMem);
  173         if (newBufPool==NULL) return newBufPool;
  174         ZSTDMT_setBufferSize(newBufPool, bSize);
  175         return newBufPool;
  176     }
  177 }
  178 
  179 /** ZSTDMT_getBuffer() :
  180  *  assumption : bufPool must be valid
  181  * @return : a buffer, with start pointer and size
  182  *  note: allocation may fail, in this case, start==NULL and size==0 */
  183 static buffer_t ZSTDMT_getBuffer(ZSTDMT_bufferPool* bufPool)
  184 {
  185     size_t const bSize = bufPool->bufferSize;
  186     DEBUGLOG(5, "ZSTDMT_getBuffer: bSize = %u", (U32)bufPool->bufferSize);
  187     ZSTD_pthread_mutex_lock(&bufPool->poolMutex);
  188     if (bufPool->nbBuffers) {   /* try to use an existing buffer */
  189         buffer_t const buf = bufPool->bTable[--(bufPool->nbBuffers)];
  190         size_t const availBufferSize = buf.capacity;
  191         bufPool->bTable[bufPool->nbBuffers] = g_nullBuffer;
  192         if ((availBufferSize >= bSize) & ((availBufferSize>>3) <= bSize)) {
  193             /* large enough, but not too much */
  194             DEBUGLOG(5, "ZSTDMT_getBuffer: provide buffer %u of size %u",
  195                         bufPool->nbBuffers, (U32)buf.capacity);
  196             ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
  197             return buf;
  198         }
  199         /* size conditions not respected : scratch this buffer, create new one */
  200         DEBUGLOG(5, "ZSTDMT_getBuffer: existing buffer does not meet size conditions => freeing");
  201         ZSTD_customFree(buf.start, bufPool->cMem);
  202     }
  203     ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
  204     /* create new buffer */
  205     DEBUGLOG(5, "ZSTDMT_getBuffer: create a new buffer");
  206     {   buffer_t buffer;
  207         void* const start = ZSTD_customMalloc(bSize, bufPool->cMem);
  208         buffer.start = start;   /* note : start can be NULL if malloc fails ! */
  209         buffer.capacity = (start==NULL) ? 0 : bSize;
  210         if (start==NULL) {
  211             DEBUGLOG(5, "ZSTDMT_getBuffer: buffer allocation failure !!");
  212         } else {
  213             DEBUGLOG(5, "ZSTDMT_getBuffer: created buffer of size %u", (U32)bSize);
  214         }
  215         return buffer;
  216     }
  217 }
  218 
  219 #if ZSTD_RESIZE_SEQPOOL
  220 /** ZSTDMT_resizeBuffer() :
  221  * assumption : bufPool must be valid
  222  * @return : a buffer that is at least the buffer pool buffer size.
  223  *           If a reallocation happens, the data in the input buffer is copied.
  224  */
  225 static buffer_t ZSTDMT_resizeBuffer(ZSTDMT_bufferPool* bufPool, buffer_t buffer)
  226 {
  227     size_t const bSize = bufPool->bufferSize;
  228     if (buffer.capacity < bSize) {
  229         void* const start = ZSTD_customMalloc(bSize, bufPool->cMem);
  230         buffer_t newBuffer;
  231         newBuffer.start = start;
  232         newBuffer.capacity = start == NULL ? 0 : bSize;
  233         if (start != NULL) {
  234             assert(newBuffer.capacity >= buffer.capacity);
  235             ZSTD_memcpy(newBuffer.start, buffer.start, buffer.capacity);
  236             DEBUGLOG(5, "ZSTDMT_resizeBuffer: created buffer of size %u", (U32)bSize);
  237             return newBuffer;
  238         }
  239         DEBUGLOG(5, "ZSTDMT_resizeBuffer: buffer allocation failure !!");
  240     }
  241     return buffer;
  242 }
  243 #endif
  244 
  245 /* store buffer for later re-use, up to pool capacity */
  246 static void ZSTDMT_releaseBuffer(ZSTDMT_bufferPool* bufPool, buffer_t buf)
  247 {
  248     DEBUGLOG(5, "ZSTDMT_releaseBuffer");
  249     if (buf.start == NULL) return;   /* compatible with release on NULL */
  250     ZSTD_pthread_mutex_lock(&bufPool->poolMutex);
  251     if (bufPool->nbBuffers < bufPool->totalBuffers) {
  252         bufPool->bTable[bufPool->nbBuffers++] = buf;  /* stored for later use */
  253         DEBUGLOG(5, "ZSTDMT_releaseBuffer: stored buffer of size %u in slot %u",
  254                     (U32)buf.capacity, (U32)(bufPool->nbBuffers-1));
  255         ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
  256         return;
  257     }
  258     ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
  259     /* Reached bufferPool capacity (should not happen) */
  260     DEBUGLOG(5, "ZSTDMT_releaseBuffer: pool capacity reached => freeing ");
  261     ZSTD_customFree(buf.start, bufPool->cMem);
  262 }
  263 
  264 /* We need 2 output buffers per worker since each dstBuff must be flushed after it is released.
  265  * The 3 additional buffers are as follows:
  266  *   1 buffer for input loading
  267  *   1 buffer for "next input" when submitting current one
  268  *   1 buffer stuck in queue */
  269 #define BUF_POOL_MAX_NB_BUFFERS(nbWorkers) 2*nbWorkers + 3
  270 
  271 /* After a worker releases its rawSeqStore, it is immediately ready for reuse.
  272  * So we only need one seq buffer per worker. */
  273 #define SEQ_POOL_MAX_NB_BUFFERS(nbWorkers) nbWorkers
  274 
  275 /* =====   Seq Pool Wrapper   ====== */
  276 
  277 typedef ZSTDMT_bufferPool ZSTDMT_seqPool;
  278 
  279 static size_t ZSTDMT_sizeof_seqPool(ZSTDMT_seqPool* seqPool)
  280 {
  281     return ZSTDMT_sizeof_bufferPool(seqPool);
  282 }
  283 
  284 static rawSeqStore_t bufferToSeq(buffer_t buffer)
  285 {
  286     rawSeqStore_t seq = kNullRawSeqStore;
  287     seq.seq = (rawSeq*)buffer.start;
  288     seq.capacity = buffer.capacity / sizeof(rawSeq);
  289     return seq;
  290 }
  291 
  292 static buffer_t seqToBuffer(rawSeqStore_t seq)
  293 {
  294     buffer_t buffer;
  295     buffer.start = seq.seq;
  296     buffer.capacity = seq.capacity * sizeof(rawSeq);
  297     return buffer;
  298 }
  299 
  300 static rawSeqStore_t ZSTDMT_getSeq(ZSTDMT_seqPool* seqPool)
  301 {
  302     if (seqPool->bufferSize == 0) {
  303         return kNullRawSeqStore;
  304     }
  305     return bufferToSeq(ZSTDMT_getBuffer(seqPool));
  306 }
  307 
  308 #if ZSTD_RESIZE_SEQPOOL
  309 static rawSeqStore_t ZSTDMT_resizeSeq(ZSTDMT_seqPool* seqPool, rawSeqStore_t seq)
  310 {
  311   return bufferToSeq(ZSTDMT_resizeBuffer(seqPool, seqToBuffer(seq)));
  312 }
  313 #endif
  314 
  315 static void ZSTDMT_releaseSeq(ZSTDMT_seqPool* seqPool, rawSeqStore_t seq)
  316 {
  317   ZSTDMT_releaseBuffer(seqPool, seqToBuffer(seq));
  318 }
  319 
  320 static void ZSTDMT_setNbSeq(ZSTDMT_seqPool* const seqPool, size_t const nbSeq)
  321 {
  322   ZSTDMT_setBufferSize(seqPool, nbSeq * sizeof(rawSeq));
  323 }
  324 
  325 static ZSTDMT_seqPool* ZSTDMT_createSeqPool(unsigned nbWorkers, ZSTD_customMem cMem)
  326 {
  327     ZSTDMT_seqPool* const seqPool = ZSTDMT_createBufferPool(SEQ_POOL_MAX_NB_BUFFERS(nbWorkers), cMem);
  328     if (seqPool == NULL) return NULL;
  329     ZSTDMT_setNbSeq(seqPool, 0);
  330     return seqPool;
  331 }
  332 
  333 static void ZSTDMT_freeSeqPool(ZSTDMT_seqPool* seqPool)
  334 {
  335     ZSTDMT_freeBufferPool(seqPool);
  336 }
  337 
  338 static ZSTDMT_seqPool* ZSTDMT_expandSeqPool(ZSTDMT_seqPool* pool, U32 nbWorkers)
  339 {
  340     return ZSTDMT_expandBufferPool(pool, SEQ_POOL_MAX_NB_BUFFERS(nbWorkers));
  341 }
  342 
  343 
  344 /* =====   CCtx Pool   ===== */
  345 /* a single CCtx Pool can be invoked from multiple threads in parallel */
  346 
  347 typedef struct {
  348     ZSTD_pthread_mutex_t poolMutex;
  349     int totalCCtx;
  350     int availCCtx;
  351     ZSTD_customMem cMem;
  352     ZSTD_CCtx* cctx[1];   /* variable size */
  353 } ZSTDMT_CCtxPool;
  354 
  355 /* note : all CCtx borrowed from the pool should be released back to the pool _before_ freeing the pool */
  356 static void ZSTDMT_freeCCtxPool(ZSTDMT_CCtxPool* pool)
  357 {
  358     int cid;
  359     for (cid=0; cid<pool->totalCCtx; cid++)
  360         ZSTD_freeCCtx(pool->cctx[cid]);  /* note : compatible with free on NULL */
  361     ZSTD_pthread_mutex_destroy(&pool->poolMutex);
  362     ZSTD_customFree(pool, pool->cMem);
  363 }
  364 
  365 /* ZSTDMT_createCCtxPool() :
  366  * implies nbWorkers >= 1 , checked by caller ZSTDMT_createCCtx() */
  367 static ZSTDMT_CCtxPool* ZSTDMT_createCCtxPool(int nbWorkers,
  368                                               ZSTD_customMem cMem)
  369 {
  370     ZSTDMT_CCtxPool* const cctxPool = (ZSTDMT_CCtxPool*) ZSTD_customCalloc(
  371         sizeof(ZSTDMT_CCtxPool) + (nbWorkers-1)*sizeof(ZSTD_CCtx*), cMem);
  372     assert(nbWorkers > 0);
  373     if (!cctxPool) return NULL;
  374     if (ZSTD_pthread_mutex_init(&cctxPool->poolMutex, NULL)) {
  375         ZSTD_customFree(cctxPool, cMem);
  376         return NULL;
  377     }
  378     cctxPool->cMem = cMem;
  379     cctxPool->totalCCtx = nbWorkers;
  380     cctxPool->availCCtx = 1;   /* at least one cctx for single-thread mode */
  381     cctxPool->cctx[0] = ZSTD_createCCtx_advanced(cMem);
  382     if (!cctxPool->cctx[0]) { ZSTDMT_freeCCtxPool(cctxPool); return NULL; }
  383     DEBUGLOG(3, "cctxPool created, with %u workers", nbWorkers);
  384     return cctxPool;
  385 }
  386 
  387 static ZSTDMT_CCtxPool* ZSTDMT_expandCCtxPool(ZSTDMT_CCtxPool* srcPool,
  388                                               int nbWorkers)
  389 {
  390     if (srcPool==NULL) return NULL;
  391     if (nbWorkers <= srcPool->totalCCtx) return srcPool;   /* good enough */
  392     /* need a larger cctx pool */
  393     {   ZSTD_customMem const cMem = srcPool->cMem;
  394         ZSTDMT_freeCCtxPool(srcPool);
  395         return ZSTDMT_createCCtxPool(nbWorkers, cMem);
  396     }
  397 }
  398 
  399 /* only works during initialization phase, not during compression */
  400 static size_t ZSTDMT_sizeof_CCtxPool(ZSTDMT_CCtxPool* cctxPool)
  401 {
  402     ZSTD_pthread_mutex_lock(&cctxPool->poolMutex);
  403     {   unsigned const nbWorkers = cctxPool->totalCCtx;
  404         size_t const poolSize = sizeof(*cctxPool)
  405                                 + (nbWorkers-1) * sizeof(ZSTD_CCtx*);
  406         unsigned u;
  407         size_t totalCCtxSize = 0;
  408         for (u=0; u<nbWorkers; u++) {
  409             totalCCtxSize += ZSTD_sizeof_CCtx(cctxPool->cctx[u]);
  410         }
  411         ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex);
  412         assert(nbWorkers > 0);
  413         return poolSize + totalCCtxSize;
  414     }
  415 }
  416 
  417 static ZSTD_CCtx* ZSTDMT_getCCtx(ZSTDMT_CCtxPool* cctxPool)
  418 {
  419     DEBUGLOG(5, "ZSTDMT_getCCtx");
  420     ZSTD_pthread_mutex_lock(&cctxPool->poolMutex);
  421     if (cctxPool->availCCtx) {
  422         cctxPool->availCCtx--;
  423         {   ZSTD_CCtx* const cctx = cctxPool->cctx[cctxPool->availCCtx];
  424             ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex);
  425             return cctx;
  426     }   }
  427     ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex);
  428     DEBUGLOG(5, "create one more CCtx");
  429     return ZSTD_createCCtx_advanced(cctxPool->cMem);   /* note : can be NULL, when creation fails ! */
  430 }
  431 
  432 static void ZSTDMT_releaseCCtx(ZSTDMT_CCtxPool* pool, ZSTD_CCtx* cctx)
  433 {
  434     if (cctx==NULL) return;   /* compatibility with release on NULL */
  435     ZSTD_pthread_mutex_lock(&pool->poolMutex);
  436     if (pool->availCCtx < pool->totalCCtx)
  437         pool->cctx[pool->availCCtx++] = cctx;
  438     else {
  439         /* pool overflow : should not happen, since totalCCtx==nbWorkers */
  440         DEBUGLOG(4, "CCtx pool overflow : free cctx");
  441         ZSTD_freeCCtx(cctx);
  442     }
  443     ZSTD_pthread_mutex_unlock(&pool->poolMutex);
  444 }
  445 
  446 /* ====   Serial State   ==== */
  447 
  448 typedef struct {
  449     void const* start;
  450     size_t size;
  451 } range_t;
  452 
  453 typedef struct {
  454     /* All variables in the struct are protected by mutex. */
  455     ZSTD_pthread_mutex_t mutex;
  456     ZSTD_pthread_cond_t cond;
  457     ZSTD_CCtx_params params;
  458     ldmState_t ldmState;
  459     XXH64_state_t xxhState;
  460     unsigned nextJobID;
  461     /* Protects ldmWindow.
  462      * Must be acquired after the main mutex when acquiring both.
  463      */
  464     ZSTD_pthread_mutex_t ldmWindowMutex;
  465     ZSTD_pthread_cond_t ldmWindowCond;  /* Signaled when ldmWindow is updated */
  466     ZSTD_window_t ldmWindow;  /* A thread-safe copy of ldmState.window */
  467 } serialState_t;
  468 
  469 static int
  470 ZSTDMT_serialState_reset(serialState_t* serialState,
  471                          ZSTDMT_seqPool* seqPool,
  472                          ZSTD_CCtx_params params,
  473                          size_t jobSize,
  474                          const void* dict, size_t const dictSize,
  475                          ZSTD_dictContentType_e dictContentType)
  476 {
  477     /* Adjust parameters */
  478     if (params.ldmParams.enableLdm == ZSTD_ps_enable) {
  479         DEBUGLOG(4, "LDM window size = %u KB", (1U << params.cParams.windowLog) >> 10);
  480         ZSTD_ldm_adjustParameters(&params.ldmParams, &params.cParams);
  481         assert(params.ldmParams.hashLog >= params.ldmParams.bucketSizeLog);
  482         assert(params.ldmParams.hashRateLog < 32);
  483     } else {
  484         ZSTD_memset(&params.ldmParams, 0, sizeof(params.ldmParams));
  485     }
  486     serialState->nextJobID = 0;
  487     if (params.fParams.checksumFlag)
  488         XXH64_reset(&serialState->xxhState, 0);
  489     if (params.ldmParams.enableLdm == ZSTD_ps_enable) {
  490         ZSTD_customMem cMem = params.customMem;
  491         unsigned const hashLog = params.ldmParams.hashLog;
  492         size_t const hashSize = ((size_t)1 << hashLog) * sizeof(ldmEntry_t);
  493         unsigned const bucketLog =
  494             params.ldmParams.hashLog - params.ldmParams.bucketSizeLog;
  495         unsigned const prevBucketLog =
  496             serialState->params.ldmParams.hashLog -
  497             serialState->params.ldmParams.bucketSizeLog;
  498         size_t const numBuckets = (size_t)1 << bucketLog;
  499         /* Size the seq pool tables */
  500         ZSTDMT_setNbSeq(seqPool, ZSTD_ldm_getMaxNbSeq(params.ldmParams, jobSize));
  501         /* Reset the window */
  502         ZSTD_window_init(&serialState->ldmState.window);
  503         /* Resize tables and output space if necessary. */
  504         if (serialState->ldmState.hashTable == NULL || serialState->params.ldmParams.hashLog < hashLog) {
  505             ZSTD_customFree(serialState->ldmState.hashTable, cMem);
  506             serialState->ldmState.hashTable = (ldmEntry_t*)ZSTD_customMalloc(hashSize, cMem);
  507         }
  508         if (serialState->ldmState.bucketOffsets == NULL || prevBucketLog < bucketLog) {
  509             ZSTD_customFree(serialState->ldmState.bucketOffsets, cMem);
  510             serialState->ldmState.bucketOffsets = (BYTE*)ZSTD_customMalloc(numBuckets, cMem);
  511         }
  512         if (!serialState->ldmState.hashTable || !serialState->ldmState.bucketOffsets)
  513             return 1;
  514         /* Zero the tables */
  515         ZSTD_memset(serialState->ldmState.hashTable, 0, hashSize);
  516         ZSTD_memset(serialState->ldmState.bucketOffsets, 0, numBuckets);
  517 
  518         /* Update window state and fill hash table with dict */
  519         serialState->ldmState.loadedDictEnd = 0;
  520         if (dictSize > 0) {
  521             if (dictContentType == ZSTD_dct_rawContent) {
  522                 BYTE const* const dictEnd = (const BYTE*)dict + dictSize;
  523                 ZSTD_window_update(&serialState->ldmState.window, dict, dictSize, /* forceNonContiguous */ 0);
  524                 ZSTD_ldm_fillHashTable(&serialState->ldmState, (const BYTE*)dict, dictEnd, &params.ldmParams);
  525                 serialState->ldmState.loadedDictEnd = params.forceWindow ? 0 : (U32)(dictEnd - serialState->ldmState.window.base);
  526             } else {
  527                 /* don't even load anything */
  528             }
  529         }
  530 
  531         /* Initialize serialState's copy of ldmWindow. */
  532         serialState->ldmWindow = serialState->ldmState.window;
  533     }
  534 
  535     serialState->params = params;
  536     serialState->params.jobSize = (U32)jobSize;
  537     return 0;
  538 }
  539 
  540 static int ZSTDMT_serialState_init(serialState_t* serialState)
  541 {
  542     int initError = 0;
  543     ZSTD_memset(serialState, 0, sizeof(*serialState));
  544     initError |= ZSTD_pthread_mutex_init(&serialState->mutex, NULL);
  545     initError |= ZSTD_pthread_cond_init(&serialState->cond, NULL);
  546     initError |= ZSTD_pthread_mutex_init(&serialState->ldmWindowMutex, NULL);
  547     initError |= ZSTD_pthread_cond_init(&serialState->ldmWindowCond, NULL);
  548     return initError;
  549 }
  550 
  551 static void ZSTDMT_serialState_free(serialState_t* serialState)
  552 {
  553     ZSTD_customMem cMem = serialState->params.customMem;
  554     ZSTD_pthread_mutex_destroy(&serialState->mutex);
  555     ZSTD_pthread_cond_destroy(&serialState->cond);
  556     ZSTD_pthread_mutex_destroy(&serialState->ldmWindowMutex);
  557     ZSTD_pthread_cond_destroy(&serialState->ldmWindowCond);
  558     ZSTD_customFree(serialState->ldmState.hashTable, cMem);
  559     ZSTD_customFree(serialState->ldmState.bucketOffsets, cMem);
  560 }
  561 
  562 static void ZSTDMT_serialState_update(serialState_t* serialState,
  563                                       ZSTD_CCtx* jobCCtx, rawSeqStore_t seqStore,
  564                                       range_t src, unsigned jobID)
  565 {
  566     /* Wait for our turn */
  567     ZSTD_PTHREAD_MUTEX_LOCK(&serialState->mutex);
  568     while (serialState->nextJobID < jobID) {
  569         DEBUGLOG(5, "wait for serialState->cond");
  570         ZSTD_pthread_cond_wait(&serialState->cond, &serialState->mutex);
  571     }
  572     /* A future job may error and skip our job */
  573     if (serialState->nextJobID == jobID) {
  574         /* It is now our turn, do any processing necessary */
  575         if (serialState->params.ldmParams.enableLdm == ZSTD_ps_enable) {
  576             size_t error;
  577             assert(seqStore.seq != NULL && seqStore.pos == 0 &&
  578                    seqStore.size == 0 && seqStore.capacity > 0);
  579             assert(src.size <= serialState->params.jobSize);
  580             ZSTD_window_update(&serialState->ldmState.window, src.start, src.size, /* forceNonContiguous */ 0);
  581             error = ZSTD_ldm_generateSequences(
  582                 &serialState->ldmState, &seqStore,
  583                 &serialState->params.ldmParams, src.start, src.size);
  584             /* We provide a large enough buffer to never fail. */
  585             assert(!ZSTD_isError(error)); (void)error;
  586             /* Update ldmWindow to match the ldmState.window and signal the main
  587              * thread if it is waiting for a buffer.
  588              */
  589             ZSTD_PTHREAD_MUTEX_LOCK(&serialState->ldmWindowMutex);
  590             serialState->ldmWindow = serialState->ldmState.window;
  591             ZSTD_pthread_cond_signal(&serialState->ldmWindowCond);
  592             ZSTD_pthread_mutex_unlock(&serialState->ldmWindowMutex);
  593         }
  594         if (serialState->params.fParams.checksumFlag && src.size > 0)
  595             XXH64_update(&serialState->xxhState, src.start, src.size);
  596     }
  597     /* Now it is the next jobs turn */
  598     serialState->nextJobID++;
  599     ZSTD_pthread_cond_broadcast(&serialState->cond);
  600     ZSTD_pthread_mutex_unlock(&serialState->mutex);
  601 
  602     if (seqStore.size > 0) {
  603         size_t const err = ZSTD_referenceExternalSequences(
  604             jobCCtx, seqStore.seq, seqStore.size);
  605         assert(serialState->params.ldmParams.enableLdm == ZSTD_ps_enable);
  606         assert(!ZSTD_isError(err));
  607         (void)err;
  608     }
  609 }
  610 
  611 static void ZSTDMT_serialState_ensureFinished(serialState_t* serialState,
  612                                               unsigned jobID, size_t cSize)
  613 {
  614     ZSTD_PTHREAD_MUTEX_LOCK(&serialState->mutex);
  615     if (serialState->nextJobID <= jobID) {
  616         assert(ZSTD_isError(cSize)); (void)cSize;
  617         DEBUGLOG(5, "Skipping past job %u because of error", jobID);
  618         serialState->nextJobID = jobID + 1;
  619         ZSTD_pthread_cond_broadcast(&serialState->cond);
  620 
  621         ZSTD_PTHREAD_MUTEX_LOCK(&serialState->ldmWindowMutex);
  622         ZSTD_window_clear(&serialState->ldmWindow);
  623         ZSTD_pthread_cond_signal(&serialState->ldmWindowCond);
  624         ZSTD_pthread_mutex_unlock(&serialState->ldmWindowMutex);
  625     }
  626     ZSTD_pthread_mutex_unlock(&serialState->mutex);
  627 
  628 }
  629 
  630 
  631 /* ------------------------------------------ */
  632 /* =====          Worker thread         ===== */
  633 /* ------------------------------------------ */
  634 
  635 static const range_t kNullRange = { NULL, 0 };
  636 
  637 typedef struct {
  638     size_t   consumed;                   /* SHARED - set0 by mtctx, then modified by worker AND read by mtctx */
  639     size_t   cSize;                      /* SHARED - set0 by mtctx, then modified by worker AND read by mtctx, then set0 by mtctx */
  640     ZSTD_pthread_mutex_t job_mutex;      /* Thread-safe - used by mtctx and worker */
  641     ZSTD_pthread_cond_t job_cond;        /* Thread-safe - used by mtctx and worker */
  642     ZSTDMT_CCtxPool* cctxPool;           /* Thread-safe - used by mtctx and (all) workers */
  643     ZSTDMT_bufferPool* bufPool;          /* Thread-safe - used by mtctx and (all) workers */
  644     ZSTDMT_seqPool* seqPool;             /* Thread-safe - used by mtctx and (all) workers */
  645     serialState_t* serial;               /* Thread-safe - used by mtctx and (all) workers */
  646     buffer_t dstBuff;                    /* set by worker (or mtctx), then read by worker & mtctx, then modified by mtctx => no barrier */
  647     range_t prefix;                      /* set by mtctx, then read by worker & mtctx => no barrier */
  648     range_t src;                         /* set by mtctx, then read by worker & mtctx => no barrier */
  649     unsigned jobID;                      /* set by mtctx, then read by worker => no barrier */
  650     unsigned firstJob;                   /* set by mtctx, then read by worker => no barrier */
  651     unsigned lastJob;                    /* set by mtctx, then read by worker => no barrier */
  652     ZSTD_CCtx_params params;             /* set by mtctx, then read by worker => no barrier */
  653     const ZSTD_CDict* cdict;             /* set by mtctx, then read by worker => no barrier */
  654     unsigned long long fullFrameSize;    /* set by mtctx, then read by worker => no barrier */
  655     size_t   dstFlushed;                 /* used only by mtctx */
  656     unsigned frameChecksumNeeded;        /* used only by mtctx */
  657 } ZSTDMT_jobDescription;
  658 
  659 #define JOB_ERROR(e) {                          \
  660     ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex);   \
  661     job->cSize = e;                             \
  662     ZSTD_pthread_mutex_unlock(&job->job_mutex); \
  663     goto _endJob;                               \
  664 }
  665 
  666 /* ZSTDMT_compressionJob() is a POOL_function type */
  667 static void ZSTDMT_compressionJob(void* jobDescription)
  668 {
  669     ZSTDMT_jobDescription* const job = (ZSTDMT_jobDescription*)jobDescription;
  670     ZSTD_CCtx_params jobParams = job->params;   /* do not modify job->params ! copy it, modify the copy */
  671     ZSTD_CCtx* const cctx = ZSTDMT_getCCtx(job->cctxPool);
  672     rawSeqStore_t rawSeqStore = ZSTDMT_getSeq(job->seqPool);
  673     buffer_t dstBuff = job->dstBuff;
  674     size_t lastCBlockSize = 0;
  675 
  676     /* resources */
  677     if (cctx==NULL) JOB_ERROR(ERROR(memory_allocation));
  678     if (dstBuff.start == NULL) {   /* streaming job : doesn't provide a dstBuffer */
  679         dstBuff = ZSTDMT_getBuffer(job->bufPool);
  680         if (dstBuff.start==NULL) JOB_ERROR(ERROR(memory_allocation));
  681         job->dstBuff = dstBuff;   /* this value can be read in ZSTDMT_flush, when it copies the whole job */
  682     }
  683     if (jobParams.ldmParams.enableLdm == ZSTD_ps_enable && rawSeqStore.seq == NULL)
  684         JOB_ERROR(ERROR(memory_allocation));
  685 
  686     /* Don't compute the checksum for chunks, since we compute it externally,
  687      * but write it in the header.
  688      */
  689     if (job->jobID != 0) jobParams.fParams.checksumFlag = 0;
  690     /* Don't run LDM for the chunks, since we handle it externally */
  691     jobParams.ldmParams.enableLdm = ZSTD_ps_disable;
  692     /* Correct nbWorkers to 0. */
  693     jobParams.nbWorkers = 0;
  694 
  695 
  696     /* init */
  697     if (job->cdict) {
  698         size_t const initError = ZSTD_compressBegin_advanced_internal(cctx, NULL, 0, ZSTD_dct_auto, ZSTD_dtlm_fast, job->cdict, &jobParams, job->fullFrameSize);
  699         assert(job->firstJob);  /* only allowed for first job */
  700         if (ZSTD_isError(initError)) JOB_ERROR(initError);
  701     } else {  /* srcStart points at reloaded section */
  702         U64 const pledgedSrcSize = job->firstJob ? job->fullFrameSize : job->src.size;
  703         {   size_t const forceWindowError = ZSTD_CCtxParams_setParameter(&jobParams, ZSTD_c_forceMaxWindow, !job->firstJob);
  704             if (ZSTD_isError(forceWindowError)) JOB_ERROR(forceWindowError);
  705         }
  706         if (!job->firstJob) {
  707             size_t const err = ZSTD_CCtxParams_setParameter(&jobParams, ZSTD_c_deterministicRefPrefix, 0);
  708             if (ZSTD_isError(err)) JOB_ERROR(err);
  709         }
  710         {   size_t const initError = ZSTD_compressBegin_advanced_internal(cctx,
  711                                         job->prefix.start, job->prefix.size, ZSTD_dct_rawContent, /* load dictionary in "content-only" mode (no header analysis) */
  712                                         ZSTD_dtlm_fast,
  713                                         NULL, /*cdict*/
  714                                         &jobParams, pledgedSrcSize);
  715             if (ZSTD_isError(initError)) JOB_ERROR(initError);
  716     }   }
  717 
  718     /* Perform serial step as early as possible, but after CCtx initialization */
  719     ZSTDMT_serialState_update(job->serial, cctx, rawSeqStore, job->src, job->jobID);
  720 
  721     if (!job->firstJob) {  /* flush and overwrite frame header when it's not first job */
  722         size_t const hSize = ZSTD_compressContinue(cctx, dstBuff.start, dstBuff.capacity, job->src.start, 0);
  723         if (ZSTD_isError(hSize)) JOB_ERROR(hSize);
  724         DEBUGLOG(5, "ZSTDMT_compressionJob: flush and overwrite %u bytes of frame header (not first job)", (U32)hSize);
  725         ZSTD_invalidateRepCodes(cctx);
  726     }
  727 
  728     /* compress */
  729     {   size_t const chunkSize = 4*ZSTD_BLOCKSIZE_MAX;
  730         int const nbChunks = (int)((job->src.size + (chunkSize-1)) / chunkSize);
  731         const BYTE* ip = (const BYTE*) job->src.start;
  732         BYTE* const ostart = (BYTE*)dstBuff.start;
  733         BYTE* op = ostart;
  734         BYTE* oend = op + dstBuff.capacity;
  735         int chunkNb;
  736         if (sizeof(size_t) > sizeof(int)) assert(job->src.size < ((size_t)INT_MAX) * chunkSize);   /* check overflow */
  737         DEBUGLOG(5, "ZSTDMT_compressionJob: compress %u bytes in %i blocks", (U32)job->src.size, nbChunks);
  738         assert(job->cSize == 0);
  739         for (chunkNb = 1; chunkNb < nbChunks; chunkNb++) {
  740             size_t const cSize = ZSTD_compressContinue(cctx, op, oend-op, ip, chunkSize);
  741             if (ZSTD_isError(cSize)) JOB_ERROR(cSize);
  742             ip += chunkSize;
  743             op += cSize; assert(op < oend);
  744             /* stats */
  745             ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex);
  746             job->cSize += cSize;
  747             job->consumed = chunkSize * chunkNb;
  748             DEBUGLOG(5, "ZSTDMT_compressionJob: compress new block : cSize==%u bytes (total: %u)",
  749                         (U32)cSize, (U32)job->cSize);
  750             ZSTD_pthread_cond_signal(&job->job_cond);   /* warns some more data is ready to be flushed */
  751             ZSTD_pthread_mutex_unlock(&job->job_mutex);
  752         }
  753         /* last block */
  754         assert(chunkSize > 0);
  755         assert((chunkSize & (chunkSize - 1)) == 0);  /* chunkSize must be power of 2 for mask==(chunkSize-1) to work */
  756         if ((nbChunks > 0) | job->lastJob /*must output a "last block" flag*/ ) {
  757             size_t const lastBlockSize1 = job->src.size & (chunkSize-1);
  758             size_t const lastBlockSize = ((lastBlockSize1==0) & (job->src.size>=chunkSize)) ? chunkSize : lastBlockSize1;
  759             size_t const cSize = (job->lastJob) ?
  760                  ZSTD_compressEnd     (cctx, op, oend-op, ip, lastBlockSize) :
  761                  ZSTD_compressContinue(cctx, op, oend-op, ip, lastBlockSize);
  762             if (ZSTD_isError(cSize)) JOB_ERROR(cSize);
  763             lastCBlockSize = cSize;
  764     }   }
  765     if (!job->firstJob) {
  766         /* Double check that we don't have an ext-dict, because then our
  767          * repcode invalidation doesn't work.
  768          */
  769         assert(!ZSTD_window_hasExtDict(cctx->blockState.matchState.window));
  770     }
  771     ZSTD_CCtx_trace(cctx, 0);
  772 
  773 _endJob:
  774     ZSTDMT_serialState_ensureFinished(job->serial, job->jobID, job->cSize);
  775     if (job->prefix.size > 0)
  776         DEBUGLOG(5, "Finished with prefix: %zx", (size_t)job->prefix.start);
  777     DEBUGLOG(5, "Finished with source: %zx", (size_t)job->src.start);
  778     /* release resources */
  779     ZSTDMT_releaseSeq(job->seqPool, rawSeqStore);
  780     ZSTDMT_releaseCCtx(job->cctxPool, cctx);
  781     /* report */
  782     ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex);
  783     if (ZSTD_isError(job->cSize)) assert(lastCBlockSize == 0);
  784     job->cSize += lastCBlockSize;
  785     job->consumed = job->src.size;  /* when job->consumed == job->src.size , compression job is presumed completed */
  786     ZSTD_pthread_cond_signal(&job->job_cond);
  787     ZSTD_pthread_mutex_unlock(&job->job_mutex);
  788 }
  789 
  790 
  791 /* ------------------------------------------ */
  792 /* =====   Multi-threaded compression   ===== */
  793 /* ------------------------------------------ */
  794 
  795 typedef struct {
  796     range_t prefix;         /* read-only non-owned prefix buffer */
  797     buffer_t buffer;
  798     size_t filled;
  799 } inBuff_t;
  800 
  801 typedef struct {
  802   BYTE* buffer;     /* The round input buffer. All jobs get references
  803                      * to pieces of the buffer. ZSTDMT_tryGetInputRange()
  804                      * handles handing out job input buffers, and makes
  805                      * sure it doesn't overlap with any pieces still in use.
  806                      */
  807   size_t capacity;  /* The capacity of buffer. */
  808   size_t pos;       /* The position of the current inBuff in the round
  809                      * buffer. Updated past the end if the inBuff once
  810                      * the inBuff is sent to the worker thread.
  811                      * pos <= capacity.
  812                      */
  813 } roundBuff_t;
  814 
  815 static const roundBuff_t kNullRoundBuff = {NULL, 0, 0};
  816 
  817 #define RSYNC_LENGTH 32
  818 /* Don't create chunks smaller than the zstd block size.
  819  * This stops us from regressing compression ratio too much,
  820  * and ensures our output fits in ZSTD_compressBound().
  821  *
  822  * If this is shrunk < ZSTD_BLOCKSIZELOG_MIN then
  823  * ZSTD_COMPRESSBOUND() will need to be updated.
  824  */
  825 #define RSYNC_MIN_BLOCK_LOG ZSTD_BLOCKSIZELOG_MAX
  826 #define RSYNC_MIN_BLOCK_SIZE (1<<RSYNC_MIN_BLOCK_LOG)
  827 
  828 typedef struct {
  829   U64 hash;
  830   U64 hitMask;
  831   U64 primePower;
  832 } rsyncState_t;
  833 
  834 struct ZSTDMT_CCtx_s {
  835     POOL_ctx* factory;
  836     ZSTDMT_jobDescription* jobs;
  837     ZSTDMT_bufferPool* bufPool;
  838     ZSTDMT_CCtxPool* cctxPool;
  839     ZSTDMT_seqPool* seqPool;
  840     ZSTD_CCtx_params params;
  841     size_t targetSectionSize;
  842     size_t targetPrefixSize;
  843     int jobReady;        /* 1 => one job is already prepared, but pool has shortage of workers. Don't create a new job. */
  844     inBuff_t inBuff;
  845     roundBuff_t roundBuff;
  846     serialState_t serial;
  847     rsyncState_t rsync;
  848     unsigned jobIDMask;
  849     unsigned doneJobID;
  850     unsigned nextJobID;
  851     unsigned frameEnded;
  852     unsigned allJobsCompleted;
  853     unsigned long long frameContentSize;
  854     unsigned long long consumed;
  855     unsigned long long produced;
  856     ZSTD_customMem cMem;
  857     ZSTD_CDict* cdictLocal;
  858     const ZSTD_CDict* cdict;
  859     unsigned providedFactory: 1;
  860 };
  861 
  862 static void ZSTDMT_freeJobsTable(ZSTDMT_jobDescription* jobTable, U32 nbJobs, ZSTD_customMem cMem)
  863 {
  864     U32 jobNb;
  865     if (jobTable == NULL) return;
  866     for (jobNb=0; jobNb<nbJobs; jobNb++) {
  867         ZSTD_pthread_mutex_destroy(&jobTable[jobNb].job_mutex);
  868         ZSTD_pthread_cond_destroy(&jobTable[jobNb].job_cond);
  869     }
  870     ZSTD_customFree(jobTable, cMem);
  871 }
  872 
  873 /* ZSTDMT_allocJobsTable()
  874  * allocate and init a job table.
  875  * update *nbJobsPtr to next power of 2 value, as size of table */
  876 static ZSTDMT_jobDescription* ZSTDMT_createJobsTable(U32* nbJobsPtr, ZSTD_customMem cMem)
  877 {
  878     U32 const nbJobsLog2 = ZSTD_highbit32(*nbJobsPtr) + 1;
  879     U32 const nbJobs = 1 << nbJobsLog2;
  880     U32 jobNb;
  881     ZSTDMT_jobDescription* const jobTable = (ZSTDMT_jobDescription*)
  882                 ZSTD_customCalloc(nbJobs * sizeof(ZSTDMT_jobDescription), cMem);
  883     int initError = 0;
  884     if (jobTable==NULL) return NULL;
  885     *nbJobsPtr = nbJobs;
  886     for (jobNb=0; jobNb<nbJobs; jobNb++) {
  887         initError |= ZSTD_pthread_mutex_init(&jobTable[jobNb].job_mutex, NULL);
  888         initError |= ZSTD_pthread_cond_init(&jobTable[jobNb].job_cond, NULL);
  889     }
  890     if (initError != 0) {
  891         ZSTDMT_freeJobsTable(jobTable, nbJobs, cMem);
  892         return NULL;
  893     }
  894     return jobTable;
  895 }
  896 
  897 static size_t ZSTDMT_expandJobsTable (ZSTDMT_CCtx* mtctx, U32 nbWorkers) {
  898     U32 nbJobs = nbWorkers + 2;
  899     if (nbJobs > mtctx->jobIDMask+1) {  /* need more job capacity */
  900         ZSTDMT_freeJobsTable(mtctx->jobs, mtctx->jobIDMask+1, mtctx->cMem);
  901         mtctx->jobIDMask = 0;
  902         mtctx->jobs = ZSTDMT_createJobsTable(&nbJobs, mtctx->cMem);
  903         if (mtctx->jobs==NULL) return ERROR(memory_allocation);
  904         assert((nbJobs != 0) && ((nbJobs & (nbJobs - 1)) == 0));  /* ensure nbJobs is a power of 2 */
  905         mtctx->jobIDMask = nbJobs - 1;
  906     }
  907     return 0;
  908 }
  909 
  910 
  911 /* ZSTDMT_CCtxParam_setNbWorkers():
  912  * Internal use only */
  913 static size_t ZSTDMT_CCtxParam_setNbWorkers(ZSTD_CCtx_params* params, unsigned nbWorkers)
  914 {
  915     return ZSTD_CCtxParams_setParameter(params, ZSTD_c_nbWorkers, (int)nbWorkers);
  916 }
  917 
  918 MEM_STATIC ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced_internal(unsigned nbWorkers, ZSTD_customMem cMem, ZSTD_threadPool* pool)
  919 {
  920     ZSTDMT_CCtx* mtctx;
  921     U32 nbJobs = nbWorkers + 2;
  922     int initError;
  923     DEBUGLOG(3, "ZSTDMT_createCCtx_advanced (nbWorkers = %u)", nbWorkers);
  924 
  925     if (nbWorkers < 1) return NULL;
  926     nbWorkers = MIN(nbWorkers , ZSTDMT_NBWORKERS_MAX);
  927     if ((cMem.customAlloc!=NULL) ^ (cMem.customFree!=NULL))
  928         /* invalid custom allocator */
  929         return NULL;
  930 
  931     mtctx = (ZSTDMT_CCtx*) ZSTD_customCalloc(sizeof(ZSTDMT_CCtx), cMem);
  932     if (!mtctx) return NULL;
  933     ZSTDMT_CCtxParam_setNbWorkers(&mtctx->params, nbWorkers);
  934     mtctx->cMem = cMem;
  935     mtctx->allJobsCompleted = 1;
  936     if (pool != NULL) {
  937       mtctx->factory = pool;
  938       mtctx->providedFactory = 1;
  939     }
  940     else {
  941       mtctx->factory = POOL_create_advanced(nbWorkers, 0, cMem);
  942       mtctx->providedFactory = 0;
  943     }
  944     mtctx->jobs = ZSTDMT_createJobsTable(&nbJobs, cMem);
  945     assert(nbJobs > 0); assert((nbJobs & (nbJobs - 1)) == 0);  /* ensure nbJobs is a power of 2 */
  946     mtctx->jobIDMask = nbJobs - 1;
  947     mtctx->bufPool = ZSTDMT_createBufferPool(BUF_POOL_MAX_NB_BUFFERS(nbWorkers), cMem);
  948     mtctx->cctxPool = ZSTDMT_createCCtxPool(nbWorkers, cMem);
  949     mtctx->seqPool = ZSTDMT_createSeqPool(nbWorkers, cMem);
  950     initError = ZSTDMT_serialState_init(&mtctx->serial);
  951     mtctx->roundBuff = kNullRoundBuff;
  952     if (!mtctx->factory | !mtctx->jobs | !mtctx->bufPool | !mtctx->cctxPool | !mtctx->seqPool | initError) {
  953         ZSTDMT_freeCCtx(mtctx);
  954         return NULL;
  955     }
  956     DEBUGLOG(3, "mt_cctx created, for %u threads", nbWorkers);
  957     return mtctx;
  958 }
  959 
  960 ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced(unsigned nbWorkers, ZSTD_customMem cMem, ZSTD_threadPool* pool)
  961 {
  962 #ifdef ZSTD_MULTITHREAD
  963     return ZSTDMT_createCCtx_advanced_internal(nbWorkers, cMem, pool);
  964 #else
  965     (void)nbWorkers;
  966     (void)cMem;
  967     (void)pool;
  968     return NULL;
  969 #endif
  970 }
  971 
  972 
  973 /* ZSTDMT_releaseAllJobResources() :
  974  * note : ensure all workers are killed first ! */
  975 static void ZSTDMT_releaseAllJobResources(ZSTDMT_CCtx* mtctx)
  976 {
  977     unsigned jobID;
  978     DEBUGLOG(3, "ZSTDMT_releaseAllJobResources");
  979     for (jobID=0; jobID <= mtctx->jobIDMask; jobID++) {
  980         /* Copy the mutex/cond out */
  981         ZSTD_pthread_mutex_t const mutex = mtctx->jobs[jobID].job_mutex;
  982         ZSTD_pthread_cond_t const cond = mtctx->jobs[jobID].job_cond;
  983 
  984         DEBUGLOG(4, "job%02u: release dst address %08X", jobID, (U32)(size_t)mtctx->jobs[jobID].dstBuff.start);
  985         ZSTDMT_releaseBuffer(mtctx->bufPool, mtctx->jobs[jobID].dstBuff);
  986 
  987         /* Clear the job description, but keep the mutex/cond */
  988         ZSTD_memset(&mtctx->jobs[jobID], 0, sizeof(mtctx->jobs[jobID]));
  989         mtctx->jobs[jobID].job_mutex = mutex;
  990         mtctx->jobs[jobID].job_cond = cond;
  991     }
  992     mtctx->inBuff.buffer = g_nullBuffer;
  993     mtctx->inBuff.filled = 0;
  994     mtctx->allJobsCompleted = 1;
  995 }
  996 
  997 static void ZSTDMT_waitForAllJobsCompleted(ZSTDMT_CCtx* mtctx)
  998 {
  999     DEBUGLOG(4, "ZSTDMT_waitForAllJobsCompleted");
 1000     while (mtctx->doneJobID < mtctx->nextJobID) {
 1001         unsigned const jobID = mtctx->doneJobID & mtctx->jobIDMask;
 1002         ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[jobID].job_mutex);
 1003         while (mtctx->jobs[jobID].consumed < mtctx->jobs[jobID].src.size) {
 1004             DEBUGLOG(4, "waiting for jobCompleted signal from job %u", mtctx->doneJobID);   /* we want to block when waiting for data to flush */
 1005             ZSTD_pthread_cond_wait(&mtctx->jobs[jobID].job_cond, &mtctx->jobs[jobID].job_mutex);
 1006         }
 1007         ZSTD_pthread_mutex_unlock(&mtctx->jobs[jobID].job_mutex);
 1008         mtctx->doneJobID++;
 1009     }
 1010 }
 1011 
 1012 size_t ZSTDMT_freeCCtx(ZSTDMT_CCtx* mtctx)
 1013 {
 1014     if (mtctx==NULL) return 0;   /* compatible with free on NULL */
 1015     if (!mtctx->providedFactory)
 1016         POOL_free(mtctx->factory);   /* stop and free worker threads */
 1017     ZSTDMT_releaseAllJobResources(mtctx);  /* release job resources into pools first */
 1018     ZSTDMT_freeJobsTable(mtctx->jobs, mtctx->jobIDMask+1, mtctx->cMem);
 1019     ZSTDMT_freeBufferPool(mtctx->bufPool);
 1020     ZSTDMT_freeCCtxPool(mtctx->cctxPool);
 1021     ZSTDMT_freeSeqPool(mtctx->seqPool);
 1022     ZSTDMT_serialState_free(&mtctx->serial);
 1023     ZSTD_freeCDict(mtctx->cdictLocal);
 1024     if (mtctx->roundBuff.buffer)
 1025         ZSTD_customFree(mtctx->roundBuff.buffer, mtctx->cMem);
 1026     ZSTD_customFree(mtctx, mtctx->cMem);
 1027     return 0;
 1028 }
 1029 
 1030 size_t ZSTDMT_sizeof_CCtx(ZSTDMT_CCtx* mtctx)
 1031 {
 1032     if (mtctx == NULL) return 0;   /* supports sizeof NULL */
 1033     return sizeof(*mtctx)
 1034             + POOL_sizeof(mtctx->factory)
 1035             + ZSTDMT_sizeof_bufferPool(mtctx->bufPool)
 1036             + (mtctx->jobIDMask+1) * sizeof(ZSTDMT_jobDescription)
 1037             + ZSTDMT_sizeof_CCtxPool(mtctx->cctxPool)
 1038             + ZSTDMT_sizeof_seqPool(mtctx->seqPool)
 1039             + ZSTD_sizeof_CDict(mtctx->cdictLocal)
 1040             + mtctx->roundBuff.capacity;
 1041 }
 1042 
 1043 
 1044 /* ZSTDMT_resize() :
 1045  * @return : error code if fails, 0 on success */
 1046 static size_t ZSTDMT_resize(ZSTDMT_CCtx* mtctx, unsigned nbWorkers)
 1047 {
 1048     if (POOL_resize(mtctx->factory, nbWorkers)) return ERROR(memory_allocation);
 1049     FORWARD_IF_ERROR( ZSTDMT_expandJobsTable(mtctx, nbWorkers) , "");
 1050     mtctx->bufPool = ZSTDMT_expandBufferPool(mtctx->bufPool, BUF_POOL_MAX_NB_BUFFERS(nbWorkers));
 1051     if (mtctx->bufPool == NULL) return ERROR(memory_allocation);
 1052     mtctx->cctxPool = ZSTDMT_expandCCtxPool(mtctx->cctxPool, nbWorkers);
 1053     if (mtctx->cctxPool == NULL) return ERROR(memory_allocation);
 1054     mtctx->seqPool = ZSTDMT_expandSeqPool(mtctx->seqPool, nbWorkers);
 1055     if (mtctx->seqPool == NULL) return ERROR(memory_allocation);
 1056     ZSTDMT_CCtxParam_setNbWorkers(&mtctx->params, nbWorkers);
 1057     return 0;
 1058 }
 1059 
 1060 
 1061 /*! ZSTDMT_updateCParams_whileCompressing() :
 1062  *  Updates a selected set of compression parameters, remaining compatible with currently active frame.
 1063  *  New parameters will be applied to next compression job. */
 1064 void ZSTDMT_updateCParams_whileCompressing(ZSTDMT_CCtx* mtctx, const ZSTD_CCtx_params* cctxParams)
 1065 {
 1066     U32 const saved_wlog = mtctx->params.cParams.windowLog;   /* Do not modify windowLog while compressing */
 1067     int const compressionLevel = cctxParams->compressionLevel;
 1068     DEBUGLOG(5, "ZSTDMT_updateCParams_whileCompressing (level:%i)",
 1069                 compressionLevel);
 1070     mtctx->params.compressionLevel = compressionLevel;
 1071     {   ZSTD_compressionParameters cParams = ZSTD_getCParamsFromCCtxParams(cctxParams, ZSTD_CONTENTSIZE_UNKNOWN, 0, ZSTD_cpm_noAttachDict);
 1072         cParams.windowLog = saved_wlog;
 1073         mtctx->params.cParams = cParams;
 1074     }
 1075 }
 1076 
 1077 /* ZSTDMT_getFrameProgression():
 1078  * tells how much data has been consumed (input) and produced (output) for current frame.
 1079  * able to count progression inside worker threads.
 1080  * Note : mutex will be acquired during statistics collection inside workers. */
 1081 ZSTD_frameProgression ZSTDMT_getFrameProgression(ZSTDMT_CCtx* mtctx)
 1082 {
 1083     ZSTD_frameProgression fps;
 1084     DEBUGLOG(5, "ZSTDMT_getFrameProgression");
 1085     fps.ingested = mtctx->consumed + mtctx->inBuff.filled;
 1086     fps.consumed = mtctx->consumed;
 1087     fps.produced = fps.flushed = mtctx->produced;
 1088     fps.currentJobID = mtctx->nextJobID;
 1089     fps.nbActiveWorkers = 0;
 1090     {   unsigned jobNb;
 1091         unsigned lastJobNb = mtctx->nextJobID + mtctx->jobReady; assert(mtctx->jobReady <= 1);
 1092         DEBUGLOG(6, "ZSTDMT_getFrameProgression: jobs: from %u to <%u (jobReady:%u)",
 1093                     mtctx->doneJobID, lastJobNb, mtctx->jobReady)
 1094         for (jobNb = mtctx->doneJobID ; jobNb < lastJobNb ; jobNb++) {
 1095             unsigned const wJobID = jobNb & mtctx->jobIDMask;
 1096             ZSTDMT_jobDescription* jobPtr = &mtctx->jobs[wJobID];
 1097             ZSTD_pthread_mutex_lock(&jobPtr->job_mutex);
 1098             {   size_t const cResult = jobPtr->cSize;
 1099                 size_t const produced = ZSTD_isError(cResult) ? 0 : cResult;
 1100                 size_t const flushed = ZSTD_isError(cResult) ? 0 : jobPtr->dstFlushed;
 1101                 assert(flushed <= produced);
 1102                 fps.ingested += jobPtr->src.size;
 1103                 fps.consumed += jobPtr->consumed;
 1104                 fps.produced += produced;
 1105                 fps.flushed  += flushed;
 1106                 fps.nbActiveWorkers += (jobPtr->consumed < jobPtr->src.size);
 1107             }
 1108             ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex);
 1109         }
 1110     }
 1111     return fps;
 1112 }
 1113 
 1114 
 1115 size_t ZSTDMT_toFlushNow(ZSTDMT_CCtx* mtctx)
 1116 {
 1117     size_t toFlush;
 1118     unsigned const jobID = mtctx->doneJobID;
 1119     assert(jobID <= mtctx->nextJobID);
 1120     if (jobID == mtctx->nextJobID) return 0;   /* no active job => nothing to flush */
 1121 
 1122     /* look into oldest non-fully-flushed job */
 1123     {   unsigned const wJobID = jobID & mtctx->jobIDMask;
 1124         ZSTDMT_jobDescription* const jobPtr = &mtctx->jobs[wJobID];
 1125         ZSTD_pthread_mutex_lock(&jobPtr->job_mutex);
 1126         {   size_t const cResult = jobPtr->cSize;
 1127             size_t const produced = ZSTD_isError(cResult) ? 0 : cResult;
 1128             size_t const flushed = ZSTD_isError(cResult) ? 0 : jobPtr->dstFlushed;
 1129             assert(flushed <= produced);
 1130             assert(jobPtr->consumed <= jobPtr->src.size);
 1131             toFlush = produced - flushed;
 1132             /* if toFlush==0, nothing is available to flush.
 1133              * However, jobID is expected to still be active:
 1134              * if jobID was already completed and fully flushed,
 1135              * ZSTDMT_flushProduced() should have already moved onto next job.
 1136              * Therefore, some input has not yet been consumed. */
 1137             if (toFlush==0) {
 1138                 assert(jobPtr->consumed < jobPtr->src.size);
 1139             }
 1140         }
 1141         ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex);
 1142     }
 1143 
 1144     return toFlush;
 1145 }
 1146 
 1147 
 1148 /* ------------------------------------------ */
 1149 /* =====   Multi-threaded compression   ===== */
 1150 /* ------------------------------------------ */
 1151 
 1152 static unsigned ZSTDMT_computeTargetJobLog(const ZSTD_CCtx_params* params)
 1153 {
 1154     unsigned jobLog;
 1155     if (params->ldmParams.enableLdm == ZSTD_ps_enable) {
 1156         /* In Long Range Mode, the windowLog is typically oversized.
 1157          * In which case, it's preferable to determine the jobSize
 1158          * based on cycleLog instead. */
 1159         jobLog = MAX(21, ZSTD_cycleLog(params->cParams.chainLog, params->cParams.strategy) + 3);
 1160     } else {
 1161         jobLog = MAX(20, params->cParams.windowLog + 2);
 1162     }
 1163     return MIN(jobLog, (unsigned)ZSTDMT_JOBLOG_MAX);
 1164 }
 1165 
 1166 static int ZSTDMT_overlapLog_default(ZSTD_strategy strat)
 1167 {
 1168     switch(strat)
 1169     {
 1170         case ZSTD_btultra2:
 1171             return 9;
 1172         case ZSTD_btultra:
 1173         case ZSTD_btopt:
 1174             return 8;
 1175         case ZSTD_btlazy2:
 1176         case ZSTD_lazy2:
 1177             return 7;
 1178         case ZSTD_lazy:
 1179         case ZSTD_greedy:
 1180         case ZSTD_dfast:
 1181         case ZSTD_fast:
 1182         default:;
 1183     }
 1184     return 6;
 1185 }
 1186 
 1187 static int ZSTDMT_overlapLog(int ovlog, ZSTD_strategy strat)
 1188 {
 1189     assert(0 <= ovlog && ovlog <= 9);
 1190     if (ovlog == 0) return ZSTDMT_overlapLog_default(strat);
 1191     return ovlog;
 1192 }
 1193 
 1194 static size_t ZSTDMT_computeOverlapSize(const ZSTD_CCtx_params* params)
 1195 {
 1196     int const overlapRLog = 9 - ZSTDMT_overlapLog(params->overlapLog, params->cParams.strategy);
 1197     int ovLog = (overlapRLog >= 8) ? 0 : (params->cParams.windowLog - overlapRLog);
 1198     assert(0 <= overlapRLog && overlapRLog <= 8);
 1199     if (params->ldmParams.enableLdm == ZSTD_ps_enable) {
 1200         /* In Long Range Mode, the windowLog is typically oversized.
 1201          * In which case, it's preferable to determine the jobSize
 1202          * based on chainLog instead.
 1203          * Then, ovLog becomes a fraction of the jobSize, rather than windowSize */
 1204         ovLog = MIN(params->cParams.windowLog, ZSTDMT_computeTargetJobLog(params) - 2)
 1205                 - overlapRLog;
 1206     }
 1207     assert(0 <= ovLog && ovLog <= ZSTD_WINDOWLOG_MAX);
 1208     DEBUGLOG(4, "overlapLog : %i", params->overlapLog);
 1209     DEBUGLOG(4, "overlap size : %i", 1 << ovLog);
 1210     return (ovLog==0) ? 0 : (size_t)1 << ovLog;
 1211 }
 1212 
 1213 /* ====================================== */
 1214 /* =======      Streaming API     ======= */
 1215 /* ====================================== */
 1216 
 1217 size_t ZSTDMT_initCStream_internal(
 1218         ZSTDMT_CCtx* mtctx,
 1219         const void* dict, size_t dictSize, ZSTD_dictContentType_e dictContentType,
 1220         const ZSTD_CDict* cdict, ZSTD_CCtx_params params,
 1221         unsigned long long pledgedSrcSize)
 1222 {
 1223     DEBUGLOG(4, "ZSTDMT_initCStream_internal (pledgedSrcSize=%u, nbWorkers=%u, cctxPool=%u)",
 1224                 (U32)pledgedSrcSize, params.nbWorkers, mtctx->cctxPool->totalCCtx);
 1225 
 1226     /* params supposed partially fully validated at this point */
 1227     assert(!ZSTD_isError(ZSTD_checkCParams(params.cParams)));
 1228     assert(!((dict) && (cdict)));  /* either dict or cdict, not both */
 1229 
 1230     /* init */
 1231     if (params.nbWorkers != mtctx->params.nbWorkers)
 1232         FORWARD_IF_ERROR( ZSTDMT_resize(mtctx, params.nbWorkers) , "");
 1233 
 1234     if (params.jobSize != 0 && params.jobSize < ZSTDMT_JOBSIZE_MIN) params.jobSize = ZSTDMT_JOBSIZE_MIN;
 1235     if (params.jobSize > (size_t)ZSTDMT_JOBSIZE_MAX) params.jobSize = (size_t)ZSTDMT_JOBSIZE_MAX;
 1236 
 1237     DEBUGLOG(4, "ZSTDMT_initCStream_internal: %u workers", params.nbWorkers);
 1238 
 1239     if (mtctx->allJobsCompleted == 0) {   /* previous compression not correctly finished */
 1240         ZSTDMT_waitForAllJobsCompleted(mtctx);
 1241         ZSTDMT_releaseAllJobResources(mtctx);
 1242         mtctx->allJobsCompleted = 1;
 1243     }
 1244 
 1245     mtctx->params = params;
 1246     mtctx->frameContentSize = pledgedSrcSize;
 1247     if (dict) {
 1248         ZSTD_freeCDict(mtctx->cdictLocal);
 1249         mtctx->cdictLocal = ZSTD_createCDict_advanced(dict, dictSize,
 1250                                                     ZSTD_dlm_byCopy, dictContentType, /* note : a loadPrefix becomes an internal CDict */
 1251                                                     params.cParams, mtctx->cMem);
 1252         mtctx->cdict = mtctx->cdictLocal;
 1253         if (mtctx->cdictLocal == NULL) return ERROR(memory_allocation);
 1254     } else {
 1255         ZSTD_freeCDict(mtctx->cdictLocal);
 1256         mtctx->cdictLocal = NULL;
 1257         mtctx->cdict = cdict;
 1258     }
 1259 
 1260     mtctx->targetPrefixSize = ZSTDMT_computeOverlapSize(&params);
 1261     DEBUGLOG(4, "overlapLog=%i => %u KB", params.overlapLog, (U32)(mtctx->targetPrefixSize>>10));
 1262     mtctx->targetSectionSize = params.jobSize;
 1263     if (mtctx->targetSectionSize == 0) {
 1264         mtctx->targetSectionSize = 1ULL << ZSTDMT_computeTargetJobLog(&params);
 1265     }
 1266     assert(mtctx->targetSectionSize <= (size_t)ZSTDMT_JOBSIZE_MAX);
 1267 
 1268     if (params.rsyncable) {
 1269         /* Aim for the targetsectionSize as the average job size. */
 1270         U32 const jobSizeKB = (U32)(mtctx->targetSectionSize >> 10);
 1271         U32 const rsyncBits = (assert(jobSizeKB >= 1), ZSTD_highbit32(jobSizeKB) + 10);
 1272         /* We refuse to create jobs < RSYNC_MIN_BLOCK_SIZE bytes, so make sure our
 1273          * expected job size is at least 4x larger. */
 1274         assert(rsyncBits >= RSYNC_MIN_BLOCK_LOG + 2);
 1275         DEBUGLOG(4, "rsyncLog = %u", rsyncBits);
 1276         mtctx->rsync.hash = 0;
 1277         mtctx->rsync.hitMask = (1ULL << rsyncBits) - 1;
 1278         mtctx->rsync.primePower = ZSTD_rollingHash_primePower(RSYNC_LENGTH);
 1279     }
 1280     if (mtctx->targetSectionSize < mtctx->targetPrefixSize) mtctx->targetSectionSize = mtctx->targetPrefixSize;  /* job size must be >= overlap size */
 1281     DEBUGLOG(4, "Job Size : %u KB (note : set to %u)", (U32)(mtctx->targetSectionSize>>10), (U32)params.jobSize);
 1282     DEBUGLOG(4, "inBuff Size : %u KB", (U32)(mtctx->targetSectionSize>>10));
 1283     ZSTDMT_setBufferSize(mtctx->bufPool, ZSTD_compressBound(mtctx->targetSectionSize));
 1284     {
 1285         /* If ldm is enabled we need windowSize space. */
 1286         size_t const windowSize = mtctx->params.ldmParams.enableLdm == ZSTD_ps_enable ? (1U << mtctx->params.cParams.windowLog) : 0;
 1287         /* Two buffers of slack, plus extra space for the overlap
 1288          * This is the minimum slack that LDM works with. One extra because
 1289          * flush might waste up to targetSectionSize-1 bytes. Another extra
 1290          * for the overlap (if > 0), then one to fill which doesn't overlap
 1291          * with the LDM window.
 1292          */
 1293         size_t const nbSlackBuffers = 2 + (mtctx->targetPrefixSize > 0);
 1294         size_t const slackSize = mtctx->targetSectionSize * nbSlackBuffers;
 1295         /* Compute the total size, and always have enough slack */
 1296         size_t const nbWorkers = MAX(mtctx->params.nbWorkers, 1);
 1297         size_t const sectionsSize = mtctx->targetSectionSize * nbWorkers;
 1298         size_t const capacity = MAX(windowSize, sectionsSize) + slackSize;
 1299         if (mtctx->roundBuff.capacity < capacity) {
 1300             if (mtctx->roundBuff.buffer)
 1301                 ZSTD_customFree(mtctx->roundBuff.buffer, mtctx->cMem);
 1302             mtctx->roundBuff.buffer = (BYTE*)ZSTD_customMalloc(capacity, mtctx->cMem);
 1303             if (mtctx->roundBuff.buffer == NULL) {
 1304                 mtctx->roundBuff.capacity = 0;
 1305                 return ERROR(memory_allocation);
 1306             }
 1307             mtctx->roundBuff.capacity = capacity;
 1308         }
 1309     }
 1310     DEBUGLOG(4, "roundBuff capacity : %u KB", (U32)(mtctx->roundBuff.capacity>>10));
 1311     mtctx->roundBuff.pos = 0;
 1312     mtctx->inBuff.buffer = g_nullBuffer;
 1313     mtctx->inBuff.filled = 0;
 1314     mtctx->inBuff.prefix = kNullRange;
 1315     mtctx->doneJobID = 0;
 1316     mtctx->nextJobID = 0;
 1317     mtctx->frameEnded = 0;
 1318     mtctx->allJobsCompleted = 0;
 1319     mtctx->consumed = 0;
 1320     mtctx->produced = 0;
 1321     if (ZSTDMT_serialState_reset(&mtctx->serial, mtctx->seqPool, params, mtctx->targetSectionSize,
 1322                                  dict, dictSize, dictContentType))
 1323         return ERROR(memory_allocation);
 1324     return 0;
 1325 }
 1326 
 1327 
 1328 /* ZSTDMT_writeLastEmptyBlock()
 1329  * Write a single empty block with an end-of-frame to finish a frame.
 1330  * Job must be created from streaming variant.
 1331  * This function is always successful if expected conditions are fulfilled.
 1332  */
 1333 static void ZSTDMT_writeLastEmptyBlock(ZSTDMT_jobDescription* job)
 1334 {
 1335     assert(job->lastJob == 1);
 1336     assert(job->src.size == 0);   /* last job is empty -> will be simplified into a last empty block */
 1337     assert(job->firstJob == 0);   /* cannot be first job, as it also needs to create frame header */
 1338     assert(job->dstBuff.start == NULL);   /* invoked from streaming variant only (otherwise, dstBuff might be user's output) */
 1339     job->dstBuff = ZSTDMT_getBuffer(job->bufPool);
 1340     if (job->dstBuff.start == NULL) {
 1341       job->cSize = ERROR(memory_allocation);
 1342       return;
 1343     }
 1344     assert(job->dstBuff.capacity >= ZSTD_blockHeaderSize);   /* no buffer should ever be that small */
 1345     job->src = kNullRange;
 1346     job->cSize = ZSTD_writeLastEmptyBlock(job->dstBuff.start, job->dstBuff.capacity);
 1347     assert(!ZSTD_isError(job->cSize));
 1348     assert(job->consumed == 0);
 1349 }
 1350 
 1351 static size_t ZSTDMT_createCompressionJob(ZSTDMT_CCtx* mtctx, size_t srcSize, ZSTD_EndDirective endOp)
 1352 {
 1353     unsigned const jobID = mtctx->nextJobID & mtctx->jobIDMask;
 1354     int const endFrame = (endOp == ZSTD_e_end);
 1355 
 1356     if (mtctx->nextJobID > mtctx->doneJobID + mtctx->jobIDMask) {
 1357         DEBUGLOG(5, "ZSTDMT_createCompressionJob: will not create new job : table is full");
 1358         assert((mtctx->nextJobID & mtctx->jobIDMask) == (mtctx->doneJobID & mtctx->jobIDMask));
 1359         return 0;
 1360     }
 1361 
 1362     if (!mtctx->jobReady) {
 1363         BYTE const* src = (BYTE const*)mtctx->inBuff.buffer.start;
 1364         DEBUGLOG(5, "ZSTDMT_createCompressionJob: preparing job %u to compress %u bytes with %u preload ",
 1365                     mtctx->nextJobID, (U32)srcSize, (U32)mtctx->inBuff.prefix.size);
 1366         mtctx->jobs[jobID].src.start = src;
 1367         mtctx->jobs[jobID].src.size = srcSize;
 1368         assert(mtctx->inBuff.filled >= srcSize);
 1369         mtctx->jobs[jobID].prefix = mtctx->inBuff.prefix;
 1370         mtctx->jobs[jobID].consumed = 0;
 1371         mtctx->jobs[jobID].cSize = 0;
 1372         mtctx->jobs[jobID].params = mtctx->params;
 1373         mtctx->jobs[jobID].cdict = mtctx->nextJobID==0 ? mtctx->cdict : NULL;
 1374         mtctx->jobs[jobID].fullFrameSize = mtctx->frameContentSize;
 1375         mtctx->jobs[jobID].dstBuff = g_nullBuffer;
 1376         mtctx->jobs[jobID].cctxPool = mtctx->cctxPool;
 1377         mtctx->jobs[jobID].bufPool = mtctx->bufPool;
 1378         mtctx->jobs[jobID].seqPool = mtctx->seqPool;
 1379         mtctx->jobs[jobID].serial = &mtctx->serial;
 1380         mtctx->jobs[jobID].jobID = mtctx->nextJobID;
 1381         mtctx->jobs[jobID].firstJob = (mtctx->nextJobID==0);
 1382         mtctx->jobs[jobID].lastJob = endFrame;
 1383         mtctx->jobs[jobID].frameChecksumNeeded = mtctx->params.fParams.checksumFlag && endFrame && (mtctx->nextJobID>0);
 1384         mtctx->jobs[jobID].dstFlushed = 0;
 1385 
 1386         /* Update the round buffer pos and clear the input buffer to be reset */
 1387         mtctx->roundBuff.pos += srcSize;
 1388         mtctx->inBuff.buffer = g_nullBuffer;
 1389         mtctx->inBuff.filled = 0;
 1390         /* Set the prefix */
 1391         if (!endFrame) {
 1392             size_t const newPrefixSize = MIN(srcSize, mtctx->targetPrefixSize);
 1393             mtctx->inBuff.prefix.start = src + srcSize - newPrefixSize;
 1394             mtctx->inBuff.prefix.size = newPrefixSize;
 1395         } else {   /* endFrame==1 => no need for another input buffer */
 1396             mtctx->inBuff.prefix = kNullRange;
 1397             mtctx->frameEnded = endFrame;
 1398             if (mtctx->nextJobID == 0) {
 1399                 /* single job exception : checksum is already calculated directly within worker thread */
 1400                 mtctx->params.fParams.checksumFlag = 0;
 1401         }   }
 1402 
 1403         if ( (srcSize == 0)
 1404           && (mtctx->nextJobID>0)/*single job must also write frame header*/ ) {
 1405             DEBUGLOG(5, "ZSTDMT_createCompressionJob: creating a last empty block to end frame");
 1406             assert(endOp == ZSTD_e_end);  /* only possible case : need to end the frame with an empty last block */
 1407             ZSTDMT_writeLastEmptyBlock(mtctx->jobs + jobID);
 1408             mtctx->nextJobID++;
 1409             return 0;
 1410         }
 1411     }
 1412 
 1413     DEBUGLOG(5, "ZSTDMT_createCompressionJob: posting job %u : %u bytes  (end:%u, jobNb == %u (mod:%u))",
 1414                 mtctx->nextJobID,
 1415                 (U32)mtctx->jobs[jobID].src.size,
 1416                 mtctx->jobs[jobID].lastJob,
 1417                 mtctx->nextJobID,
 1418                 jobID);
 1419     if (POOL_tryAdd(mtctx->factory, ZSTDMT_compressionJob, &mtctx->jobs[jobID])) {
 1420         mtctx->nextJobID++;
 1421         mtctx->jobReady = 0;
 1422     } else {
 1423         DEBUGLOG(5, "ZSTDMT_createCompressionJob: no worker available for job %u", mtctx->nextJobID);
 1424         mtctx->jobReady = 1;
 1425     }
 1426     return 0;
 1427 }
 1428 
 1429 
 1430 /*! ZSTDMT_flushProduced() :
 1431  *  flush whatever data has been produced but not yet flushed in current job.
 1432  *  move to next job if current one is fully flushed.
 1433  * `output` : `pos` will be updated with amount of data flushed .
 1434  * `blockToFlush` : if >0, the function will block and wait if there is no data available to flush .
 1435  * @return : amount of data remaining within internal buffer, 0 if no more, 1 if unknown but > 0, or an error code */
 1436 static size_t ZSTDMT_flushProduced(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output, unsigned blockToFlush, ZSTD_EndDirective end)
 1437 {
 1438     unsigned const wJobID = mtctx->doneJobID & mtctx->jobIDMask;
 1439     DEBUGLOG(5, "ZSTDMT_flushProduced (blocking:%u , job %u <= %u)",
 1440                 blockToFlush, mtctx->doneJobID, mtctx->nextJobID);
 1441     assert(output->size >= output->pos);
 1442 
 1443     ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[wJobID].job_mutex);
 1444     if (  blockToFlush
 1445       && (mtctx->doneJobID < mtctx->nextJobID) ) {
 1446         assert(mtctx->jobs[wJobID].dstFlushed <= mtctx->jobs[wJobID].cSize);
 1447         while (mtctx->jobs[wJobID].dstFlushed == mtctx->jobs[wJobID].cSize) {  /* nothing to flush */
 1448             if (mtctx->jobs[wJobID].consumed == mtctx->jobs[wJobID].src.size) {
 1449                 DEBUGLOG(5, "job %u is completely consumed (%u == %u) => don't wait for cond, there will be none",
 1450                             mtctx->doneJobID, (U32)mtctx->jobs[wJobID].consumed, (U32)mtctx->jobs[wJobID].src.size);
 1451                 break;
 1452             }
 1453             DEBUGLOG(5, "waiting for something to flush from job %u (currently flushed: %u bytes)",
 1454                         mtctx->doneJobID, (U32)mtctx->jobs[wJobID].dstFlushed);
 1455             ZSTD_pthread_cond_wait(&mtctx->jobs[wJobID].job_cond, &mtctx->jobs[wJobID].job_mutex);  /* block when nothing to flush but some to come */
 1456     }   }
 1457 
 1458     /* try to flush something */
 1459     {   size_t cSize = mtctx->jobs[wJobID].cSize;                  /* shared */
 1460         size_t const srcConsumed = mtctx->jobs[wJobID].consumed;   /* shared */
 1461         size_t const srcSize = mtctx->jobs[wJobID].src.size;       /* read-only, could be done after mutex lock, but no-declaration-after-statement */
 1462         ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex);
 1463         if (ZSTD_isError(cSize)) {
 1464             DEBUGLOG(5, "ZSTDMT_flushProduced: job %u : compression error detected : %s",
 1465                         mtctx->doneJobID, ZSTD_getErrorName(cSize));
 1466             ZSTDMT_waitForAllJobsCompleted(mtctx);
 1467             ZSTDMT_releaseAllJobResources(mtctx);
 1468             return cSize;
 1469         }
 1470         /* add frame checksum if necessary (can only happen once) */
 1471         assert(srcConsumed <= srcSize);
 1472         if ( (srcConsumed == srcSize)   /* job completed -> worker no longer active */
 1473           && mtctx->jobs[wJobID].frameChecksumNeeded ) {
 1474             U32 const checksum = (U32)XXH64_digest(&mtctx->serial.xxhState);
 1475             DEBUGLOG(4, "ZSTDMT_flushProduced: writing checksum : %08X \n", checksum);
 1476             MEM_writeLE32((char*)mtctx->jobs[wJobID].dstBuff.start + mtctx->jobs[wJobID].cSize, checksum);
 1477             cSize += 4;
 1478             mtctx->jobs[wJobID].cSize += 4;  /* can write this shared value, as worker is no longer active */
 1479             mtctx->jobs[wJobID].frameChecksumNeeded = 0;
 1480         }
 1481 
 1482         if (cSize > 0) {   /* compression is ongoing or completed */
 1483             size_t const toFlush = MIN(cSize - mtctx->jobs[wJobID].dstFlushed, output->size - output->pos);
 1484             DEBUGLOG(5, "ZSTDMT_flushProduced: Flushing %u bytes from job %u (completion:%u/%u, generated:%u)",
 1485                         (U32)toFlush, mtctx->doneJobID, (U32)srcConsumed, (U32)srcSize, (U32)cSize);
 1486             assert(mtctx->doneJobID < mtctx->nextJobID);
 1487             assert(cSize >= mtctx->jobs[wJobID].dstFlushed);
 1488             assert(mtctx->jobs[wJobID].dstBuff.start != NULL);
 1489             if (toFlush > 0) {
 1490                 ZSTD_memcpy((char*)output->dst + output->pos,
 1491                     (const char*)mtctx->jobs[wJobID].dstBuff.start + mtctx->jobs[wJobID].dstFlushed,
 1492                     toFlush);
 1493             }
 1494             output->pos += toFlush;
 1495             mtctx->jobs[wJobID].dstFlushed += toFlush;  /* can write : this value is only used by mtctx */
 1496 
 1497             if ( (srcConsumed == srcSize)    /* job is completed */
 1498               && (mtctx->jobs[wJobID].dstFlushed == cSize) ) {   /* output buffer fully flushed => free this job position */
 1499                 DEBUGLOG(5, "Job %u completed (%u bytes), moving to next one",
 1500                         mtctx->doneJobID, (U32)mtctx->jobs[wJobID].dstFlushed);
 1501                 ZSTDMT_releaseBuffer(mtctx->bufPool, mtctx->jobs[wJobID].dstBuff);
 1502                 DEBUGLOG(5, "dstBuffer released");
 1503                 mtctx->jobs[wJobID].dstBuff = g_nullBuffer;
 1504                 mtctx->jobs[wJobID].cSize = 0;   /* ensure this job slot is considered "not started" in future check */
 1505                 mtctx->consumed += srcSize;
 1506                 mtctx->produced += cSize;
 1507                 mtctx->doneJobID++;
 1508         }   }
 1509 
 1510         /* return value : how many bytes left in buffer ; fake it to 1 when unknown but >0 */
 1511         if (cSize > mtctx->jobs[wJobID].dstFlushed) return (cSize - mtctx->jobs[wJobID].dstFlushed);
 1512         if (srcSize > srcConsumed) return 1;   /* current job not completely compressed */
 1513     }
 1514     if (mtctx->doneJobID < mtctx->nextJobID) return 1;   /* some more jobs ongoing */
 1515     if (mtctx->jobReady) return 1;      /* one job is ready to push, just not yet in the list */
 1516     if (mtctx->inBuff.filled > 0) return 1;   /* input is not empty, and still needs to be converted into a job */
 1517     mtctx->allJobsCompleted = mtctx->frameEnded;   /* all jobs are entirely flushed => if this one is last one, frame is completed */
 1518     if (end == ZSTD_e_end) return !mtctx->frameEnded;  /* for ZSTD_e_end, question becomes : is frame completed ? instead of : are internal buffers fully flushed ? */
 1519     return 0;   /* internal buffers fully flushed */
 1520 }
 1521 
 1522 /**
 1523  * Returns the range of data used by the earliest job that is not yet complete.
 1524  * If the data of the first job is broken up into two segments, we cover both
 1525  * sections.
 1526  */
 1527 static range_t ZSTDMT_getInputDataInUse(ZSTDMT_CCtx* mtctx)
 1528 {
 1529     unsigned const firstJobID = mtctx->doneJobID;
 1530     unsigned const lastJobID = mtctx->nextJobID;
 1531     unsigned jobID;
 1532 
 1533     for (jobID = firstJobID; jobID < lastJobID; ++jobID) {
 1534         unsigned const wJobID = jobID & mtctx->jobIDMask;
 1535         size_t consumed;
 1536 
 1537         ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[wJobID].job_mutex);
 1538         consumed = mtctx->jobs[wJobID].consumed;
 1539         ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex);
 1540 
 1541         if (consumed < mtctx->jobs[wJobID].src.size) {
 1542             range_t range = mtctx->jobs[wJobID].prefix;
 1543             if (range.size == 0) {
 1544                 /* Empty prefix */
 1545                 range = mtctx->jobs[wJobID].src;
 1546             }
 1547             /* Job source in multiple segments not supported yet */
 1548             assert(range.start <= mtctx->jobs[wJobID].src.start);
 1549             return range;
 1550         }
 1551     }
 1552     return kNullRange;
 1553 }
 1554 
 1555 /**
 1556  * Returns non-zero iff buffer and range overlap.
 1557  */
 1558 static int ZSTDMT_isOverlapped(buffer_t buffer, range_t range)
 1559 {
 1560     BYTE const* const bufferStart = (BYTE const*)buffer.start;
 1561     BYTE const* const rangeStart = (BYTE const*)range.start;
 1562 
 1563     if (rangeStart == NULL || bufferStart == NULL)
 1564         return 0;
 1565 
 1566     {
 1567         BYTE const* const bufferEnd = bufferStart + buffer.capacity;
 1568         BYTE const* const rangeEnd = rangeStart + range.size;
 1569 
 1570         /* Empty ranges cannot overlap */
 1571         if (bufferStart == bufferEnd || rangeStart == rangeEnd)
 1572             return 0;
 1573 
 1574         return bufferStart < rangeEnd && rangeStart < bufferEnd;
 1575     }
 1576 }
 1577 
 1578 static int ZSTDMT_doesOverlapWindow(buffer_t buffer, ZSTD_window_t window)
 1579 {
 1580     range_t extDict;
 1581     range_t prefix;
 1582 
 1583     DEBUGLOG(5, "ZSTDMT_doesOverlapWindow");
 1584     extDict.start = window.dictBase + window.lowLimit;
 1585     extDict.size = window.dictLimit - window.lowLimit;
 1586 
 1587     prefix.start = window.base + window.dictLimit;
 1588     prefix.size = window.nextSrc - (window.base + window.dictLimit);
 1589     DEBUGLOG(5, "extDict [0x%zx, 0x%zx)",
 1590                 (size_t)extDict.start,
 1591                 (size_t)extDict.start + extDict.size);
 1592     DEBUGLOG(5, "prefix  [0x%zx, 0x%zx)",
 1593                 (size_t)prefix.start,
 1594                 (size_t)prefix.start + prefix.size);
 1595 
 1596     return ZSTDMT_isOverlapped(buffer, extDict)
 1597         || ZSTDMT_isOverlapped(buffer, prefix);
 1598 }
 1599 
 1600 static void ZSTDMT_waitForLdmComplete(ZSTDMT_CCtx* mtctx, buffer_t buffer)
 1601 {
 1602     if (mtctx->params.ldmParams.enableLdm == ZSTD_ps_enable) {
 1603         ZSTD_pthread_mutex_t* mutex = &mtctx->serial.ldmWindowMutex;
 1604         DEBUGLOG(5, "ZSTDMT_waitForLdmComplete");
 1605         DEBUGLOG(5, "source  [0x%zx, 0x%zx)",
 1606                     (size_t)buffer.start,
 1607                     (size_t)buffer.start + buffer.capacity);
 1608         ZSTD_PTHREAD_MUTEX_LOCK(mutex);
 1609         while (ZSTDMT_doesOverlapWindow(buffer, mtctx->serial.ldmWindow)) {
 1610             DEBUGLOG(5, "Waiting for LDM to finish...");
 1611             ZSTD_pthread_cond_wait(&mtctx->serial.ldmWindowCond, mutex);
 1612         }
 1613         DEBUGLOG(6, "Done waiting for LDM to finish");
 1614         ZSTD_pthread_mutex_unlock(mutex);
 1615     }
 1616 }
 1617 
 1618 /**
 1619  * Attempts to set the inBuff to the next section to fill.
 1620  * If any part of the new section is still in use we give up.
 1621  * Returns non-zero if the buffer is filled.
 1622  */
 1623 static int ZSTDMT_tryGetInputRange(ZSTDMT_CCtx* mtctx)
 1624 {
 1625     range_t const inUse = ZSTDMT_getInputDataInUse(mtctx);
 1626     size_t const spaceLeft = mtctx->roundBuff.capacity - mtctx->roundBuff.pos;
 1627     size_t const target = mtctx->targetSectionSize;
 1628     buffer_t buffer;
 1629 
 1630     DEBUGLOG(5, "ZSTDMT_tryGetInputRange");
 1631     assert(mtctx->inBuff.buffer.start == NULL);
 1632     assert(mtctx->roundBuff.capacity >= target);
 1633 
 1634     if (spaceLeft < target) {
 1635         /* ZSTD_invalidateRepCodes() doesn't work for extDict variants.
 1636          * Simply copy the prefix to the beginning in that case.
 1637          */
 1638         BYTE* const start = (BYTE*)mtctx->roundBuff.buffer;
 1639         size_t const prefixSize = mtctx->inBuff.prefix.size;
 1640 
 1641         buffer.start = start;
 1642         buffer.capacity = prefixSize;
 1643         if (ZSTDMT_isOverlapped(buffer, inUse)) {
 1644             DEBUGLOG(5, "Waiting for buffer...");
 1645             return 0;
 1646         }
 1647         ZSTDMT_waitForLdmComplete(mtctx, buffer);
 1648         ZSTD_memmove(start, mtctx->inBuff.prefix.start, prefixSize);
 1649         mtctx->inBuff.prefix.start = start;
 1650         mtctx->roundBuff.pos = prefixSize;
 1651     }
 1652     buffer.start = mtctx->roundBuff.buffer + mtctx->roundBuff.pos;
 1653     buffer.capacity = target;
 1654 
 1655     if (ZSTDMT_isOverlapped(buffer, inUse)) {
 1656         DEBUGLOG(5, "Waiting for buffer...");
 1657         return 0;
 1658     }
 1659     assert(!ZSTDMT_isOverlapped(buffer, mtctx->inBuff.prefix));
 1660 
 1661     ZSTDMT_waitForLdmComplete(mtctx, buffer);
 1662 
 1663     DEBUGLOG(5, "Using prefix range [%zx, %zx)",
 1664                 (size_t)mtctx->inBuff.prefix.start,
 1665                 (size_t)mtctx->inBuff.prefix.start + mtctx->inBuff.prefix.size);
 1666     DEBUGLOG(5, "Using source range [%zx, %zx)",
 1667                 (size_t)buffer.start,
 1668                 (size_t)buffer.start + buffer.capacity);
 1669 
 1670 
 1671     mtctx->inBuff.buffer = buffer;
 1672     mtctx->inBuff.filled = 0;
 1673     assert(mtctx->roundBuff.pos + buffer.capacity <= mtctx->roundBuff.capacity);
 1674     return 1;
 1675 }
 1676 
 1677 typedef struct {
 1678   size_t toLoad;  /* The number of bytes to load from the input. */
 1679   int flush;      /* Boolean declaring if we must flush because we found a synchronization point. */
 1680 } syncPoint_t;
 1681 
 1682 /**
 1683  * Searches through the input for a synchronization point. If one is found, we
 1684  * will instruct the caller to flush, and return the number of bytes to load.
 1685  * Otherwise, we will load as many bytes as possible and instruct the caller
 1686  * to continue as normal.
 1687  */
 1688 static syncPoint_t
 1689 findSynchronizationPoint(ZSTDMT_CCtx const* mtctx, ZSTD_inBuffer const input)
 1690 {
 1691     BYTE const* const istart = (BYTE const*)input.src + input.pos;
 1692     U64 const primePower = mtctx->rsync.primePower;
 1693     U64 const hitMask = mtctx->rsync.hitMask;
 1694 
 1695     syncPoint_t syncPoint;
 1696     U64 hash;
 1697     BYTE const* prev;
 1698     size_t pos;
 1699 
 1700     syncPoint.toLoad = MIN(input.size - input.pos, mtctx->targetSectionSize - mtctx->inBuff.filled);
 1701     syncPoint.flush = 0;
 1702     if (!mtctx->params.rsyncable)
 1703         /* Rsync is disabled. */
 1704         return syncPoint;
 1705     if (mtctx->inBuff.filled + input.size - input.pos < RSYNC_MIN_BLOCK_SIZE)
 1706         /* We don't emit synchronization points if it would produce too small blocks.
 1707          * We don't have enough input to find a synchronization point, so don't look.
 1708          */
 1709         return syncPoint;
 1710     if (mtctx->inBuff.filled + syncPoint.toLoad < RSYNC_LENGTH)
 1711         /* Not enough to compute the hash.
 1712          * We will miss any synchronization points in this RSYNC_LENGTH byte
 1713          * window. However, since it depends only in the internal buffers, if the
 1714          * state is already synchronized, we will remain synchronized.
 1715          * Additionally, the probability that we miss a synchronization point is
 1716          * low: RSYNC_LENGTH / targetSectionSize.
 1717          */
 1718         return syncPoint;
 1719     /* Initialize the loop variables. */
 1720     if (mtctx->inBuff.filled < RSYNC_MIN_BLOCK_SIZE) {
 1721         /* We don't need to scan the first RSYNC_MIN_BLOCK_SIZE positions
 1722          * because they can't possibly be a sync point. So we can start
 1723          * part way through the input buffer.
 1724          */
 1725         pos = RSYNC_MIN_BLOCK_SIZE - mtctx->inBuff.filled;
 1726         if (pos >= RSYNC_LENGTH) {
 1727             prev = istart + pos - RSYNC_LENGTH;
 1728             hash = ZSTD_rollingHash_compute(prev, RSYNC_LENGTH);
 1729         } else {
 1730             assert(mtctx->inBuff.filled >= RSYNC_LENGTH);
 1731             prev = (BYTE const*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled - RSYNC_LENGTH;
 1732             hash = ZSTD_rollingHash_compute(prev + pos, (RSYNC_LENGTH - pos));
 1733             hash = ZSTD_rollingHash_append(hash, istart, pos);
 1734         }
 1735     } else {
 1736         /* We have enough bytes buffered to initialize the hash,
 1737          * and are have processed enough bytes to find a sync point.
 1738          * Start scanning at the beginning of the input.
 1739          */
 1740         assert(mtctx->inBuff.filled >= RSYNC_MIN_BLOCK_SIZE);
 1741         assert(RSYNC_MIN_BLOCK_SIZE >= RSYNC_LENGTH);
 1742         pos = 0;
 1743         prev = (BYTE const*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled - RSYNC_LENGTH;
 1744         hash = ZSTD_rollingHash_compute(prev, RSYNC_LENGTH);
 1745         if ((hash & hitMask) == hitMask) {
 1746             /* We're already at a sync point so don't load any more until
 1747              * we're able to flush this sync point.
 1748              * This likely happened because the job table was full so we
 1749              * couldn't add our job.
 1750              */
 1751             syncPoint.toLoad = 0;
 1752             syncPoint.flush = 1;
 1753             return syncPoint;
 1754         }
 1755     }
 1756     /* Starting with the hash of the previous RSYNC_LENGTH bytes, roll
 1757      * through the input. If we hit a synchronization point, then cut the
 1758      * job off, and tell the compressor to flush the job. Otherwise, load
 1759      * all the bytes and continue as normal.
 1760      * If we go too long without a synchronization point (targetSectionSize)
 1761      * then a block will be emitted anyways, but this is okay, since if we
 1762      * are already synchronized we will remain synchronized.
 1763      */
 1764     for (; pos < syncPoint.toLoad; ++pos) {
 1765         BYTE const toRemove = pos < RSYNC_LENGTH ? prev[pos] : istart[pos - RSYNC_LENGTH];
 1766         assert(pos < RSYNC_LENGTH || ZSTD_rollingHash_compute(istart + pos - RSYNC_LENGTH, RSYNC_LENGTH) == hash);
 1767         hash = ZSTD_rollingHash_rotate(hash, toRemove, istart[pos], primePower);
 1768         assert(mtctx->inBuff.filled + pos >= RSYNC_MIN_BLOCK_SIZE);
 1769         if ((hash & hitMask) == hitMask) {
 1770             syncPoint.toLoad = pos + 1;
 1771             syncPoint.flush = 1;
 1772             break;
 1773         }
 1774     }
 1775     return syncPoint;
 1776 }
 1777 
 1778 size_t ZSTDMT_nextInputSizeHint(const ZSTDMT_CCtx* mtctx)
 1779 {
 1780     size_t hintInSize = mtctx->targetSectionSize - mtctx->inBuff.filled;
 1781     if (hintInSize==0) hintInSize = mtctx->targetSectionSize;
 1782     return hintInSize;
 1783 }
 1784 
 1785 /** ZSTDMT_compressStream_generic() :
 1786  *  internal use only - exposed to be invoked from zstd_compress.c
 1787  *  assumption : output and input are valid (pos <= size)
 1788  * @return : minimum amount of data remaining to flush, 0 if none */
 1789 size_t ZSTDMT_compressStream_generic(ZSTDMT_CCtx* mtctx,
 1790                                      ZSTD_outBuffer* output,
 1791                                      ZSTD_inBuffer* input,
 1792                                      ZSTD_EndDirective endOp)
 1793 {
 1794     unsigned forwardInputProgress = 0;
 1795     DEBUGLOG(5, "ZSTDMT_compressStream_generic (endOp=%u, srcSize=%u)",
 1796                 (U32)endOp, (U32)(input->size - input->pos));
 1797     assert(output->pos <= output->size);
 1798     assert(input->pos  <= input->size);
 1799 
 1800     if ((mtctx->frameEnded) && (endOp==ZSTD_e_continue)) {
 1801         /* current frame being ended. Only flush/end are allowed */
 1802         return ERROR(stage_wrong);
 1803     }
 1804 
 1805     /* fill input buffer */
 1806     if ( (!mtctx->jobReady)
 1807       && (input->size > input->pos) ) {   /* support NULL input */
 1808         if (mtctx->inBuff.buffer.start == NULL) {
 1809             assert(mtctx->inBuff.filled == 0); /* Can't fill an empty buffer */
 1810             if (!ZSTDMT_tryGetInputRange(mtctx)) {
 1811                 /* It is only possible for this operation to fail if there are
 1812                  * still compression jobs ongoing.
 1813                  */
 1814                 DEBUGLOG(5, "ZSTDMT_tryGetInputRange failed");
 1815                 assert(mtctx->doneJobID != mtctx->nextJobID);
 1816             } else
 1817                 DEBUGLOG(5, "ZSTDMT_tryGetInputRange completed successfully : mtctx->inBuff.buffer.start = %p", mtctx->inBuff.buffer.start);
 1818         }
 1819         if (mtctx->inBuff.buffer.start != NULL) {
 1820             syncPoint_t const syncPoint = findSynchronizationPoint(mtctx, *input);
 1821             if (syncPoint.flush && endOp == ZSTD_e_continue) {
 1822                 endOp = ZSTD_e_flush;
 1823             }
 1824             assert(mtctx->inBuff.buffer.capacity >= mtctx->targetSectionSize);
 1825             DEBUGLOG(5, "ZSTDMT_compressStream_generic: adding %u bytes on top of %u to buffer of size %u",
 1826                         (U32)syncPoint.toLoad, (U32)mtctx->inBuff.filled, (U32)mtctx->targetSectionSize);
 1827             ZSTD_memcpy((char*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled, (const char*)input->src + input->pos, syncPoint.toLoad);
 1828             input->pos += syncPoint.toLoad;
 1829             mtctx->inBuff.filled += syncPoint.toLoad;
 1830             forwardInputProgress = syncPoint.toLoad>0;
 1831         }
 1832     }
 1833     if ((input->pos < input->size) && (endOp == ZSTD_e_end)) {
 1834         /* Can't end yet because the input is not fully consumed.
 1835             * We are in one of these cases:
 1836             * - mtctx->inBuff is NULL & empty: we couldn't get an input buffer so don't create a new job.
 1837             * - We filled the input buffer: flush this job but don't end the frame.
 1838             * - We hit a synchronization point: flush this job but don't end the frame.
 1839             */
 1840         assert(mtctx->inBuff.filled == 0 || mtctx->inBuff.filled == mtctx->targetSectionSize || mtctx->params.rsyncable);
 1841         endOp = ZSTD_e_flush;
 1842     }
 1843 
 1844     if ( (mtctx->jobReady)
 1845       || (mtctx->inBuff.filled >= mtctx->targetSectionSize)  /* filled enough : let's compress */
 1846       || ((endOp != ZSTD_e_continue) && (mtctx->inBuff.filled > 0))  /* something to flush : let's go */
 1847       || ((endOp == ZSTD_e_end) && (!mtctx->frameEnded)) ) {   /* must finish the frame with a zero-size block */
 1848         size_t const jobSize = mtctx->inBuff.filled;
 1849         assert(mtctx->inBuff.filled <= mtctx->targetSectionSize);
 1850         FORWARD_IF_ERROR( ZSTDMT_createCompressionJob(mtctx, jobSize, endOp) , "");
 1851     }
 1852 
 1853     /* check for potential compressed data ready to be flushed */
 1854     {   size_t const remainingToFlush = ZSTDMT_flushProduced(mtctx, output, !forwardInputProgress, endOp); /* block if there was no forward input progress */
 1855         if (input->pos < input->size) return MAX(remainingToFlush, 1);  /* input not consumed : do not end flush yet */
 1856         DEBUGLOG(5, "end of ZSTDMT_compressStream_generic: remainingToFlush = %u", (U32)remainingToFlush);
 1857         return remainingToFlush;
 1858     }
 1859 }

Cache object: d147268213a404ef37ed4738d11b8a6d


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.