The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/contrib/zstd/lib/decompress/huf_decompress.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /* ******************************************************************
    2  * huff0 huffman decoder,
    3  * part of Finite State Entropy library
    4  * Copyright (c) Yann Collet, Facebook, Inc.
    5  *
    6  *  You can contact the author at :
    7  *  - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
    8  *
    9  * This source code is licensed under both the BSD-style license (found in the
   10  * LICENSE file in the root directory of this source tree) and the GPLv2 (found
   11  * in the COPYING file in the root directory of this source tree).
   12  * You may select, at your option, one of the above-listed licenses.
   13 ****************************************************************** */
   14 
   15 /* **************************************************************
   16 *  Dependencies
   17 ****************************************************************/
   18 #include "../common/zstd_deps.h"  /* ZSTD_memcpy, ZSTD_memset */
   19 #include "../common/compiler.h"
   20 #include "../common/bitstream.h"  /* BIT_* */
   21 #include "../common/fse.h"        /* to compress headers */
   22 #define HUF_STATIC_LINKING_ONLY
   23 #include "../common/huf.h"
   24 #include "../common/error_private.h"
   25 #include "../common/zstd_internal.h"
   26 
   27 /* **************************************************************
   28 *  Constants
   29 ****************************************************************/
   30 
   31 #define HUF_DECODER_FAST_TABLELOG 11
   32 
   33 /* **************************************************************
   34 *  Macros
   35 ****************************************************************/
   36 
   37 /* These two optional macros force the use one way or another of the two
   38  * Huffman decompression implementations. You can't force in both directions
   39  * at the same time.
   40  */
   41 #if defined(HUF_FORCE_DECOMPRESS_X1) && \
   42     defined(HUF_FORCE_DECOMPRESS_X2)
   43 #error "Cannot force the use of the X1 and X2 decoders at the same time!"
   44 #endif
   45 
   46 #if ZSTD_ENABLE_ASM_X86_64_BMI2 && DYNAMIC_BMI2
   47 # define HUF_ASM_X86_64_BMI2_ATTRS BMI2_TARGET_ATTRIBUTE
   48 #else
   49 # define HUF_ASM_X86_64_BMI2_ATTRS
   50 #endif
   51 
   52 #ifdef __cplusplus
   53 # define HUF_EXTERN_C extern "C"
   54 #else
   55 # define HUF_EXTERN_C
   56 #endif
   57 #define HUF_ASM_DECL HUF_EXTERN_C
   58 
   59 #if DYNAMIC_BMI2 || (ZSTD_ENABLE_ASM_X86_64_BMI2 && defined(__BMI2__))
   60 # define HUF_NEED_BMI2_FUNCTION 1
   61 #else
   62 # define HUF_NEED_BMI2_FUNCTION 0
   63 #endif
   64 
   65 #if !(ZSTD_ENABLE_ASM_X86_64_BMI2 && defined(__BMI2__))
   66 # define HUF_NEED_DEFAULT_FUNCTION 1
   67 #else
   68 # define HUF_NEED_DEFAULT_FUNCTION 0
   69 #endif
   70 
   71 /* **************************************************************
   72 *  Error Management
   73 ****************************************************************/
   74 #define HUF_isError ERR_isError
   75 
   76 
   77 /* **************************************************************
   78 *  Byte alignment for workSpace management
   79 ****************************************************************/
   80 #define HUF_ALIGN(x, a)         HUF_ALIGN_MASK((x), (a) - 1)
   81 #define HUF_ALIGN_MASK(x, mask) (((x) + (mask)) & ~(mask))
   82 
   83 
   84 /* **************************************************************
   85 *  BMI2 Variant Wrappers
   86 ****************************************************************/
   87 #if DYNAMIC_BMI2
   88 
   89 #define HUF_DGEN(fn)                                                        \
   90                                                                             \
   91     static size_t fn##_default(                                             \
   92                   void* dst,  size_t dstSize,                               \
   93             const void* cSrc, size_t cSrcSize,                              \
   94             const HUF_DTable* DTable)                                       \
   95     {                                                                       \
   96         return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable);             \
   97     }                                                                       \
   98                                                                             \
   99     static BMI2_TARGET_ATTRIBUTE size_t fn##_bmi2(                          \
  100                   void* dst,  size_t dstSize,                               \
  101             const void* cSrc, size_t cSrcSize,                              \
  102             const HUF_DTable* DTable)                                       \
  103     {                                                                       \
  104         return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable);             \
  105     }                                                                       \
  106                                                                             \
  107     static size_t fn(void* dst, size_t dstSize, void const* cSrc,           \
  108                      size_t cSrcSize, HUF_DTable const* DTable, int bmi2)   \
  109     {                                                                       \
  110         if (bmi2) {                                                         \
  111             return fn##_bmi2(dst, dstSize, cSrc, cSrcSize, DTable);         \
  112         }                                                                   \
  113         return fn##_default(dst, dstSize, cSrc, cSrcSize, DTable);          \
  114     }
  115 
  116 #else
  117 
  118 #define HUF_DGEN(fn)                                                        \
  119     static size_t fn(void* dst, size_t dstSize, void const* cSrc,           \
  120                      size_t cSrcSize, HUF_DTable const* DTable, int bmi2)   \
  121     {                                                                       \
  122         (void)bmi2;                                                         \
  123         return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable);             \
  124     }
  125 
  126 #endif
  127 
  128 
  129 /*-***************************/
  130 /*  generic DTableDesc       */
  131 /*-***************************/
  132 typedef struct { BYTE maxTableLog; BYTE tableType; BYTE tableLog; BYTE reserved; } DTableDesc;
  133 
  134 static DTableDesc HUF_getDTableDesc(const HUF_DTable* table)
  135 {
  136     DTableDesc dtd;
  137     ZSTD_memcpy(&dtd, table, sizeof(dtd));
  138     return dtd;
  139 }
  140 
  141 #if ZSTD_ENABLE_ASM_X86_64_BMI2
  142 
  143 static size_t HUF_initDStream(BYTE const* ip) {
  144     BYTE const lastByte = ip[7];
  145     size_t const bitsConsumed = lastByte ? 8 - BIT_highbit32(lastByte) : 0;
  146     size_t const value = MEM_readLEST(ip) | 1;
  147     assert(bitsConsumed <= 8);
  148     return value << bitsConsumed;
  149 }
  150 typedef struct {
  151     BYTE const* ip[4];
  152     BYTE* op[4];
  153     U64 bits[4];
  154     void const* dt;
  155     BYTE const* ilimit;
  156     BYTE* oend;
  157     BYTE const* iend[4];
  158 } HUF_DecompressAsmArgs;
  159 
  160 /**
  161  * Initializes args for the asm decoding loop.
  162  * @returns 0 on success
  163  *          1 if the fallback implementation should be used.
  164  *          Or an error code on failure.
  165  */
  166 static size_t HUF_DecompressAsmArgs_init(HUF_DecompressAsmArgs* args, void* dst, size_t dstSize, void const* src, size_t srcSize, const HUF_DTable* DTable)
  167 {
  168     void const* dt = DTable + 1;
  169     U32 const dtLog = HUF_getDTableDesc(DTable).tableLog;
  170 
  171     const BYTE* const ilimit = (const BYTE*)src + 6 + 8;
  172 
  173     BYTE* const oend = (BYTE*)dst + dstSize;
  174 
  175     /* The following condition is false on x32 platform,
  176      * but HUF_asm is not compatible with this ABI */
  177     if (!(MEM_isLittleEndian() && !MEM_32bits())) return 1;
  178 
  179     /* strict minimum : jump table + 1 byte per stream */
  180     if (srcSize < 10)
  181         return ERROR(corruption_detected);
  182 
  183     /* Must have at least 8 bytes per stream because we don't handle initializing smaller bit containers.
  184      * If table log is not correct at this point, fallback to the old decoder.
  185      * On small inputs we don't have enough data to trigger the fast loop, so use the old decoder.
  186      */
  187     if (dtLog != HUF_DECODER_FAST_TABLELOG)
  188         return 1;
  189 
  190     /* Read the jump table. */
  191     {
  192         const BYTE* const istart = (const BYTE*)src;
  193         size_t const length1 = MEM_readLE16(istart);
  194         size_t const length2 = MEM_readLE16(istart+2);
  195         size_t const length3 = MEM_readLE16(istart+4);
  196         size_t const length4 = srcSize - (length1 + length2 + length3 + 6);
  197         args->iend[0] = istart + 6;  /* jumpTable */
  198         args->iend[1] = args->iend[0] + length1;
  199         args->iend[2] = args->iend[1] + length2;
  200         args->iend[3] = args->iend[2] + length3;
  201 
  202         /* HUF_initDStream() requires this, and this small of an input
  203          * won't benefit from the ASM loop anyways.
  204          * length1 must be >= 16 so that ip[0] >= ilimit before the loop
  205          * starts.
  206          */
  207         if (length1 < 16 || length2 < 8 || length3 < 8 || length4 < 8)
  208             return 1;
  209         if (length4 > srcSize) return ERROR(corruption_detected);   /* overflow */
  210     }
  211     /* ip[] contains the position that is currently loaded into bits[]. */
  212     args->ip[0] = args->iend[1] - sizeof(U64);
  213     args->ip[1] = args->iend[2] - sizeof(U64);
  214     args->ip[2] = args->iend[3] - sizeof(U64);
  215     args->ip[3] = (BYTE const*)src + srcSize - sizeof(U64);
  216 
  217     /* op[] contains the output pointers. */
  218     args->op[0] = (BYTE*)dst;
  219     args->op[1] = args->op[0] + (dstSize+3)/4;
  220     args->op[2] = args->op[1] + (dstSize+3)/4;
  221     args->op[3] = args->op[2] + (dstSize+3)/4;
  222 
  223     /* No point to call the ASM loop for tiny outputs. */
  224     if (args->op[3] >= oend)
  225         return 1;
  226 
  227     /* bits[] is the bit container.
  228         * It is read from the MSB down to the LSB.
  229         * It is shifted left as it is read, and zeros are
  230         * shifted in. After the lowest valid bit a 1 is
  231         * set, so that CountTrailingZeros(bits[]) can be used
  232         * to count how many bits we've consumed.
  233         */
  234     args->bits[0] = HUF_initDStream(args->ip[0]);
  235     args->bits[1] = HUF_initDStream(args->ip[1]);
  236     args->bits[2] = HUF_initDStream(args->ip[2]);
  237     args->bits[3] = HUF_initDStream(args->ip[3]);
  238 
  239     /* If ip[] >= ilimit, it is guaranteed to be safe to
  240         * reload bits[]. It may be beyond its section, but is
  241         * guaranteed to be valid (>= istart).
  242         */
  243     args->ilimit = ilimit;
  244 
  245     args->oend = oend;
  246     args->dt = dt;
  247 
  248     return 0;
  249 }
  250 
  251 static size_t HUF_initRemainingDStream(BIT_DStream_t* bit, HUF_DecompressAsmArgs const* args, int stream, BYTE* segmentEnd)
  252 {
  253     /* Validate that we haven't overwritten. */
  254     if (args->op[stream] > segmentEnd)
  255         return ERROR(corruption_detected);
  256     /* Validate that we haven't read beyond iend[].
  257         * Note that ip[] may be < iend[] because the MSB is
  258         * the next bit to read, and we may have consumed 100%
  259         * of the stream, so down to iend[i] - 8 is valid.
  260         */
  261     if (args->ip[stream] < args->iend[stream] - 8)
  262         return ERROR(corruption_detected);
  263 
  264     /* Construct the BIT_DStream_t. */
  265     bit->bitContainer = MEM_readLE64(args->ip[stream]);
  266     bit->bitsConsumed = ZSTD_countTrailingZeros((size_t)args->bits[stream]);
  267     bit->start = (const char*)args->iend[0];
  268     bit->limitPtr = bit->start + sizeof(size_t);
  269     bit->ptr = (const char*)args->ip[stream];
  270 
  271     return 0;
  272 }
  273 #endif
  274 
  275 
  276 #ifndef HUF_FORCE_DECOMPRESS_X2
  277 
  278 /*-***************************/
  279 /*  single-symbol decoding   */
  280 /*-***************************/
  281 typedef struct { BYTE nbBits; BYTE byte; } HUF_DEltX1;   /* single-symbol decoding */
  282 
  283 /**
  284  * Packs 4 HUF_DEltX1 structs into a U64. This is used to lay down 4 entries at
  285  * a time.
  286  */
  287 static U64 HUF_DEltX1_set4(BYTE symbol, BYTE nbBits) {
  288     U64 D4;
  289     if (MEM_isLittleEndian()) {
  290         D4 = (symbol << 8) + nbBits;
  291     } else {
  292         D4 = symbol + (nbBits << 8);
  293     }
  294     D4 *= 0x0001000100010001ULL;
  295     return D4;
  296 }
  297 
  298 /**
  299  * Increase the tableLog to targetTableLog and rescales the stats.
  300  * If tableLog > targetTableLog this is a no-op.
  301  * @returns New tableLog
  302  */
  303 static U32 HUF_rescaleStats(BYTE* huffWeight, U32* rankVal, U32 nbSymbols, U32 tableLog, U32 targetTableLog)
  304 {
  305     if (tableLog > targetTableLog)
  306         return tableLog;
  307     if (tableLog < targetTableLog) {
  308         U32 const scale = targetTableLog - tableLog;
  309         U32 s;
  310         /* Increase the weight for all non-zero probability symbols by scale. */
  311         for (s = 0; s < nbSymbols; ++s) {
  312             huffWeight[s] += (BYTE)((huffWeight[s] == 0) ? 0 : scale);
  313         }
  314         /* Update rankVal to reflect the new weights.
  315          * All weights except 0 get moved to weight + scale.
  316          * Weights [1, scale] are empty.
  317          */
  318         for (s = targetTableLog; s > scale; --s) {
  319             rankVal[s] = rankVal[s - scale];
  320         }
  321         for (s = scale; s > 0; --s) {
  322             rankVal[s] = 0;
  323         }
  324     }
  325     return targetTableLog;
  326 }
  327 
  328 typedef struct {
  329         U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1];
  330         U32 rankStart[HUF_TABLELOG_ABSOLUTEMAX + 1];
  331         U32 statsWksp[HUF_READ_STATS_WORKSPACE_SIZE_U32];
  332         BYTE symbols[HUF_SYMBOLVALUE_MAX + 1];
  333         BYTE huffWeight[HUF_SYMBOLVALUE_MAX + 1];
  334 } HUF_ReadDTableX1_Workspace;
  335 
  336 
  337 size_t HUF_readDTableX1_wksp(HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize)
  338 {
  339     return HUF_readDTableX1_wksp_bmi2(DTable, src, srcSize, workSpace, wkspSize, /* bmi2 */ 0);
  340 }
  341 
  342 size_t HUF_readDTableX1_wksp_bmi2(HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize, int bmi2)
  343 {
  344     U32 tableLog = 0;
  345     U32 nbSymbols = 0;
  346     size_t iSize;
  347     void* const dtPtr = DTable + 1;
  348     HUF_DEltX1* const dt = (HUF_DEltX1*)dtPtr;
  349     HUF_ReadDTableX1_Workspace* wksp = (HUF_ReadDTableX1_Workspace*)workSpace;
  350 
  351     DEBUG_STATIC_ASSERT(HUF_DECOMPRESS_WORKSPACE_SIZE >= sizeof(*wksp));
  352     if (sizeof(*wksp) > wkspSize) return ERROR(tableLog_tooLarge);
  353 
  354     DEBUG_STATIC_ASSERT(sizeof(DTableDesc) == sizeof(HUF_DTable));
  355     /* ZSTD_memset(huffWeight, 0, sizeof(huffWeight)); */   /* is not necessary, even though some analyzer complain ... */
  356 
  357     iSize = HUF_readStats_wksp(wksp->huffWeight, HUF_SYMBOLVALUE_MAX + 1, wksp->rankVal, &nbSymbols, &tableLog, src, srcSize, wksp->statsWksp, sizeof(wksp->statsWksp), bmi2);
  358     if (HUF_isError(iSize)) return iSize;
  359 
  360 
  361     /* Table header */
  362     {   DTableDesc dtd = HUF_getDTableDesc(DTable);
  363         U32 const maxTableLog = dtd.maxTableLog + 1;
  364         U32 const targetTableLog = MIN(maxTableLog, HUF_DECODER_FAST_TABLELOG);
  365         tableLog = HUF_rescaleStats(wksp->huffWeight, wksp->rankVal, nbSymbols, tableLog, targetTableLog);
  366         if (tableLog > (U32)(dtd.maxTableLog+1)) return ERROR(tableLog_tooLarge);   /* DTable too small, Huffman tree cannot fit in */
  367         dtd.tableType = 0;
  368         dtd.tableLog = (BYTE)tableLog;
  369         ZSTD_memcpy(DTable, &dtd, sizeof(dtd));
  370     }
  371 
  372     /* Compute symbols and rankStart given rankVal:
  373      *
  374      * rankVal already contains the number of values of each weight.
  375      *
  376      * symbols contains the symbols ordered by weight. First are the rankVal[0]
  377      * weight 0 symbols, followed by the rankVal[1] weight 1 symbols, and so on.
  378      * symbols[0] is filled (but unused) to avoid a branch.
  379      *
  380      * rankStart contains the offset where each rank belongs in the DTable.
  381      * rankStart[0] is not filled because there are no entries in the table for
  382      * weight 0.
  383      */
  384     {
  385         int n;
  386         int nextRankStart = 0;
  387         int const unroll = 4;
  388         int const nLimit = (int)nbSymbols - unroll + 1;
  389         for (n=0; n<(int)tableLog+1; n++) {
  390             U32 const curr = nextRankStart;
  391             nextRankStart += wksp->rankVal[n];
  392             wksp->rankStart[n] = curr;
  393         }
  394         for (n=0; n < nLimit; n += unroll) {
  395             int u;
  396             for (u=0; u < unroll; ++u) {
  397                 size_t const w = wksp->huffWeight[n+u];
  398                 wksp->symbols[wksp->rankStart[w]++] = (BYTE)(n+u);
  399             }
  400         }
  401         for (; n < (int)nbSymbols; ++n) {
  402             size_t const w = wksp->huffWeight[n];
  403             wksp->symbols[wksp->rankStart[w]++] = (BYTE)n;
  404         }
  405     }
  406 
  407     /* fill DTable
  408      * We fill all entries of each weight in order.
  409      * That way length is a constant for each iteration of the outer loop.
  410      * We can switch based on the length to a different inner loop which is
  411      * optimized for that particular case.
  412      */
  413     {
  414         U32 w;
  415         int symbol=wksp->rankVal[0];
  416         int rankStart=0;
  417         for (w=1; w<tableLog+1; ++w) {
  418             int const symbolCount = wksp->rankVal[w];
  419             int const length = (1 << w) >> 1;
  420             int uStart = rankStart;
  421             BYTE const nbBits = (BYTE)(tableLog + 1 - w);
  422             int s;
  423             int u;
  424             switch (length) {
  425             case 1:
  426                 for (s=0; s<symbolCount; ++s) {
  427                     HUF_DEltX1 D;
  428                     D.byte = wksp->symbols[symbol + s];
  429                     D.nbBits = nbBits;
  430                     dt[uStart] = D;
  431                     uStart += 1;
  432                 }
  433                 break;
  434             case 2:
  435                 for (s=0; s<symbolCount; ++s) {
  436                     HUF_DEltX1 D;
  437                     D.byte = wksp->symbols[symbol + s];
  438                     D.nbBits = nbBits;
  439                     dt[uStart+0] = D;
  440                     dt[uStart+1] = D;
  441                     uStart += 2;
  442                 }
  443                 break;
  444             case 4:
  445                 for (s=0; s<symbolCount; ++s) {
  446                     U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits);
  447                     MEM_write64(dt + uStart, D4);
  448                     uStart += 4;
  449                 }
  450                 break;
  451             case 8:
  452                 for (s=0; s<symbolCount; ++s) {
  453                     U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits);
  454                     MEM_write64(dt + uStart, D4);
  455                     MEM_write64(dt + uStart + 4, D4);
  456                     uStart += 8;
  457                 }
  458                 break;
  459             default:
  460                 for (s=0; s<symbolCount; ++s) {
  461                     U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits);
  462                     for (u=0; u < length; u += 16) {
  463                         MEM_write64(dt + uStart + u + 0, D4);
  464                         MEM_write64(dt + uStart + u + 4, D4);
  465                         MEM_write64(dt + uStart + u + 8, D4);
  466                         MEM_write64(dt + uStart + u + 12, D4);
  467                     }
  468                     assert(u == length);
  469                     uStart += length;
  470                 }
  471                 break;
  472             }
  473             symbol += symbolCount;
  474             rankStart += symbolCount * length;
  475         }
  476     }
  477     return iSize;
  478 }
  479 
  480 FORCE_INLINE_TEMPLATE BYTE
  481 HUF_decodeSymbolX1(BIT_DStream_t* Dstream, const HUF_DEltX1* dt, const U32 dtLog)
  482 {
  483     size_t const val = BIT_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */
  484     BYTE const c = dt[val].byte;
  485     BIT_skipBits(Dstream, dt[val].nbBits);
  486     return c;
  487 }
  488 
  489 #define HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr) \
  490     *ptr++ = HUF_decodeSymbolX1(DStreamPtr, dt, dtLog)
  491 
  492 #define HUF_DECODE_SYMBOLX1_1(ptr, DStreamPtr)  \
  493     if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \
  494         HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr)
  495 
  496 #define HUF_DECODE_SYMBOLX1_2(ptr, DStreamPtr) \
  497     if (MEM_64bits()) \
  498         HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr)
  499 
  500 HINT_INLINE size_t
  501 HUF_decodeStreamX1(BYTE* p, BIT_DStream_t* const bitDPtr, BYTE* const pEnd, const HUF_DEltX1* const dt, const U32 dtLog)
  502 {
  503     BYTE* const pStart = p;
  504 
  505     /* up to 4 symbols at a time */
  506     if ((pEnd - p) > 3) {
  507         while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-3)) {
  508             HUF_DECODE_SYMBOLX1_2(p, bitDPtr);
  509             HUF_DECODE_SYMBOLX1_1(p, bitDPtr);
  510             HUF_DECODE_SYMBOLX1_2(p, bitDPtr);
  511             HUF_DECODE_SYMBOLX1_0(p, bitDPtr);
  512         }
  513     } else {
  514         BIT_reloadDStream(bitDPtr);
  515     }
  516 
  517     /* [0-3] symbols remaining */
  518     if (MEM_32bits())
  519         while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd))
  520             HUF_DECODE_SYMBOLX1_0(p, bitDPtr);
  521 
  522     /* no more data to retrieve from bitstream, no need to reload */
  523     while (p < pEnd)
  524         HUF_DECODE_SYMBOLX1_0(p, bitDPtr);
  525 
  526     return pEnd-pStart;
  527 }
  528 
  529 FORCE_INLINE_TEMPLATE size_t
  530 HUF_decompress1X1_usingDTable_internal_body(
  531           void* dst,  size_t dstSize,
  532     const void* cSrc, size_t cSrcSize,
  533     const HUF_DTable* DTable)
  534 {
  535     BYTE* op = (BYTE*)dst;
  536     BYTE* const oend = op + dstSize;
  537     const void* dtPtr = DTable + 1;
  538     const HUF_DEltX1* const dt = (const HUF_DEltX1*)dtPtr;
  539     BIT_DStream_t bitD;
  540     DTableDesc const dtd = HUF_getDTableDesc(DTable);
  541     U32 const dtLog = dtd.tableLog;
  542 
  543     CHECK_F( BIT_initDStream(&bitD, cSrc, cSrcSize) );
  544 
  545     HUF_decodeStreamX1(op, &bitD, oend, dt, dtLog);
  546 
  547     if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected);
  548 
  549     return dstSize;
  550 }
  551 
  552 FORCE_INLINE_TEMPLATE size_t
  553 HUF_decompress4X1_usingDTable_internal_body(
  554           void* dst,  size_t dstSize,
  555     const void* cSrc, size_t cSrcSize,
  556     const HUF_DTable* DTable)
  557 {
  558     /* Check */
  559     if (cSrcSize < 10) return ERROR(corruption_detected);  /* strict minimum : jump table + 1 byte per stream */
  560 
  561     {   const BYTE* const istart = (const BYTE*) cSrc;
  562         BYTE* const ostart = (BYTE*) dst;
  563         BYTE* const oend = ostart + dstSize;
  564         BYTE* const olimit = oend - 3;
  565         const void* const dtPtr = DTable + 1;
  566         const HUF_DEltX1* const dt = (const HUF_DEltX1*)dtPtr;
  567 
  568         /* Init */
  569         BIT_DStream_t bitD1;
  570         BIT_DStream_t bitD2;
  571         BIT_DStream_t bitD3;
  572         BIT_DStream_t bitD4;
  573         size_t const length1 = MEM_readLE16(istart);
  574         size_t const length2 = MEM_readLE16(istart+2);
  575         size_t const length3 = MEM_readLE16(istart+4);
  576         size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6);
  577         const BYTE* const istart1 = istart + 6;  /* jumpTable */
  578         const BYTE* const istart2 = istart1 + length1;
  579         const BYTE* const istart3 = istart2 + length2;
  580         const BYTE* const istart4 = istart3 + length3;
  581         const size_t segmentSize = (dstSize+3) / 4;
  582         BYTE* const opStart2 = ostart + segmentSize;
  583         BYTE* const opStart3 = opStart2 + segmentSize;
  584         BYTE* const opStart4 = opStart3 + segmentSize;
  585         BYTE* op1 = ostart;
  586         BYTE* op2 = opStart2;
  587         BYTE* op3 = opStart3;
  588         BYTE* op4 = opStart4;
  589         DTableDesc const dtd = HUF_getDTableDesc(DTable);
  590         U32 const dtLog = dtd.tableLog;
  591         U32 endSignal = 1;
  592 
  593         if (length4 > cSrcSize) return ERROR(corruption_detected);   /* overflow */
  594         if (opStart4 > oend) return ERROR(corruption_detected);      /* overflow */
  595         CHECK_F( BIT_initDStream(&bitD1, istart1, length1) );
  596         CHECK_F( BIT_initDStream(&bitD2, istart2, length2) );
  597         CHECK_F( BIT_initDStream(&bitD3, istart3, length3) );
  598         CHECK_F( BIT_initDStream(&bitD4, istart4, length4) );
  599 
  600         /* up to 16 symbols per loop (4 symbols per stream) in 64-bit mode */
  601         if ((size_t)(oend - op4) >= sizeof(size_t)) {
  602             for ( ; (endSignal) & (op4 < olimit) ; ) {
  603                 HUF_DECODE_SYMBOLX1_2(op1, &bitD1);
  604                 HUF_DECODE_SYMBOLX1_2(op2, &bitD2);
  605                 HUF_DECODE_SYMBOLX1_2(op3, &bitD3);
  606                 HUF_DECODE_SYMBOLX1_2(op4, &bitD4);
  607                 HUF_DECODE_SYMBOLX1_1(op1, &bitD1);
  608                 HUF_DECODE_SYMBOLX1_1(op2, &bitD2);
  609                 HUF_DECODE_SYMBOLX1_1(op3, &bitD3);
  610                 HUF_DECODE_SYMBOLX1_1(op4, &bitD4);
  611                 HUF_DECODE_SYMBOLX1_2(op1, &bitD1);
  612                 HUF_DECODE_SYMBOLX1_2(op2, &bitD2);
  613                 HUF_DECODE_SYMBOLX1_2(op3, &bitD3);
  614                 HUF_DECODE_SYMBOLX1_2(op4, &bitD4);
  615                 HUF_DECODE_SYMBOLX1_0(op1, &bitD1);
  616                 HUF_DECODE_SYMBOLX1_0(op2, &bitD2);
  617                 HUF_DECODE_SYMBOLX1_0(op3, &bitD3);
  618                 HUF_DECODE_SYMBOLX1_0(op4, &bitD4);
  619                 endSignal &= BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished;
  620                 endSignal &= BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished;
  621                 endSignal &= BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished;
  622                 endSignal &= BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished;
  623             }
  624         }
  625 
  626         /* check corruption */
  627         /* note : should not be necessary : op# advance in lock step, and we control op4.
  628          *        but curiously, binary generated by gcc 7.2 & 7.3 with -mbmi2 runs faster when >=1 test is present */
  629         if (op1 > opStart2) return ERROR(corruption_detected);
  630         if (op2 > opStart3) return ERROR(corruption_detected);
  631         if (op3 > opStart4) return ERROR(corruption_detected);
  632         /* note : op4 supposed already verified within main loop */
  633 
  634         /* finish bitStreams one by one */
  635         HUF_decodeStreamX1(op1, &bitD1, opStart2, dt, dtLog);
  636         HUF_decodeStreamX1(op2, &bitD2, opStart3, dt, dtLog);
  637         HUF_decodeStreamX1(op3, &bitD3, opStart4, dt, dtLog);
  638         HUF_decodeStreamX1(op4, &bitD4, oend,     dt, dtLog);
  639 
  640         /* check */
  641         { U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
  642           if (!endCheck) return ERROR(corruption_detected); }
  643 
  644         /* decoded size */
  645         return dstSize;
  646     }
  647 }
  648 
  649 #if HUF_NEED_BMI2_FUNCTION
  650 static BMI2_TARGET_ATTRIBUTE
  651 size_t HUF_decompress4X1_usingDTable_internal_bmi2(void* dst, size_t dstSize, void const* cSrc,
  652                     size_t cSrcSize, HUF_DTable const* DTable) {
  653     return HUF_decompress4X1_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable);
  654 }
  655 #endif
  656 
  657 #if HUF_NEED_DEFAULT_FUNCTION
  658 static
  659 size_t HUF_decompress4X1_usingDTable_internal_default(void* dst, size_t dstSize, void const* cSrc,
  660                     size_t cSrcSize, HUF_DTable const* DTable) {
  661     return HUF_decompress4X1_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable);
  662 }
  663 #endif
  664 
  665 #if ZSTD_ENABLE_ASM_X86_64_BMI2
  666 
  667 HUF_ASM_DECL void HUF_decompress4X1_usingDTable_internal_bmi2_asm_loop(HUF_DecompressAsmArgs* args) ZSTDLIB_HIDDEN;
  668 
  669 static HUF_ASM_X86_64_BMI2_ATTRS
  670 size_t
  671 HUF_decompress4X1_usingDTable_internal_bmi2_asm(
  672           void* dst,  size_t dstSize,
  673     const void* cSrc, size_t cSrcSize,
  674     const HUF_DTable* DTable)
  675 {
  676     void const* dt = DTable + 1;
  677     const BYTE* const iend = (const BYTE*)cSrc + 6;
  678     BYTE* const oend = (BYTE*)dst + dstSize;
  679     HUF_DecompressAsmArgs args;
  680     {
  681         size_t const ret = HUF_DecompressAsmArgs_init(&args, dst, dstSize, cSrc, cSrcSize, DTable);
  682         FORWARD_IF_ERROR(ret, "Failed to init asm args");
  683         if (ret != 0)
  684             return HUF_decompress4X1_usingDTable_internal_bmi2(dst, dstSize, cSrc, cSrcSize, DTable);
  685     }
  686 
  687     assert(args.ip[0] >= args.ilimit);
  688     HUF_decompress4X1_usingDTable_internal_bmi2_asm_loop(&args);
  689 
  690     /* Our loop guarantees that ip[] >= ilimit and that we haven't
  691     * overwritten any op[].
  692     */
  693     assert(args.ip[0] >= iend);
  694     assert(args.ip[1] >= iend);
  695     assert(args.ip[2] >= iend);
  696     assert(args.ip[3] >= iend);
  697     assert(args.op[3] <= oend);
  698     (void)iend;
  699 
  700     /* finish bit streams one by one. */
  701     {
  702         size_t const segmentSize = (dstSize+3) / 4;
  703         BYTE* segmentEnd = (BYTE*)dst;
  704         int i;
  705         for (i = 0; i < 4; ++i) {
  706             BIT_DStream_t bit;
  707             if (segmentSize <= (size_t)(oend - segmentEnd))
  708                 segmentEnd += segmentSize;
  709             else
  710                 segmentEnd = oend;
  711             FORWARD_IF_ERROR(HUF_initRemainingDStream(&bit, &args, i, segmentEnd), "corruption");
  712             /* Decompress and validate that we've produced exactly the expected length. */
  713             args.op[i] += HUF_decodeStreamX1(args.op[i], &bit, segmentEnd, (HUF_DEltX1 const*)dt, HUF_DECODER_FAST_TABLELOG);
  714             if (args.op[i] != segmentEnd) return ERROR(corruption_detected);
  715         }
  716     }
  717 
  718     /* decoded size */
  719     return dstSize;
  720 }
  721 #endif /* ZSTD_ENABLE_ASM_X86_64_BMI2 */
  722 
  723 typedef size_t (*HUF_decompress_usingDTable_t)(void *dst, size_t dstSize,
  724                                                const void *cSrc,
  725                                                size_t cSrcSize,
  726                                                const HUF_DTable *DTable);
  727 
  728 HUF_DGEN(HUF_decompress1X1_usingDTable_internal)
  729 
  730 static size_t HUF_decompress4X1_usingDTable_internal(void* dst, size_t dstSize, void const* cSrc,
  731                     size_t cSrcSize, HUF_DTable const* DTable, int bmi2)
  732 {
  733 #if DYNAMIC_BMI2
  734     if (bmi2) {
  735 # if ZSTD_ENABLE_ASM_X86_64_BMI2
  736         return HUF_decompress4X1_usingDTable_internal_bmi2_asm(dst, dstSize, cSrc, cSrcSize, DTable);
  737 # else
  738         return HUF_decompress4X1_usingDTable_internal_bmi2(dst, dstSize, cSrc, cSrcSize, DTable);
  739 # endif
  740     }
  741 #else
  742     (void)bmi2;
  743 #endif
  744 
  745 #if ZSTD_ENABLE_ASM_X86_64_BMI2 && defined(__BMI2__)
  746     return HUF_decompress4X1_usingDTable_internal_bmi2_asm(dst, dstSize, cSrc, cSrcSize, DTable);
  747 #else
  748     return HUF_decompress4X1_usingDTable_internal_default(dst, dstSize, cSrc, cSrcSize, DTable);
  749 #endif
  750 }
  751 
  752 
  753 size_t HUF_decompress1X1_usingDTable(
  754           void* dst,  size_t dstSize,
  755     const void* cSrc, size_t cSrcSize,
  756     const HUF_DTable* DTable)
  757 {
  758     DTableDesc dtd = HUF_getDTableDesc(DTable);
  759     if (dtd.tableType != 0) return ERROR(GENERIC);
  760     return HUF_decompress1X1_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
  761 }
  762 
  763 size_t HUF_decompress1X1_DCtx_wksp(HUF_DTable* DCtx, void* dst, size_t dstSize,
  764                                    const void* cSrc, size_t cSrcSize,
  765                                    void* workSpace, size_t wkspSize)
  766 {
  767     const BYTE* ip = (const BYTE*) cSrc;
  768 
  769     size_t const hSize = HUF_readDTableX1_wksp(DCtx, cSrc, cSrcSize, workSpace, wkspSize);
  770     if (HUF_isError(hSize)) return hSize;
  771     if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
  772     ip += hSize; cSrcSize -= hSize;
  773 
  774     return HUF_decompress1X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, DCtx, /* bmi2 */ 0);
  775 }
  776 
  777 
  778 size_t HUF_decompress4X1_usingDTable(
  779           void* dst,  size_t dstSize,
  780     const void* cSrc, size_t cSrcSize,
  781     const HUF_DTable* DTable)
  782 {
  783     DTableDesc dtd = HUF_getDTableDesc(DTable);
  784     if (dtd.tableType != 0) return ERROR(GENERIC);
  785     return HUF_decompress4X1_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
  786 }
  787 
  788 static size_t HUF_decompress4X1_DCtx_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize,
  789                                    const void* cSrc, size_t cSrcSize,
  790                                    void* workSpace, size_t wkspSize, int bmi2)
  791 {
  792     const BYTE* ip = (const BYTE*) cSrc;
  793 
  794     size_t const hSize = HUF_readDTableX1_wksp_bmi2(dctx, cSrc, cSrcSize, workSpace, wkspSize, bmi2);
  795     if (HUF_isError(hSize)) return hSize;
  796     if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
  797     ip += hSize; cSrcSize -= hSize;
  798 
  799     return HUF_decompress4X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, bmi2);
  800 }
  801 
  802 size_t HUF_decompress4X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
  803                                    const void* cSrc, size_t cSrcSize,
  804                                    void* workSpace, size_t wkspSize)
  805 {
  806     return HUF_decompress4X1_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, 0);
  807 }
  808 
  809 
  810 #endif /* HUF_FORCE_DECOMPRESS_X2 */
  811 
  812 
  813 #ifndef HUF_FORCE_DECOMPRESS_X1
  814 
  815 /* *************************/
  816 /* double-symbols decoding */
  817 /* *************************/
  818 
  819 typedef struct { U16 sequence; BYTE nbBits; BYTE length; } HUF_DEltX2;  /* double-symbols decoding */
  820 typedef struct { BYTE symbol; } sortedSymbol_t;
  821 typedef U32 rankValCol_t[HUF_TABLELOG_MAX + 1];
  822 typedef rankValCol_t rankVal_t[HUF_TABLELOG_MAX];
  823 
  824 /**
  825  * Constructs a HUF_DEltX2 in a U32.
  826  */
  827 static U32 HUF_buildDEltX2U32(U32 symbol, U32 nbBits, U32 baseSeq, int level)
  828 {
  829     U32 seq;
  830     DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, sequence) == 0);
  831     DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, nbBits) == 2);
  832     DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, length) == 3);
  833     DEBUG_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(U32));
  834     if (MEM_isLittleEndian()) {
  835         seq = level == 1 ? symbol : (baseSeq + (symbol << 8));
  836         return seq + (nbBits << 16) + ((U32)level << 24);
  837     } else {
  838         seq = level == 1 ? (symbol << 8) : ((baseSeq << 8) + symbol);
  839         return (seq << 16) + (nbBits << 8) + (U32)level;
  840     }
  841 }
  842 
  843 /**
  844  * Constructs a HUF_DEltX2.
  845  */
  846 static HUF_DEltX2 HUF_buildDEltX2(U32 symbol, U32 nbBits, U32 baseSeq, int level)
  847 {
  848     HUF_DEltX2 DElt;
  849     U32 const val = HUF_buildDEltX2U32(symbol, nbBits, baseSeq, level);
  850     DEBUG_STATIC_ASSERT(sizeof(DElt) == sizeof(val));
  851     ZSTD_memcpy(&DElt, &val, sizeof(val));
  852     return DElt;
  853 }
  854 
  855 /**
  856  * Constructs 2 HUF_DEltX2s and packs them into a U64.
  857  */
  858 static U64 HUF_buildDEltX2U64(U32 symbol, U32 nbBits, U16 baseSeq, int level)
  859 {
  860     U32 DElt = HUF_buildDEltX2U32(symbol, nbBits, baseSeq, level);
  861     return (U64)DElt + ((U64)DElt << 32);
  862 }
  863 
  864 /**
  865  * Fills the DTable rank with all the symbols from [begin, end) that are each
  866  * nbBits long.
  867  *
  868  * @param DTableRank The start of the rank in the DTable.
  869  * @param begin The first symbol to fill (inclusive).
  870  * @param end The last symbol to fill (exclusive).
  871  * @param nbBits Each symbol is nbBits long.
  872  * @param tableLog The table log.
  873  * @param baseSeq If level == 1 { 0 } else { the first level symbol }
  874  * @param level The level in the table. Must be 1 or 2.
  875  */
  876 static void HUF_fillDTableX2ForWeight(
  877     HUF_DEltX2* DTableRank,
  878     sortedSymbol_t const* begin, sortedSymbol_t const* end,
  879     U32 nbBits, U32 tableLog,
  880     U16 baseSeq, int const level)
  881 {
  882     U32 const length = 1U << ((tableLog - nbBits) & 0x1F /* quiet static-analyzer */);
  883     const sortedSymbol_t* ptr;
  884     assert(level >= 1 && level <= 2);
  885     switch (length) {
  886     case 1:
  887         for (ptr = begin; ptr != end; ++ptr) {
  888             HUF_DEltX2 const DElt = HUF_buildDEltX2(ptr->symbol, nbBits, baseSeq, level);
  889             *DTableRank++ = DElt;
  890         }
  891         break;
  892     case 2:
  893         for (ptr = begin; ptr != end; ++ptr) {
  894             HUF_DEltX2 const DElt = HUF_buildDEltX2(ptr->symbol, nbBits, baseSeq, level);
  895             DTableRank[0] = DElt;
  896             DTableRank[1] = DElt;
  897             DTableRank += 2;
  898         }
  899         break;
  900     case 4:
  901         for (ptr = begin; ptr != end; ++ptr) {
  902             U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level);
  903             ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2));
  904             ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2));
  905             DTableRank += 4;
  906         }
  907         break;
  908     case 8:
  909         for (ptr = begin; ptr != end; ++ptr) {
  910             U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level);
  911             ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2));
  912             ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2));
  913             ZSTD_memcpy(DTableRank + 4, &DEltX2, sizeof(DEltX2));
  914             ZSTD_memcpy(DTableRank + 6, &DEltX2, sizeof(DEltX2));
  915             DTableRank += 8;
  916         }
  917         break;
  918     default:
  919         for (ptr = begin; ptr != end; ++ptr) {
  920             U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level);
  921             HUF_DEltX2* const DTableRankEnd = DTableRank + length;
  922             for (; DTableRank != DTableRankEnd; DTableRank += 8) {
  923                 ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2));
  924                 ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2));
  925                 ZSTD_memcpy(DTableRank + 4, &DEltX2, sizeof(DEltX2));
  926                 ZSTD_memcpy(DTableRank + 6, &DEltX2, sizeof(DEltX2));
  927             }
  928         }
  929         break;
  930     }
  931 }
  932 
  933 /* HUF_fillDTableX2Level2() :
  934  * `rankValOrigin` must be a table of at least (HUF_TABLELOG_MAX + 1) U32 */
  935 static void HUF_fillDTableX2Level2(HUF_DEltX2* DTable, U32 targetLog, const U32 consumedBits,
  936                            const U32* rankVal, const int minWeight, const int maxWeight1,
  937                            const sortedSymbol_t* sortedSymbols, U32 const* rankStart,
  938                            U32 nbBitsBaseline, U16 baseSeq)
  939 {
  940     /* Fill skipped values (all positions up to rankVal[minWeight]).
  941      * These are positions only get a single symbol because the combined weight
  942      * is too large.
  943      */
  944     if (minWeight>1) {
  945         U32 const length = 1U << ((targetLog - consumedBits) & 0x1F /* quiet static-analyzer */);
  946         U64 const DEltX2 = HUF_buildDEltX2U64(baseSeq, consumedBits, /* baseSeq */ 0, /* level */ 1);
  947         int const skipSize = rankVal[minWeight];
  948         assert(length > 1);
  949         assert((U32)skipSize < length);
  950         switch (length) {
  951         case 2:
  952             assert(skipSize == 1);
  953             ZSTD_memcpy(DTable, &DEltX2, sizeof(DEltX2));
  954             break;
  955         case 4:
  956             assert(skipSize <= 4);
  957             ZSTD_memcpy(DTable + 0, &DEltX2, sizeof(DEltX2));
  958             ZSTD_memcpy(DTable + 2, &DEltX2, sizeof(DEltX2));
  959             break;
  960         default:
  961             {
  962                 int i;
  963                 for (i = 0; i < skipSize; i += 8) {
  964                     ZSTD_memcpy(DTable + i + 0, &DEltX2, sizeof(DEltX2));
  965                     ZSTD_memcpy(DTable + i + 2, &DEltX2, sizeof(DEltX2));
  966                     ZSTD_memcpy(DTable + i + 4, &DEltX2, sizeof(DEltX2));
  967                     ZSTD_memcpy(DTable + i + 6, &DEltX2, sizeof(DEltX2));
  968                 }
  969             }
  970         }
  971     }
  972 
  973     /* Fill each of the second level symbols by weight. */
  974     {
  975         int w;
  976         for (w = minWeight; w < maxWeight1; ++w) {
  977             int const begin = rankStart[w];
  978             int const end = rankStart[w+1];
  979             U32 const nbBits = nbBitsBaseline - w;
  980             U32 const totalBits = nbBits + consumedBits;
  981             HUF_fillDTableX2ForWeight(
  982                 DTable + rankVal[w],
  983                 sortedSymbols + begin, sortedSymbols + end,
  984                 totalBits, targetLog,
  985                 baseSeq, /* level */ 2);
  986         }
  987     }
  988 }
  989 
  990 static void HUF_fillDTableX2(HUF_DEltX2* DTable, const U32 targetLog,
  991                            const sortedSymbol_t* sortedList,
  992                            const U32* rankStart, rankVal_t rankValOrigin, const U32 maxWeight,
  993                            const U32 nbBitsBaseline)
  994 {
  995     U32* const rankVal = rankValOrigin[0];
  996     const int scaleLog = nbBitsBaseline - targetLog;   /* note : targetLog >= srcLog, hence scaleLog <= 1 */
  997     const U32 minBits  = nbBitsBaseline - maxWeight;
  998     int w;
  999     int const wEnd = (int)maxWeight + 1;
 1000 
 1001     /* Fill DTable in order of weight. */
 1002     for (w = 1; w < wEnd; ++w) {
 1003         int const begin = (int)rankStart[w];
 1004         int const end = (int)rankStart[w+1];
 1005         U32 const nbBits = nbBitsBaseline - w;
 1006 
 1007         if (targetLog-nbBits >= minBits) {
 1008             /* Enough room for a second symbol. */
 1009             int start = rankVal[w];
 1010             U32 const length = 1U << ((targetLog - nbBits) & 0x1F /* quiet static-analyzer */);
 1011             int minWeight = nbBits + scaleLog;
 1012             int s;
 1013             if (minWeight < 1) minWeight = 1;
 1014             /* Fill the DTable for every symbol of weight w.
 1015              * These symbols get at least 1 second symbol.
 1016              */
 1017             for (s = begin; s != end; ++s) {
 1018                 HUF_fillDTableX2Level2(
 1019                     DTable + start, targetLog, nbBits,
 1020                     rankValOrigin[nbBits], minWeight, wEnd,
 1021                     sortedList, rankStart,
 1022                     nbBitsBaseline, sortedList[s].symbol);
 1023                 start += length;
 1024             }
 1025         } else {
 1026             /* Only a single symbol. */
 1027             HUF_fillDTableX2ForWeight(
 1028                 DTable + rankVal[w],
 1029                 sortedList + begin, sortedList + end,
 1030                 nbBits, targetLog,
 1031                 /* baseSeq */ 0, /* level */ 1);
 1032         }
 1033     }
 1034 }
 1035 
 1036 typedef struct {
 1037     rankValCol_t rankVal[HUF_TABLELOG_MAX];
 1038     U32 rankStats[HUF_TABLELOG_MAX + 1];
 1039     U32 rankStart0[HUF_TABLELOG_MAX + 3];
 1040     sortedSymbol_t sortedSymbol[HUF_SYMBOLVALUE_MAX + 1];
 1041     BYTE weightList[HUF_SYMBOLVALUE_MAX + 1];
 1042     U32 calleeWksp[HUF_READ_STATS_WORKSPACE_SIZE_U32];
 1043 } HUF_ReadDTableX2_Workspace;
 1044 
 1045 size_t HUF_readDTableX2_wksp(HUF_DTable* DTable,
 1046                        const void* src, size_t srcSize,
 1047                              void* workSpace, size_t wkspSize)
 1048 {
 1049     return HUF_readDTableX2_wksp_bmi2(DTable, src, srcSize, workSpace, wkspSize, /* bmi2 */ 0);
 1050 }
 1051 
 1052 size_t HUF_readDTableX2_wksp_bmi2(HUF_DTable* DTable,
 1053                        const void* src, size_t srcSize,
 1054                              void* workSpace, size_t wkspSize, int bmi2)
 1055 {
 1056     U32 tableLog, maxW, nbSymbols;
 1057     DTableDesc dtd = HUF_getDTableDesc(DTable);
 1058     U32 maxTableLog = dtd.maxTableLog;
 1059     size_t iSize;
 1060     void* dtPtr = DTable+1;   /* force compiler to avoid strict-aliasing */
 1061     HUF_DEltX2* const dt = (HUF_DEltX2*)dtPtr;
 1062     U32 *rankStart;
 1063 
 1064     HUF_ReadDTableX2_Workspace* const wksp = (HUF_ReadDTableX2_Workspace*)workSpace;
 1065 
 1066     if (sizeof(*wksp) > wkspSize) return ERROR(GENERIC);
 1067 
 1068     rankStart = wksp->rankStart0 + 1;
 1069     ZSTD_memset(wksp->rankStats, 0, sizeof(wksp->rankStats));
 1070     ZSTD_memset(wksp->rankStart0, 0, sizeof(wksp->rankStart0));
 1071 
 1072     DEBUG_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(HUF_DTable));   /* if compiler fails here, assertion is wrong */
 1073     if (maxTableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
 1074     /* ZSTD_memset(weightList, 0, sizeof(weightList)); */  /* is not necessary, even though some analyzer complain ... */
 1075 
 1076     iSize = HUF_readStats_wksp(wksp->weightList, HUF_SYMBOLVALUE_MAX + 1, wksp->rankStats, &nbSymbols, &tableLog, src, srcSize, wksp->calleeWksp, sizeof(wksp->calleeWksp), bmi2);
 1077     if (HUF_isError(iSize)) return iSize;
 1078 
 1079     /* check result */
 1080     if (tableLog > maxTableLog) return ERROR(tableLog_tooLarge);   /* DTable can't fit code depth */
 1081     if (tableLog <= HUF_DECODER_FAST_TABLELOG && maxTableLog > HUF_DECODER_FAST_TABLELOG) maxTableLog = HUF_DECODER_FAST_TABLELOG;
 1082 
 1083     /* find maxWeight */
 1084     for (maxW = tableLog; wksp->rankStats[maxW]==0; maxW--) {}  /* necessarily finds a solution before 0 */
 1085 
 1086     /* Get start index of each weight */
 1087     {   U32 w, nextRankStart = 0;
 1088         for (w=1; w<maxW+1; w++) {
 1089             U32 curr = nextRankStart;
 1090             nextRankStart += wksp->rankStats[w];
 1091             rankStart[w] = curr;
 1092         }
 1093         rankStart[0] = nextRankStart;   /* put all 0w symbols at the end of sorted list*/
 1094         rankStart[maxW+1] = nextRankStart;
 1095     }
 1096 
 1097     /* sort symbols by weight */
 1098     {   U32 s;
 1099         for (s=0; s<nbSymbols; s++) {
 1100             U32 const w = wksp->weightList[s];
 1101             U32 const r = rankStart[w]++;
 1102             wksp->sortedSymbol[r].symbol = (BYTE)s;
 1103         }
 1104         rankStart[0] = 0;   /* forget 0w symbols; this is beginning of weight(1) */
 1105     }
 1106 
 1107     /* Build rankVal */
 1108     {   U32* const rankVal0 = wksp->rankVal[0];
 1109         {   int const rescale = (maxTableLog-tableLog) - 1;   /* tableLog <= maxTableLog */
 1110             U32 nextRankVal = 0;
 1111             U32 w;
 1112             for (w=1; w<maxW+1; w++) {
 1113                 U32 curr = nextRankVal;
 1114                 nextRankVal += wksp->rankStats[w] << (w+rescale);
 1115                 rankVal0[w] = curr;
 1116         }   }
 1117         {   U32 const minBits = tableLog+1 - maxW;
 1118             U32 consumed;
 1119             for (consumed = minBits; consumed < maxTableLog - minBits + 1; consumed++) {
 1120                 U32* const rankValPtr = wksp->rankVal[consumed];
 1121                 U32 w;
 1122                 for (w = 1; w < maxW+1; w++) {
 1123                     rankValPtr[w] = rankVal0[w] >> consumed;
 1124     }   }   }   }
 1125 
 1126     HUF_fillDTableX2(dt, maxTableLog,
 1127                    wksp->sortedSymbol,
 1128                    wksp->rankStart0, wksp->rankVal, maxW,
 1129                    tableLog+1);
 1130 
 1131     dtd.tableLog = (BYTE)maxTableLog;
 1132     dtd.tableType = 1;
 1133     ZSTD_memcpy(DTable, &dtd, sizeof(dtd));
 1134     return iSize;
 1135 }
 1136 
 1137 
 1138 FORCE_INLINE_TEMPLATE U32
 1139 HUF_decodeSymbolX2(void* op, BIT_DStream_t* DStream, const HUF_DEltX2* dt, const U32 dtLog)
 1140 {
 1141     size_t const val = BIT_lookBitsFast(DStream, dtLog);   /* note : dtLog >= 1 */
 1142     ZSTD_memcpy(op, &dt[val].sequence, 2);
 1143     BIT_skipBits(DStream, dt[val].nbBits);
 1144     return dt[val].length;
 1145 }
 1146 
 1147 FORCE_INLINE_TEMPLATE U32
 1148 HUF_decodeLastSymbolX2(void* op, BIT_DStream_t* DStream, const HUF_DEltX2* dt, const U32 dtLog)
 1149 {
 1150     size_t const val = BIT_lookBitsFast(DStream, dtLog);   /* note : dtLog >= 1 */
 1151     ZSTD_memcpy(op, &dt[val].sequence, 1);
 1152     if (dt[val].length==1) {
 1153         BIT_skipBits(DStream, dt[val].nbBits);
 1154     } else {
 1155         if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8)) {
 1156             BIT_skipBits(DStream, dt[val].nbBits);
 1157             if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8))
 1158                 /* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */
 1159                 DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8);
 1160         }
 1161     }
 1162     return 1;
 1163 }
 1164 
 1165 #define HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) \
 1166     ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog)
 1167 
 1168 #define HUF_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \
 1169     if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \
 1170         ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog)
 1171 
 1172 #define HUF_DECODE_SYMBOLX2_2(ptr, DStreamPtr) \
 1173     if (MEM_64bits()) \
 1174         ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog)
 1175 
 1176 HINT_INLINE size_t
 1177 HUF_decodeStreamX2(BYTE* p, BIT_DStream_t* bitDPtr, BYTE* const pEnd,
 1178                 const HUF_DEltX2* const dt, const U32 dtLog)
 1179 {
 1180     BYTE* const pStart = p;
 1181 
 1182     /* up to 8 symbols at a time */
 1183     if ((size_t)(pEnd - p) >= sizeof(bitDPtr->bitContainer)) {
 1184         if (dtLog <= 11 && MEM_64bits()) {
 1185             /* up to 10 symbols at a time */
 1186             while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-9)) {
 1187                 HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
 1188                 HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
 1189                 HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
 1190                 HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
 1191                 HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
 1192             }
 1193         } else {
 1194             /* up to 8 symbols at a time */
 1195             while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-(sizeof(bitDPtr->bitContainer)-1))) {
 1196                 HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
 1197                 HUF_DECODE_SYMBOLX2_1(p, bitDPtr);
 1198                 HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
 1199                 HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
 1200             }
 1201         }
 1202     } else {
 1203         BIT_reloadDStream(bitDPtr);
 1204     }
 1205 
 1206     /* closer to end : up to 2 symbols at a time */
 1207     if ((size_t)(pEnd - p) >= 2) {
 1208         while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p <= pEnd-2))
 1209             HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
 1210 
 1211         while (p <= pEnd-2)
 1212             HUF_DECODE_SYMBOLX2_0(p, bitDPtr);   /* no need to reload : reached the end of DStream */
 1213     }
 1214 
 1215     if (p < pEnd)
 1216         p += HUF_decodeLastSymbolX2(p, bitDPtr, dt, dtLog);
 1217 
 1218     return p-pStart;
 1219 }
 1220 
 1221 FORCE_INLINE_TEMPLATE size_t
 1222 HUF_decompress1X2_usingDTable_internal_body(
 1223           void* dst,  size_t dstSize,
 1224     const void* cSrc, size_t cSrcSize,
 1225     const HUF_DTable* DTable)
 1226 {
 1227     BIT_DStream_t bitD;
 1228 
 1229     /* Init */
 1230     CHECK_F( BIT_initDStream(&bitD, cSrc, cSrcSize) );
 1231 
 1232     /* decode */
 1233     {   BYTE* const ostart = (BYTE*) dst;
 1234         BYTE* const oend = ostart + dstSize;
 1235         const void* const dtPtr = DTable+1;   /* force compiler to not use strict-aliasing */
 1236         const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr;
 1237         DTableDesc const dtd = HUF_getDTableDesc(DTable);
 1238         HUF_decodeStreamX2(ostart, &bitD, oend, dt, dtd.tableLog);
 1239     }
 1240 
 1241     /* check */
 1242     if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected);
 1243 
 1244     /* decoded size */
 1245     return dstSize;
 1246 }
 1247 FORCE_INLINE_TEMPLATE size_t
 1248 HUF_decompress4X2_usingDTable_internal_body(
 1249           void* dst,  size_t dstSize,
 1250     const void* cSrc, size_t cSrcSize,
 1251     const HUF_DTable* DTable)
 1252 {
 1253     if (cSrcSize < 10) return ERROR(corruption_detected);   /* strict minimum : jump table + 1 byte per stream */
 1254 
 1255     {   const BYTE* const istart = (const BYTE*) cSrc;
 1256         BYTE* const ostart = (BYTE*) dst;
 1257         BYTE* const oend = ostart + dstSize;
 1258         BYTE* const olimit = oend - (sizeof(size_t)-1);
 1259         const void* const dtPtr = DTable+1;
 1260         const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr;
 1261 
 1262         /* Init */
 1263         BIT_DStream_t bitD1;
 1264         BIT_DStream_t bitD2;
 1265         BIT_DStream_t bitD3;
 1266         BIT_DStream_t bitD4;
 1267         size_t const length1 = MEM_readLE16(istart);
 1268         size_t const length2 = MEM_readLE16(istart+2);
 1269         size_t const length3 = MEM_readLE16(istart+4);
 1270         size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6);
 1271         const BYTE* const istart1 = istart + 6;  /* jumpTable */
 1272         const BYTE* const istart2 = istart1 + length1;
 1273         const BYTE* const istart3 = istart2 + length2;
 1274         const BYTE* const istart4 = istart3 + length3;
 1275         size_t const segmentSize = (dstSize+3) / 4;
 1276         BYTE* const opStart2 = ostart + segmentSize;
 1277         BYTE* const opStart3 = opStart2 + segmentSize;
 1278         BYTE* const opStart4 = opStart3 + segmentSize;
 1279         BYTE* op1 = ostart;
 1280         BYTE* op2 = opStart2;
 1281         BYTE* op3 = opStart3;
 1282         BYTE* op4 = opStart4;
 1283         U32 endSignal = 1;
 1284         DTableDesc const dtd = HUF_getDTableDesc(DTable);
 1285         U32 const dtLog = dtd.tableLog;
 1286 
 1287         if (length4 > cSrcSize) return ERROR(corruption_detected);   /* overflow */
 1288         if (opStart4 > oend) return ERROR(corruption_detected);      /* overflow */
 1289         CHECK_F( BIT_initDStream(&bitD1, istart1, length1) );
 1290         CHECK_F( BIT_initDStream(&bitD2, istart2, length2) );
 1291         CHECK_F( BIT_initDStream(&bitD3, istart3, length3) );
 1292         CHECK_F( BIT_initDStream(&bitD4, istart4, length4) );
 1293 
 1294         /* 16-32 symbols per loop (4-8 symbols per stream) */
 1295         if ((size_t)(oend - op4) >= sizeof(size_t)) {
 1296             for ( ; (endSignal) & (op4 < olimit); ) {
 1297 #if defined(__clang__) && (defined(__x86_64__) || defined(__i386__))
 1298                 HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
 1299                 HUF_DECODE_SYMBOLX2_1(op1, &bitD1);
 1300                 HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
 1301                 HUF_DECODE_SYMBOLX2_0(op1, &bitD1);
 1302                 HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
 1303                 HUF_DECODE_SYMBOLX2_1(op2, &bitD2);
 1304                 HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
 1305                 HUF_DECODE_SYMBOLX2_0(op2, &bitD2);
 1306                 endSignal &= BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished;
 1307                 endSignal &= BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished;
 1308                 HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
 1309                 HUF_DECODE_SYMBOLX2_1(op3, &bitD3);
 1310                 HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
 1311                 HUF_DECODE_SYMBOLX2_0(op3, &bitD3);
 1312                 HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
 1313                 HUF_DECODE_SYMBOLX2_1(op4, &bitD4);
 1314                 HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
 1315                 HUF_DECODE_SYMBOLX2_0(op4, &bitD4);
 1316                 endSignal &= BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished;
 1317                 endSignal &= BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished;
 1318 #else
 1319                 HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
 1320                 HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
 1321                 HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
 1322                 HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
 1323                 HUF_DECODE_SYMBOLX2_1(op1, &bitD1);
 1324                 HUF_DECODE_SYMBOLX2_1(op2, &bitD2);
 1325                 HUF_DECODE_SYMBOLX2_1(op3, &bitD3);
 1326                 HUF_DECODE_SYMBOLX2_1(op4, &bitD4);
 1327                 HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
 1328                 HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
 1329                 HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
 1330                 HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
 1331                 HUF_DECODE_SYMBOLX2_0(op1, &bitD1);
 1332                 HUF_DECODE_SYMBOLX2_0(op2, &bitD2);
 1333                 HUF_DECODE_SYMBOLX2_0(op3, &bitD3);
 1334                 HUF_DECODE_SYMBOLX2_0(op4, &bitD4);
 1335                 endSignal = (U32)LIKELY((U32)
 1336                             (BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished)
 1337                         & (BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished)
 1338                         & (BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished)
 1339                         & (BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished));
 1340 #endif
 1341             }
 1342         }
 1343 
 1344         /* check corruption */
 1345         if (op1 > opStart2) return ERROR(corruption_detected);
 1346         if (op2 > opStart3) return ERROR(corruption_detected);
 1347         if (op3 > opStart4) return ERROR(corruption_detected);
 1348         /* note : op4 already verified within main loop */
 1349 
 1350         /* finish bitStreams one by one */
 1351         HUF_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog);
 1352         HUF_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog);
 1353         HUF_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog);
 1354         HUF_decodeStreamX2(op4, &bitD4, oend,     dt, dtLog);
 1355 
 1356         /* check */
 1357         { U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
 1358           if (!endCheck) return ERROR(corruption_detected); }
 1359 
 1360         /* decoded size */
 1361         return dstSize;
 1362     }
 1363 }
 1364 
 1365 #if HUF_NEED_BMI2_FUNCTION
 1366 static BMI2_TARGET_ATTRIBUTE
 1367 size_t HUF_decompress4X2_usingDTable_internal_bmi2(void* dst, size_t dstSize, void const* cSrc,
 1368                     size_t cSrcSize, HUF_DTable const* DTable) {
 1369     return HUF_decompress4X2_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable);
 1370 }
 1371 #endif
 1372 
 1373 #if HUF_NEED_DEFAULT_FUNCTION
 1374 static
 1375 size_t HUF_decompress4X2_usingDTable_internal_default(void* dst, size_t dstSize, void const* cSrc,
 1376                     size_t cSrcSize, HUF_DTable const* DTable) {
 1377     return HUF_decompress4X2_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable);
 1378 }
 1379 #endif
 1380 
 1381 #if ZSTD_ENABLE_ASM_X86_64_BMI2
 1382 
 1383 HUF_ASM_DECL void HUF_decompress4X2_usingDTable_internal_bmi2_asm_loop(HUF_DecompressAsmArgs* args) ZSTDLIB_HIDDEN;
 1384 
 1385 static HUF_ASM_X86_64_BMI2_ATTRS size_t
 1386 HUF_decompress4X2_usingDTable_internal_bmi2_asm(
 1387           void* dst,  size_t dstSize,
 1388     const void* cSrc, size_t cSrcSize,
 1389     const HUF_DTable* DTable) {
 1390     void const* dt = DTable + 1;
 1391     const BYTE* const iend = (const BYTE*)cSrc + 6;
 1392     BYTE* const oend = (BYTE*)dst + dstSize;
 1393     HUF_DecompressAsmArgs args;
 1394     {
 1395         size_t const ret = HUF_DecompressAsmArgs_init(&args, dst, dstSize, cSrc, cSrcSize, DTable);
 1396         FORWARD_IF_ERROR(ret, "Failed to init asm args");
 1397         if (ret != 0)
 1398             return HUF_decompress4X2_usingDTable_internal_bmi2(dst, dstSize, cSrc, cSrcSize, DTable);
 1399     }
 1400 
 1401     assert(args.ip[0] >= args.ilimit);
 1402     HUF_decompress4X2_usingDTable_internal_bmi2_asm_loop(&args);
 1403 
 1404     /* note : op4 already verified within main loop */
 1405     assert(args.ip[0] >= iend);
 1406     assert(args.ip[1] >= iend);
 1407     assert(args.ip[2] >= iend);
 1408     assert(args.ip[3] >= iend);
 1409     assert(args.op[3] <= oend);
 1410     (void)iend;
 1411 
 1412     /* finish bitStreams one by one */
 1413     {
 1414         size_t const segmentSize = (dstSize+3) / 4;
 1415         BYTE* segmentEnd = (BYTE*)dst;
 1416         int i;
 1417         for (i = 0; i < 4; ++i) {
 1418             BIT_DStream_t bit;
 1419             if (segmentSize <= (size_t)(oend - segmentEnd))
 1420                 segmentEnd += segmentSize;
 1421             else
 1422                 segmentEnd = oend;
 1423             FORWARD_IF_ERROR(HUF_initRemainingDStream(&bit, &args, i, segmentEnd), "corruption");
 1424             args.op[i] += HUF_decodeStreamX2(args.op[i], &bit, segmentEnd, (HUF_DEltX2 const*)dt, HUF_DECODER_FAST_TABLELOG);
 1425             if (args.op[i] != segmentEnd)
 1426                 return ERROR(corruption_detected);
 1427         }
 1428     }
 1429 
 1430     /* decoded size */
 1431     return dstSize;
 1432 }
 1433 #endif /* ZSTD_ENABLE_ASM_X86_64_BMI2 */
 1434 
 1435 static size_t HUF_decompress4X2_usingDTable_internal(void* dst, size_t dstSize, void const* cSrc,
 1436                     size_t cSrcSize, HUF_DTable const* DTable, int bmi2)
 1437 {
 1438 #if DYNAMIC_BMI2
 1439     if (bmi2) {
 1440 # if ZSTD_ENABLE_ASM_X86_64_BMI2
 1441         return HUF_decompress4X2_usingDTable_internal_bmi2_asm(dst, dstSize, cSrc, cSrcSize, DTable);
 1442 # else
 1443         return HUF_decompress4X2_usingDTable_internal_bmi2(dst, dstSize, cSrc, cSrcSize, DTable);
 1444 # endif
 1445     }
 1446 #else
 1447     (void)bmi2;
 1448 #endif
 1449 
 1450 #if ZSTD_ENABLE_ASM_X86_64_BMI2 && defined(__BMI2__)
 1451     return HUF_decompress4X2_usingDTable_internal_bmi2_asm(dst, dstSize, cSrc, cSrcSize, DTable);
 1452 #else
 1453     return HUF_decompress4X2_usingDTable_internal_default(dst, dstSize, cSrc, cSrcSize, DTable);
 1454 #endif
 1455 }
 1456 
 1457 HUF_DGEN(HUF_decompress1X2_usingDTable_internal)
 1458 
 1459 size_t HUF_decompress1X2_usingDTable(
 1460           void* dst,  size_t dstSize,
 1461     const void* cSrc, size_t cSrcSize,
 1462     const HUF_DTable* DTable)
 1463 {
 1464     DTableDesc dtd = HUF_getDTableDesc(DTable);
 1465     if (dtd.tableType != 1) return ERROR(GENERIC);
 1466     return HUF_decompress1X2_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
 1467 }
 1468 
 1469 size_t HUF_decompress1X2_DCtx_wksp(HUF_DTable* DCtx, void* dst, size_t dstSize,
 1470                                    const void* cSrc, size_t cSrcSize,
 1471                                    void* workSpace, size_t wkspSize)
 1472 {
 1473     const BYTE* ip = (const BYTE*) cSrc;
 1474 
 1475     size_t const hSize = HUF_readDTableX2_wksp(DCtx, cSrc, cSrcSize,
 1476                                                workSpace, wkspSize);
 1477     if (HUF_isError(hSize)) return hSize;
 1478     if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
 1479     ip += hSize; cSrcSize -= hSize;
 1480 
 1481     return HUF_decompress1X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, DCtx, /* bmi2 */ 0);
 1482 }
 1483 
 1484 
 1485 size_t HUF_decompress4X2_usingDTable(
 1486           void* dst,  size_t dstSize,
 1487     const void* cSrc, size_t cSrcSize,
 1488     const HUF_DTable* DTable)
 1489 {
 1490     DTableDesc dtd = HUF_getDTableDesc(DTable);
 1491     if (dtd.tableType != 1) return ERROR(GENERIC);
 1492     return HUF_decompress4X2_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
 1493 }
 1494 
 1495 static size_t HUF_decompress4X2_DCtx_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize,
 1496                                    const void* cSrc, size_t cSrcSize,
 1497                                    void* workSpace, size_t wkspSize, int bmi2)
 1498 {
 1499     const BYTE* ip = (const BYTE*) cSrc;
 1500 
 1501     size_t hSize = HUF_readDTableX2_wksp(dctx, cSrc, cSrcSize,
 1502                                          workSpace, wkspSize);
 1503     if (HUF_isError(hSize)) return hSize;
 1504     if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
 1505     ip += hSize; cSrcSize -= hSize;
 1506 
 1507     return HUF_decompress4X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, bmi2);
 1508 }
 1509 
 1510 size_t HUF_decompress4X2_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
 1511                                    const void* cSrc, size_t cSrcSize,
 1512                                    void* workSpace, size_t wkspSize)
 1513 {
 1514     return HUF_decompress4X2_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, /* bmi2 */ 0);
 1515 }
 1516 
 1517 
 1518 #endif /* HUF_FORCE_DECOMPRESS_X1 */
 1519 
 1520 
 1521 /* ***********************************/
 1522 /* Universal decompression selectors */
 1523 /* ***********************************/
 1524 
 1525 size_t HUF_decompress1X_usingDTable(void* dst, size_t maxDstSize,
 1526                                     const void* cSrc, size_t cSrcSize,
 1527                                     const HUF_DTable* DTable)
 1528 {
 1529     DTableDesc const dtd = HUF_getDTableDesc(DTable);
 1530 #if defined(HUF_FORCE_DECOMPRESS_X1)
 1531     (void)dtd;
 1532     assert(dtd.tableType == 0);
 1533     return HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
 1534 #elif defined(HUF_FORCE_DECOMPRESS_X2)
 1535     (void)dtd;
 1536     assert(dtd.tableType == 1);
 1537     return HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
 1538 #else
 1539     return dtd.tableType ? HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0) :
 1540                            HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
 1541 #endif
 1542 }
 1543 
 1544 size_t HUF_decompress4X_usingDTable(void* dst, size_t maxDstSize,
 1545                                     const void* cSrc, size_t cSrcSize,
 1546                                     const HUF_DTable* DTable)
 1547 {
 1548     DTableDesc const dtd = HUF_getDTableDesc(DTable);
 1549 #if defined(HUF_FORCE_DECOMPRESS_X1)
 1550     (void)dtd;
 1551     assert(dtd.tableType == 0);
 1552     return HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
 1553 #elif defined(HUF_FORCE_DECOMPRESS_X2)
 1554     (void)dtd;
 1555     assert(dtd.tableType == 1);
 1556     return HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
 1557 #else
 1558     return dtd.tableType ? HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0) :
 1559                            HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
 1560 #endif
 1561 }
 1562 
 1563 
 1564 #if !defined(HUF_FORCE_DECOMPRESS_X1) && !defined(HUF_FORCE_DECOMPRESS_X2)
 1565 typedef struct { U32 tableTime; U32 decode256Time; } algo_time_t;
 1566 static const algo_time_t algoTime[16 /* Quantization */][2 /* single, double */] =
 1567 {
 1568     /* single, double, quad */
 1569     {{0,0}, {1,1}},  /* Q==0 : impossible */
 1570     {{0,0}, {1,1}},  /* Q==1 : impossible */
 1571     {{ 150,216}, { 381,119}},   /* Q == 2 : 12-18% */
 1572     {{ 170,205}, { 514,112}},   /* Q == 3 : 18-25% */
 1573     {{ 177,199}, { 539,110}},   /* Q == 4 : 25-32% */
 1574     {{ 197,194}, { 644,107}},   /* Q == 5 : 32-38% */
 1575     {{ 221,192}, { 735,107}},   /* Q == 6 : 38-44% */
 1576     {{ 256,189}, { 881,106}},   /* Q == 7 : 44-50% */
 1577     {{ 359,188}, {1167,109}},   /* Q == 8 : 50-56% */
 1578     {{ 582,187}, {1570,114}},   /* Q == 9 : 56-62% */
 1579     {{ 688,187}, {1712,122}},   /* Q ==10 : 62-69% */
 1580     {{ 825,186}, {1965,136}},   /* Q ==11 : 69-75% */
 1581     {{ 976,185}, {2131,150}},   /* Q ==12 : 75-81% */
 1582     {{1180,186}, {2070,175}},   /* Q ==13 : 81-87% */
 1583     {{1377,185}, {1731,202}},   /* Q ==14 : 87-93% */
 1584     {{1412,185}, {1695,202}},   /* Q ==15 : 93-99% */
 1585 };
 1586 #endif
 1587 
 1588 /** HUF_selectDecoder() :
 1589  *  Tells which decoder is likely to decode faster,
 1590  *  based on a set of pre-computed metrics.
 1591  * @return : 0==HUF_decompress4X1, 1==HUF_decompress4X2 .
 1592  *  Assumption : 0 < dstSize <= 128 KB */
 1593 U32 HUF_selectDecoder (size_t dstSize, size_t cSrcSize)
 1594 {
 1595     assert(dstSize > 0);
 1596     assert(dstSize <= 128*1024);
 1597 #if defined(HUF_FORCE_DECOMPRESS_X1)
 1598     (void)dstSize;
 1599     (void)cSrcSize;
 1600     return 0;
 1601 #elif defined(HUF_FORCE_DECOMPRESS_X2)
 1602     (void)dstSize;
 1603     (void)cSrcSize;
 1604     return 1;
 1605 #else
 1606     /* decoder timing evaluation */
 1607     {   U32 const Q = (cSrcSize >= dstSize) ? 15 : (U32)(cSrcSize * 16 / dstSize);   /* Q < 16 */
 1608         U32 const D256 = (U32)(dstSize >> 8);
 1609         U32 const DTime0 = algoTime[Q][0].tableTime + (algoTime[Q][0].decode256Time * D256);
 1610         U32 DTime1 = algoTime[Q][1].tableTime + (algoTime[Q][1].decode256Time * D256);
 1611         DTime1 += DTime1 >> 5;  /* small advantage to algorithm using less memory, to reduce cache eviction */
 1612         return DTime1 < DTime0;
 1613     }
 1614 #endif
 1615 }
 1616 
 1617 
 1618 size_t HUF_decompress4X_hufOnly_wksp(HUF_DTable* dctx, void* dst,
 1619                                      size_t dstSize, const void* cSrc,
 1620                                      size_t cSrcSize, void* workSpace,
 1621                                      size_t wkspSize)
 1622 {
 1623     /* validation checks */
 1624     if (dstSize == 0) return ERROR(dstSize_tooSmall);
 1625     if (cSrcSize == 0) return ERROR(corruption_detected);
 1626 
 1627     {   U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
 1628 #if defined(HUF_FORCE_DECOMPRESS_X1)
 1629         (void)algoNb;
 1630         assert(algoNb == 0);
 1631         return HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize);
 1632 #elif defined(HUF_FORCE_DECOMPRESS_X2)
 1633         (void)algoNb;
 1634         assert(algoNb == 1);
 1635         return HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize);
 1636 #else
 1637         return algoNb ? HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc,
 1638                             cSrcSize, workSpace, wkspSize):
 1639                         HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize);
 1640 #endif
 1641     }
 1642 }
 1643 
 1644 size_t HUF_decompress1X_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
 1645                                   const void* cSrc, size_t cSrcSize,
 1646                                   void* workSpace, size_t wkspSize)
 1647 {
 1648     /* validation checks */
 1649     if (dstSize == 0) return ERROR(dstSize_tooSmall);
 1650     if (cSrcSize > dstSize) return ERROR(corruption_detected);   /* invalid */
 1651     if (cSrcSize == dstSize) { ZSTD_memcpy(dst, cSrc, dstSize); return dstSize; }   /* not compressed */
 1652     if (cSrcSize == 1) { ZSTD_memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; }   /* RLE */
 1653 
 1654     {   U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
 1655 #if defined(HUF_FORCE_DECOMPRESS_X1)
 1656         (void)algoNb;
 1657         assert(algoNb == 0);
 1658         return HUF_decompress1X1_DCtx_wksp(dctx, dst, dstSize, cSrc,
 1659                                 cSrcSize, workSpace, wkspSize);
 1660 #elif defined(HUF_FORCE_DECOMPRESS_X2)
 1661         (void)algoNb;
 1662         assert(algoNb == 1);
 1663         return HUF_decompress1X2_DCtx_wksp(dctx, dst, dstSize, cSrc,
 1664                                 cSrcSize, workSpace, wkspSize);
 1665 #else
 1666         return algoNb ? HUF_decompress1X2_DCtx_wksp(dctx, dst, dstSize, cSrc,
 1667                                 cSrcSize, workSpace, wkspSize):
 1668                         HUF_decompress1X1_DCtx_wksp(dctx, dst, dstSize, cSrc,
 1669                                 cSrcSize, workSpace, wkspSize);
 1670 #endif
 1671     }
 1672 }
 1673 
 1674 
 1675 size_t HUF_decompress1X_usingDTable_bmi2(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int bmi2)
 1676 {
 1677     DTableDesc const dtd = HUF_getDTableDesc(DTable);
 1678 #if defined(HUF_FORCE_DECOMPRESS_X1)
 1679     (void)dtd;
 1680     assert(dtd.tableType == 0);
 1681     return HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2);
 1682 #elif defined(HUF_FORCE_DECOMPRESS_X2)
 1683     (void)dtd;
 1684     assert(dtd.tableType == 1);
 1685     return HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2);
 1686 #else
 1687     return dtd.tableType ? HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2) :
 1688                            HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2);
 1689 #endif
 1690 }
 1691 
 1692 #ifndef HUF_FORCE_DECOMPRESS_X2
 1693 size_t HUF_decompress1X1_DCtx_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int bmi2)
 1694 {
 1695     const BYTE* ip = (const BYTE*) cSrc;
 1696 
 1697     size_t const hSize = HUF_readDTableX1_wksp_bmi2(dctx, cSrc, cSrcSize, workSpace, wkspSize, bmi2);
 1698     if (HUF_isError(hSize)) return hSize;
 1699     if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
 1700     ip += hSize; cSrcSize -= hSize;
 1701 
 1702     return HUF_decompress1X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, bmi2);
 1703 }
 1704 #endif
 1705 
 1706 size_t HUF_decompress4X_usingDTable_bmi2(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int bmi2)
 1707 {
 1708     DTableDesc const dtd = HUF_getDTableDesc(DTable);
 1709 #if defined(HUF_FORCE_DECOMPRESS_X1)
 1710     (void)dtd;
 1711     assert(dtd.tableType == 0);
 1712     return HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2);
 1713 #elif defined(HUF_FORCE_DECOMPRESS_X2)
 1714     (void)dtd;
 1715     assert(dtd.tableType == 1);
 1716     return HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2);
 1717 #else
 1718     return dtd.tableType ? HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2) :
 1719                            HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2);
 1720 #endif
 1721 }
 1722 
 1723 size_t HUF_decompress4X_hufOnly_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int bmi2)
 1724 {
 1725     /* validation checks */
 1726     if (dstSize == 0) return ERROR(dstSize_tooSmall);
 1727     if (cSrcSize == 0) return ERROR(corruption_detected);
 1728 
 1729     {   U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
 1730 #if defined(HUF_FORCE_DECOMPRESS_X1)
 1731         (void)algoNb;
 1732         assert(algoNb == 0);
 1733         return HUF_decompress4X1_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, bmi2);
 1734 #elif defined(HUF_FORCE_DECOMPRESS_X2)
 1735         (void)algoNb;
 1736         assert(algoNb == 1);
 1737         return HUF_decompress4X2_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, bmi2);
 1738 #else
 1739         return algoNb ? HUF_decompress4X2_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, bmi2) :
 1740                         HUF_decompress4X1_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, bmi2);
 1741 #endif
 1742     }
 1743 }
 1744 
 1745 #ifndef ZSTD_NO_UNUSED_FUNCTIONS
 1746 #ifndef HUF_FORCE_DECOMPRESS_X2
 1747 size_t HUF_readDTableX1(HUF_DTable* DTable, const void* src, size_t srcSize)
 1748 {
 1749     U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32];
 1750     return HUF_readDTableX1_wksp(DTable, src, srcSize,
 1751                                  workSpace, sizeof(workSpace));
 1752 }
 1753 
 1754 size_t HUF_decompress1X1_DCtx(HUF_DTable* DCtx, void* dst, size_t dstSize,
 1755                               const void* cSrc, size_t cSrcSize)
 1756 {
 1757     U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32];
 1758     return HUF_decompress1X1_DCtx_wksp(DCtx, dst, dstSize, cSrc, cSrcSize,
 1759                                        workSpace, sizeof(workSpace));
 1760 }
 1761 
 1762 size_t HUF_decompress1X1 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
 1763 {
 1764     HUF_CREATE_STATIC_DTABLEX1(DTable, HUF_TABLELOG_MAX);
 1765     return HUF_decompress1X1_DCtx (DTable, dst, dstSize, cSrc, cSrcSize);
 1766 }
 1767 #endif
 1768 
 1769 #ifndef HUF_FORCE_DECOMPRESS_X1
 1770 size_t HUF_readDTableX2(HUF_DTable* DTable, const void* src, size_t srcSize)
 1771 {
 1772   U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32];
 1773   return HUF_readDTableX2_wksp(DTable, src, srcSize,
 1774                                workSpace, sizeof(workSpace));
 1775 }
 1776 
 1777 size_t HUF_decompress1X2_DCtx(HUF_DTable* DCtx, void* dst, size_t dstSize,
 1778                               const void* cSrc, size_t cSrcSize)
 1779 {
 1780     U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32];
 1781     return HUF_decompress1X2_DCtx_wksp(DCtx, dst, dstSize, cSrc, cSrcSize,
 1782                                        workSpace, sizeof(workSpace));
 1783 }
 1784 
 1785 size_t HUF_decompress1X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
 1786 {
 1787     HUF_CREATE_STATIC_DTABLEX2(DTable, HUF_TABLELOG_MAX);
 1788     return HUF_decompress1X2_DCtx(DTable, dst, dstSize, cSrc, cSrcSize);
 1789 }
 1790 #endif
 1791 
 1792 #ifndef HUF_FORCE_DECOMPRESS_X2
 1793 size_t HUF_decompress4X1_DCtx (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
 1794 {
 1795     U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32];
 1796     return HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize,
 1797                                        workSpace, sizeof(workSpace));
 1798 }
 1799 size_t HUF_decompress4X1 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
 1800 {
 1801     HUF_CREATE_STATIC_DTABLEX1(DTable, HUF_TABLELOG_MAX);
 1802     return HUF_decompress4X1_DCtx(DTable, dst, dstSize, cSrc, cSrcSize);
 1803 }
 1804 #endif
 1805 
 1806 #ifndef HUF_FORCE_DECOMPRESS_X1
 1807 size_t HUF_decompress4X2_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize,
 1808                               const void* cSrc, size_t cSrcSize)
 1809 {
 1810     U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32];
 1811     return HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize,
 1812                                        workSpace, sizeof(workSpace));
 1813 }
 1814 
 1815 size_t HUF_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
 1816 {
 1817     HUF_CREATE_STATIC_DTABLEX2(DTable, HUF_TABLELOG_MAX);
 1818     return HUF_decompress4X2_DCtx(DTable, dst, dstSize, cSrc, cSrcSize);
 1819 }
 1820 #endif
 1821 
 1822 typedef size_t (*decompressionAlgo)(void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize);
 1823 
 1824 size_t HUF_decompress (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
 1825 {
 1826 #if !defined(HUF_FORCE_DECOMPRESS_X1) && !defined(HUF_FORCE_DECOMPRESS_X2)
 1827     static const decompressionAlgo decompress[2] = { HUF_decompress4X1, HUF_decompress4X2 };
 1828 #endif
 1829 
 1830     /* validation checks */
 1831     if (dstSize == 0) return ERROR(dstSize_tooSmall);
 1832     if (cSrcSize > dstSize) return ERROR(corruption_detected);   /* invalid */
 1833     if (cSrcSize == dstSize) { ZSTD_memcpy(dst, cSrc, dstSize); return dstSize; }   /* not compressed */
 1834     if (cSrcSize == 1) { ZSTD_memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; }   /* RLE */
 1835 
 1836     {   U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
 1837 #if defined(HUF_FORCE_DECOMPRESS_X1)
 1838         (void)algoNb;
 1839         assert(algoNb == 0);
 1840         return HUF_decompress4X1(dst, dstSize, cSrc, cSrcSize);
 1841 #elif defined(HUF_FORCE_DECOMPRESS_X2)
 1842         (void)algoNb;
 1843         assert(algoNb == 1);
 1844         return HUF_decompress4X2(dst, dstSize, cSrc, cSrcSize);
 1845 #else
 1846         return decompress[algoNb](dst, dstSize, cSrc, cSrcSize);
 1847 #endif
 1848     }
 1849 }
 1850 
 1851 size_t HUF_decompress4X_DCtx (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
 1852 {
 1853     /* validation checks */
 1854     if (dstSize == 0) return ERROR(dstSize_tooSmall);
 1855     if (cSrcSize > dstSize) return ERROR(corruption_detected);   /* invalid */
 1856     if (cSrcSize == dstSize) { ZSTD_memcpy(dst, cSrc, dstSize); return dstSize; }   /* not compressed */
 1857     if (cSrcSize == 1) { ZSTD_memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; }   /* RLE */
 1858 
 1859     {   U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
 1860 #if defined(HUF_FORCE_DECOMPRESS_X1)
 1861         (void)algoNb;
 1862         assert(algoNb == 0);
 1863         return HUF_decompress4X1_DCtx(dctx, dst, dstSize, cSrc, cSrcSize);
 1864 #elif defined(HUF_FORCE_DECOMPRESS_X2)
 1865         (void)algoNb;
 1866         assert(algoNb == 1);
 1867         return HUF_decompress4X2_DCtx(dctx, dst, dstSize, cSrc, cSrcSize);
 1868 #else
 1869         return algoNb ? HUF_decompress4X2_DCtx(dctx, dst, dstSize, cSrc, cSrcSize) :
 1870                         HUF_decompress4X1_DCtx(dctx, dst, dstSize, cSrc, cSrcSize) ;
 1871 #endif
 1872     }
 1873 }
 1874 
 1875 size_t HUF_decompress4X_hufOnly(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
 1876 {
 1877     U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32];
 1878     return HUF_decompress4X_hufOnly_wksp(dctx, dst, dstSize, cSrc, cSrcSize,
 1879                                          workSpace, sizeof(workSpace));
 1880 }
 1881 
 1882 size_t HUF_decompress1X_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize,
 1883                              const void* cSrc, size_t cSrcSize)
 1884 {
 1885     U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32];
 1886     return HUF_decompress1X_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize,
 1887                                       workSpace, sizeof(workSpace));
 1888 }
 1889 #endif

Cache object: 713918441f1a73c92c66ea107d05cd02


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.