The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/contrib/zstd/lib/dictBuilder/cover.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) Yann Collet, Facebook, Inc.
    3  * All rights reserved.
    4  *
    5  * This source code is licensed under both the BSD-style license (found in the
    6  * LICENSE file in the root directory of this source tree) and the GPLv2 (found
    7  * in the COPYING file in the root directory of this source tree).
    8  * You may select, at your option, one of the above-listed licenses.
    9  */
   10 
   11 /* *****************************************************************************
   12  * Constructs a dictionary using a heuristic based on the following paper:
   13  *
   14  * Liao, Petri, Moffat, Wirth
   15  * Effective Construction of Relative Lempel-Ziv Dictionaries
   16  * Published in WWW 2016.
   17  *
   18  * Adapted from code originally written by @ot (Giuseppe Ottaviano).
   19  ******************************************************************************/
   20 
   21 /*-*************************************
   22 *  Dependencies
   23 ***************************************/
   24 #include <stdio.h>  /* fprintf */
   25 #include <stdlib.h> /* malloc, free, qsort */
   26 #include <string.h> /* memset */
   27 #include <time.h>   /* clock */
   28 
   29 #ifndef ZDICT_STATIC_LINKING_ONLY
   30 #  define ZDICT_STATIC_LINKING_ONLY
   31 #endif
   32 
   33 #include "../common/mem.h" /* read */
   34 #include "../common/pool.h"
   35 #include "../common/threading.h"
   36 #include "../common/zstd_internal.h" /* includes zstd.h */
   37 #include "../zdict.h"
   38 #include "cover.h"
   39 
   40 /*-*************************************
   41 *  Constants
   42 ***************************************/
   43 /**
   44 * There are 32bit indexes used to ref samples, so limit samples size to 4GB
   45 * on 64bit builds.
   46 * For 32bit builds we choose 1 GB.
   47 * Most 32bit platforms have 2GB user-mode addressable space and we allocate a large
   48 * contiguous buffer, so 1GB is already a high limit.
   49 */
   50 #define COVER_MAX_SAMPLES_SIZE (sizeof(size_t) == 8 ? ((unsigned)-1) : ((unsigned)1 GB))
   51 #define COVER_DEFAULT_SPLITPOINT 1.0
   52 
   53 /*-*************************************
   54 *  Console display
   55 ***************************************/
   56 #ifndef LOCALDISPLAYLEVEL
   57 static int g_displayLevel = 0;
   58 #endif
   59 #undef  DISPLAY
   60 #define DISPLAY(...)                                                           \
   61   {                                                                            \
   62     fprintf(stderr, __VA_ARGS__);                                              \
   63     fflush(stderr);                                                            \
   64   }
   65 #undef  LOCALDISPLAYLEVEL
   66 #define LOCALDISPLAYLEVEL(displayLevel, l, ...)                                \
   67   if (displayLevel >= l) {                                                     \
   68     DISPLAY(__VA_ARGS__);                                                      \
   69   } /* 0 : no display;   1: errors;   2: default;  3: details;  4: debug */
   70 #undef  DISPLAYLEVEL
   71 #define DISPLAYLEVEL(l, ...) LOCALDISPLAYLEVEL(g_displayLevel, l, __VA_ARGS__)
   72 
   73 #ifndef LOCALDISPLAYUPDATE
   74 static const clock_t g_refreshRate = CLOCKS_PER_SEC * 15 / 100;
   75 static clock_t g_time = 0;
   76 #endif
   77 #undef  LOCALDISPLAYUPDATE
   78 #define LOCALDISPLAYUPDATE(displayLevel, l, ...)                               \
   79   if (displayLevel >= l) {                                                     \
   80     if ((clock() - g_time > g_refreshRate) || (displayLevel >= 4)) {             \
   81       g_time = clock();                                                        \
   82       DISPLAY(__VA_ARGS__);                                                    \
   83     }                                                                          \
   84   }
   85 #undef  DISPLAYUPDATE
   86 #define DISPLAYUPDATE(l, ...) LOCALDISPLAYUPDATE(g_displayLevel, l, __VA_ARGS__)
   87 
   88 /*-*************************************
   89 * Hash table
   90 ***************************************
   91 * A small specialized hash map for storing activeDmers.
   92 * The map does not resize, so if it becomes full it will loop forever.
   93 * Thus, the map must be large enough to store every value.
   94 * The map implements linear probing and keeps its load less than 0.5.
   95 */
   96 
   97 #define MAP_EMPTY_VALUE ((U32)-1)
   98 typedef struct COVER_map_pair_t_s {
   99   U32 key;
  100   U32 value;
  101 } COVER_map_pair_t;
  102 
  103 typedef struct COVER_map_s {
  104   COVER_map_pair_t *data;
  105   U32 sizeLog;
  106   U32 size;
  107   U32 sizeMask;
  108 } COVER_map_t;
  109 
  110 /**
  111  * Clear the map.
  112  */
  113 static void COVER_map_clear(COVER_map_t *map) {
  114   memset(map->data, MAP_EMPTY_VALUE, map->size * sizeof(COVER_map_pair_t));
  115 }
  116 
  117 /**
  118  * Initializes a map of the given size.
  119  * Returns 1 on success and 0 on failure.
  120  * The map must be destroyed with COVER_map_destroy().
  121  * The map is only guaranteed to be large enough to hold size elements.
  122  */
  123 static int COVER_map_init(COVER_map_t *map, U32 size) {
  124   map->sizeLog = ZSTD_highbit32(size) + 2;
  125   map->size = (U32)1 << map->sizeLog;
  126   map->sizeMask = map->size - 1;
  127   map->data = (COVER_map_pair_t *)malloc(map->size * sizeof(COVER_map_pair_t));
  128   if (!map->data) {
  129     map->sizeLog = 0;
  130     map->size = 0;
  131     return 0;
  132   }
  133   COVER_map_clear(map);
  134   return 1;
  135 }
  136 
  137 /**
  138  * Internal hash function
  139  */
  140 static const U32 COVER_prime4bytes = 2654435761U;
  141 static U32 COVER_map_hash(COVER_map_t *map, U32 key) {
  142   return (key * COVER_prime4bytes) >> (32 - map->sizeLog);
  143 }
  144 
  145 /**
  146  * Helper function that returns the index that a key should be placed into.
  147  */
  148 static U32 COVER_map_index(COVER_map_t *map, U32 key) {
  149   const U32 hash = COVER_map_hash(map, key);
  150   U32 i;
  151   for (i = hash;; i = (i + 1) & map->sizeMask) {
  152     COVER_map_pair_t *pos = &map->data[i];
  153     if (pos->value == MAP_EMPTY_VALUE) {
  154       return i;
  155     }
  156     if (pos->key == key) {
  157       return i;
  158     }
  159   }
  160 }
  161 
  162 /**
  163  * Returns the pointer to the value for key.
  164  * If key is not in the map, it is inserted and the value is set to 0.
  165  * The map must not be full.
  166  */
  167 static U32 *COVER_map_at(COVER_map_t *map, U32 key) {
  168   COVER_map_pair_t *pos = &map->data[COVER_map_index(map, key)];
  169   if (pos->value == MAP_EMPTY_VALUE) {
  170     pos->key = key;
  171     pos->value = 0;
  172   }
  173   return &pos->value;
  174 }
  175 
  176 /**
  177  * Deletes key from the map if present.
  178  */
  179 static void COVER_map_remove(COVER_map_t *map, U32 key) {
  180   U32 i = COVER_map_index(map, key);
  181   COVER_map_pair_t *del = &map->data[i];
  182   U32 shift = 1;
  183   if (del->value == MAP_EMPTY_VALUE) {
  184     return;
  185   }
  186   for (i = (i + 1) & map->sizeMask;; i = (i + 1) & map->sizeMask) {
  187     COVER_map_pair_t *const pos = &map->data[i];
  188     /* If the position is empty we are done */
  189     if (pos->value == MAP_EMPTY_VALUE) {
  190       del->value = MAP_EMPTY_VALUE;
  191       return;
  192     }
  193     /* If pos can be moved to del do so */
  194     if (((i - COVER_map_hash(map, pos->key)) & map->sizeMask) >= shift) {
  195       del->key = pos->key;
  196       del->value = pos->value;
  197       del = pos;
  198       shift = 1;
  199     } else {
  200       ++shift;
  201     }
  202   }
  203 }
  204 
  205 /**
  206  * Destroys a map that is inited with COVER_map_init().
  207  */
  208 static void COVER_map_destroy(COVER_map_t *map) {
  209   if (map->data) {
  210     free(map->data);
  211   }
  212   map->data = NULL;
  213   map->size = 0;
  214 }
  215 
  216 /*-*************************************
  217 * Context
  218 ***************************************/
  219 
  220 typedef struct {
  221   const BYTE *samples;
  222   size_t *offsets;
  223   const size_t *samplesSizes;
  224   size_t nbSamples;
  225   size_t nbTrainSamples;
  226   size_t nbTestSamples;
  227   U32 *suffix;
  228   size_t suffixSize;
  229   U32 *freqs;
  230   U32 *dmerAt;
  231   unsigned d;
  232 } COVER_ctx_t;
  233 
  234 /* We need a global context for qsort... */
  235 static COVER_ctx_t *g_coverCtx = NULL;
  236 
  237 /*-*************************************
  238 *  Helper functions
  239 ***************************************/
  240 
  241 /**
  242  * Returns the sum of the sample sizes.
  243  */
  244 size_t COVER_sum(const size_t *samplesSizes, unsigned nbSamples) {
  245   size_t sum = 0;
  246   unsigned i;
  247   for (i = 0; i < nbSamples; ++i) {
  248     sum += samplesSizes[i];
  249   }
  250   return sum;
  251 }
  252 
  253 /**
  254  * Returns -1 if the dmer at lp is less than the dmer at rp.
  255  * Return 0 if the dmers at lp and rp are equal.
  256  * Returns 1 if the dmer at lp is greater than the dmer at rp.
  257  */
  258 static int COVER_cmp(COVER_ctx_t *ctx, const void *lp, const void *rp) {
  259   U32 const lhs = *(U32 const *)lp;
  260   U32 const rhs = *(U32 const *)rp;
  261   return memcmp(ctx->samples + lhs, ctx->samples + rhs, ctx->d);
  262 }
  263 /**
  264  * Faster version for d <= 8.
  265  */
  266 static int COVER_cmp8(COVER_ctx_t *ctx, const void *lp, const void *rp) {
  267   U64 const mask = (ctx->d == 8) ? (U64)-1 : (((U64)1 << (8 * ctx->d)) - 1);
  268   U64 const lhs = MEM_readLE64(ctx->samples + *(U32 const *)lp) & mask;
  269   U64 const rhs = MEM_readLE64(ctx->samples + *(U32 const *)rp) & mask;
  270   if (lhs < rhs) {
  271     return -1;
  272   }
  273   return (lhs > rhs);
  274 }
  275 
  276 /**
  277  * Same as COVER_cmp() except ties are broken by pointer value
  278  * NOTE: g_coverCtx must be set to call this function.  A global is required because
  279  * qsort doesn't take an opaque pointer.
  280  */
  281 static int WIN_CDECL COVER_strict_cmp(const void *lp, const void *rp) {
  282   int result = COVER_cmp(g_coverCtx, lp, rp);
  283   if (result == 0) {
  284     result = lp < rp ? -1 : 1;
  285   }
  286   return result;
  287 }
  288 /**
  289  * Faster version for d <= 8.
  290  */
  291 static int WIN_CDECL COVER_strict_cmp8(const void *lp, const void *rp) {
  292   int result = COVER_cmp8(g_coverCtx, lp, rp);
  293   if (result == 0) {
  294     result = lp < rp ? -1 : 1;
  295   }
  296   return result;
  297 }
  298 
  299 /**
  300  * Returns the first pointer in [first, last) whose element does not compare
  301  * less than value.  If no such element exists it returns last.
  302  */
  303 static const size_t *COVER_lower_bound(const size_t *first, const size_t *last,
  304                                        size_t value) {
  305   size_t count = last - first;
  306   while (count != 0) {
  307     size_t step = count / 2;
  308     const size_t *ptr = first;
  309     ptr += step;
  310     if (*ptr < value) {
  311       first = ++ptr;
  312       count -= step + 1;
  313     } else {
  314       count = step;
  315     }
  316   }
  317   return first;
  318 }
  319 
  320 /**
  321  * Generic groupBy function.
  322  * Groups an array sorted by cmp into groups with equivalent values.
  323  * Calls grp for each group.
  324  */
  325 static void
  326 COVER_groupBy(const void *data, size_t count, size_t size, COVER_ctx_t *ctx,
  327               int (*cmp)(COVER_ctx_t *, const void *, const void *),
  328               void (*grp)(COVER_ctx_t *, const void *, const void *)) {
  329   const BYTE *ptr = (const BYTE *)data;
  330   size_t num = 0;
  331   while (num < count) {
  332     const BYTE *grpEnd = ptr + size;
  333     ++num;
  334     while (num < count && cmp(ctx, ptr, grpEnd) == 0) {
  335       grpEnd += size;
  336       ++num;
  337     }
  338     grp(ctx, ptr, grpEnd);
  339     ptr = grpEnd;
  340   }
  341 }
  342 
  343 /*-*************************************
  344 *  Cover functions
  345 ***************************************/
  346 
  347 /**
  348  * Called on each group of positions with the same dmer.
  349  * Counts the frequency of each dmer and saves it in the suffix array.
  350  * Fills `ctx->dmerAt`.
  351  */
  352 static void COVER_group(COVER_ctx_t *ctx, const void *group,
  353                         const void *groupEnd) {
  354   /* The group consists of all the positions with the same first d bytes. */
  355   const U32 *grpPtr = (const U32 *)group;
  356   const U32 *grpEnd = (const U32 *)groupEnd;
  357   /* The dmerId is how we will reference this dmer.
  358    * This allows us to map the whole dmer space to a much smaller space, the
  359    * size of the suffix array.
  360    */
  361   const U32 dmerId = (U32)(grpPtr - ctx->suffix);
  362   /* Count the number of samples this dmer shows up in */
  363   U32 freq = 0;
  364   /* Details */
  365   const size_t *curOffsetPtr = ctx->offsets;
  366   const size_t *offsetsEnd = ctx->offsets + ctx->nbSamples;
  367   /* Once *grpPtr >= curSampleEnd this occurrence of the dmer is in a
  368    * different sample than the last.
  369    */
  370   size_t curSampleEnd = ctx->offsets[0];
  371   for (; grpPtr != grpEnd; ++grpPtr) {
  372     /* Save the dmerId for this position so we can get back to it. */
  373     ctx->dmerAt[*grpPtr] = dmerId;
  374     /* Dictionaries only help for the first reference to the dmer.
  375      * After that zstd can reference the match from the previous reference.
  376      * So only count each dmer once for each sample it is in.
  377      */
  378     if (*grpPtr < curSampleEnd) {
  379       continue;
  380     }
  381     freq += 1;
  382     /* Binary search to find the end of the sample *grpPtr is in.
  383      * In the common case that grpPtr + 1 == grpEnd we can skip the binary
  384      * search because the loop is over.
  385      */
  386     if (grpPtr + 1 != grpEnd) {
  387       const size_t *sampleEndPtr =
  388           COVER_lower_bound(curOffsetPtr, offsetsEnd, *grpPtr);
  389       curSampleEnd = *sampleEndPtr;
  390       curOffsetPtr = sampleEndPtr + 1;
  391     }
  392   }
  393   /* At this point we are never going to look at this segment of the suffix
  394    * array again.  We take advantage of this fact to save memory.
  395    * We store the frequency of the dmer in the first position of the group,
  396    * which is dmerId.
  397    */
  398   ctx->suffix[dmerId] = freq;
  399 }
  400 
  401 
  402 /**
  403  * Selects the best segment in an epoch.
  404  * Segments of are scored according to the function:
  405  *
  406  * Let F(d) be the frequency of dmer d.
  407  * Let S_i be the dmer at position i of segment S which has length k.
  408  *
  409  *     Score(S) = F(S_1) + F(S_2) + ... + F(S_{k-d+1})
  410  *
  411  * Once the dmer d is in the dictionary we set F(d) = 0.
  412  */
  413 static COVER_segment_t COVER_selectSegment(const COVER_ctx_t *ctx, U32 *freqs,
  414                                            COVER_map_t *activeDmers, U32 begin,
  415                                            U32 end,
  416                                            ZDICT_cover_params_t parameters) {
  417   /* Constants */
  418   const U32 k = parameters.k;
  419   const U32 d = parameters.d;
  420   const U32 dmersInK = k - d + 1;
  421   /* Try each segment (activeSegment) and save the best (bestSegment) */
  422   COVER_segment_t bestSegment = {0, 0, 0};
  423   COVER_segment_t activeSegment;
  424   /* Reset the activeDmers in the segment */
  425   COVER_map_clear(activeDmers);
  426   /* The activeSegment starts at the beginning of the epoch. */
  427   activeSegment.begin = begin;
  428   activeSegment.end = begin;
  429   activeSegment.score = 0;
  430   /* Slide the activeSegment through the whole epoch.
  431    * Save the best segment in bestSegment.
  432    */
  433   while (activeSegment.end < end) {
  434     /* The dmerId for the dmer at the next position */
  435     U32 newDmer = ctx->dmerAt[activeSegment.end];
  436     /* The entry in activeDmers for this dmerId */
  437     U32 *newDmerOcc = COVER_map_at(activeDmers, newDmer);
  438     /* If the dmer isn't already present in the segment add its score. */
  439     if (*newDmerOcc == 0) {
  440       /* The paper suggest using the L-0.5 norm, but experiments show that it
  441        * doesn't help.
  442        */
  443       activeSegment.score += freqs[newDmer];
  444     }
  445     /* Add the dmer to the segment */
  446     activeSegment.end += 1;
  447     *newDmerOcc += 1;
  448 
  449     /* If the window is now too large, drop the first position */
  450     if (activeSegment.end - activeSegment.begin == dmersInK + 1) {
  451       U32 delDmer = ctx->dmerAt[activeSegment.begin];
  452       U32 *delDmerOcc = COVER_map_at(activeDmers, delDmer);
  453       activeSegment.begin += 1;
  454       *delDmerOcc -= 1;
  455       /* If this is the last occurrence of the dmer, subtract its score */
  456       if (*delDmerOcc == 0) {
  457         COVER_map_remove(activeDmers, delDmer);
  458         activeSegment.score -= freqs[delDmer];
  459       }
  460     }
  461 
  462     /* If this segment is the best so far save it */
  463     if (activeSegment.score > bestSegment.score) {
  464       bestSegment = activeSegment;
  465     }
  466   }
  467   {
  468     /* Trim off the zero frequency head and tail from the segment. */
  469     U32 newBegin = bestSegment.end;
  470     U32 newEnd = bestSegment.begin;
  471     U32 pos;
  472     for (pos = bestSegment.begin; pos != bestSegment.end; ++pos) {
  473       U32 freq = freqs[ctx->dmerAt[pos]];
  474       if (freq != 0) {
  475         newBegin = MIN(newBegin, pos);
  476         newEnd = pos + 1;
  477       }
  478     }
  479     bestSegment.begin = newBegin;
  480     bestSegment.end = newEnd;
  481   }
  482   {
  483     /* Zero out the frequency of each dmer covered by the chosen segment. */
  484     U32 pos;
  485     for (pos = bestSegment.begin; pos != bestSegment.end; ++pos) {
  486       freqs[ctx->dmerAt[pos]] = 0;
  487     }
  488   }
  489   return bestSegment;
  490 }
  491 
  492 /**
  493  * Check the validity of the parameters.
  494  * Returns non-zero if the parameters are valid and 0 otherwise.
  495  */
  496 static int COVER_checkParameters(ZDICT_cover_params_t parameters,
  497                                  size_t maxDictSize) {
  498   /* k and d are required parameters */
  499   if (parameters.d == 0 || parameters.k == 0) {
  500     return 0;
  501   }
  502   /* k <= maxDictSize */
  503   if (parameters.k > maxDictSize) {
  504     return 0;
  505   }
  506   /* d <= k */
  507   if (parameters.d > parameters.k) {
  508     return 0;
  509   }
  510   /* 0 < splitPoint <= 1 */
  511   if (parameters.splitPoint <= 0 || parameters.splitPoint > 1){
  512     return 0;
  513   }
  514   return 1;
  515 }
  516 
  517 /**
  518  * Clean up a context initialized with `COVER_ctx_init()`.
  519  */
  520 static void COVER_ctx_destroy(COVER_ctx_t *ctx) {
  521   if (!ctx) {
  522     return;
  523   }
  524   if (ctx->suffix) {
  525     free(ctx->suffix);
  526     ctx->suffix = NULL;
  527   }
  528   if (ctx->freqs) {
  529     free(ctx->freqs);
  530     ctx->freqs = NULL;
  531   }
  532   if (ctx->dmerAt) {
  533     free(ctx->dmerAt);
  534     ctx->dmerAt = NULL;
  535   }
  536   if (ctx->offsets) {
  537     free(ctx->offsets);
  538     ctx->offsets = NULL;
  539   }
  540 }
  541 
  542 /**
  543  * Prepare a context for dictionary building.
  544  * The context is only dependent on the parameter `d` and can used multiple
  545  * times.
  546  * Returns 0 on success or error code on error.
  547  * The context must be destroyed with `COVER_ctx_destroy()`.
  548  */
  549 static size_t COVER_ctx_init(COVER_ctx_t *ctx, const void *samplesBuffer,
  550                           const size_t *samplesSizes, unsigned nbSamples,
  551                           unsigned d, double splitPoint) {
  552   const BYTE *const samples = (const BYTE *)samplesBuffer;
  553   const size_t totalSamplesSize = COVER_sum(samplesSizes, nbSamples);
  554   /* Split samples into testing and training sets */
  555   const unsigned nbTrainSamples = splitPoint < 1.0 ? (unsigned)((double)nbSamples * splitPoint) : nbSamples;
  556   const unsigned nbTestSamples = splitPoint < 1.0 ? nbSamples - nbTrainSamples : nbSamples;
  557   const size_t trainingSamplesSize = splitPoint < 1.0 ? COVER_sum(samplesSizes, nbTrainSamples) : totalSamplesSize;
  558   const size_t testSamplesSize = splitPoint < 1.0 ? COVER_sum(samplesSizes + nbTrainSamples, nbTestSamples) : totalSamplesSize;
  559   /* Checks */
  560   if (totalSamplesSize < MAX(d, sizeof(U64)) ||
  561       totalSamplesSize >= (size_t)COVER_MAX_SAMPLES_SIZE) {
  562     DISPLAYLEVEL(1, "Total samples size is too large (%u MB), maximum size is %u MB\n",
  563                  (unsigned)(totalSamplesSize>>20), (COVER_MAX_SAMPLES_SIZE >> 20));
  564     return ERROR(srcSize_wrong);
  565   }
  566   /* Check if there are at least 5 training samples */
  567   if (nbTrainSamples < 5) {
  568     DISPLAYLEVEL(1, "Total number of training samples is %u and is invalid.", nbTrainSamples);
  569     return ERROR(srcSize_wrong);
  570   }
  571   /* Check if there's testing sample */
  572   if (nbTestSamples < 1) {
  573     DISPLAYLEVEL(1, "Total number of testing samples is %u and is invalid.", nbTestSamples);
  574     return ERROR(srcSize_wrong);
  575   }
  576   /* Zero the context */
  577   memset(ctx, 0, sizeof(*ctx));
  578   DISPLAYLEVEL(2, "Training on %u samples of total size %u\n", nbTrainSamples,
  579                (unsigned)trainingSamplesSize);
  580   DISPLAYLEVEL(2, "Testing on %u samples of total size %u\n", nbTestSamples,
  581                (unsigned)testSamplesSize);
  582   ctx->samples = samples;
  583   ctx->samplesSizes = samplesSizes;
  584   ctx->nbSamples = nbSamples;
  585   ctx->nbTrainSamples = nbTrainSamples;
  586   ctx->nbTestSamples = nbTestSamples;
  587   /* Partial suffix array */
  588   ctx->suffixSize = trainingSamplesSize - MAX(d, sizeof(U64)) + 1;
  589   ctx->suffix = (U32 *)malloc(ctx->suffixSize * sizeof(U32));
  590   /* Maps index to the dmerID */
  591   ctx->dmerAt = (U32 *)malloc(ctx->suffixSize * sizeof(U32));
  592   /* The offsets of each file */
  593   ctx->offsets = (size_t *)malloc((nbSamples + 1) * sizeof(size_t));
  594   if (!ctx->suffix || !ctx->dmerAt || !ctx->offsets) {
  595     DISPLAYLEVEL(1, "Failed to allocate scratch buffers\n");
  596     COVER_ctx_destroy(ctx);
  597     return ERROR(memory_allocation);
  598   }
  599   ctx->freqs = NULL;
  600   ctx->d = d;
  601 
  602   /* Fill offsets from the samplesSizes */
  603   {
  604     U32 i;
  605     ctx->offsets[0] = 0;
  606     for (i = 1; i <= nbSamples; ++i) {
  607       ctx->offsets[i] = ctx->offsets[i - 1] + samplesSizes[i - 1];
  608     }
  609   }
  610   DISPLAYLEVEL(2, "Constructing partial suffix array\n");
  611   {
  612     /* suffix is a partial suffix array.
  613      * It only sorts suffixes by their first parameters.d bytes.
  614      * The sort is stable, so each dmer group is sorted by position in input.
  615      */
  616     U32 i;
  617     for (i = 0; i < ctx->suffixSize; ++i) {
  618       ctx->suffix[i] = i;
  619     }
  620     /* qsort doesn't take an opaque pointer, so pass as a global.
  621      * On OpenBSD qsort() is not guaranteed to be stable, their mergesort() is.
  622      */
  623     g_coverCtx = ctx;
  624 #if defined(__OpenBSD__)
  625     mergesort(ctx->suffix, ctx->suffixSize, sizeof(U32),
  626           (ctx->d <= 8 ? &COVER_strict_cmp8 : &COVER_strict_cmp));
  627 #else
  628     qsort(ctx->suffix, ctx->suffixSize, sizeof(U32),
  629           (ctx->d <= 8 ? &COVER_strict_cmp8 : &COVER_strict_cmp));
  630 #endif
  631   }
  632   DISPLAYLEVEL(2, "Computing frequencies\n");
  633   /* For each dmer group (group of positions with the same first d bytes):
  634    * 1. For each position we set dmerAt[position] = dmerID.  The dmerID is
  635    *    (groupBeginPtr - suffix).  This allows us to go from position to
  636    *    dmerID so we can look up values in freq.
  637    * 2. We calculate how many samples the dmer occurs in and save it in
  638    *    freqs[dmerId].
  639    */
  640   COVER_groupBy(ctx->suffix, ctx->suffixSize, sizeof(U32), ctx,
  641                 (ctx->d <= 8 ? &COVER_cmp8 : &COVER_cmp), &COVER_group);
  642   ctx->freqs = ctx->suffix;
  643   ctx->suffix = NULL;
  644   return 0;
  645 }
  646 
  647 void COVER_warnOnSmallCorpus(size_t maxDictSize, size_t nbDmers, int displayLevel)
  648 {
  649   const double ratio = (double)nbDmers / maxDictSize;
  650   if (ratio >= 10) {
  651       return;
  652   }
  653   LOCALDISPLAYLEVEL(displayLevel, 1,
  654                     "WARNING: The maximum dictionary size %u is too large "
  655                     "compared to the source size %u! "
  656                     "size(source)/size(dictionary) = %f, but it should be >= "
  657                     "10! This may lead to a subpar dictionary! We recommend "
  658                     "training on sources at least 10x, and preferably 100x "
  659                     "the size of the dictionary! \n", (U32)maxDictSize,
  660                     (U32)nbDmers, ratio);
  661 }
  662 
  663 COVER_epoch_info_t COVER_computeEpochs(U32 maxDictSize,
  664                                        U32 nbDmers, U32 k, U32 passes)
  665 {
  666   const U32 minEpochSize = k * 10;
  667   COVER_epoch_info_t epochs;
  668   epochs.num = MAX(1, maxDictSize / k / passes);
  669   epochs.size = nbDmers / epochs.num;
  670   if (epochs.size >= minEpochSize) {
  671       assert(epochs.size * epochs.num <= nbDmers);
  672       return epochs;
  673   }
  674   epochs.size = MIN(minEpochSize, nbDmers);
  675   epochs.num = nbDmers / epochs.size;
  676   assert(epochs.size * epochs.num <= nbDmers);
  677   return epochs;
  678 }
  679 
  680 /**
  681  * Given the prepared context build the dictionary.
  682  */
  683 static size_t COVER_buildDictionary(const COVER_ctx_t *ctx, U32 *freqs,
  684                                     COVER_map_t *activeDmers, void *dictBuffer,
  685                                     size_t dictBufferCapacity,
  686                                     ZDICT_cover_params_t parameters) {
  687   BYTE *const dict = (BYTE *)dictBuffer;
  688   size_t tail = dictBufferCapacity;
  689   /* Divide the data into epochs. We will select one segment from each epoch. */
  690   const COVER_epoch_info_t epochs = COVER_computeEpochs(
  691       (U32)dictBufferCapacity, (U32)ctx->suffixSize, parameters.k, 4);
  692   const size_t maxZeroScoreRun = MAX(10, MIN(100, epochs.num >> 3));
  693   size_t zeroScoreRun = 0;
  694   size_t epoch;
  695   DISPLAYLEVEL(2, "Breaking content into %u epochs of size %u\n",
  696                 (U32)epochs.num, (U32)epochs.size);
  697   /* Loop through the epochs until there are no more segments or the dictionary
  698    * is full.
  699    */
  700   for (epoch = 0; tail > 0; epoch = (epoch + 1) % epochs.num) {
  701     const U32 epochBegin = (U32)(epoch * epochs.size);
  702     const U32 epochEnd = epochBegin + epochs.size;
  703     size_t segmentSize;
  704     /* Select a segment */
  705     COVER_segment_t segment = COVER_selectSegment(
  706         ctx, freqs, activeDmers, epochBegin, epochEnd, parameters);
  707     /* If the segment covers no dmers, then we are out of content.
  708      * There may be new content in other epochs, for continue for some time.
  709      */
  710     if (segment.score == 0) {
  711       if (++zeroScoreRun >= maxZeroScoreRun) {
  712           break;
  713       }
  714       continue;
  715     }
  716     zeroScoreRun = 0;
  717     /* Trim the segment if necessary and if it is too small then we are done */
  718     segmentSize = MIN(segment.end - segment.begin + parameters.d - 1, tail);
  719     if (segmentSize < parameters.d) {
  720       break;
  721     }
  722     /* We fill the dictionary from the back to allow the best segments to be
  723      * referenced with the smallest offsets.
  724      */
  725     tail -= segmentSize;
  726     memcpy(dict + tail, ctx->samples + segment.begin, segmentSize);
  727     DISPLAYUPDATE(
  728         2, "\r%u%%       ",
  729         (unsigned)(((dictBufferCapacity - tail) * 100) / dictBufferCapacity));
  730   }
  731   DISPLAYLEVEL(2, "\r%79s\r", "");
  732   return tail;
  733 }
  734 
  735 ZDICTLIB_API size_t ZDICT_trainFromBuffer_cover(
  736     void *dictBuffer, size_t dictBufferCapacity,
  737     const void *samplesBuffer, const size_t *samplesSizes, unsigned nbSamples,
  738     ZDICT_cover_params_t parameters)
  739 {
  740   BYTE* const dict = (BYTE*)dictBuffer;
  741   COVER_ctx_t ctx;
  742   COVER_map_t activeDmers;
  743   parameters.splitPoint = 1.0;
  744   /* Initialize global data */
  745   g_displayLevel = (int)parameters.zParams.notificationLevel;
  746   /* Checks */
  747   if (!COVER_checkParameters(parameters, dictBufferCapacity)) {
  748     DISPLAYLEVEL(1, "Cover parameters incorrect\n");
  749     return ERROR(parameter_outOfBound);
  750   }
  751   if (nbSamples == 0) {
  752     DISPLAYLEVEL(1, "Cover must have at least one input file\n");
  753     return ERROR(srcSize_wrong);
  754   }
  755   if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) {
  756     DISPLAYLEVEL(1, "dictBufferCapacity must be at least %u\n",
  757                  ZDICT_DICTSIZE_MIN);
  758     return ERROR(dstSize_tooSmall);
  759   }
  760   /* Initialize context and activeDmers */
  761   {
  762     size_t const initVal = COVER_ctx_init(&ctx, samplesBuffer, samplesSizes, nbSamples,
  763                       parameters.d, parameters.splitPoint);
  764     if (ZSTD_isError(initVal)) {
  765       return initVal;
  766     }
  767   }
  768   COVER_warnOnSmallCorpus(dictBufferCapacity, ctx.suffixSize, g_displayLevel);
  769   if (!COVER_map_init(&activeDmers, parameters.k - parameters.d + 1)) {
  770     DISPLAYLEVEL(1, "Failed to allocate dmer map: out of memory\n");
  771     COVER_ctx_destroy(&ctx);
  772     return ERROR(memory_allocation);
  773   }
  774 
  775   DISPLAYLEVEL(2, "Building dictionary\n");
  776   {
  777     const size_t tail =
  778         COVER_buildDictionary(&ctx, ctx.freqs, &activeDmers, dictBuffer,
  779                               dictBufferCapacity, parameters);
  780     const size_t dictionarySize = ZDICT_finalizeDictionary(
  781         dict, dictBufferCapacity, dict + tail, dictBufferCapacity - tail,
  782         samplesBuffer, samplesSizes, nbSamples, parameters.zParams);
  783     if (!ZSTD_isError(dictionarySize)) {
  784       DISPLAYLEVEL(2, "Constructed dictionary of size %u\n",
  785                    (unsigned)dictionarySize);
  786     }
  787     COVER_ctx_destroy(&ctx);
  788     COVER_map_destroy(&activeDmers);
  789     return dictionarySize;
  790   }
  791 }
  792 
  793 
  794 
  795 size_t COVER_checkTotalCompressedSize(const ZDICT_cover_params_t parameters,
  796                                     const size_t *samplesSizes, const BYTE *samples,
  797                                     size_t *offsets,
  798                                     size_t nbTrainSamples, size_t nbSamples,
  799                                     BYTE *const dict, size_t dictBufferCapacity) {
  800   size_t totalCompressedSize = ERROR(GENERIC);
  801   /* Pointers */
  802   ZSTD_CCtx *cctx;
  803   ZSTD_CDict *cdict;
  804   void *dst;
  805   /* Local variables */
  806   size_t dstCapacity;
  807   size_t i;
  808   /* Allocate dst with enough space to compress the maximum sized sample */
  809   {
  810     size_t maxSampleSize = 0;
  811     i = parameters.splitPoint < 1.0 ? nbTrainSamples : 0;
  812     for (; i < nbSamples; ++i) {
  813       maxSampleSize = MAX(samplesSizes[i], maxSampleSize);
  814     }
  815     dstCapacity = ZSTD_compressBound(maxSampleSize);
  816     dst = malloc(dstCapacity);
  817   }
  818   /* Create the cctx and cdict */
  819   cctx = ZSTD_createCCtx();
  820   cdict = ZSTD_createCDict(dict, dictBufferCapacity,
  821                            parameters.zParams.compressionLevel);
  822   if (!dst || !cctx || !cdict) {
  823     goto _compressCleanup;
  824   }
  825   /* Compress each sample and sum their sizes (or error) */
  826   totalCompressedSize = dictBufferCapacity;
  827   i = parameters.splitPoint < 1.0 ? nbTrainSamples : 0;
  828   for (; i < nbSamples; ++i) {
  829     const size_t size = ZSTD_compress_usingCDict(
  830         cctx, dst, dstCapacity, samples + offsets[i],
  831         samplesSizes[i], cdict);
  832     if (ZSTD_isError(size)) {
  833       totalCompressedSize = size;
  834       goto _compressCleanup;
  835     }
  836     totalCompressedSize += size;
  837   }
  838 _compressCleanup:
  839   ZSTD_freeCCtx(cctx);
  840   ZSTD_freeCDict(cdict);
  841   if (dst) {
  842     free(dst);
  843   }
  844   return totalCompressedSize;
  845 }
  846 
  847 
  848 /**
  849  * Initialize the `COVER_best_t`.
  850  */
  851 void COVER_best_init(COVER_best_t *best) {
  852   if (best==NULL) return; /* compatible with init on NULL */
  853   (void)ZSTD_pthread_mutex_init(&best->mutex, NULL);
  854   (void)ZSTD_pthread_cond_init(&best->cond, NULL);
  855   best->liveJobs = 0;
  856   best->dict = NULL;
  857   best->dictSize = 0;
  858   best->compressedSize = (size_t)-1;
  859   memset(&best->parameters, 0, sizeof(best->parameters));
  860 }
  861 
  862 /**
  863  * Wait until liveJobs == 0.
  864  */
  865 void COVER_best_wait(COVER_best_t *best) {
  866   if (!best) {
  867     return;
  868   }
  869   ZSTD_pthread_mutex_lock(&best->mutex);
  870   while (best->liveJobs != 0) {
  871     ZSTD_pthread_cond_wait(&best->cond, &best->mutex);
  872   }
  873   ZSTD_pthread_mutex_unlock(&best->mutex);
  874 }
  875 
  876 /**
  877  * Call COVER_best_wait() and then destroy the COVER_best_t.
  878  */
  879 void COVER_best_destroy(COVER_best_t *best) {
  880   if (!best) {
  881     return;
  882   }
  883   COVER_best_wait(best);
  884   if (best->dict) {
  885     free(best->dict);
  886   }
  887   ZSTD_pthread_mutex_destroy(&best->mutex);
  888   ZSTD_pthread_cond_destroy(&best->cond);
  889 }
  890 
  891 /**
  892  * Called when a thread is about to be launched.
  893  * Increments liveJobs.
  894  */
  895 void COVER_best_start(COVER_best_t *best) {
  896   if (!best) {
  897     return;
  898   }
  899   ZSTD_pthread_mutex_lock(&best->mutex);
  900   ++best->liveJobs;
  901   ZSTD_pthread_mutex_unlock(&best->mutex);
  902 }
  903 
  904 /**
  905  * Called when a thread finishes executing, both on error or success.
  906  * Decrements liveJobs and signals any waiting threads if liveJobs == 0.
  907  * If this dictionary is the best so far save it and its parameters.
  908  */
  909 void COVER_best_finish(COVER_best_t *best, ZDICT_cover_params_t parameters,
  910                               COVER_dictSelection_t selection) {
  911   void* dict = selection.dictContent;
  912   size_t compressedSize = selection.totalCompressedSize;
  913   size_t dictSize = selection.dictSize;
  914   if (!best) {
  915     return;
  916   }
  917   {
  918     size_t liveJobs;
  919     ZSTD_pthread_mutex_lock(&best->mutex);
  920     --best->liveJobs;
  921     liveJobs = best->liveJobs;
  922     /* If the new dictionary is better */
  923     if (compressedSize < best->compressedSize) {
  924       /* Allocate space if necessary */
  925       if (!best->dict || best->dictSize < dictSize) {
  926         if (best->dict) {
  927           free(best->dict);
  928         }
  929         best->dict = malloc(dictSize);
  930         if (!best->dict) {
  931           best->compressedSize = ERROR(GENERIC);
  932           best->dictSize = 0;
  933           ZSTD_pthread_cond_signal(&best->cond);
  934           ZSTD_pthread_mutex_unlock(&best->mutex);
  935           return;
  936         }
  937       }
  938       /* Save the dictionary, parameters, and size */
  939       if (dict) {
  940         memcpy(best->dict, dict, dictSize);
  941         best->dictSize = dictSize;
  942         best->parameters = parameters;
  943         best->compressedSize = compressedSize;
  944       }
  945     }
  946     if (liveJobs == 0) {
  947       ZSTD_pthread_cond_broadcast(&best->cond);
  948     }
  949     ZSTD_pthread_mutex_unlock(&best->mutex);
  950   }
  951 }
  952 
  953 COVER_dictSelection_t COVER_dictSelectionError(size_t error) {
  954     COVER_dictSelection_t selection = { NULL, 0, error };
  955     return selection;
  956 }
  957 
  958 unsigned COVER_dictSelectionIsError(COVER_dictSelection_t selection) {
  959   return (ZSTD_isError(selection.totalCompressedSize) || !selection.dictContent);
  960 }
  961 
  962 void COVER_dictSelectionFree(COVER_dictSelection_t selection){
  963   free(selection.dictContent);
  964 }
  965 
  966 COVER_dictSelection_t COVER_selectDict(BYTE* customDictContent, size_t dictBufferCapacity,
  967         size_t dictContentSize, const BYTE* samplesBuffer, const size_t* samplesSizes, unsigned nbFinalizeSamples,
  968         size_t nbCheckSamples, size_t nbSamples, ZDICT_cover_params_t params, size_t* offsets, size_t totalCompressedSize) {
  969 
  970   size_t largestDict = 0;
  971   size_t largestCompressed = 0;
  972   BYTE* customDictContentEnd = customDictContent + dictContentSize;
  973 
  974   BYTE * largestDictbuffer = (BYTE *)malloc(dictBufferCapacity);
  975   BYTE * candidateDictBuffer = (BYTE *)malloc(dictBufferCapacity);
  976   double regressionTolerance = ((double)params.shrinkDictMaxRegression / 100.0) + 1.00;
  977 
  978   if (!largestDictbuffer || !candidateDictBuffer) {
  979     free(largestDictbuffer);
  980     free(candidateDictBuffer);
  981     return COVER_dictSelectionError(dictContentSize);
  982   }
  983 
  984   /* Initial dictionary size and compressed size */
  985   memcpy(largestDictbuffer, customDictContent, dictContentSize);
  986   dictContentSize = ZDICT_finalizeDictionary(
  987     largestDictbuffer, dictBufferCapacity, customDictContent, dictContentSize,
  988     samplesBuffer, samplesSizes, nbFinalizeSamples, params.zParams);
  989 
  990   if (ZDICT_isError(dictContentSize)) {
  991     free(largestDictbuffer);
  992     free(candidateDictBuffer);
  993     return COVER_dictSelectionError(dictContentSize);
  994   }
  995 
  996   totalCompressedSize = COVER_checkTotalCompressedSize(params, samplesSizes,
  997                                                        samplesBuffer, offsets,
  998                                                        nbCheckSamples, nbSamples,
  999                                                        largestDictbuffer, dictContentSize);
 1000 
 1001   if (ZSTD_isError(totalCompressedSize)) {
 1002     free(largestDictbuffer);
 1003     free(candidateDictBuffer);
 1004     return COVER_dictSelectionError(totalCompressedSize);
 1005   }
 1006 
 1007   if (params.shrinkDict == 0) {
 1008     COVER_dictSelection_t selection = { largestDictbuffer, dictContentSize, totalCompressedSize };
 1009     free(candidateDictBuffer);
 1010     return selection;
 1011   }
 1012 
 1013   largestDict = dictContentSize;
 1014   largestCompressed = totalCompressedSize;
 1015   dictContentSize = ZDICT_DICTSIZE_MIN;
 1016 
 1017   /* Largest dict is initially at least ZDICT_DICTSIZE_MIN */
 1018   while (dictContentSize < largestDict) {
 1019     memcpy(candidateDictBuffer, largestDictbuffer, largestDict);
 1020     dictContentSize = ZDICT_finalizeDictionary(
 1021       candidateDictBuffer, dictBufferCapacity, customDictContentEnd - dictContentSize, dictContentSize,
 1022       samplesBuffer, samplesSizes, nbFinalizeSamples, params.zParams);
 1023 
 1024     if (ZDICT_isError(dictContentSize)) {
 1025       free(largestDictbuffer);
 1026       free(candidateDictBuffer);
 1027       return COVER_dictSelectionError(dictContentSize);
 1028 
 1029     }
 1030 
 1031     totalCompressedSize = COVER_checkTotalCompressedSize(params, samplesSizes,
 1032                                                          samplesBuffer, offsets,
 1033                                                          nbCheckSamples, nbSamples,
 1034                                                          candidateDictBuffer, dictContentSize);
 1035 
 1036     if (ZSTD_isError(totalCompressedSize)) {
 1037       free(largestDictbuffer);
 1038       free(candidateDictBuffer);
 1039       return COVER_dictSelectionError(totalCompressedSize);
 1040     }
 1041 
 1042     if (totalCompressedSize <= largestCompressed * regressionTolerance) {
 1043       COVER_dictSelection_t selection = { candidateDictBuffer, dictContentSize, totalCompressedSize };
 1044       free(largestDictbuffer);
 1045       return selection;
 1046     }
 1047     dictContentSize *= 2;
 1048   }
 1049   dictContentSize = largestDict;
 1050   totalCompressedSize = largestCompressed;
 1051   {
 1052     COVER_dictSelection_t selection = { largestDictbuffer, dictContentSize, totalCompressedSize };
 1053     free(candidateDictBuffer);
 1054     return selection;
 1055   }
 1056 }
 1057 
 1058 /**
 1059  * Parameters for COVER_tryParameters().
 1060  */
 1061 typedef struct COVER_tryParameters_data_s {
 1062   const COVER_ctx_t *ctx;
 1063   COVER_best_t *best;
 1064   size_t dictBufferCapacity;
 1065   ZDICT_cover_params_t parameters;
 1066 } COVER_tryParameters_data_t;
 1067 
 1068 /**
 1069  * Tries a set of parameters and updates the COVER_best_t with the results.
 1070  * This function is thread safe if zstd is compiled with multithreaded support.
 1071  * It takes its parameters as an *OWNING* opaque pointer to support threading.
 1072  */
 1073 static void COVER_tryParameters(void *opaque)
 1074 {
 1075   /* Save parameters as local variables */
 1076   COVER_tryParameters_data_t *const data = (COVER_tryParameters_data_t*)opaque;
 1077   const COVER_ctx_t *const ctx = data->ctx;
 1078   const ZDICT_cover_params_t parameters = data->parameters;
 1079   size_t dictBufferCapacity = data->dictBufferCapacity;
 1080   size_t totalCompressedSize = ERROR(GENERIC);
 1081   /* Allocate space for hash table, dict, and freqs */
 1082   COVER_map_t activeDmers;
 1083   BYTE* const dict = (BYTE*)malloc(dictBufferCapacity);
 1084   COVER_dictSelection_t selection = COVER_dictSelectionError(ERROR(GENERIC));
 1085   U32* const freqs = (U32*)malloc(ctx->suffixSize * sizeof(U32));
 1086   if (!COVER_map_init(&activeDmers, parameters.k - parameters.d + 1)) {
 1087     DISPLAYLEVEL(1, "Failed to allocate dmer map: out of memory\n");
 1088     goto _cleanup;
 1089   }
 1090   if (!dict || !freqs) {
 1091     DISPLAYLEVEL(1, "Failed to allocate buffers: out of memory\n");
 1092     goto _cleanup;
 1093   }
 1094   /* Copy the frequencies because we need to modify them */
 1095   memcpy(freqs, ctx->freqs, ctx->suffixSize * sizeof(U32));
 1096   /* Build the dictionary */
 1097   {
 1098     const size_t tail = COVER_buildDictionary(ctx, freqs, &activeDmers, dict,
 1099                                               dictBufferCapacity, parameters);
 1100     selection = COVER_selectDict(dict + tail, dictBufferCapacity, dictBufferCapacity - tail,
 1101         ctx->samples, ctx->samplesSizes, (unsigned)ctx->nbTrainSamples, ctx->nbTrainSamples, ctx->nbSamples, parameters, ctx->offsets,
 1102         totalCompressedSize);
 1103 
 1104     if (COVER_dictSelectionIsError(selection)) {
 1105       DISPLAYLEVEL(1, "Failed to select dictionary\n");
 1106       goto _cleanup;
 1107     }
 1108   }
 1109 _cleanup:
 1110   free(dict);
 1111   COVER_best_finish(data->best, parameters, selection);
 1112   free(data);
 1113   COVER_map_destroy(&activeDmers);
 1114   COVER_dictSelectionFree(selection);
 1115   free(freqs);
 1116 }
 1117 
 1118 ZDICTLIB_API size_t ZDICT_optimizeTrainFromBuffer_cover(
 1119     void* dictBuffer, size_t dictBufferCapacity, const void* samplesBuffer,
 1120     const size_t* samplesSizes, unsigned nbSamples,
 1121     ZDICT_cover_params_t* parameters)
 1122 {
 1123   /* constants */
 1124   const unsigned nbThreads = parameters->nbThreads;
 1125   const double splitPoint =
 1126       parameters->splitPoint <= 0.0 ? COVER_DEFAULT_SPLITPOINT : parameters->splitPoint;
 1127   const unsigned kMinD = parameters->d == 0 ? 6 : parameters->d;
 1128   const unsigned kMaxD = parameters->d == 0 ? 8 : parameters->d;
 1129   const unsigned kMinK = parameters->k == 0 ? 50 : parameters->k;
 1130   const unsigned kMaxK = parameters->k == 0 ? 2000 : parameters->k;
 1131   const unsigned kSteps = parameters->steps == 0 ? 40 : parameters->steps;
 1132   const unsigned kStepSize = MAX((kMaxK - kMinK) / kSteps, 1);
 1133   const unsigned kIterations =
 1134       (1 + (kMaxD - kMinD) / 2) * (1 + (kMaxK - kMinK) / kStepSize);
 1135   const unsigned shrinkDict = 0;
 1136   /* Local variables */
 1137   const int displayLevel = parameters->zParams.notificationLevel;
 1138   unsigned iteration = 1;
 1139   unsigned d;
 1140   unsigned k;
 1141   COVER_best_t best;
 1142   POOL_ctx *pool = NULL;
 1143   int warned = 0;
 1144 
 1145   /* Checks */
 1146   if (splitPoint <= 0 || splitPoint > 1) {
 1147     LOCALDISPLAYLEVEL(displayLevel, 1, "Incorrect parameters\n");
 1148     return ERROR(parameter_outOfBound);
 1149   }
 1150   if (kMinK < kMaxD || kMaxK < kMinK) {
 1151     LOCALDISPLAYLEVEL(displayLevel, 1, "Incorrect parameters\n");
 1152     return ERROR(parameter_outOfBound);
 1153   }
 1154   if (nbSamples == 0) {
 1155     DISPLAYLEVEL(1, "Cover must have at least one input file\n");
 1156     return ERROR(srcSize_wrong);
 1157   }
 1158   if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) {
 1159     DISPLAYLEVEL(1, "dictBufferCapacity must be at least %u\n",
 1160                  ZDICT_DICTSIZE_MIN);
 1161     return ERROR(dstSize_tooSmall);
 1162   }
 1163   if (nbThreads > 1) {
 1164     pool = POOL_create(nbThreads, 1);
 1165     if (!pool) {
 1166       return ERROR(memory_allocation);
 1167     }
 1168   }
 1169   /* Initialization */
 1170   COVER_best_init(&best);
 1171   /* Turn down global display level to clean up display at level 2 and below */
 1172   g_displayLevel = displayLevel == 0 ? 0 : displayLevel - 1;
 1173   /* Loop through d first because each new value needs a new context */
 1174   LOCALDISPLAYLEVEL(displayLevel, 2, "Trying %u different sets of parameters\n",
 1175                     kIterations);
 1176   for (d = kMinD; d <= kMaxD; d += 2) {
 1177     /* Initialize the context for this value of d */
 1178     COVER_ctx_t ctx;
 1179     LOCALDISPLAYLEVEL(displayLevel, 3, "d=%u\n", d);
 1180     {
 1181       const size_t initVal = COVER_ctx_init(&ctx, samplesBuffer, samplesSizes, nbSamples, d, splitPoint);
 1182       if (ZSTD_isError(initVal)) {
 1183         LOCALDISPLAYLEVEL(displayLevel, 1, "Failed to initialize context\n");
 1184         COVER_best_destroy(&best);
 1185         POOL_free(pool);
 1186         return initVal;
 1187       }
 1188     }
 1189     if (!warned) {
 1190       COVER_warnOnSmallCorpus(dictBufferCapacity, ctx.suffixSize, displayLevel);
 1191       warned = 1;
 1192     }
 1193     /* Loop through k reusing the same context */
 1194     for (k = kMinK; k <= kMaxK; k += kStepSize) {
 1195       /* Prepare the arguments */
 1196       COVER_tryParameters_data_t *data = (COVER_tryParameters_data_t *)malloc(
 1197           sizeof(COVER_tryParameters_data_t));
 1198       LOCALDISPLAYLEVEL(displayLevel, 3, "k=%u\n", k);
 1199       if (!data) {
 1200         LOCALDISPLAYLEVEL(displayLevel, 1, "Failed to allocate parameters\n");
 1201         COVER_best_destroy(&best);
 1202         COVER_ctx_destroy(&ctx);
 1203         POOL_free(pool);
 1204         return ERROR(memory_allocation);
 1205       }
 1206       data->ctx = &ctx;
 1207       data->best = &best;
 1208       data->dictBufferCapacity = dictBufferCapacity;
 1209       data->parameters = *parameters;
 1210       data->parameters.k = k;
 1211       data->parameters.d = d;
 1212       data->parameters.splitPoint = splitPoint;
 1213       data->parameters.steps = kSteps;
 1214       data->parameters.shrinkDict = shrinkDict;
 1215       data->parameters.zParams.notificationLevel = g_displayLevel;
 1216       /* Check the parameters */
 1217       if (!COVER_checkParameters(data->parameters, dictBufferCapacity)) {
 1218         DISPLAYLEVEL(1, "Cover parameters incorrect\n");
 1219         free(data);
 1220         continue;
 1221       }
 1222       /* Call the function and pass ownership of data to it */
 1223       COVER_best_start(&best);
 1224       if (pool) {
 1225         POOL_add(pool, &COVER_tryParameters, data);
 1226       } else {
 1227         COVER_tryParameters(data);
 1228       }
 1229       /* Print status */
 1230       LOCALDISPLAYUPDATE(displayLevel, 2, "\r%u%%       ",
 1231                          (unsigned)((iteration * 100) / kIterations));
 1232       ++iteration;
 1233     }
 1234     COVER_best_wait(&best);
 1235     COVER_ctx_destroy(&ctx);
 1236   }
 1237   LOCALDISPLAYLEVEL(displayLevel, 2, "\r%79s\r", "");
 1238   /* Fill the output buffer and parameters with output of the best parameters */
 1239   {
 1240     const size_t dictSize = best.dictSize;
 1241     if (ZSTD_isError(best.compressedSize)) {
 1242       const size_t compressedSize = best.compressedSize;
 1243       COVER_best_destroy(&best);
 1244       POOL_free(pool);
 1245       return compressedSize;
 1246     }
 1247     *parameters = best.parameters;
 1248     memcpy(dictBuffer, best.dict, dictSize);
 1249     COVER_best_destroy(&best);
 1250     POOL_free(pool);
 1251     return dictSize;
 1252   }
 1253 }

Cache object: 43cb7e3609660ad67bffbdaa9152371f


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.