The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/contrib/zstd/lib/dictBuilder/zdict.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) Yann Collet, Facebook, Inc.
    3  * All rights reserved.
    4  *
    5  * This source code is licensed under both the BSD-style license (found in the
    6  * LICENSE file in the root directory of this source tree) and the GPLv2 (found
    7  * in the COPYING file in the root directory of this source tree).
    8  * You may select, at your option, one of the above-listed licenses.
    9  */
   10 
   11 
   12 /*-**************************************
   13 *  Tuning parameters
   14 ****************************************/
   15 #define MINRATIO 4   /* minimum nb of apparition to be selected in dictionary */
   16 #define ZDICT_MAX_SAMPLES_SIZE (2000U << 20)
   17 #define ZDICT_MIN_SAMPLES_SIZE (ZDICT_CONTENTSIZE_MIN * MINRATIO)
   18 
   19 
   20 /*-**************************************
   21 *  Compiler Options
   22 ****************************************/
   23 /* Unix Large Files support (>4GB) */
   24 #define _FILE_OFFSET_BITS 64
   25 #if (defined(__sun__) && (!defined(__LP64__)))   /* Sun Solaris 32-bits requires specific definitions */
   26 #  ifndef _LARGEFILE_SOURCE
   27 #  define _LARGEFILE_SOURCE
   28 #  endif
   29 #elif ! defined(__LP64__)                        /* No point defining Large file for 64 bit */
   30 #  ifndef _LARGEFILE64_SOURCE
   31 #  define _LARGEFILE64_SOURCE
   32 #  endif
   33 #endif
   34 
   35 
   36 /*-*************************************
   37 *  Dependencies
   38 ***************************************/
   39 #include <stdlib.h>        /* malloc, free */
   40 #include <string.h>        /* memset */
   41 #include <stdio.h>         /* fprintf, fopen, ftello64 */
   42 #include <time.h>          /* clock */
   43 
   44 #ifndef ZDICT_STATIC_LINKING_ONLY
   45 #  define ZDICT_STATIC_LINKING_ONLY
   46 #endif
   47 #define HUF_STATIC_LINKING_ONLY
   48 
   49 #include "../common/mem.h"           /* read */
   50 #include "../common/fse.h"           /* FSE_normalizeCount, FSE_writeNCount */
   51 #include "../common/huf.h"           /* HUF_buildCTable, HUF_writeCTable */
   52 #include "../common/zstd_internal.h" /* includes zstd.h */
   53 #include "../common/xxhash.h"        /* XXH64 */
   54 #include "../compress/zstd_compress_internal.h" /* ZSTD_loadCEntropy() */
   55 #include "../zdict.h"
   56 #include "divsufsort.h"
   57 
   58 
   59 /*-*************************************
   60 *  Constants
   61 ***************************************/
   62 #define KB *(1 <<10)
   63 #define MB *(1 <<20)
   64 #define GB *(1U<<30)
   65 
   66 #define DICTLISTSIZE_DEFAULT 10000
   67 
   68 #define NOISELENGTH 32
   69 
   70 static const U32 g_selectivity_default = 9;
   71 
   72 
   73 /*-*************************************
   74 *  Console display
   75 ***************************************/
   76 #undef  DISPLAY
   77 #define DISPLAY(...)         { fprintf(stderr, __VA_ARGS__); fflush( stderr ); }
   78 #undef  DISPLAYLEVEL
   79 #define DISPLAYLEVEL(l, ...) if (notificationLevel>=l) { DISPLAY(__VA_ARGS__); }    /* 0 : no display;   1: errors;   2: default;  3: details;  4: debug */
   80 
   81 static clock_t ZDICT_clockSpan(clock_t nPrevious) { return clock() - nPrevious; }
   82 
   83 static void ZDICT_printHex(const void* ptr, size_t length)
   84 {
   85     const BYTE* const b = (const BYTE*)ptr;
   86     size_t u;
   87     for (u=0; u<length; u++) {
   88         BYTE c = b[u];
   89         if (c<32 || c>126) c = '.';   /* non-printable char */
   90         DISPLAY("%c", c);
   91     }
   92 }
   93 
   94 
   95 /*-********************************************************
   96 *  Helper functions
   97 **********************************************************/
   98 unsigned ZDICT_isError(size_t errorCode) { return ERR_isError(errorCode); }
   99 
  100 const char* ZDICT_getErrorName(size_t errorCode) { return ERR_getErrorName(errorCode); }
  101 
  102 unsigned ZDICT_getDictID(const void* dictBuffer, size_t dictSize)
  103 {
  104     if (dictSize < 8) return 0;
  105     if (MEM_readLE32(dictBuffer) != ZSTD_MAGIC_DICTIONARY) return 0;
  106     return MEM_readLE32((const char*)dictBuffer + 4);
  107 }
  108 
  109 size_t ZDICT_getDictHeaderSize(const void* dictBuffer, size_t dictSize)
  110 {
  111     size_t headerSize;
  112     if (dictSize <= 8 || MEM_readLE32(dictBuffer) != ZSTD_MAGIC_DICTIONARY) return ERROR(dictionary_corrupted);
  113 
  114     {   ZSTD_compressedBlockState_t* bs = (ZSTD_compressedBlockState_t*)malloc(sizeof(ZSTD_compressedBlockState_t));
  115         U32* wksp = (U32*)malloc(HUF_WORKSPACE_SIZE);
  116         if (!bs || !wksp) {
  117             headerSize = ERROR(memory_allocation);
  118         } else {
  119             ZSTD_reset_compressedBlockState(bs);
  120             headerSize = ZSTD_loadCEntropy(bs, wksp, dictBuffer, dictSize);
  121         }
  122 
  123         free(bs);
  124         free(wksp);
  125     }
  126 
  127     return headerSize;
  128 }
  129 
  130 /*-********************************************************
  131 *  Dictionary training functions
  132 **********************************************************/
  133 static unsigned ZDICT_NbCommonBytes (size_t val)
  134 {
  135     if (MEM_isLittleEndian()) {
  136         if (MEM_64bits()) {
  137 #       if defined(_MSC_VER) && defined(_WIN64)
  138             if (val != 0) {
  139                 unsigned long r;
  140                 _BitScanForward64(&r, (U64)val);
  141                 return (unsigned)(r >> 3);
  142             } else {
  143                 /* Should not reach this code path */
  144                 __assume(0);
  145             }
  146 #       elif defined(__GNUC__) && (__GNUC__ >= 3)
  147             return (unsigned)(__builtin_ctzll((U64)val) >> 3);
  148 #       else
  149             static const int DeBruijnBytePos[64] = { 0, 0, 0, 0, 0, 1, 1, 2, 0, 3, 1, 3, 1, 4, 2, 7, 0, 2, 3, 6, 1, 5, 3, 5, 1, 3, 4, 4, 2, 5, 6, 7, 7, 0, 1, 2, 3, 3, 4, 6, 2, 6, 5, 5, 3, 4, 5, 6, 7, 1, 2, 4, 6, 4, 4, 5, 7, 2, 6, 5, 7, 6, 7, 7 };
  150             return DeBruijnBytePos[((U64)((val & -(long long)val) * 0x0218A392CDABBD3FULL)) >> 58];
  151 #       endif
  152         } else { /* 32 bits */
  153 #       if defined(_MSC_VER)
  154             if (val != 0) {
  155                 unsigned long r;
  156                 _BitScanForward(&r, (U32)val);
  157                 return (unsigned)(r >> 3);
  158             } else {
  159                 /* Should not reach this code path */
  160                 __assume(0);
  161             }
  162 #       elif defined(__GNUC__) && (__GNUC__ >= 3)
  163             return (unsigned)(__builtin_ctz((U32)val) >> 3);
  164 #       else
  165             static const int DeBruijnBytePos[32] = { 0, 0, 3, 0, 3, 1, 3, 0, 3, 2, 2, 1, 3, 2, 0, 1, 3, 3, 1, 2, 2, 2, 2, 0, 3, 1, 2, 0, 1, 0, 1, 1 };
  166             return DeBruijnBytePos[((U32)((val & -(S32)val) * 0x077CB531U)) >> 27];
  167 #       endif
  168         }
  169     } else {  /* Big Endian CPU */
  170         if (MEM_64bits()) {
  171 #       if defined(_MSC_VER) && defined(_WIN64)
  172             if (val != 0) {
  173                 unsigned long r;
  174                 _BitScanReverse64(&r, val);
  175                 return (unsigned)(r >> 3);
  176             } else {
  177                 /* Should not reach this code path */
  178                 __assume(0);
  179             }
  180 #       elif defined(__GNUC__) && (__GNUC__ >= 3)
  181             return (unsigned)(__builtin_clzll(val) >> 3);
  182 #       else
  183             unsigned r;
  184             const unsigned n32 = sizeof(size_t)*4;   /* calculate this way due to compiler complaining in 32-bits mode */
  185             if (!(val>>n32)) { r=4; } else { r=0; val>>=n32; }
  186             if (!(val>>16)) { r+=2; val>>=8; } else { val>>=24; }
  187             r += (!val);
  188             return r;
  189 #       endif
  190         } else { /* 32 bits */
  191 #       if defined(_MSC_VER)
  192             if (val != 0) {
  193                 unsigned long r;
  194                 _BitScanReverse(&r, (unsigned long)val);
  195                 return (unsigned)(r >> 3);
  196             } else {
  197                 /* Should not reach this code path */
  198                 __assume(0);
  199             }
  200 #       elif defined(__GNUC__) && (__GNUC__ >= 3)
  201             return (unsigned)(__builtin_clz((U32)val) >> 3);
  202 #       else
  203             unsigned r;
  204             if (!(val>>16)) { r=2; val>>=8; } else { r=0; val>>=24; }
  205             r += (!val);
  206             return r;
  207 #       endif
  208     }   }
  209 }
  210 
  211 
  212 /*! ZDICT_count() :
  213     Count the nb of common bytes between 2 pointers.
  214     Note : this function presumes end of buffer followed by noisy guard band.
  215 */
  216 static size_t ZDICT_count(const void* pIn, const void* pMatch)
  217 {
  218     const char* const pStart = (const char*)pIn;
  219     for (;;) {
  220         size_t const diff = MEM_readST(pMatch) ^ MEM_readST(pIn);
  221         if (!diff) {
  222             pIn = (const char*)pIn+sizeof(size_t);
  223             pMatch = (const char*)pMatch+sizeof(size_t);
  224             continue;
  225         }
  226         pIn = (const char*)pIn+ZDICT_NbCommonBytes(diff);
  227         return (size_t)((const char*)pIn - pStart);
  228     }
  229 }
  230 
  231 
  232 typedef struct {
  233     U32 pos;
  234     U32 length;
  235     U32 savings;
  236 } dictItem;
  237 
  238 static void ZDICT_initDictItem(dictItem* d)
  239 {
  240     d->pos = 1;
  241     d->length = 0;
  242     d->savings = (U32)(-1);
  243 }
  244 
  245 
  246 #define LLIMIT 64          /* heuristic determined experimentally */
  247 #define MINMATCHLENGTH 7   /* heuristic determined experimentally */
  248 static dictItem ZDICT_analyzePos(
  249                        BYTE* doneMarks,
  250                        const int* suffix, U32 start,
  251                        const void* buffer, U32 minRatio, U32 notificationLevel)
  252 {
  253     U32 lengthList[LLIMIT] = {0};
  254     U32 cumulLength[LLIMIT] = {0};
  255     U32 savings[LLIMIT] = {0};
  256     const BYTE* b = (const BYTE*)buffer;
  257     size_t maxLength = LLIMIT;
  258     size_t pos = (size_t)suffix[start];
  259     U32 end = start;
  260     dictItem solution;
  261 
  262     /* init */
  263     memset(&solution, 0, sizeof(solution));
  264     doneMarks[pos] = 1;
  265 
  266     /* trivial repetition cases */
  267     if ( (MEM_read16(b+pos+0) == MEM_read16(b+pos+2))
  268        ||(MEM_read16(b+pos+1) == MEM_read16(b+pos+3))
  269        ||(MEM_read16(b+pos+2) == MEM_read16(b+pos+4)) ) {
  270         /* skip and mark segment */
  271         U16 const pattern16 = MEM_read16(b+pos+4);
  272         U32 u, patternEnd = 6;
  273         while (MEM_read16(b+pos+patternEnd) == pattern16) patternEnd+=2 ;
  274         if (b[pos+patternEnd] == b[pos+patternEnd-1]) patternEnd++;
  275         for (u=1; u<patternEnd; u++)
  276             doneMarks[pos+u] = 1;
  277         return solution;
  278     }
  279 
  280     /* look forward */
  281     {   size_t length;
  282         do {
  283             end++;
  284             length = ZDICT_count(b + pos, b + suffix[end]);
  285         } while (length >= MINMATCHLENGTH);
  286     }
  287 
  288     /* look backward */
  289     {   size_t length;
  290         do {
  291             length = ZDICT_count(b + pos, b + *(suffix+start-1));
  292             if (length >=MINMATCHLENGTH) start--;
  293         } while(length >= MINMATCHLENGTH);
  294     }
  295 
  296     /* exit if not found a minimum nb of repetitions */
  297     if (end-start < minRatio) {
  298         U32 idx;
  299         for(idx=start; idx<end; idx++)
  300             doneMarks[suffix[idx]] = 1;
  301         return solution;
  302     }
  303 
  304     {   int i;
  305         U32 mml;
  306         U32 refinedStart = start;
  307         U32 refinedEnd = end;
  308 
  309         DISPLAYLEVEL(4, "\n");
  310         DISPLAYLEVEL(4, "found %3u matches of length >= %i at pos %7u  ", (unsigned)(end-start), MINMATCHLENGTH, (unsigned)pos);
  311         DISPLAYLEVEL(4, "\n");
  312 
  313         for (mml = MINMATCHLENGTH ; ; mml++) {
  314             BYTE currentChar = 0;
  315             U32 currentCount = 0;
  316             U32 currentID = refinedStart;
  317             U32 id;
  318             U32 selectedCount = 0;
  319             U32 selectedID = currentID;
  320             for (id =refinedStart; id < refinedEnd; id++) {
  321                 if (b[suffix[id] + mml] != currentChar) {
  322                     if (currentCount > selectedCount) {
  323                         selectedCount = currentCount;
  324                         selectedID = currentID;
  325                     }
  326                     currentID = id;
  327                     currentChar = b[ suffix[id] + mml];
  328                     currentCount = 0;
  329                 }
  330                 currentCount ++;
  331             }
  332             if (currentCount > selectedCount) {  /* for last */
  333                 selectedCount = currentCount;
  334                 selectedID = currentID;
  335             }
  336 
  337             if (selectedCount < minRatio)
  338                 break;
  339             refinedStart = selectedID;
  340             refinedEnd = refinedStart + selectedCount;
  341         }
  342 
  343         /* evaluate gain based on new dict */
  344         start = refinedStart;
  345         pos = suffix[refinedStart];
  346         end = start;
  347         memset(lengthList, 0, sizeof(lengthList));
  348 
  349         /* look forward */
  350         {   size_t length;
  351             do {
  352                 end++;
  353                 length = ZDICT_count(b + pos, b + suffix[end]);
  354                 if (length >= LLIMIT) length = LLIMIT-1;
  355                 lengthList[length]++;
  356             } while (length >=MINMATCHLENGTH);
  357         }
  358 
  359         /* look backward */
  360         {   size_t length = MINMATCHLENGTH;
  361             while ((length >= MINMATCHLENGTH) & (start > 0)) {
  362                 length = ZDICT_count(b + pos, b + suffix[start - 1]);
  363                 if (length >= LLIMIT) length = LLIMIT - 1;
  364                 lengthList[length]++;
  365                 if (length >= MINMATCHLENGTH) start--;
  366             }
  367         }
  368 
  369         /* largest useful length */
  370         memset(cumulLength, 0, sizeof(cumulLength));
  371         cumulLength[maxLength-1] = lengthList[maxLength-1];
  372         for (i=(int)(maxLength-2); i>=0; i--)
  373             cumulLength[i] = cumulLength[i+1] + lengthList[i];
  374 
  375         for (i=LLIMIT-1; i>=MINMATCHLENGTH; i--) if (cumulLength[i]>=minRatio) break;
  376         maxLength = i;
  377 
  378         /* reduce maxLength in case of final into repetitive data */
  379         {   U32 l = (U32)maxLength;
  380             BYTE const c = b[pos + maxLength-1];
  381             while (b[pos+l-2]==c) l--;
  382             maxLength = l;
  383         }
  384         if (maxLength < MINMATCHLENGTH) return solution;   /* skip : no long-enough solution */
  385 
  386         /* calculate savings */
  387         savings[5] = 0;
  388         for (i=MINMATCHLENGTH; i<=(int)maxLength; i++)
  389             savings[i] = savings[i-1] + (lengthList[i] * (i-3));
  390 
  391         DISPLAYLEVEL(4, "Selected dict at position %u, of length %u : saves %u (ratio: %.2f)  \n",
  392                      (unsigned)pos, (unsigned)maxLength, (unsigned)savings[maxLength], (double)savings[maxLength] / (double)maxLength);
  393 
  394         solution.pos = (U32)pos;
  395         solution.length = (U32)maxLength;
  396         solution.savings = savings[maxLength];
  397 
  398         /* mark positions done */
  399         {   U32 id;
  400             for (id=start; id<end; id++) {
  401                 U32 p, pEnd, length;
  402                 U32 const testedPos = (U32)suffix[id];
  403                 if (testedPos == pos)
  404                     length = solution.length;
  405                 else {
  406                     length = (U32)ZDICT_count(b+pos, b+testedPos);
  407                     if (length > solution.length) length = solution.length;
  408                 }
  409                 pEnd = (U32)(testedPos + length);
  410                 for (p=testedPos; p<pEnd; p++)
  411                     doneMarks[p] = 1;
  412     }   }   }
  413 
  414     return solution;
  415 }
  416 
  417 
  418 static int isIncluded(const void* in, const void* container, size_t length)
  419 {
  420     const char* const ip = (const char*) in;
  421     const char* const into = (const char*) container;
  422     size_t u;
  423 
  424     for (u=0; u<length; u++) {  /* works because end of buffer is a noisy guard band */
  425         if (ip[u] != into[u]) break;
  426     }
  427 
  428     return u==length;
  429 }
  430 
  431 /*! ZDICT_tryMerge() :
  432     check if dictItem can be merged, do it if possible
  433     @return : id of destination elt, 0 if not merged
  434 */
  435 static U32 ZDICT_tryMerge(dictItem* table, dictItem elt, U32 eltNbToSkip, const void* buffer)
  436 {
  437     const U32 tableSize = table->pos;
  438     const U32 eltEnd = elt.pos + elt.length;
  439     const char* const buf = (const char*) buffer;
  440 
  441     /* tail overlap */
  442     U32 u; for (u=1; u<tableSize; u++) {
  443         if (u==eltNbToSkip) continue;
  444         if ((table[u].pos > elt.pos) && (table[u].pos <= eltEnd)) {  /* overlap, existing > new */
  445             /* append */
  446             U32 const addedLength = table[u].pos - elt.pos;
  447             table[u].length += addedLength;
  448             table[u].pos = elt.pos;
  449             table[u].savings += elt.savings * addedLength / elt.length;   /* rough approx */
  450             table[u].savings += elt.length / 8;    /* rough approx bonus */
  451             elt = table[u];
  452             /* sort : improve rank */
  453             while ((u>1) && (table[u-1].savings < elt.savings))
  454             table[u] = table[u-1], u--;
  455             table[u] = elt;
  456             return u;
  457     }   }
  458 
  459     /* front overlap */
  460     for (u=1; u<tableSize; u++) {
  461         if (u==eltNbToSkip) continue;
  462 
  463         if ((table[u].pos + table[u].length >= elt.pos) && (table[u].pos < elt.pos)) {  /* overlap, existing < new */
  464             /* append */
  465             int const addedLength = (int)eltEnd - (int)(table[u].pos + table[u].length);
  466             table[u].savings += elt.length / 8;    /* rough approx bonus */
  467             if (addedLength > 0) {   /* otherwise, elt fully included into existing */
  468                 table[u].length += addedLength;
  469                 table[u].savings += elt.savings * addedLength / elt.length;   /* rough approx */
  470             }
  471             /* sort : improve rank */
  472             elt = table[u];
  473             while ((u>1) && (table[u-1].savings < elt.savings))
  474                 table[u] = table[u-1], u--;
  475             table[u] = elt;
  476             return u;
  477         }
  478 
  479         if (MEM_read64(buf + table[u].pos) == MEM_read64(buf + elt.pos + 1)) {
  480             if (isIncluded(buf + table[u].pos, buf + elt.pos + 1, table[u].length)) {
  481                 size_t const addedLength = MAX( (int)elt.length - (int)table[u].length , 1 );
  482                 table[u].pos = elt.pos;
  483                 table[u].savings += (U32)(elt.savings * addedLength / elt.length);
  484                 table[u].length = MIN(elt.length, table[u].length + 1);
  485                 return u;
  486             }
  487         }
  488     }
  489 
  490     return 0;
  491 }
  492 
  493 
  494 static void ZDICT_removeDictItem(dictItem* table, U32 id)
  495 {
  496     /* convention : table[0].pos stores nb of elts */
  497     U32 const max = table[0].pos;
  498     U32 u;
  499     if (!id) return;   /* protection, should never happen */
  500     for (u=id; u<max-1; u++)
  501         table[u] = table[u+1];
  502     table->pos--;
  503 }
  504 
  505 
  506 static void ZDICT_insertDictItem(dictItem* table, U32 maxSize, dictItem elt, const void* buffer)
  507 {
  508     /* merge if possible */
  509     U32 mergeId = ZDICT_tryMerge(table, elt, 0, buffer);
  510     if (mergeId) {
  511         U32 newMerge = 1;
  512         while (newMerge) {
  513             newMerge = ZDICT_tryMerge(table, table[mergeId], mergeId, buffer);
  514             if (newMerge) ZDICT_removeDictItem(table, mergeId);
  515             mergeId = newMerge;
  516         }
  517         return;
  518     }
  519 
  520     /* insert */
  521     {   U32 current;
  522         U32 nextElt = table->pos;
  523         if (nextElt >= maxSize) nextElt = maxSize-1;
  524         current = nextElt-1;
  525         while (table[current].savings < elt.savings) {
  526             table[current+1] = table[current];
  527             current--;
  528         }
  529         table[current+1] = elt;
  530         table->pos = nextElt+1;
  531     }
  532 }
  533 
  534 
  535 static U32 ZDICT_dictSize(const dictItem* dictList)
  536 {
  537     U32 u, dictSize = 0;
  538     for (u=1; u<dictList[0].pos; u++)
  539         dictSize += dictList[u].length;
  540     return dictSize;
  541 }
  542 
  543 
  544 static size_t ZDICT_trainBuffer_legacy(dictItem* dictList, U32 dictListSize,
  545                             const void* const buffer, size_t bufferSize,   /* buffer must end with noisy guard band */
  546                             const size_t* fileSizes, unsigned nbFiles,
  547                             unsigned minRatio, U32 notificationLevel)
  548 {
  549     int* const suffix0 = (int*)malloc((bufferSize+2)*sizeof(*suffix0));
  550     int* const suffix = suffix0+1;
  551     U32* reverseSuffix = (U32*)malloc((bufferSize)*sizeof(*reverseSuffix));
  552     BYTE* doneMarks = (BYTE*)malloc((bufferSize+16)*sizeof(*doneMarks));   /* +16 for overflow security */
  553     U32* filePos = (U32*)malloc(nbFiles * sizeof(*filePos));
  554     size_t result = 0;
  555     clock_t displayClock = 0;
  556     clock_t const refreshRate = CLOCKS_PER_SEC * 3 / 10;
  557 
  558 #   undef  DISPLAYUPDATE
  559 #   define DISPLAYUPDATE(l, ...) if (notificationLevel>=l) { \
  560             if (ZDICT_clockSpan(displayClock) > refreshRate)  \
  561             { displayClock = clock(); DISPLAY(__VA_ARGS__); \
  562             if (notificationLevel>=4) fflush(stderr); } }
  563 
  564     /* init */
  565     DISPLAYLEVEL(2, "\r%70s\r", "");   /* clean display line */
  566     if (!suffix0 || !reverseSuffix || !doneMarks || !filePos) {
  567         result = ERROR(memory_allocation);
  568         goto _cleanup;
  569     }
  570     if (minRatio < MINRATIO) minRatio = MINRATIO;
  571     memset(doneMarks, 0, bufferSize+16);
  572 
  573     /* limit sample set size (divsufsort limitation)*/
  574     if (bufferSize > ZDICT_MAX_SAMPLES_SIZE) DISPLAYLEVEL(3, "sample set too large : reduced to %u MB ...\n", (unsigned)(ZDICT_MAX_SAMPLES_SIZE>>20));
  575     while (bufferSize > ZDICT_MAX_SAMPLES_SIZE) bufferSize -= fileSizes[--nbFiles];
  576 
  577     /* sort */
  578     DISPLAYLEVEL(2, "sorting %u files of total size %u MB ...\n", nbFiles, (unsigned)(bufferSize>>20));
  579     {   int const divSuftSortResult = divsufsort((const unsigned char*)buffer, suffix, (int)bufferSize, 0);
  580         if (divSuftSortResult != 0) { result = ERROR(GENERIC); goto _cleanup; }
  581     }
  582     suffix[bufferSize] = (int)bufferSize;   /* leads into noise */
  583     suffix0[0] = (int)bufferSize;           /* leads into noise */
  584     /* build reverse suffix sort */
  585     {   size_t pos;
  586         for (pos=0; pos < bufferSize; pos++)
  587             reverseSuffix[suffix[pos]] = (U32)pos;
  588         /* note filePos tracks borders between samples.
  589            It's not used at this stage, but planned to become useful in a later update */
  590         filePos[0] = 0;
  591         for (pos=1; pos<nbFiles; pos++)
  592             filePos[pos] = (U32)(filePos[pos-1] + fileSizes[pos-1]);
  593     }
  594 
  595     DISPLAYLEVEL(2, "finding patterns ... \n");
  596     DISPLAYLEVEL(3, "minimum ratio : %u \n", minRatio);
  597 
  598     {   U32 cursor; for (cursor=0; cursor < bufferSize; ) {
  599             dictItem solution;
  600             if (doneMarks[cursor]) { cursor++; continue; }
  601             solution = ZDICT_analyzePos(doneMarks, suffix, reverseSuffix[cursor], buffer, minRatio, notificationLevel);
  602             if (solution.length==0) { cursor++; continue; }
  603             ZDICT_insertDictItem(dictList, dictListSize, solution, buffer);
  604             cursor += solution.length;
  605             DISPLAYUPDATE(2, "\r%4.2f %% \r", (double)cursor / bufferSize * 100);
  606     }   }
  607 
  608 _cleanup:
  609     free(suffix0);
  610     free(reverseSuffix);
  611     free(doneMarks);
  612     free(filePos);
  613     return result;
  614 }
  615 
  616 
  617 static void ZDICT_fillNoise(void* buffer, size_t length)
  618 {
  619     unsigned const prime1 = 2654435761U;
  620     unsigned const prime2 = 2246822519U;
  621     unsigned acc = prime1;
  622     size_t p=0;
  623     for (p=0; p<length; p++) {
  624         acc *= prime2;
  625         ((unsigned char*)buffer)[p] = (unsigned char)(acc >> 21);
  626     }
  627 }
  628 
  629 
  630 typedef struct
  631 {
  632     ZSTD_CDict* dict;    /* dictionary */
  633     ZSTD_CCtx* zc;     /* working context */
  634     void* workPlace;   /* must be ZSTD_BLOCKSIZE_MAX allocated */
  635 } EStats_ress_t;
  636 
  637 #define MAXREPOFFSET 1024
  638 
  639 static void ZDICT_countEStats(EStats_ress_t esr, const ZSTD_parameters* params,
  640                               unsigned* countLit, unsigned* offsetcodeCount, unsigned* matchlengthCount, unsigned* litlengthCount, U32* repOffsets,
  641                               const void* src, size_t srcSize,
  642                               U32 notificationLevel)
  643 {
  644     size_t const blockSizeMax = MIN (ZSTD_BLOCKSIZE_MAX, 1 << params->cParams.windowLog);
  645     size_t cSize;
  646 
  647     if (srcSize > blockSizeMax) srcSize = blockSizeMax;   /* protection vs large samples */
  648     {   size_t const errorCode = ZSTD_compressBegin_usingCDict(esr.zc, esr.dict);
  649         if (ZSTD_isError(errorCode)) { DISPLAYLEVEL(1, "warning : ZSTD_compressBegin_usingCDict failed \n"); return; }
  650 
  651     }
  652     cSize = ZSTD_compressBlock(esr.zc, esr.workPlace, ZSTD_BLOCKSIZE_MAX, src, srcSize);
  653     if (ZSTD_isError(cSize)) { DISPLAYLEVEL(3, "warning : could not compress sample size %u \n", (unsigned)srcSize); return; }
  654 
  655     if (cSize) {  /* if == 0; block is not compressible */
  656         const seqStore_t* const seqStorePtr = ZSTD_getSeqStore(esr.zc);
  657 
  658         /* literals stats */
  659         {   const BYTE* bytePtr;
  660             for(bytePtr = seqStorePtr->litStart; bytePtr < seqStorePtr->lit; bytePtr++)
  661                 countLit[*bytePtr]++;
  662         }
  663 
  664         /* seqStats */
  665         {   U32 const nbSeq = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart);
  666             ZSTD_seqToCodes(seqStorePtr);
  667 
  668             {   const BYTE* codePtr = seqStorePtr->ofCode;
  669                 U32 u;
  670                 for (u=0; u<nbSeq; u++) offsetcodeCount[codePtr[u]]++;
  671             }
  672 
  673             {   const BYTE* codePtr = seqStorePtr->mlCode;
  674                 U32 u;
  675                 for (u=0; u<nbSeq; u++) matchlengthCount[codePtr[u]]++;
  676             }
  677 
  678             {   const BYTE* codePtr = seqStorePtr->llCode;
  679                 U32 u;
  680                 for (u=0; u<nbSeq; u++) litlengthCount[codePtr[u]]++;
  681             }
  682 
  683             if (nbSeq >= 2) { /* rep offsets */
  684                 const seqDef* const seq = seqStorePtr->sequencesStart;
  685                 U32 offset1 = seq[0].offBase - ZSTD_REP_NUM;
  686                 U32 offset2 = seq[1].offBase - ZSTD_REP_NUM;
  687                 if (offset1 >= MAXREPOFFSET) offset1 = 0;
  688                 if (offset2 >= MAXREPOFFSET) offset2 = 0;
  689                 repOffsets[offset1] += 3;
  690                 repOffsets[offset2] += 1;
  691     }   }   }
  692 }
  693 
  694 static size_t ZDICT_totalSampleSize(const size_t* fileSizes, unsigned nbFiles)
  695 {
  696     size_t total=0;
  697     unsigned u;
  698     for (u=0; u<nbFiles; u++) total += fileSizes[u];
  699     return total;
  700 }
  701 
  702 typedef struct { U32 offset; U32 count; } offsetCount_t;
  703 
  704 static void ZDICT_insertSortCount(offsetCount_t table[ZSTD_REP_NUM+1], U32 val, U32 count)
  705 {
  706     U32 u;
  707     table[ZSTD_REP_NUM].offset = val;
  708     table[ZSTD_REP_NUM].count = count;
  709     for (u=ZSTD_REP_NUM; u>0; u--) {
  710         offsetCount_t tmp;
  711         if (table[u-1].count >= table[u].count) break;
  712         tmp = table[u-1];
  713         table[u-1] = table[u];
  714         table[u] = tmp;
  715     }
  716 }
  717 
  718 /* ZDICT_flatLit() :
  719  * rewrite `countLit` to contain a mostly flat but still compressible distribution of literals.
  720  * necessary to avoid generating a non-compressible distribution that HUF_writeCTable() cannot encode.
  721  */
  722 static void ZDICT_flatLit(unsigned* countLit)
  723 {
  724     int u;
  725     for (u=1; u<256; u++) countLit[u] = 2;
  726     countLit[0]   = 4;
  727     countLit[253] = 1;
  728     countLit[254] = 1;
  729 }
  730 
  731 #define OFFCODE_MAX 30  /* only applicable to first block */
  732 static size_t ZDICT_analyzeEntropy(void*  dstBuffer, size_t maxDstSize,
  733                                    int compressionLevel,
  734                              const void*  srcBuffer, const size_t* fileSizes, unsigned nbFiles,
  735                              const void* dictBuffer, size_t  dictBufferSize,
  736                                    unsigned notificationLevel)
  737 {
  738     unsigned countLit[256];
  739     HUF_CREATE_STATIC_CTABLE(hufTable, 255);
  740     unsigned offcodeCount[OFFCODE_MAX+1];
  741     short offcodeNCount[OFFCODE_MAX+1];
  742     U32 offcodeMax = ZSTD_highbit32((U32)(dictBufferSize + 128 KB));
  743     unsigned matchLengthCount[MaxML+1];
  744     short matchLengthNCount[MaxML+1];
  745     unsigned litLengthCount[MaxLL+1];
  746     short litLengthNCount[MaxLL+1];
  747     U32 repOffset[MAXREPOFFSET];
  748     offsetCount_t bestRepOffset[ZSTD_REP_NUM+1];
  749     EStats_ress_t esr = { NULL, NULL, NULL };
  750     ZSTD_parameters params;
  751     U32 u, huffLog = 11, Offlog = OffFSELog, mlLog = MLFSELog, llLog = LLFSELog, total;
  752     size_t pos = 0, errorCode;
  753     size_t eSize = 0;
  754     size_t const totalSrcSize = ZDICT_totalSampleSize(fileSizes, nbFiles);
  755     size_t const averageSampleSize = totalSrcSize / (nbFiles + !nbFiles);
  756     BYTE* dstPtr = (BYTE*)dstBuffer;
  757 
  758     /* init */
  759     DEBUGLOG(4, "ZDICT_analyzeEntropy");
  760     if (offcodeMax>OFFCODE_MAX) { eSize = ERROR(dictionaryCreation_failed); goto _cleanup; }   /* too large dictionary */
  761     for (u=0; u<256; u++) countLit[u] = 1;   /* any character must be described */
  762     for (u=0; u<=offcodeMax; u++) offcodeCount[u] = 1;
  763     for (u=0; u<=MaxML; u++) matchLengthCount[u] = 1;
  764     for (u=0; u<=MaxLL; u++) litLengthCount[u] = 1;
  765     memset(repOffset, 0, sizeof(repOffset));
  766     repOffset[1] = repOffset[4] = repOffset[8] = 1;
  767     memset(bestRepOffset, 0, sizeof(bestRepOffset));
  768     if (compressionLevel==0) compressionLevel = ZSTD_CLEVEL_DEFAULT;
  769     params = ZSTD_getParams(compressionLevel, averageSampleSize, dictBufferSize);
  770 
  771     esr.dict = ZSTD_createCDict_advanced(dictBuffer, dictBufferSize, ZSTD_dlm_byRef, ZSTD_dct_rawContent, params.cParams, ZSTD_defaultCMem);
  772     esr.zc = ZSTD_createCCtx();
  773     esr.workPlace = malloc(ZSTD_BLOCKSIZE_MAX);
  774     if (!esr.dict || !esr.zc || !esr.workPlace) {
  775         eSize = ERROR(memory_allocation);
  776         DISPLAYLEVEL(1, "Not enough memory \n");
  777         goto _cleanup;
  778     }
  779 
  780     /* collect stats on all samples */
  781     for (u=0; u<nbFiles; u++) {
  782         ZDICT_countEStats(esr, &params,
  783                           countLit, offcodeCount, matchLengthCount, litLengthCount, repOffset,
  784                          (const char*)srcBuffer + pos, fileSizes[u],
  785                           notificationLevel);
  786         pos += fileSizes[u];
  787     }
  788 
  789     if (notificationLevel >= 4) {
  790         /* writeStats */
  791         DISPLAYLEVEL(4, "Offset Code Frequencies : \n");
  792         for (u=0; u<=offcodeMax; u++) {
  793             DISPLAYLEVEL(4, "%2u :%7u \n", u, offcodeCount[u]);
  794     }   }
  795 
  796     /* analyze, build stats, starting with literals */
  797     {   size_t maxNbBits = HUF_buildCTable (hufTable, countLit, 255, huffLog);
  798         if (HUF_isError(maxNbBits)) {
  799             eSize = maxNbBits;
  800             DISPLAYLEVEL(1, " HUF_buildCTable error \n");
  801             goto _cleanup;
  802         }
  803         if (maxNbBits==8) {  /* not compressible : will fail on HUF_writeCTable() */
  804             DISPLAYLEVEL(2, "warning : pathological dataset : literals are not compressible : samples are noisy or too regular \n");
  805             ZDICT_flatLit(countLit);  /* replace distribution by a fake "mostly flat but still compressible" distribution, that HUF_writeCTable() can encode */
  806             maxNbBits = HUF_buildCTable (hufTable, countLit, 255, huffLog);
  807             assert(maxNbBits==9);
  808         }
  809         huffLog = (U32)maxNbBits;
  810     }
  811 
  812     /* looking for most common first offsets */
  813     {   U32 offset;
  814         for (offset=1; offset<MAXREPOFFSET; offset++)
  815             ZDICT_insertSortCount(bestRepOffset, offset, repOffset[offset]);
  816     }
  817     /* note : the result of this phase should be used to better appreciate the impact on statistics */
  818 
  819     total=0; for (u=0; u<=offcodeMax; u++) total+=offcodeCount[u];
  820     errorCode = FSE_normalizeCount(offcodeNCount, Offlog, offcodeCount, total, offcodeMax, /* useLowProbCount */ 1);
  821     if (FSE_isError(errorCode)) {
  822         eSize = errorCode;
  823         DISPLAYLEVEL(1, "FSE_normalizeCount error with offcodeCount \n");
  824         goto _cleanup;
  825     }
  826     Offlog = (U32)errorCode;
  827 
  828     total=0; for (u=0; u<=MaxML; u++) total+=matchLengthCount[u];
  829     errorCode = FSE_normalizeCount(matchLengthNCount, mlLog, matchLengthCount, total, MaxML, /* useLowProbCount */ 1);
  830     if (FSE_isError(errorCode)) {
  831         eSize = errorCode;
  832         DISPLAYLEVEL(1, "FSE_normalizeCount error with matchLengthCount \n");
  833         goto _cleanup;
  834     }
  835     mlLog = (U32)errorCode;
  836 
  837     total=0; for (u=0; u<=MaxLL; u++) total+=litLengthCount[u];
  838     errorCode = FSE_normalizeCount(litLengthNCount, llLog, litLengthCount, total, MaxLL, /* useLowProbCount */ 1);
  839     if (FSE_isError(errorCode)) {
  840         eSize = errorCode;
  841         DISPLAYLEVEL(1, "FSE_normalizeCount error with litLengthCount \n");
  842         goto _cleanup;
  843     }
  844     llLog = (U32)errorCode;
  845 
  846     /* write result to buffer */
  847     {   size_t const hhSize = HUF_writeCTable(dstPtr, maxDstSize, hufTable, 255, huffLog);
  848         if (HUF_isError(hhSize)) {
  849             eSize = hhSize;
  850             DISPLAYLEVEL(1, "HUF_writeCTable error \n");
  851             goto _cleanup;
  852         }
  853         dstPtr += hhSize;
  854         maxDstSize -= hhSize;
  855         eSize += hhSize;
  856     }
  857 
  858     {   size_t const ohSize = FSE_writeNCount(dstPtr, maxDstSize, offcodeNCount, OFFCODE_MAX, Offlog);
  859         if (FSE_isError(ohSize)) {
  860             eSize = ohSize;
  861             DISPLAYLEVEL(1, "FSE_writeNCount error with offcodeNCount \n");
  862             goto _cleanup;
  863         }
  864         dstPtr += ohSize;
  865         maxDstSize -= ohSize;
  866         eSize += ohSize;
  867     }
  868 
  869     {   size_t const mhSize = FSE_writeNCount(dstPtr, maxDstSize, matchLengthNCount, MaxML, mlLog);
  870         if (FSE_isError(mhSize)) {
  871             eSize = mhSize;
  872             DISPLAYLEVEL(1, "FSE_writeNCount error with matchLengthNCount \n");
  873             goto _cleanup;
  874         }
  875         dstPtr += mhSize;
  876         maxDstSize -= mhSize;
  877         eSize += mhSize;
  878     }
  879 
  880     {   size_t const lhSize = FSE_writeNCount(dstPtr, maxDstSize, litLengthNCount, MaxLL, llLog);
  881         if (FSE_isError(lhSize)) {
  882             eSize = lhSize;
  883             DISPLAYLEVEL(1, "FSE_writeNCount error with litlengthNCount \n");
  884             goto _cleanup;
  885         }
  886         dstPtr += lhSize;
  887         maxDstSize -= lhSize;
  888         eSize += lhSize;
  889     }
  890 
  891     if (maxDstSize<12) {
  892         eSize = ERROR(dstSize_tooSmall);
  893         DISPLAYLEVEL(1, "not enough space to write RepOffsets \n");
  894         goto _cleanup;
  895     }
  896 # if 0
  897     MEM_writeLE32(dstPtr+0, bestRepOffset[0].offset);
  898     MEM_writeLE32(dstPtr+4, bestRepOffset[1].offset);
  899     MEM_writeLE32(dstPtr+8, bestRepOffset[2].offset);
  900 #else
  901     /* at this stage, we don't use the result of "most common first offset",
  902      * as the impact of statistics is not properly evaluated */
  903     MEM_writeLE32(dstPtr+0, repStartValue[0]);
  904     MEM_writeLE32(dstPtr+4, repStartValue[1]);
  905     MEM_writeLE32(dstPtr+8, repStartValue[2]);
  906 #endif
  907     eSize += 12;
  908 
  909 _cleanup:
  910     ZSTD_freeCDict(esr.dict);
  911     ZSTD_freeCCtx(esr.zc);
  912     free(esr.workPlace);
  913 
  914     return eSize;
  915 }
  916 
  917 
  918 /**
  919  * @returns the maximum repcode value
  920  */
  921 static U32 ZDICT_maxRep(U32 const reps[ZSTD_REP_NUM])
  922 {
  923     U32 maxRep = reps[0];
  924     int r;
  925     for (r = 1; r < ZSTD_REP_NUM; ++r)
  926         maxRep = MAX(maxRep, reps[r]);
  927     return maxRep;
  928 }
  929 
  930 size_t ZDICT_finalizeDictionary(void* dictBuffer, size_t dictBufferCapacity,
  931                           const void* customDictContent, size_t dictContentSize,
  932                           const void* samplesBuffer, const size_t* samplesSizes,
  933                           unsigned nbSamples, ZDICT_params_t params)
  934 {
  935     size_t hSize;
  936 #define HBUFFSIZE 256   /* should prove large enough for all entropy headers */
  937     BYTE header[HBUFFSIZE];
  938     int const compressionLevel = (params.compressionLevel == 0) ? ZSTD_CLEVEL_DEFAULT : params.compressionLevel;
  939     U32 const notificationLevel = params.notificationLevel;
  940     /* The final dictionary content must be at least as large as the largest repcode */
  941     size_t const minContentSize = (size_t)ZDICT_maxRep(repStartValue);
  942     size_t paddingSize;
  943 
  944     /* check conditions */
  945     DEBUGLOG(4, "ZDICT_finalizeDictionary");
  946     if (dictBufferCapacity < dictContentSize) return ERROR(dstSize_tooSmall);
  947     if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) return ERROR(dstSize_tooSmall);
  948 
  949     /* dictionary header */
  950     MEM_writeLE32(header, ZSTD_MAGIC_DICTIONARY);
  951     {   U64 const randomID = XXH64(customDictContent, dictContentSize, 0);
  952         U32 const compliantID = (randomID % ((1U<<31)-32768)) + 32768;
  953         U32 const dictID = params.dictID ? params.dictID : compliantID;
  954         MEM_writeLE32(header+4, dictID);
  955     }
  956     hSize = 8;
  957 
  958     /* entropy tables */
  959     DISPLAYLEVEL(2, "\r%70s\r", "");   /* clean display line */
  960     DISPLAYLEVEL(2, "statistics ... \n");
  961     {   size_t const eSize = ZDICT_analyzeEntropy(header+hSize, HBUFFSIZE-hSize,
  962                                   compressionLevel,
  963                                   samplesBuffer, samplesSizes, nbSamples,
  964                                   customDictContent, dictContentSize,
  965                                   notificationLevel);
  966         if (ZDICT_isError(eSize)) return eSize;
  967         hSize += eSize;
  968     }
  969 
  970     /* Shrink the content size if it doesn't fit in the buffer */
  971     if (hSize + dictContentSize > dictBufferCapacity) {
  972         dictContentSize = dictBufferCapacity - hSize;
  973     }
  974 
  975     /* Pad the dictionary content with zeros if it is too small */
  976     if (dictContentSize < minContentSize) {
  977         RETURN_ERROR_IF(hSize + minContentSize > dictBufferCapacity, dstSize_tooSmall,
  978                         "dictBufferCapacity too small to fit max repcode");
  979         paddingSize = minContentSize - dictContentSize;
  980     } else {
  981         paddingSize = 0;
  982     }
  983 
  984     {
  985         size_t const dictSize = hSize + paddingSize + dictContentSize;
  986 
  987         /* The dictionary consists of the header, optional padding, and the content.
  988          * The padding comes before the content because the "best" position in the
  989          * dictionary is the last byte.
  990          */
  991         BYTE* const outDictHeader = (BYTE*)dictBuffer;
  992         BYTE* const outDictPadding = outDictHeader + hSize;
  993         BYTE* const outDictContent = outDictPadding + paddingSize;
  994 
  995         assert(dictSize <= dictBufferCapacity);
  996         assert(outDictContent + dictContentSize == (BYTE*)dictBuffer + dictSize);
  997 
  998         /* First copy the customDictContent into its final location.
  999          * `customDictContent` and `dictBuffer` may overlap, so we must
 1000          * do this before any other writes into the output buffer.
 1001          * Then copy the header & padding into the output buffer.
 1002          */
 1003         memmove(outDictContent, customDictContent, dictContentSize);
 1004         memcpy(outDictHeader, header, hSize);
 1005         memset(outDictPadding, 0, paddingSize);
 1006 
 1007         return dictSize;
 1008     }
 1009 }
 1010 
 1011 
 1012 static size_t ZDICT_addEntropyTablesFromBuffer_advanced(
 1013         void* dictBuffer, size_t dictContentSize, size_t dictBufferCapacity,
 1014         const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples,
 1015         ZDICT_params_t params)
 1016 {
 1017     int const compressionLevel = (params.compressionLevel == 0) ? ZSTD_CLEVEL_DEFAULT : params.compressionLevel;
 1018     U32 const notificationLevel = params.notificationLevel;
 1019     size_t hSize = 8;
 1020 
 1021     /* calculate entropy tables */
 1022     DISPLAYLEVEL(2, "\r%70s\r", "");   /* clean display line */
 1023     DISPLAYLEVEL(2, "statistics ... \n");
 1024     {   size_t const eSize = ZDICT_analyzeEntropy((char*)dictBuffer+hSize, dictBufferCapacity-hSize,
 1025                                   compressionLevel,
 1026                                   samplesBuffer, samplesSizes, nbSamples,
 1027                                   (char*)dictBuffer + dictBufferCapacity - dictContentSize, dictContentSize,
 1028                                   notificationLevel);
 1029         if (ZDICT_isError(eSize)) return eSize;
 1030         hSize += eSize;
 1031     }
 1032 
 1033     /* add dictionary header (after entropy tables) */
 1034     MEM_writeLE32(dictBuffer, ZSTD_MAGIC_DICTIONARY);
 1035     {   U64 const randomID = XXH64((char*)dictBuffer + dictBufferCapacity - dictContentSize, dictContentSize, 0);
 1036         U32 const compliantID = (randomID % ((1U<<31)-32768)) + 32768;
 1037         U32 const dictID = params.dictID ? params.dictID : compliantID;
 1038         MEM_writeLE32((char*)dictBuffer+4, dictID);
 1039     }
 1040 
 1041     if (hSize + dictContentSize < dictBufferCapacity)
 1042         memmove((char*)dictBuffer + hSize, (char*)dictBuffer + dictBufferCapacity - dictContentSize, dictContentSize);
 1043     return MIN(dictBufferCapacity, hSize+dictContentSize);
 1044 }
 1045 
 1046 /*! ZDICT_trainFromBuffer_unsafe_legacy() :
 1047 *   Warning : `samplesBuffer` must be followed by noisy guard band !!!
 1048 *   @return : size of dictionary, or an error code which can be tested with ZDICT_isError()
 1049 */
 1050 /* Begin FreeBSD - This symbol is needed by dll-linked CLI zstd(1). */
 1051 ZSTDLIB_API
 1052 /* End FreeBSD */
 1053 static size_t ZDICT_trainFromBuffer_unsafe_legacy(
 1054                             void* dictBuffer, size_t maxDictSize,
 1055                             const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples,
 1056                             ZDICT_legacy_params_t params)
 1057 {
 1058     U32 const dictListSize = MAX(MAX(DICTLISTSIZE_DEFAULT, nbSamples), (U32)(maxDictSize/16));
 1059     dictItem* const dictList = (dictItem*)malloc(dictListSize * sizeof(*dictList));
 1060     unsigned const selectivity = params.selectivityLevel == 0 ? g_selectivity_default : params.selectivityLevel;
 1061     unsigned const minRep = (selectivity > 30) ? MINRATIO : nbSamples >> selectivity;
 1062     size_t const targetDictSize = maxDictSize;
 1063     size_t const samplesBuffSize = ZDICT_totalSampleSize(samplesSizes, nbSamples);
 1064     size_t dictSize = 0;
 1065     U32 const notificationLevel = params.zParams.notificationLevel;
 1066 
 1067     /* checks */
 1068     if (!dictList) return ERROR(memory_allocation);
 1069     if (maxDictSize < ZDICT_DICTSIZE_MIN) { free(dictList); return ERROR(dstSize_tooSmall); }   /* requested dictionary size is too small */
 1070     if (samplesBuffSize < ZDICT_MIN_SAMPLES_SIZE) { free(dictList); return ERROR(dictionaryCreation_failed); }   /* not enough source to create dictionary */
 1071 
 1072     /* init */
 1073     ZDICT_initDictItem(dictList);
 1074 
 1075     /* build dictionary */
 1076     ZDICT_trainBuffer_legacy(dictList, dictListSize,
 1077                        samplesBuffer, samplesBuffSize,
 1078                        samplesSizes, nbSamples,
 1079                        minRep, notificationLevel);
 1080 
 1081     /* display best matches */
 1082     if (params.zParams.notificationLevel>= 3) {
 1083         unsigned const nb = MIN(25, dictList[0].pos);
 1084         unsigned const dictContentSize = ZDICT_dictSize(dictList);
 1085         unsigned u;
 1086         DISPLAYLEVEL(3, "\n %u segments found, of total size %u \n", (unsigned)dictList[0].pos-1, dictContentSize);
 1087         DISPLAYLEVEL(3, "list %u best segments \n", nb-1);
 1088         for (u=1; u<nb; u++) {
 1089             unsigned const pos = dictList[u].pos;
 1090             unsigned const length = dictList[u].length;
 1091             U32 const printedLength = MIN(40, length);
 1092             if ((pos > samplesBuffSize) || ((pos + length) > samplesBuffSize)) {
 1093                 free(dictList);
 1094                 return ERROR(GENERIC);   /* should never happen */
 1095             }
 1096             DISPLAYLEVEL(3, "%3u:%3u bytes at pos %8u, savings %7u bytes |",
 1097                          u, length, pos, (unsigned)dictList[u].savings);
 1098             ZDICT_printHex((const char*)samplesBuffer+pos, printedLength);
 1099             DISPLAYLEVEL(3, "| \n");
 1100     }   }
 1101 
 1102 
 1103     /* create dictionary */
 1104     {   unsigned dictContentSize = ZDICT_dictSize(dictList);
 1105         if (dictContentSize < ZDICT_CONTENTSIZE_MIN) { free(dictList); return ERROR(dictionaryCreation_failed); }   /* dictionary content too small */
 1106         if (dictContentSize < targetDictSize/4) {
 1107             DISPLAYLEVEL(2, "!  warning : selected content significantly smaller than requested (%u < %u) \n", dictContentSize, (unsigned)maxDictSize);
 1108             if (samplesBuffSize < 10 * targetDictSize)
 1109                 DISPLAYLEVEL(2, "!  consider increasing the number of samples (total size : %u MB)\n", (unsigned)(samplesBuffSize>>20));
 1110             if (minRep > MINRATIO) {
 1111                 DISPLAYLEVEL(2, "!  consider increasing selectivity to produce larger dictionary (-s%u) \n", selectivity+1);
 1112                 DISPLAYLEVEL(2, "!  note : larger dictionaries are not necessarily better, test its efficiency on samples \n");
 1113             }
 1114         }
 1115 
 1116         if ((dictContentSize > targetDictSize*3) && (nbSamples > 2*MINRATIO) && (selectivity>1)) {
 1117             unsigned proposedSelectivity = selectivity-1;
 1118             while ((nbSamples >> proposedSelectivity) <= MINRATIO) { proposedSelectivity--; }
 1119             DISPLAYLEVEL(2, "!  note : calculated dictionary significantly larger than requested (%u > %u) \n", dictContentSize, (unsigned)maxDictSize);
 1120             DISPLAYLEVEL(2, "!  consider increasing dictionary size, or produce denser dictionary (-s%u) \n", proposedSelectivity);
 1121             DISPLAYLEVEL(2, "!  always test dictionary efficiency on real samples \n");
 1122         }
 1123 
 1124         /* limit dictionary size */
 1125         {   U32 const max = dictList->pos;   /* convention : nb of useful elts within dictList */
 1126             U32 currentSize = 0;
 1127             U32 n; for (n=1; n<max; n++) {
 1128                 currentSize += dictList[n].length;
 1129                 if (currentSize > targetDictSize) { currentSize -= dictList[n].length; break; }
 1130             }
 1131             dictList->pos = n;
 1132             dictContentSize = currentSize;
 1133         }
 1134 
 1135         /* build dict content */
 1136         {   U32 u;
 1137             BYTE* ptr = (BYTE*)dictBuffer + maxDictSize;
 1138             for (u=1; u<dictList->pos; u++) {
 1139                 U32 l = dictList[u].length;
 1140                 ptr -= l;
 1141                 if (ptr<(BYTE*)dictBuffer) { free(dictList); return ERROR(GENERIC); }   /* should not happen */
 1142                 memcpy(ptr, (const char*)samplesBuffer+dictList[u].pos, l);
 1143         }   }
 1144 
 1145         dictSize = ZDICT_addEntropyTablesFromBuffer_advanced(dictBuffer, dictContentSize, maxDictSize,
 1146                                                              samplesBuffer, samplesSizes, nbSamples,
 1147                                                              params.zParams);
 1148     }
 1149 
 1150     /* clean up */
 1151     free(dictList);
 1152     return dictSize;
 1153 }
 1154 
 1155 
 1156 /* ZDICT_trainFromBuffer_legacy() :
 1157  * issue : samplesBuffer need to be followed by a noisy guard band.
 1158  * work around : duplicate the buffer, and add the noise */
 1159 size_t ZDICT_trainFromBuffer_legacy(void* dictBuffer, size_t dictBufferCapacity,
 1160                               const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples,
 1161                               ZDICT_legacy_params_t params)
 1162 {
 1163     size_t result;
 1164     void* newBuff;
 1165     size_t const sBuffSize = ZDICT_totalSampleSize(samplesSizes, nbSamples);
 1166     if (sBuffSize < ZDICT_MIN_SAMPLES_SIZE) return 0;   /* not enough content => no dictionary */
 1167 
 1168     newBuff = malloc(sBuffSize + NOISELENGTH);
 1169     if (!newBuff) return ERROR(memory_allocation);
 1170 
 1171     memcpy(newBuff, samplesBuffer, sBuffSize);
 1172     ZDICT_fillNoise((char*)newBuff + sBuffSize, NOISELENGTH);   /* guard band, for end of buffer condition */
 1173 
 1174     result =
 1175         ZDICT_trainFromBuffer_unsafe_legacy(dictBuffer, dictBufferCapacity, newBuff,
 1176                                             samplesSizes, nbSamples, params);
 1177     free(newBuff);
 1178     return result;
 1179 }
 1180 
 1181 
 1182 size_t ZDICT_trainFromBuffer(void* dictBuffer, size_t dictBufferCapacity,
 1183                              const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples)
 1184 {
 1185     ZDICT_fastCover_params_t params;
 1186     DEBUGLOG(3, "ZDICT_trainFromBuffer");
 1187     memset(&params, 0, sizeof(params));
 1188     params.d = 8;
 1189     params.steps = 4;
 1190     /* Use default level since no compression level information is available */
 1191     params.zParams.compressionLevel = ZSTD_CLEVEL_DEFAULT;
 1192 #if defined(DEBUGLEVEL) && (DEBUGLEVEL>=1)
 1193     params.zParams.notificationLevel = DEBUGLEVEL;
 1194 #endif
 1195     return ZDICT_optimizeTrainFromBuffer_fastCover(dictBuffer, dictBufferCapacity,
 1196                                                samplesBuffer, samplesSizes, nbSamples,
 1197                                                &params);
 1198 }
 1199 
 1200 size_t ZDICT_addEntropyTablesFromBuffer(void* dictBuffer, size_t dictContentSize, size_t dictBufferCapacity,
 1201                                   const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples)
 1202 {
 1203     ZDICT_params_t params;
 1204     memset(&params, 0, sizeof(params));
 1205     return ZDICT_addEntropyTablesFromBuffer_advanced(dictBuffer, dictContentSize, dictBufferCapacity,
 1206                                                      samplesBuffer, samplesSizes, nbSamples,
 1207                                                      params);
 1208 }

Cache object: 78f8fdb2152070dbf930b4e0cde3d887


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.