The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/crypto/aes.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /* 
    2  * Cryptographic API.
    3  *
    4  * AES Cipher Algorithm.
    5  *
    6  * Based on Brian Gladman's code.
    7  *
    8  * Linux developers:
    9  *  Alexander Kjeldaas <astor@fast.no>
   10  *  Herbert Valerio Riedel <hvr@hvrlab.org>
   11  *  Kyle McMartin <kyle@debian.org>
   12  *  Adam J. Richter <adam@yggdrasil.com> (conversion to 2.5 API).
   13  *
   14  * This program is free software; you can redistribute it and/or modify
   15  * it under the terms of the GNU General Public License as published by
   16  * the Free Software Foundation; either version 2 of the License, or
   17  * (at your option) any later version.
   18  *
   19  * ---------------------------------------------------------------------------
   20  * Copyright (c) 2002, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
   21  * All rights reserved.
   22  *
   23  * LICENSE TERMS
   24  *
   25  * The free distribution and use of this software in both source and binary
   26  * form is allowed (with or without changes) provided that:
   27  *
   28  *   1. distributions of this source code include the above copyright
   29  *      notice, this list of conditions and the following disclaimer;
   30  *
   31  *   2. distributions in binary form include the above copyright
   32  *      notice, this list of conditions and the following disclaimer
   33  *      in the documentation and/or other associated materials;
   34  *
   35  *   3. the copyright holder's name is not used to endorse products
   36  *      built using this software without specific written permission.
   37  *
   38  * ALTERNATIVELY, provided that this notice is retained in full, this product
   39  * may be distributed under the terms of the GNU General Public License (GPL),
   40  * in which case the provisions of the GPL apply INSTEAD OF those given above.
   41  *
   42  * DISCLAIMER
   43  *
   44  * This software is provided 'as is' with no explicit or implied warranties
   45  * in respect of its properties, including, but not limited to, correctness
   46  * and/or fitness for purpose.
   47  * ---------------------------------------------------------------------------
   48  */
   49 
   50 /* Some changes from the Gladman version:
   51     s/RIJNDAEL(e_key)/E_KEY/g
   52     s/RIJNDAEL(d_key)/D_KEY/g
   53 */
   54 
   55 #include <linux/module.h>
   56 #include <linux/init.h>
   57 #include <linux/types.h>
   58 #include <linux/errno.h>
   59 #include <linux/crypto.h>
   60 #include <asm/byteorder.h>
   61 
   62 #define AES_MIN_KEY_SIZE        16
   63 #define AES_MAX_KEY_SIZE        32
   64 
   65 #define AES_BLOCK_SIZE          16
   66 
   67 static inline 
   68 u32 generic_rotr32 (const u32 x, const unsigned bits)
   69 {
   70         const unsigned n = bits % 32;
   71         return (x >> n) | (x << (32 - n));
   72 }
   73 
   74 static inline 
   75 u32 generic_rotl32 (const u32 x, const unsigned bits)
   76 {
   77         const unsigned n = bits % 32;
   78         return (x << n) | (x >> (32 - n));
   79 }
   80 
   81 #define rotl generic_rotl32
   82 #define rotr generic_rotr32
   83 
   84 /*
   85  * #define byte(x, nr) ((unsigned char)((x) >> (nr*8))) 
   86  */
   87 inline static u8
   88 byte(const u32 x, const unsigned n)
   89 {
   90         return x >> (n << 3);
   91 }
   92 
   93 #define u32_in(x) le32_to_cpu(*(const u32 *)(x))
   94 #define u32_out(to, from) (*(u32 *)(to) = cpu_to_le32(from))
   95 
   96 struct aes_ctx {
   97         int key_length;
   98         u32 E[60];
   99         u32 D[60];
  100 };
  101 
  102 #define E_KEY ctx->E
  103 #define D_KEY ctx->D
  104 
  105 static u8 pow_tab[256];
  106 static u8 log_tab[256];
  107 static u8 sbx_tab[256];
  108 static u8 isb_tab[256];
  109 static u32 rco_tab[10];
  110 static u32 ft_tab[4][256];
  111 static u32 it_tab[4][256];
  112 
  113 static u32 fl_tab[4][256];
  114 static u32 il_tab[4][256];
  115 
  116 static inline u8
  117 f_mult (u8 a, u8 b)
  118 {
  119         u8 aa = log_tab[a], cc = aa + log_tab[b];
  120 
  121         return pow_tab[cc + (cc < aa ? 1 : 0)];
  122 }
  123 
  124 #define ff_mult(a,b)    (a && b ? f_mult(a, b) : 0)
  125 
  126 #define f_rn(bo, bi, n, k)                                      \
  127     bo[n] =  ft_tab[0][byte(bi[n],0)] ^                         \
  128              ft_tab[1][byte(bi[(n + 1) & 3],1)] ^               \
  129              ft_tab[2][byte(bi[(n + 2) & 3],2)] ^               \
  130              ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
  131 
  132 #define i_rn(bo, bi, n, k)                                      \
  133     bo[n] =  it_tab[0][byte(bi[n],0)] ^                         \
  134              it_tab[1][byte(bi[(n + 3) & 3],1)] ^               \
  135              it_tab[2][byte(bi[(n + 2) & 3],2)] ^               \
  136              it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
  137 
  138 #define ls_box(x)                               \
  139     ( fl_tab[0][byte(x, 0)] ^                   \
  140       fl_tab[1][byte(x, 1)] ^                   \
  141       fl_tab[2][byte(x, 2)] ^                   \
  142       fl_tab[3][byte(x, 3)] )
  143 
  144 #define f_rl(bo, bi, n, k)                                      \
  145     bo[n] =  fl_tab[0][byte(bi[n],0)] ^                         \
  146              fl_tab[1][byte(bi[(n + 1) & 3],1)] ^               \
  147              fl_tab[2][byte(bi[(n + 2) & 3],2)] ^               \
  148              fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
  149 
  150 #define i_rl(bo, bi, n, k)                                      \
  151     bo[n] =  il_tab[0][byte(bi[n],0)] ^                         \
  152              il_tab[1][byte(bi[(n + 3) & 3],1)] ^               \
  153              il_tab[2][byte(bi[(n + 2) & 3],2)] ^               \
  154              il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
  155 
  156 static void
  157 gen_tabs (void)
  158 {
  159         u32 i, t;
  160         u8 p, q;
  161 
  162         /* log and power tables for GF(2**8) finite field with
  163            0x011b as modular polynomial - the simplest prmitive
  164            root is 0x03, used here to generate the tables */
  165 
  166         for (i = 0, p = 1; i < 256; ++i) {
  167                 pow_tab[i] = (u8) p;
  168                 log_tab[p] = (u8) i;
  169 
  170                 p ^= (p << 1) ^ (p & 0x80 ? 0x01b : 0);
  171         }
  172 
  173         log_tab[1] = 0;
  174 
  175         for (i = 0, p = 1; i < 10; ++i) {
  176                 rco_tab[i] = p;
  177 
  178                 p = (p << 1) ^ (p & 0x80 ? 0x01b : 0);
  179         }
  180 
  181         for (i = 0; i < 256; ++i) {
  182                 p = (i ? pow_tab[255 - log_tab[i]] : 0);
  183                 q = ((p >> 7) | (p << 1)) ^ ((p >> 6) | (p << 2));
  184                 p ^= 0x63 ^ q ^ ((q >> 6) | (q << 2));
  185                 sbx_tab[i] = p;
  186                 isb_tab[p] = (u8) i;
  187         }
  188 
  189         for (i = 0; i < 256; ++i) {
  190                 p = sbx_tab[i];
  191 
  192                 t = p;
  193                 fl_tab[0][i] = t;
  194                 fl_tab[1][i] = rotl (t, 8);
  195                 fl_tab[2][i] = rotl (t, 16);
  196                 fl_tab[3][i] = rotl (t, 24);
  197 
  198                 t = ((u32) ff_mult (2, p)) |
  199                     ((u32) p << 8) |
  200                     ((u32) p << 16) | ((u32) ff_mult (3, p) << 24);
  201 
  202                 ft_tab[0][i] = t;
  203                 ft_tab[1][i] = rotl (t, 8);
  204                 ft_tab[2][i] = rotl (t, 16);
  205                 ft_tab[3][i] = rotl (t, 24);
  206 
  207                 p = isb_tab[i];
  208 
  209                 t = p;
  210                 il_tab[0][i] = t;
  211                 il_tab[1][i] = rotl (t, 8);
  212                 il_tab[2][i] = rotl (t, 16);
  213                 il_tab[3][i] = rotl (t, 24);
  214 
  215                 t = ((u32) ff_mult (14, p)) |
  216                     ((u32) ff_mult (9, p) << 8) |
  217                     ((u32) ff_mult (13, p) << 16) |
  218                     ((u32) ff_mult (11, p) << 24);
  219 
  220                 it_tab[0][i] = t;
  221                 it_tab[1][i] = rotl (t, 8);
  222                 it_tab[2][i] = rotl (t, 16);
  223                 it_tab[3][i] = rotl (t, 24);
  224         }
  225 }
  226 
  227 #define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
  228 
  229 #define imix_col(y,x)       \
  230     u   = star_x(x);        \
  231     v   = star_x(u);        \
  232     w   = star_x(v);        \
  233     t   = w ^ (x);          \
  234    (y)  = u ^ v ^ w;        \
  235    (y) ^= rotr(u ^ t,  8) ^ \
  236           rotr(v ^ t, 16) ^ \
  237           rotr(t,24)
  238 
  239 /* initialise the key schedule from the user supplied key */
  240 
  241 #define loop4(i)                                    \
  242 {   t = rotr(t,  8); t = ls_box(t) ^ rco_tab[i];    \
  243     t ^= E_KEY[4 * i];     E_KEY[4 * i + 4] = t;    \
  244     t ^= E_KEY[4 * i + 1]; E_KEY[4 * i + 5] = t;    \
  245     t ^= E_KEY[4 * i + 2]; E_KEY[4 * i + 6] = t;    \
  246     t ^= E_KEY[4 * i + 3]; E_KEY[4 * i + 7] = t;    \
  247 }
  248 
  249 #define loop6(i)                                    \
  250 {   t = rotr(t,  8); t = ls_box(t) ^ rco_tab[i];    \
  251     t ^= E_KEY[6 * i];     E_KEY[6 * i + 6] = t;    \
  252     t ^= E_KEY[6 * i + 1]; E_KEY[6 * i + 7] = t;    \
  253     t ^= E_KEY[6 * i + 2]; E_KEY[6 * i + 8] = t;    \
  254     t ^= E_KEY[6 * i + 3]; E_KEY[6 * i + 9] = t;    \
  255     t ^= E_KEY[6 * i + 4]; E_KEY[6 * i + 10] = t;   \
  256     t ^= E_KEY[6 * i + 5]; E_KEY[6 * i + 11] = t;   \
  257 }
  258 
  259 #define loop8(i)                                    \
  260 {   t = rotr(t,  8); ; t = ls_box(t) ^ rco_tab[i];  \
  261     t ^= E_KEY[8 * i];     E_KEY[8 * i + 8] = t;    \
  262     t ^= E_KEY[8 * i + 1]; E_KEY[8 * i + 9] = t;    \
  263     t ^= E_KEY[8 * i + 2]; E_KEY[8 * i + 10] = t;   \
  264     t ^= E_KEY[8 * i + 3]; E_KEY[8 * i + 11] = t;   \
  265     t  = E_KEY[8 * i + 4] ^ ls_box(t);    \
  266     E_KEY[8 * i + 12] = t;                \
  267     t ^= E_KEY[8 * i + 5]; E_KEY[8 * i + 13] = t;   \
  268     t ^= E_KEY[8 * i + 6]; E_KEY[8 * i + 14] = t;   \
  269     t ^= E_KEY[8 * i + 7]; E_KEY[8 * i + 15] = t;   \
  270 }
  271 
  272 static int
  273 aes_set_key(void *ctx_arg, const u8 *in_key, unsigned int key_len, u32 *flags)
  274 {
  275         struct aes_ctx *ctx = ctx_arg;
  276         u32 i, t, u, v, w;
  277 
  278         if (key_len != 16 && key_len != 24 && key_len != 32) {
  279                 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
  280                 return -EINVAL;
  281         }
  282 
  283         ctx->key_length = key_len;
  284 
  285         E_KEY[0] = u32_in (in_key);
  286         E_KEY[1] = u32_in (in_key + 4);
  287         E_KEY[2] = u32_in (in_key + 8);
  288         E_KEY[3] = u32_in (in_key + 12);
  289 
  290         switch (key_len) {
  291         case 16:
  292                 t = E_KEY[3];
  293                 for (i = 0; i < 10; ++i)
  294                         loop4 (i);
  295                 break;
  296 
  297         case 24:
  298                 E_KEY[4] = u32_in (in_key + 16);
  299                 t = E_KEY[5] = u32_in (in_key + 20);
  300                 for (i = 0; i < 8; ++i)
  301                         loop6 (i);
  302                 break;
  303 
  304         case 32:
  305                 E_KEY[4] = u32_in (in_key + 16);
  306                 E_KEY[5] = u32_in (in_key + 20);
  307                 E_KEY[6] = u32_in (in_key + 24);
  308                 t = E_KEY[7] = u32_in (in_key + 28);
  309                 for (i = 0; i < 7; ++i)
  310                         loop8 (i);
  311                 break;
  312         }
  313 
  314         D_KEY[0] = E_KEY[0];
  315         D_KEY[1] = E_KEY[1];
  316         D_KEY[2] = E_KEY[2];
  317         D_KEY[3] = E_KEY[3];
  318 
  319         for (i = 4; i < key_len + 24; ++i) {
  320                 imix_col (D_KEY[i], E_KEY[i]);
  321         }
  322 
  323         return 0;
  324 }
  325 
  326 /* encrypt a block of text */
  327 
  328 #define f_nround(bo, bi, k) \
  329     f_rn(bo, bi, 0, k);     \
  330     f_rn(bo, bi, 1, k);     \
  331     f_rn(bo, bi, 2, k);     \
  332     f_rn(bo, bi, 3, k);     \
  333     k += 4
  334 
  335 #define f_lround(bo, bi, k) \
  336     f_rl(bo, bi, 0, k);     \
  337     f_rl(bo, bi, 1, k);     \
  338     f_rl(bo, bi, 2, k);     \
  339     f_rl(bo, bi, 3, k)
  340 
  341 static void aes_encrypt(void *ctx_arg, u8 *out, const u8 *in)
  342 {
  343         const struct aes_ctx *ctx = ctx_arg;
  344         u32 b0[4], b1[4];
  345         const u32 *kp = E_KEY + 4;
  346 
  347         b0[0] = u32_in (in) ^ E_KEY[0];
  348         b0[1] = u32_in (in + 4) ^ E_KEY[1];
  349         b0[2] = u32_in (in + 8) ^ E_KEY[2];
  350         b0[3] = u32_in (in + 12) ^ E_KEY[3];
  351 
  352         if (ctx->key_length > 24) {
  353                 f_nround (b1, b0, kp);
  354                 f_nround (b0, b1, kp);
  355         }
  356 
  357         if (ctx->key_length > 16) {
  358                 f_nround (b1, b0, kp);
  359                 f_nround (b0, b1, kp);
  360         }
  361 
  362         f_nround (b1, b0, kp);
  363         f_nround (b0, b1, kp);
  364         f_nround (b1, b0, kp);
  365         f_nround (b0, b1, kp);
  366         f_nround (b1, b0, kp);
  367         f_nround (b0, b1, kp);
  368         f_nround (b1, b0, kp);
  369         f_nround (b0, b1, kp);
  370         f_nround (b1, b0, kp);
  371         f_lround (b0, b1, kp);
  372 
  373         u32_out (out, b0[0]);
  374         u32_out (out + 4, b0[1]);
  375         u32_out (out + 8, b0[2]);
  376         u32_out (out + 12, b0[3]);
  377 }
  378 
  379 /* decrypt a block of text */
  380 
  381 #define i_nround(bo, bi, k) \
  382     i_rn(bo, bi, 0, k);     \
  383     i_rn(bo, bi, 1, k);     \
  384     i_rn(bo, bi, 2, k);     \
  385     i_rn(bo, bi, 3, k);     \
  386     k -= 4
  387 
  388 #define i_lround(bo, bi, k) \
  389     i_rl(bo, bi, 0, k);     \
  390     i_rl(bo, bi, 1, k);     \
  391     i_rl(bo, bi, 2, k);     \
  392     i_rl(bo, bi, 3, k)
  393 
  394 static void aes_decrypt(void *ctx_arg, u8 *out, const u8 *in)
  395 {
  396         const struct aes_ctx *ctx = ctx_arg;
  397         u32 b0[4], b1[4];
  398         const int key_len = ctx->key_length;
  399         const u32 *kp = D_KEY + key_len + 20;
  400 
  401         b0[0] = u32_in (in) ^ E_KEY[key_len + 24];
  402         b0[1] = u32_in (in + 4) ^ E_KEY[key_len + 25];
  403         b0[2] = u32_in (in + 8) ^ E_KEY[key_len + 26];
  404         b0[3] = u32_in (in + 12) ^ E_KEY[key_len + 27];
  405 
  406         if (key_len > 24) {
  407                 i_nround (b1, b0, kp);
  408                 i_nround (b0, b1, kp);
  409         }
  410 
  411         if (key_len > 16) {
  412                 i_nround (b1, b0, kp);
  413                 i_nround (b0, b1, kp);
  414         }
  415 
  416         i_nround (b1, b0, kp);
  417         i_nround (b0, b1, kp);
  418         i_nround (b1, b0, kp);
  419         i_nround (b0, b1, kp);
  420         i_nround (b1, b0, kp);
  421         i_nround (b0, b1, kp);
  422         i_nround (b1, b0, kp);
  423         i_nround (b0, b1, kp);
  424         i_nround (b1, b0, kp);
  425         i_lround (b0, b1, kp);
  426 
  427         u32_out (out, b0[0]);
  428         u32_out (out + 4, b0[1]);
  429         u32_out (out + 8, b0[2]);
  430         u32_out (out + 12, b0[3]);
  431 }
  432 
  433 
  434 static struct crypto_alg aes_alg = {
  435         .cra_name               =       "aes",
  436         .cra_flags              =       CRYPTO_ALG_TYPE_CIPHER,
  437         .cra_blocksize          =       AES_BLOCK_SIZE,
  438         .cra_ctxsize            =       sizeof(struct aes_ctx),
  439         .cra_module             =       THIS_MODULE,
  440         .cra_list               =       LIST_HEAD_INIT(aes_alg.cra_list),
  441         .cra_u                  =       {
  442                 .cipher = {
  443                         .cia_min_keysize        =       AES_MIN_KEY_SIZE,
  444                         .cia_max_keysize        =       AES_MAX_KEY_SIZE,
  445                         .cia_ivsize             =       AES_BLOCK_SIZE,
  446                         .cia_setkey             =       aes_set_key,
  447                         .cia_encrypt            =       aes_encrypt,
  448                         .cia_decrypt            =       aes_decrypt
  449                 }
  450         }
  451 };
  452 
  453 static int __init aes_init(void)
  454 {
  455         gen_tabs();
  456         return crypto_register_alg(&aes_alg);
  457 }
  458 
  459 static void __exit aes_fini(void)
  460 {
  461         crypto_unregister_alg(&aes_alg);
  462 }
  463 
  464 module_init(aes_init);
  465 module_exit(aes_fini);
  466 
  467 MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm");
  468 MODULE_LICENSE("Dual BSD/GPL");
  469 

Cache object: 5877ab24f2347b22c7ed9f77e0cd7915


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.