The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/crypto/aes.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /* 
    2  * Cryptographic API.
    3  *
    4  * AES Cipher Algorithm.
    5  *
    6  * Based on Brian Gladman's code.
    7  *
    8  * Linux developers:
    9  *  Alexander Kjeldaas <astor@fast.no>
   10  *  Herbert Valerio Riedel <hvr@hvrlab.org>
   11  *  Kyle McMartin <kyle@debian.org>
   12  *  Adam J. Richter <adam@yggdrasil.com> (conversion to 2.5 API).
   13  *
   14  * This program is free software; you can redistribute it and/or modify
   15  * it under the terms of the GNU General Public License as published by
   16  * the Free Software Foundation; either version 2 of the License, or
   17  * (at your option) any later version.
   18  *
   19  * ---------------------------------------------------------------------------
   20  * Copyright (c) 2002, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
   21  * All rights reserved.
   22  *
   23  * LICENSE TERMS
   24  *
   25  * The free distribution and use of this software in both source and binary
   26  * form is allowed (with or without changes) provided that:
   27  *
   28  *   1. distributions of this source code include the above copyright
   29  *      notice, this list of conditions and the following disclaimer;
   30  *
   31  *   2. distributions in binary form include the above copyright
   32  *      notice, this list of conditions and the following disclaimer
   33  *      in the documentation and/or other associated materials;
   34  *
   35  *   3. the copyright holder's name is not used to endorse products
   36  *      built using this software without specific written permission.
   37  *
   38  * ALTERNATIVELY, provided that this notice is retained in full, this product
   39  * may be distributed under the terms of the GNU General Public License (GPL),
   40  * in which case the provisions of the GPL apply INSTEAD OF those given above.
   41  *
   42  * DISCLAIMER
   43  *
   44  * This software is provided 'as is' with no explicit or implied warranties
   45  * in respect of its properties, including, but not limited to, correctness
   46  * and/or fitness for purpose.
   47  * ---------------------------------------------------------------------------
   48  */
   49 
   50 /* Some changes from the Gladman version:
   51     s/RIJNDAEL(e_key)/E_KEY/g
   52     s/RIJNDAEL(d_key)/D_KEY/g
   53 */
   54 
   55 #include <linux/module.h>
   56 #include <linux/init.h>
   57 #include <linux/types.h>
   58 #include <linux/errno.h>
   59 #include <linux/crypto.h>
   60 #include <asm/byteorder.h>
   61 
   62 #define AES_MIN_KEY_SIZE        16
   63 #define AES_MAX_KEY_SIZE        32
   64 
   65 #define AES_BLOCK_SIZE          16
   66 
   67 /*
   68  * #define byte(x, nr) ((unsigned char)((x) >> (nr*8))) 
   69  */
   70 static inline u8
   71 byte(const u32 x, const unsigned n)
   72 {
   73         return x >> (n << 3);
   74 }
   75 
   76 struct aes_ctx {
   77         int key_length;
   78         u32 buf[120];
   79 };
   80 
   81 #define E_KEY (&ctx->buf[0])
   82 #define D_KEY (&ctx->buf[60])
   83 
   84 static u8 pow_tab[256] __initdata;
   85 static u8 log_tab[256] __initdata;
   86 static u8 sbx_tab[256] __initdata;
   87 static u8 isb_tab[256] __initdata;
   88 static u32 rco_tab[10];
   89 static u32 ft_tab[4][256];
   90 static u32 it_tab[4][256];
   91 
   92 static u32 fl_tab[4][256];
   93 static u32 il_tab[4][256];
   94 
   95 static inline u8 __init
   96 f_mult (u8 a, u8 b)
   97 {
   98         u8 aa = log_tab[a], cc = aa + log_tab[b];
   99 
  100         return pow_tab[cc + (cc < aa ? 1 : 0)];
  101 }
  102 
  103 #define ff_mult(a,b)    (a && b ? f_mult(a, b) : 0)
  104 
  105 #define f_rn(bo, bi, n, k)                                      \
  106     bo[n] =  ft_tab[0][byte(bi[n],0)] ^                         \
  107              ft_tab[1][byte(bi[(n + 1) & 3],1)] ^               \
  108              ft_tab[2][byte(bi[(n + 2) & 3],2)] ^               \
  109              ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
  110 
  111 #define i_rn(bo, bi, n, k)                                      \
  112     bo[n] =  it_tab[0][byte(bi[n],0)] ^                         \
  113              it_tab[1][byte(bi[(n + 3) & 3],1)] ^               \
  114              it_tab[2][byte(bi[(n + 2) & 3],2)] ^               \
  115              it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
  116 
  117 #define ls_box(x)                               \
  118     ( fl_tab[0][byte(x, 0)] ^                   \
  119       fl_tab[1][byte(x, 1)] ^                   \
  120       fl_tab[2][byte(x, 2)] ^                   \
  121       fl_tab[3][byte(x, 3)] )
  122 
  123 #define f_rl(bo, bi, n, k)                                      \
  124     bo[n] =  fl_tab[0][byte(bi[n],0)] ^                         \
  125              fl_tab[1][byte(bi[(n + 1) & 3],1)] ^               \
  126              fl_tab[2][byte(bi[(n + 2) & 3],2)] ^               \
  127              fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
  128 
  129 #define i_rl(bo, bi, n, k)                                      \
  130     bo[n] =  il_tab[0][byte(bi[n],0)] ^                         \
  131              il_tab[1][byte(bi[(n + 3) & 3],1)] ^               \
  132              il_tab[2][byte(bi[(n + 2) & 3],2)] ^               \
  133              il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
  134 
  135 static void __init
  136 gen_tabs (void)
  137 {
  138         u32 i, t;
  139         u8 p, q;
  140 
  141         /* log and power tables for GF(2**8) finite field with
  142            0x011b as modular polynomial - the simplest primitive
  143            root is 0x03, used here to generate the tables */
  144 
  145         for (i = 0, p = 1; i < 256; ++i) {
  146                 pow_tab[i] = (u8) p;
  147                 log_tab[p] = (u8) i;
  148 
  149                 p ^= (p << 1) ^ (p & 0x80 ? 0x01b : 0);
  150         }
  151 
  152         log_tab[1] = 0;
  153 
  154         for (i = 0, p = 1; i < 10; ++i) {
  155                 rco_tab[i] = p;
  156 
  157                 p = (p << 1) ^ (p & 0x80 ? 0x01b : 0);
  158         }
  159 
  160         for (i = 0; i < 256; ++i) {
  161                 p = (i ? pow_tab[255 - log_tab[i]] : 0);
  162                 q = ((p >> 7) | (p << 1)) ^ ((p >> 6) | (p << 2));
  163                 p ^= 0x63 ^ q ^ ((q >> 6) | (q << 2));
  164                 sbx_tab[i] = p;
  165                 isb_tab[p] = (u8) i;
  166         }
  167 
  168         for (i = 0; i < 256; ++i) {
  169                 p = sbx_tab[i];
  170 
  171                 t = p;
  172                 fl_tab[0][i] = t;
  173                 fl_tab[1][i] = rol32(t, 8);
  174                 fl_tab[2][i] = rol32(t, 16);
  175                 fl_tab[3][i] = rol32(t, 24);
  176 
  177                 t = ((u32) ff_mult (2, p)) |
  178                     ((u32) p << 8) |
  179                     ((u32) p << 16) | ((u32) ff_mult (3, p) << 24);
  180 
  181                 ft_tab[0][i] = t;
  182                 ft_tab[1][i] = rol32(t, 8);
  183                 ft_tab[2][i] = rol32(t, 16);
  184                 ft_tab[3][i] = rol32(t, 24);
  185 
  186                 p = isb_tab[i];
  187 
  188                 t = p;
  189                 il_tab[0][i] = t;
  190                 il_tab[1][i] = rol32(t, 8);
  191                 il_tab[2][i] = rol32(t, 16);
  192                 il_tab[3][i] = rol32(t, 24);
  193 
  194                 t = ((u32) ff_mult (14, p)) |
  195                     ((u32) ff_mult (9, p) << 8) |
  196                     ((u32) ff_mult (13, p) << 16) |
  197                     ((u32) ff_mult (11, p) << 24);
  198 
  199                 it_tab[0][i] = t;
  200                 it_tab[1][i] = rol32(t, 8);
  201                 it_tab[2][i] = rol32(t, 16);
  202                 it_tab[3][i] = rol32(t, 24);
  203         }
  204 }
  205 
  206 #define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
  207 
  208 #define imix_col(y,x)       \
  209     u   = star_x(x);        \
  210     v   = star_x(u);        \
  211     w   = star_x(v);        \
  212     t   = w ^ (x);          \
  213    (y)  = u ^ v ^ w;        \
  214    (y) ^= ror32(u ^ t,  8) ^ \
  215           ror32(v ^ t, 16) ^ \
  216           ror32(t,24)
  217 
  218 /* initialise the key schedule from the user supplied key */
  219 
  220 #define loop4(i)                                    \
  221 {   t = ror32(t,  8); t = ls_box(t) ^ rco_tab[i];    \
  222     t ^= E_KEY[4 * i];     E_KEY[4 * i + 4] = t;    \
  223     t ^= E_KEY[4 * i + 1]; E_KEY[4 * i + 5] = t;    \
  224     t ^= E_KEY[4 * i + 2]; E_KEY[4 * i + 6] = t;    \
  225     t ^= E_KEY[4 * i + 3]; E_KEY[4 * i + 7] = t;    \
  226 }
  227 
  228 #define loop6(i)                                    \
  229 {   t = ror32(t,  8); t = ls_box(t) ^ rco_tab[i];    \
  230     t ^= E_KEY[6 * i];     E_KEY[6 * i + 6] = t;    \
  231     t ^= E_KEY[6 * i + 1]; E_KEY[6 * i + 7] = t;    \
  232     t ^= E_KEY[6 * i + 2]; E_KEY[6 * i + 8] = t;    \
  233     t ^= E_KEY[6 * i + 3]; E_KEY[6 * i + 9] = t;    \
  234     t ^= E_KEY[6 * i + 4]; E_KEY[6 * i + 10] = t;   \
  235     t ^= E_KEY[6 * i + 5]; E_KEY[6 * i + 11] = t;   \
  236 }
  237 
  238 #define loop8(i)                                    \
  239 {   t = ror32(t,  8); ; t = ls_box(t) ^ rco_tab[i];  \
  240     t ^= E_KEY[8 * i];     E_KEY[8 * i + 8] = t;    \
  241     t ^= E_KEY[8 * i + 1]; E_KEY[8 * i + 9] = t;    \
  242     t ^= E_KEY[8 * i + 2]; E_KEY[8 * i + 10] = t;   \
  243     t ^= E_KEY[8 * i + 3]; E_KEY[8 * i + 11] = t;   \
  244     t  = E_KEY[8 * i + 4] ^ ls_box(t);    \
  245     E_KEY[8 * i + 12] = t;                \
  246     t ^= E_KEY[8 * i + 5]; E_KEY[8 * i + 13] = t;   \
  247     t ^= E_KEY[8 * i + 6]; E_KEY[8 * i + 14] = t;   \
  248     t ^= E_KEY[8 * i + 7]; E_KEY[8 * i + 15] = t;   \
  249 }
  250 
  251 static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
  252                        unsigned int key_len)
  253 {
  254         struct aes_ctx *ctx = crypto_tfm_ctx(tfm);
  255         const __le32 *key = (const __le32 *)in_key;
  256         u32 *flags = &tfm->crt_flags;
  257         u32 i, t, u, v, w;
  258 
  259         if (key_len % 8) {
  260                 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
  261                 return -EINVAL;
  262         }
  263 
  264         ctx->key_length = key_len;
  265 
  266         E_KEY[0] = le32_to_cpu(key[0]);
  267         E_KEY[1] = le32_to_cpu(key[1]);
  268         E_KEY[2] = le32_to_cpu(key[2]);
  269         E_KEY[3] = le32_to_cpu(key[3]);
  270 
  271         switch (key_len) {
  272         case 16:
  273                 t = E_KEY[3];
  274                 for (i = 0; i < 10; ++i)
  275                         loop4 (i);
  276                 break;
  277 
  278         case 24:
  279                 E_KEY[4] = le32_to_cpu(key[4]);
  280                 t = E_KEY[5] = le32_to_cpu(key[5]);
  281                 for (i = 0; i < 8; ++i)
  282                         loop6 (i);
  283                 break;
  284 
  285         case 32:
  286                 E_KEY[4] = le32_to_cpu(key[4]);
  287                 E_KEY[5] = le32_to_cpu(key[5]);
  288                 E_KEY[6] = le32_to_cpu(key[6]);
  289                 t = E_KEY[7] = le32_to_cpu(key[7]);
  290                 for (i = 0; i < 7; ++i)
  291                         loop8 (i);
  292                 break;
  293         }
  294 
  295         D_KEY[0] = E_KEY[0];
  296         D_KEY[1] = E_KEY[1];
  297         D_KEY[2] = E_KEY[2];
  298         D_KEY[3] = E_KEY[3];
  299 
  300         for (i = 4; i < key_len + 24; ++i) {
  301                 imix_col (D_KEY[i], E_KEY[i]);
  302         }
  303 
  304         return 0;
  305 }
  306 
  307 /* encrypt a block of text */
  308 
  309 #define f_nround(bo, bi, k) \
  310     f_rn(bo, bi, 0, k);     \
  311     f_rn(bo, bi, 1, k);     \
  312     f_rn(bo, bi, 2, k);     \
  313     f_rn(bo, bi, 3, k);     \
  314     k += 4
  315 
  316 #define f_lround(bo, bi, k) \
  317     f_rl(bo, bi, 0, k);     \
  318     f_rl(bo, bi, 1, k);     \
  319     f_rl(bo, bi, 2, k);     \
  320     f_rl(bo, bi, 3, k)
  321 
  322 static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
  323 {
  324         const struct aes_ctx *ctx = crypto_tfm_ctx(tfm);
  325         const __le32 *src = (const __le32 *)in;
  326         __le32 *dst = (__le32 *)out;
  327         u32 b0[4], b1[4];
  328         const u32 *kp = E_KEY + 4;
  329 
  330         b0[0] = le32_to_cpu(src[0]) ^ E_KEY[0];
  331         b0[1] = le32_to_cpu(src[1]) ^ E_KEY[1];
  332         b0[2] = le32_to_cpu(src[2]) ^ E_KEY[2];
  333         b0[3] = le32_to_cpu(src[3]) ^ E_KEY[3];
  334 
  335         if (ctx->key_length > 24) {
  336                 f_nround (b1, b0, kp);
  337                 f_nround (b0, b1, kp);
  338         }
  339 
  340         if (ctx->key_length > 16) {
  341                 f_nround (b1, b0, kp);
  342                 f_nround (b0, b1, kp);
  343         }
  344 
  345         f_nround (b1, b0, kp);
  346         f_nround (b0, b1, kp);
  347         f_nround (b1, b0, kp);
  348         f_nround (b0, b1, kp);
  349         f_nround (b1, b0, kp);
  350         f_nround (b0, b1, kp);
  351         f_nround (b1, b0, kp);
  352         f_nround (b0, b1, kp);
  353         f_nround (b1, b0, kp);
  354         f_lround (b0, b1, kp);
  355 
  356         dst[0] = cpu_to_le32(b0[0]);
  357         dst[1] = cpu_to_le32(b0[1]);
  358         dst[2] = cpu_to_le32(b0[2]);
  359         dst[3] = cpu_to_le32(b0[3]);
  360 }
  361 
  362 /* decrypt a block of text */
  363 
  364 #define i_nround(bo, bi, k) \
  365     i_rn(bo, bi, 0, k);     \
  366     i_rn(bo, bi, 1, k);     \
  367     i_rn(bo, bi, 2, k);     \
  368     i_rn(bo, bi, 3, k);     \
  369     k -= 4
  370 
  371 #define i_lround(bo, bi, k) \
  372     i_rl(bo, bi, 0, k);     \
  373     i_rl(bo, bi, 1, k);     \
  374     i_rl(bo, bi, 2, k);     \
  375     i_rl(bo, bi, 3, k)
  376 
  377 static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
  378 {
  379         const struct aes_ctx *ctx = crypto_tfm_ctx(tfm);
  380         const __le32 *src = (const __le32 *)in;
  381         __le32 *dst = (__le32 *)out;
  382         u32 b0[4], b1[4];
  383         const int key_len = ctx->key_length;
  384         const u32 *kp = D_KEY + key_len + 20;
  385 
  386         b0[0] = le32_to_cpu(src[0]) ^ E_KEY[key_len + 24];
  387         b0[1] = le32_to_cpu(src[1]) ^ E_KEY[key_len + 25];
  388         b0[2] = le32_to_cpu(src[2]) ^ E_KEY[key_len + 26];
  389         b0[3] = le32_to_cpu(src[3]) ^ E_KEY[key_len + 27];
  390 
  391         if (key_len > 24) {
  392                 i_nround (b1, b0, kp);
  393                 i_nround (b0, b1, kp);
  394         }
  395 
  396         if (key_len > 16) {
  397                 i_nround (b1, b0, kp);
  398                 i_nround (b0, b1, kp);
  399         }
  400 
  401         i_nround (b1, b0, kp);
  402         i_nround (b0, b1, kp);
  403         i_nround (b1, b0, kp);
  404         i_nround (b0, b1, kp);
  405         i_nround (b1, b0, kp);
  406         i_nround (b0, b1, kp);
  407         i_nround (b1, b0, kp);
  408         i_nround (b0, b1, kp);
  409         i_nround (b1, b0, kp);
  410         i_lround (b0, b1, kp);
  411 
  412         dst[0] = cpu_to_le32(b0[0]);
  413         dst[1] = cpu_to_le32(b0[1]);
  414         dst[2] = cpu_to_le32(b0[2]);
  415         dst[3] = cpu_to_le32(b0[3]);
  416 }
  417 
  418 
  419 static struct crypto_alg aes_alg = {
  420         .cra_name               =       "aes",
  421         .cra_driver_name        =       "aes-generic",
  422         .cra_priority           =       100,
  423         .cra_flags              =       CRYPTO_ALG_TYPE_CIPHER,
  424         .cra_blocksize          =       AES_BLOCK_SIZE,
  425         .cra_ctxsize            =       sizeof(struct aes_ctx),
  426         .cra_alignmask          =       3,
  427         .cra_module             =       THIS_MODULE,
  428         .cra_list               =       LIST_HEAD_INIT(aes_alg.cra_list),
  429         .cra_u                  =       {
  430                 .cipher = {
  431                         .cia_min_keysize        =       AES_MIN_KEY_SIZE,
  432                         .cia_max_keysize        =       AES_MAX_KEY_SIZE,
  433                         .cia_setkey             =       aes_set_key,
  434                         .cia_encrypt            =       aes_encrypt,
  435                         .cia_decrypt            =       aes_decrypt
  436                 }
  437         }
  438 };
  439 
  440 static int __init aes_init(void)
  441 {
  442         gen_tabs();
  443         return crypto_register_alg(&aes_alg);
  444 }
  445 
  446 static void __exit aes_fini(void)
  447 {
  448         crypto_unregister_alg(&aes_alg);
  449 }
  450 
  451 module_init(aes_init);
  452 module_exit(aes_fini);
  453 
  454 MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm");
  455 MODULE_LICENSE("Dual BSD/GPL");
  456 

Cache object: a94b20c229fc6ba53918921487815ce9


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.