The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/crypto/cipher.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Cryptographic API.
    3  *
    4  * Cipher operations.
    5  *
    6  * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
    7  * Generic scatterwalk code by Adam J. Richter <adam@yggdrasil.com>.
    8  *
    9  * This program is free software; you can redistribute it and/or modify it
   10  * under the terms of the GNU General Public License as published by the Free
   11  * Software Foundation; either version 2 of the License, or (at your option) 
   12  * any later version.
   13  *
   14  */
   15 #include <linux/kernel.h>
   16 #include <linux/crypto.h>
   17 #include <linux/errno.h>
   18 #include <linux/mm.h>
   19 #include <linux/slab.h>
   20 #include <linux/pagemap.h>
   21 #include <linux/highmem.h>
   22 #include <asm/scatterlist.h>
   23 #include "internal.h"
   24 
   25 typedef void (cryptfn_t)(void *, u8 *, const u8 *);
   26 typedef void (procfn_t)(struct crypto_tfm *, u8 *,
   27                         u8*, cryptfn_t, int enc, void *);
   28 
   29 struct scatter_walk {
   30         struct scatterlist      *sg;
   31         struct page             *page;
   32         void                    *data;
   33         unsigned int            len_this_page;
   34         unsigned int            len_this_segment;
   35         unsigned int            offset;
   36 };
   37 
   38 enum km_type crypto_km_types[] = {
   39         KM_USER0,
   40         KM_USER1,
   41         KM_SOFTIRQ0,
   42         KM_SOFTIRQ1,
   43 };
   44 
   45 static inline void xor_64(u8 *a, const u8 *b)
   46 {
   47         ((u32 *)a)[0] ^= ((u32 *)b)[0];
   48         ((u32 *)a)[1] ^= ((u32 *)b)[1];
   49 }
   50 
   51 static inline void xor_128(u8 *a, const u8 *b)
   52 {
   53         ((u32 *)a)[0] ^= ((u32 *)b)[0];
   54         ((u32 *)a)[1] ^= ((u32 *)b)[1];
   55         ((u32 *)a)[2] ^= ((u32 *)b)[2];
   56         ((u32 *)a)[3] ^= ((u32 *)b)[3];
   57 }
   58 
   59 
   60 /* Define sg_next is an inline routine now in case we want to change
   61    scatterlist to a linked list later. */
   62 static inline struct scatterlist *sg_next(struct scatterlist *sg)
   63 {
   64         return sg + 1;
   65 }
   66 
   67 void *which_buf(struct scatter_walk *walk, unsigned int nbytes, void *scratch)
   68 {
   69         if (nbytes <= walk->len_this_page &&
   70             (((unsigned long)walk->data) & (PAGE_CACHE_SIZE - 1)) + nbytes <=
   71             PAGE_CACHE_SIZE)
   72                 return walk->data;
   73         else
   74                 return scratch;
   75 }
   76 
   77 static void memcpy_dir(void *buf, void *sgdata, size_t nbytes, int out)
   78 {
   79         if (out)
   80                 memcpy(sgdata, buf, nbytes);
   81         else
   82                 memcpy(buf, sgdata, nbytes);
   83 }
   84 
   85 static void scatterwalk_start(struct scatter_walk *walk, struct scatterlist *sg)
   86 {
   87         unsigned int rest_of_page;
   88 
   89         walk->sg = sg;
   90 
   91         walk->page = sg->page;
   92         walk->len_this_segment = sg->length;
   93 
   94         rest_of_page = PAGE_CACHE_SIZE - (sg->offset & (PAGE_CACHE_SIZE - 1));
   95         walk->len_this_page = min(sg->length, rest_of_page);
   96         walk->offset = sg->offset;
   97 }
   98 
   99 static void scatterwalk_map(struct scatter_walk *walk, int out)
  100 {
  101         walk->data = crypto_kmap(walk->page, out) + walk->offset;
  102 }
  103 
  104 static void scatter_page_done(struct scatter_walk *walk, int out,
  105                               unsigned int more)
  106 {
  107         /* walk->data may be pointing the first byte of the next page;
  108            however, we know we transfered at least one byte.  So,
  109            walk->data - 1 will be a virutual address in the mapped page. */
  110 
  111         if (out)
  112                 flush_dcache_page(walk->page);
  113 
  114         if (more) {
  115                 walk->len_this_segment -= walk->len_this_page;
  116 
  117                 if (walk->len_this_segment) {
  118                         walk->page++;
  119                         walk->len_this_page = min(walk->len_this_segment,
  120                                                   (unsigned)PAGE_CACHE_SIZE);
  121                         walk->offset = 0;
  122                 }
  123                 else
  124                         scatterwalk_start(walk, sg_next(walk->sg));
  125         }
  126 }
  127 
  128 static void scatter_done(struct scatter_walk *walk, int out, int more)
  129 {
  130         crypto_kunmap(walk->data, out);
  131         if (walk->len_this_page == 0 || !more)
  132                 scatter_page_done(walk, out, more);
  133 }
  134 
  135 /*
  136  * Do not call this unless the total length of all of the fragments 
  137  * has been verified as multiple of the block size.
  138  */
  139 static int copy_chunks(void *buf, struct scatter_walk *walk,
  140                         size_t nbytes, int out)
  141 {
  142         if (buf != walk->data) {
  143                 while (nbytes > walk->len_this_page) {
  144                         memcpy_dir(buf, walk->data, walk->len_this_page, out);
  145                         buf += walk->len_this_page;
  146                         nbytes -= walk->len_this_page;
  147 
  148                         crypto_kunmap(walk->data, out);
  149                         scatter_page_done(walk, out, 1);
  150                         scatterwalk_map(walk, out);
  151                 }
  152 
  153                 memcpy_dir(buf, walk->data, nbytes, out);
  154         }
  155 
  156         walk->offset += nbytes;
  157         walk->len_this_page -= nbytes;
  158         walk->len_this_segment -= nbytes;
  159         return 0;
  160 }
  161 
  162 /* 
  163  * Generic encrypt/decrypt wrapper for ciphers, handles operations across
  164  * multiple page boundaries by using temporary blocks.  In user context,
  165  * the kernel is given a chance to schedule us once per block.
  166  */
  167 static int crypt(struct crypto_tfm *tfm,
  168                  struct scatterlist *dst,
  169                  struct scatterlist *src,
  170                  unsigned int nbytes, cryptfn_t crfn,
  171                  procfn_t prfn, int enc, void *info)
  172 {
  173         struct scatter_walk walk_in, walk_out;
  174         const unsigned int bsize = crypto_tfm_alg_blocksize(tfm);
  175         u8 tmp_src[nbytes > src->length ? bsize : 0];
  176         u8 tmp_dst[nbytes > dst->length ? bsize : 0];
  177 
  178         if (!nbytes)
  179                 return 0;
  180 
  181         if (nbytes % bsize) {
  182                 tfm->crt_flags |= CRYPTO_TFM_RES_BAD_BLOCK_LEN;
  183                 return -EINVAL;
  184         }
  185 
  186         scatterwalk_start(&walk_in, src);
  187         scatterwalk_start(&walk_out, dst);
  188 
  189         for(;;) {
  190                 u8 *src_p, *dst_p;
  191 
  192                 scatterwalk_map(&walk_in, 0);
  193                 scatterwalk_map(&walk_out, 1);
  194                 src_p = which_buf(&walk_in, bsize, tmp_src);
  195                 dst_p = which_buf(&walk_out, bsize, tmp_dst);
  196 
  197                 nbytes -= bsize;
  198 
  199                 copy_chunks(src_p, &walk_in, bsize, 0);
  200 
  201                 prfn(tfm, dst_p, src_p, crfn, enc, info);
  202 
  203                 scatter_done(&walk_in, 0, nbytes);
  204 
  205                 copy_chunks(dst_p, &walk_out, bsize, 1);
  206                 scatter_done(&walk_out, 1, nbytes);
  207 
  208                 if (!nbytes)
  209                         return 0;
  210 
  211                 crypto_yield(tfm);
  212         }
  213 }
  214 
  215 static void cbc_process(struct crypto_tfm *tfm,
  216                         u8 *dst, u8 *src, cryptfn_t fn, int enc, void *info)
  217 {
  218         u8 *iv = info;
  219         
  220         /* Null encryption */
  221         if (!iv)
  222                 return;
  223                 
  224         if (enc) {
  225                 tfm->crt_u.cipher.cit_xor_block(iv, src);
  226                 fn(crypto_tfm_ctx(tfm), dst, iv);
  227                 memcpy(iv, dst, crypto_tfm_alg_blocksize(tfm));
  228         } else {
  229                 const int need_stack = (src == dst);
  230                 u8 stack[need_stack ? crypto_tfm_alg_blocksize(tfm) : 0];
  231                 u8 *buf = need_stack ? stack : dst;
  232                 
  233                 fn(crypto_tfm_ctx(tfm), buf, src);
  234                 tfm->crt_u.cipher.cit_xor_block(buf, iv);
  235                 memcpy(iv, src, crypto_tfm_alg_blocksize(tfm));
  236                 if (buf != dst)
  237                         memcpy(dst, buf, crypto_tfm_alg_blocksize(tfm));
  238         }
  239 }
  240 
  241 static void ecb_process(struct crypto_tfm *tfm, u8 *dst, u8 *src,
  242                         cryptfn_t fn, int enc, void *info)
  243 {
  244         fn(crypto_tfm_ctx(tfm), dst, src);
  245 }
  246 
  247 static int setkey(struct crypto_tfm *tfm, const u8 *key, unsigned int keylen)
  248 {
  249         struct cipher_alg *cia = &tfm->__crt_alg->cra_cipher;
  250         
  251         if (keylen < cia->cia_min_keysize || keylen > cia->cia_max_keysize) {
  252                 tfm->crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
  253                 return -EINVAL;
  254         } else
  255                 return cia->cia_setkey(crypto_tfm_ctx(tfm), key, keylen,
  256                                        &tfm->crt_flags);
  257 }
  258 
  259 static int ecb_encrypt(struct crypto_tfm *tfm,
  260                        struct scatterlist *dst,
  261                        struct scatterlist *src, unsigned int nbytes)
  262 {
  263         return crypt(tfm, dst, src, nbytes,
  264                      tfm->__crt_alg->cra_cipher.cia_encrypt,
  265                      ecb_process, 1, NULL);
  266 }
  267 
  268 static int ecb_decrypt(struct crypto_tfm *tfm,
  269                        struct scatterlist *dst,
  270                        struct scatterlist *src,
  271                        unsigned int nbytes)
  272 {
  273         return crypt(tfm, dst, src, nbytes,
  274                      tfm->__crt_alg->cra_cipher.cia_decrypt,
  275                      ecb_process, 1, NULL);
  276 }
  277 
  278 static int cbc_encrypt(struct crypto_tfm *tfm,
  279                        struct scatterlist *dst,
  280                        struct scatterlist *src,
  281                        unsigned int nbytes)
  282 {
  283         return crypt(tfm, dst, src, nbytes,
  284                      tfm->__crt_alg->cra_cipher.cia_encrypt,
  285                      cbc_process, 1, tfm->crt_cipher.cit_iv);
  286 }
  287 
  288 static int cbc_encrypt_iv(struct crypto_tfm *tfm,
  289                           struct scatterlist *dst,
  290                           struct scatterlist *src,
  291                           unsigned int nbytes, u8 *iv)
  292 {
  293         return crypt(tfm, dst, src, nbytes,
  294                      tfm->__crt_alg->cra_cipher.cia_encrypt,
  295                      cbc_process, 1, iv);
  296 }
  297 
  298 static int cbc_decrypt(struct crypto_tfm *tfm,
  299                        struct scatterlist *dst,
  300                        struct scatterlist *src,
  301                        unsigned int nbytes)
  302 {
  303         return crypt(tfm, dst, src, nbytes,
  304                      tfm->__crt_alg->cra_cipher.cia_decrypt,
  305                      cbc_process, 0, tfm->crt_cipher.cit_iv);
  306 }
  307 
  308 static int cbc_decrypt_iv(struct crypto_tfm *tfm,
  309                           struct scatterlist *dst,
  310                           struct scatterlist *src,
  311                           unsigned int nbytes, u8 *iv)
  312 {
  313         return crypt(tfm, dst, src, nbytes,
  314                      tfm->__crt_alg->cra_cipher.cia_decrypt,
  315                      cbc_process, 0, iv);
  316 }
  317 
  318 static int nocrypt(struct crypto_tfm *tfm,
  319                    struct scatterlist *dst,
  320                    struct scatterlist *src,
  321                    unsigned int nbytes)
  322 {
  323         return -ENOSYS;
  324 }
  325 
  326 static int nocrypt_iv(struct crypto_tfm *tfm,
  327                       struct scatterlist *dst,
  328                       struct scatterlist *src,
  329                       unsigned int nbytes, u8 *iv)
  330 {
  331         return -ENOSYS;
  332 }
  333 
  334 int crypto_init_cipher_flags(struct crypto_tfm *tfm, u32 flags)
  335 {
  336         u32 mode = flags & CRYPTO_TFM_MODE_MASK;
  337         
  338         tfm->crt_cipher.cit_mode = mode ? mode : CRYPTO_TFM_MODE_ECB;
  339         if (flags & CRYPTO_TFM_REQ_WEAK_KEY)
  340                 tfm->crt_flags = CRYPTO_TFM_REQ_WEAK_KEY;
  341         
  342         return 0;
  343 }
  344 
  345 int crypto_init_cipher_ops(struct crypto_tfm *tfm)
  346 {
  347         int ret = 0;
  348         struct crypto_alg *alg = tfm->__crt_alg;
  349         struct cipher_tfm *ops = &tfm->crt_cipher;
  350 
  351         ops->cit_setkey = setkey;
  352 
  353         switch (tfm->crt_cipher.cit_mode) {
  354         case CRYPTO_TFM_MODE_ECB:
  355                 ops->cit_encrypt = ecb_encrypt;
  356                 ops->cit_decrypt = ecb_decrypt;
  357                 break;
  358                 
  359         case CRYPTO_TFM_MODE_CBC:
  360                 ops->cit_encrypt = cbc_encrypt;
  361                 ops->cit_decrypt = cbc_decrypt;
  362                 ops->cit_encrypt_iv = cbc_encrypt_iv;
  363                 ops->cit_decrypt_iv = cbc_decrypt_iv;
  364                 break;
  365                 
  366         case CRYPTO_TFM_MODE_CFB:
  367                 ops->cit_encrypt = nocrypt;
  368                 ops->cit_decrypt = nocrypt;
  369                 ops->cit_encrypt_iv = nocrypt_iv;
  370                 ops->cit_decrypt_iv = nocrypt_iv;
  371                 break;
  372         
  373         case CRYPTO_TFM_MODE_CTR:
  374                 ops->cit_encrypt = nocrypt;
  375                 ops->cit_decrypt = nocrypt;
  376                 ops->cit_encrypt_iv = nocrypt_iv;
  377                 ops->cit_decrypt_iv = nocrypt_iv;
  378                 break;
  379 
  380         default:
  381                 BUG();
  382         }
  383         
  384         if (alg->cra_cipher.cia_ivsize &&
  385             ops->cit_mode != CRYPTO_TFM_MODE_ECB) {
  386                 
  387                 switch (crypto_tfm_alg_blocksize(tfm)) {
  388                 case 8:
  389                         ops->cit_xor_block = xor_64;
  390                         break;
  391                         
  392                 case 16:
  393                         ops->cit_xor_block = xor_128;
  394                         break;
  395                         
  396                 default:
  397                         printk(KERN_WARNING "%s: block size %u not supported\n",
  398                                crypto_tfm_alg_name(tfm),
  399                                crypto_tfm_alg_blocksize(tfm));
  400                         ret = -EINVAL;
  401                         goto out;
  402                 }
  403                 
  404                 ops->cit_iv = kmalloc(alg->cra_cipher.cia_ivsize, GFP_KERNEL);
  405                 if (ops->cit_iv == NULL)
  406                         ret = -ENOMEM;
  407         }
  408 
  409 out:    
  410         return ret;
  411 }
  412 
  413 void crypto_exit_cipher_ops(struct crypto_tfm *tfm)
  414 {
  415         if (tfm->crt_cipher.cit_iv)
  416                 kfree(tfm->crt_cipher.cit_iv);
  417 }

Cache object: fbe172cf65939f98d0268ac4232e8c75


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.