1 /* $KAME: rijndael-api-fst.c,v 1.10 2001/05/27 09:34:18 itojun Exp $ */
2
3 /*
4 * rijndael-api-fst.c v2.3 April '2000
5 *
6 * Optimised ANSI C code
7 *
8 * authors: v1.0: Antoon Bosselaers
9 * v2.0: Vincent Rijmen
10 * v2.1: Vincent Rijmen
11 * v2.2: Vincent Rijmen
12 * v2.3: Paulo Barreto
13 * v2.4: Vincent Rijmen
14 *
15 * This code is placed in the public domain.
16 */
17
18 #include <sys/cdefs.h>
19 __FBSDID("$FreeBSD: releng/9.0/sys/crypto/rijndael/rijndael-api-fst.c 143420 2005-03-11 16:26:10Z ume $");
20
21 #include <sys/param.h>
22 #ifdef _KERNEL
23 #include <sys/systm.h>
24 #else
25 #include <string.h>
26 #endif
27
28 #include <crypto/rijndael/rijndael_local.h>
29 #include <crypto/rijndael/rijndael-api-fst.h>
30
31 #ifndef TRUE
32 #define TRUE 1
33 #endif
34
35 typedef u_int8_t BYTE;
36
37 int rijndael_makeKey(keyInstance *key, BYTE direction, int keyLen, char *keyMaterial) {
38 u_int8_t cipherKey[RIJNDAEL_MAXKB];
39
40 if (key == NULL) {
41 return BAD_KEY_INSTANCE;
42 }
43
44 if ((direction == DIR_ENCRYPT) || (direction == DIR_DECRYPT)) {
45 key->direction = direction;
46 } else {
47 return BAD_KEY_DIR;
48 }
49
50 if ((keyLen == 128) || (keyLen == 192) || (keyLen == 256)) {
51 key->keyLen = keyLen;
52 } else {
53 return BAD_KEY_MAT;
54 }
55
56 if (keyMaterial != NULL) {
57 memcpy(key->keyMaterial, keyMaterial, keyLen/8);
58 }
59
60 /* initialize key schedule: */
61 memcpy(cipherKey, key->keyMaterial, keyLen/8);
62 if (direction == DIR_ENCRYPT) {
63 key->Nr = rijndaelKeySetupEnc(key->rk, cipherKey, keyLen);
64 } else {
65 key->Nr = rijndaelKeySetupDec(key->rk, cipherKey, keyLen);
66 }
67 rijndaelKeySetupEnc(key->ek, cipherKey, keyLen);
68 return TRUE;
69 }
70
71 int rijndael_cipherInit(cipherInstance *cipher, BYTE mode, char *IV) {
72 if ((mode == MODE_ECB) || (mode == MODE_CBC) || (mode == MODE_CFB1)) {
73 cipher->mode = mode;
74 } else {
75 return BAD_CIPHER_MODE;
76 }
77 if (IV != NULL) {
78 memcpy(cipher->IV, IV, RIJNDAEL_MAX_IV_SIZE);
79 } else {
80 memset(cipher->IV, 0, RIJNDAEL_MAX_IV_SIZE);
81 }
82 return TRUE;
83 }
84
85 int rijndael_blockEncrypt(cipherInstance *cipher, keyInstance *key,
86 BYTE *input, int inputLen, BYTE *outBuffer) {
87 int i, k, numBlocks;
88 u_int8_t block[16], iv[4][4];
89
90 if (cipher == NULL ||
91 key == NULL ||
92 key->direction == DIR_DECRYPT) {
93 return BAD_CIPHER_STATE;
94 }
95 if (input == NULL || inputLen <= 0) {
96 return 0; /* nothing to do */
97 }
98
99 numBlocks = inputLen/128;
100
101 switch (cipher->mode) {
102 case MODE_ECB:
103 for (i = numBlocks; i > 0; i--) {
104 rijndaelEncrypt(key->rk, key->Nr, input, outBuffer);
105 input += 16;
106 outBuffer += 16;
107 }
108 break;
109
110 case MODE_CBC:
111 #if 1 /*STRICT_ALIGN*/
112 memcpy(block, cipher->IV, 16);
113 memcpy(iv, input, 16);
114 ((u_int32_t*)block)[0] ^= ((u_int32_t*)iv)[0];
115 ((u_int32_t*)block)[1] ^= ((u_int32_t*)iv)[1];
116 ((u_int32_t*)block)[2] ^= ((u_int32_t*)iv)[2];
117 ((u_int32_t*)block)[3] ^= ((u_int32_t*)iv)[3];
118 #else
119 ((u_int32_t*)block)[0] = ((u_int32_t*)cipher->IV)[0] ^ ((u_int32_t*)input)[0];
120 ((u_int32_t*)block)[1] = ((u_int32_t*)cipher->IV)[1] ^ ((u_int32_t*)input)[1];
121 ((u_int32_t*)block)[2] = ((u_int32_t*)cipher->IV)[2] ^ ((u_int32_t*)input)[2];
122 ((u_int32_t*)block)[3] = ((u_int32_t*)cipher->IV)[3] ^ ((u_int32_t*)input)[3];
123 #endif
124 rijndaelEncrypt(key->rk, key->Nr, block, outBuffer);
125 input += 16;
126 for (i = numBlocks - 1; i > 0; i--) {
127 #if 1 /*STRICT_ALIGN*/
128 memcpy(block, outBuffer, 16);
129 memcpy(iv, input, 16);
130 ((u_int32_t*)block)[0] ^= ((u_int32_t*)iv)[0];
131 ((u_int32_t*)block)[1] ^= ((u_int32_t*)iv)[1];
132 ((u_int32_t*)block)[2] ^= ((u_int32_t*)iv)[2];
133 ((u_int32_t*)block)[3] ^= ((u_int32_t*)iv)[3];
134 #else
135 ((u_int32_t*)block)[0] = ((u_int32_t*)outBuffer)[0] ^ ((u_int32_t*)input)[0];
136 ((u_int32_t*)block)[1] = ((u_int32_t*)outBuffer)[1] ^ ((u_int32_t*)input)[1];
137 ((u_int32_t*)block)[2] = ((u_int32_t*)outBuffer)[2] ^ ((u_int32_t*)input)[2];
138 ((u_int32_t*)block)[3] = ((u_int32_t*)outBuffer)[3] ^ ((u_int32_t*)input)[3];
139 #endif
140 outBuffer += 16;
141 rijndaelEncrypt(key->rk, key->Nr, block, outBuffer);
142 input += 16;
143 }
144 break;
145
146 case MODE_CFB1:
147 #if 1 /*STRICT_ALIGN*/
148 memcpy(iv, cipher->IV, 16);
149 #else /* !STRICT_ALIGN */
150 *((u_int32_t*)iv[0]) = *((u_int32_t*)(cipher->IV ));
151 *((u_int32_t*)iv[1]) = *((u_int32_t*)(cipher->IV+ 4));
152 *((u_int32_t*)iv[2]) = *((u_int32_t*)(cipher->IV+ 8));
153 *((u_int32_t*)iv[3]) = *((u_int32_t*)(cipher->IV+12));
154 #endif /* ?STRICT_ALIGN */
155 for (i = numBlocks; i > 0; i--) {
156 for (k = 0; k < 128; k++) {
157 *((u_int32_t*) block ) = *((u_int32_t*)iv[0]);
158 *((u_int32_t*)(block+ 4)) = *((u_int32_t*)iv[1]);
159 *((u_int32_t*)(block+ 8)) = *((u_int32_t*)iv[2]);
160 *((u_int32_t*)(block+12)) = *((u_int32_t*)iv[3]);
161 rijndaelEncrypt(key->ek, key->Nr, block,
162 block);
163 outBuffer[k/8] ^= (block[0] & 0x80) >> (k & 7);
164 iv[0][0] = (iv[0][0] << 1) | (iv[0][1] >> 7);
165 iv[0][1] = (iv[0][1] << 1) | (iv[0][2] >> 7);
166 iv[0][2] = (iv[0][2] << 1) | (iv[0][3] >> 7);
167 iv[0][3] = (iv[0][3] << 1) | (iv[1][0] >> 7);
168 iv[1][0] = (iv[1][0] << 1) | (iv[1][1] >> 7);
169 iv[1][1] = (iv[1][1] << 1) | (iv[1][2] >> 7);
170 iv[1][2] = (iv[1][2] << 1) | (iv[1][3] >> 7);
171 iv[1][3] = (iv[1][3] << 1) | (iv[2][0] >> 7);
172 iv[2][0] = (iv[2][0] << 1) | (iv[2][1] >> 7);
173 iv[2][1] = (iv[2][1] << 1) | (iv[2][2] >> 7);
174 iv[2][2] = (iv[2][2] << 1) | (iv[2][3] >> 7);
175 iv[2][3] = (iv[2][3] << 1) | (iv[3][0] >> 7);
176 iv[3][0] = (iv[3][0] << 1) | (iv[3][1] >> 7);
177 iv[3][1] = (iv[3][1] << 1) | (iv[3][2] >> 7);
178 iv[3][2] = (iv[3][2] << 1) | (iv[3][3] >> 7);
179 iv[3][3] = (iv[3][3] << 1) | ((outBuffer[k/8] >> (7-(k&7))) & 1);
180 }
181 }
182 break;
183
184 default:
185 return BAD_CIPHER_STATE;
186 }
187
188 return 128*numBlocks;
189 }
190
191 /**
192 * Encrypt data partitioned in octets, using RFC 2040-like padding.
193 *
194 * @param input data to be encrypted (octet sequence)
195 * @param inputOctets input length in octets (not bits)
196 * @param outBuffer encrypted output data
197 *
198 * @return length in octets (not bits) of the encrypted output buffer.
199 */
200 int rijndael_padEncrypt(cipherInstance *cipher, keyInstance *key,
201 BYTE *input, int inputOctets, BYTE *outBuffer) {
202 int i, numBlocks, padLen;
203 u_int8_t block[16], *iv, *cp;
204
205 if (cipher == NULL ||
206 key == NULL ||
207 key->direction == DIR_DECRYPT) {
208 return BAD_CIPHER_STATE;
209 }
210 if (input == NULL || inputOctets <= 0) {
211 return 0; /* nothing to do */
212 }
213
214 numBlocks = inputOctets/16;
215
216 switch (cipher->mode) {
217 case MODE_ECB:
218 for (i = numBlocks; i > 0; i--) {
219 rijndaelEncrypt(key->rk, key->Nr, input, outBuffer);
220 input += 16;
221 outBuffer += 16;
222 }
223 padLen = 16 - (inputOctets - 16*numBlocks);
224 if (padLen <= 0 || padLen > 16)
225 return BAD_CIPHER_STATE;
226 memcpy(block, input, 16 - padLen);
227 for (cp = block + 16 - padLen; cp < block + 16; cp++)
228 *cp = padLen;
229 rijndaelEncrypt(key->rk, key->Nr, block, outBuffer);
230 break;
231
232 case MODE_CBC:
233 iv = cipher->IV;
234 for (i = numBlocks; i > 0; i--) {
235 ((u_int32_t*)block)[0] = ((u_int32_t*)input)[0] ^ ((u_int32_t*)iv)[0];
236 ((u_int32_t*)block)[1] = ((u_int32_t*)input)[1] ^ ((u_int32_t*)iv)[1];
237 ((u_int32_t*)block)[2] = ((u_int32_t*)input)[2] ^ ((u_int32_t*)iv)[2];
238 ((u_int32_t*)block)[3] = ((u_int32_t*)input)[3] ^ ((u_int32_t*)iv)[3];
239 rijndaelEncrypt(key->rk, key->Nr, block, outBuffer);
240 iv = outBuffer;
241 input += 16;
242 outBuffer += 16;
243 }
244 padLen = 16 - (inputOctets - 16*numBlocks);
245 if (padLen <= 0 || padLen > 16)
246 return BAD_CIPHER_STATE;
247 for (i = 0; i < 16 - padLen; i++) {
248 block[i] = input[i] ^ iv[i];
249 }
250 for (i = 16 - padLen; i < 16; i++) {
251 block[i] = (BYTE)padLen ^ iv[i];
252 }
253 rijndaelEncrypt(key->rk, key->Nr, block, outBuffer);
254 break;
255
256 default:
257 return BAD_CIPHER_STATE;
258 }
259
260 return 16*(numBlocks + 1);
261 }
262
263 int rijndael_blockDecrypt(cipherInstance *cipher, keyInstance *key,
264 BYTE *input, int inputLen, BYTE *outBuffer) {
265 int i, k, numBlocks;
266 u_int8_t block[16], iv[4][4];
267
268 if (cipher == NULL ||
269 key == NULL ||
270 (cipher->mode != MODE_CFB1 && key->direction == DIR_ENCRYPT)) {
271 return BAD_CIPHER_STATE;
272 }
273 if (input == NULL || inputLen <= 0) {
274 return 0; /* nothing to do */
275 }
276
277 numBlocks = inputLen/128;
278
279 switch (cipher->mode) {
280 case MODE_ECB:
281 for (i = numBlocks; i > 0; i--) {
282 rijndaelDecrypt(key->rk, key->Nr, input, outBuffer);
283 input += 16;
284 outBuffer += 16;
285 }
286 break;
287
288 case MODE_CBC:
289 #if 1 /*STRICT_ALIGN */
290 memcpy(iv, cipher->IV, 16);
291 #else
292 *((u_int32_t*)iv[0]) = *((u_int32_t*)(cipher->IV ));
293 *((u_int32_t*)iv[1]) = *((u_int32_t*)(cipher->IV+ 4));
294 *((u_int32_t*)iv[2]) = *((u_int32_t*)(cipher->IV+ 8));
295 *((u_int32_t*)iv[3]) = *((u_int32_t*)(cipher->IV+12));
296 #endif
297 for (i = numBlocks; i > 0; i--) {
298 rijndaelDecrypt(key->rk, key->Nr, input, block);
299 ((u_int32_t*)block)[0] ^= *((u_int32_t*)iv[0]);
300 ((u_int32_t*)block)[1] ^= *((u_int32_t*)iv[1]);
301 ((u_int32_t*)block)[2] ^= *((u_int32_t*)iv[2]);
302 ((u_int32_t*)block)[3] ^= *((u_int32_t*)iv[3]);
303 #if 1 /*STRICT_ALIGN*/
304 memcpy(iv, input, 16);
305 memcpy(outBuffer, block, 16);
306 #else
307 *((u_int32_t*)iv[0]) = ((u_int32_t*)input)[0]; ((u_int32_t*)outBuffer)[0] = ((u_int32_t*)block)[0];
308 *((u_int32_t*)iv[1]) = ((u_int32_t*)input)[1]; ((u_int32_t*)outBuffer)[1] = ((u_int32_t*)block)[1];
309 *((u_int32_t*)iv[2]) = ((u_int32_t*)input)[2]; ((u_int32_t*)outBuffer)[2] = ((u_int32_t*)block)[2];
310 *((u_int32_t*)iv[3]) = ((u_int32_t*)input)[3]; ((u_int32_t*)outBuffer)[3] = ((u_int32_t*)block)[3];
311 #endif
312 input += 16;
313 outBuffer += 16;
314 }
315 break;
316
317 case MODE_CFB1:
318 #if 1 /*STRICT_ALIGN */
319 memcpy(iv, cipher->IV, 16);
320 #else
321 *((u_int32_t*)iv[0]) = *((u_int32_t*)(cipher->IV));
322 *((u_int32_t*)iv[1]) = *((u_int32_t*)(cipher->IV+ 4));
323 *((u_int32_t*)iv[2]) = *((u_int32_t*)(cipher->IV+ 8));
324 *((u_int32_t*)iv[3]) = *((u_int32_t*)(cipher->IV+12));
325 #endif
326 for (i = numBlocks; i > 0; i--) {
327 for (k = 0; k < 128; k++) {
328 *((u_int32_t*) block ) = *((u_int32_t*)iv[0]);
329 *((u_int32_t*)(block+ 4)) = *((u_int32_t*)iv[1]);
330 *((u_int32_t*)(block+ 8)) = *((u_int32_t*)iv[2]);
331 *((u_int32_t*)(block+12)) = *((u_int32_t*)iv[3]);
332 rijndaelEncrypt(key->ek, key->Nr, block,
333 block);
334 iv[0][0] = (iv[0][0] << 1) | (iv[0][1] >> 7);
335 iv[0][1] = (iv[0][1] << 1) | (iv[0][2] >> 7);
336 iv[0][2] = (iv[0][2] << 1) | (iv[0][3] >> 7);
337 iv[0][3] = (iv[0][3] << 1) | (iv[1][0] >> 7);
338 iv[1][0] = (iv[1][0] << 1) | (iv[1][1] >> 7);
339 iv[1][1] = (iv[1][1] << 1) | (iv[1][2] >> 7);
340 iv[1][2] = (iv[1][2] << 1) | (iv[1][3] >> 7);
341 iv[1][3] = (iv[1][3] << 1) | (iv[2][0] >> 7);
342 iv[2][0] = (iv[2][0] << 1) | (iv[2][1] >> 7);
343 iv[2][1] = (iv[2][1] << 1) | (iv[2][2] >> 7);
344 iv[2][2] = (iv[2][2] << 1) | (iv[2][3] >> 7);
345 iv[2][3] = (iv[2][3] << 1) | (iv[3][0] >> 7);
346 iv[3][0] = (iv[3][0] << 1) | (iv[3][1] >> 7);
347 iv[3][1] = (iv[3][1] << 1) | (iv[3][2] >> 7);
348 iv[3][2] = (iv[3][2] << 1) | (iv[3][3] >> 7);
349 iv[3][3] = (iv[3][3] << 1) | ((input[k/8] >> (7-(k&7))) & 1);
350 outBuffer[k/8] ^= (block[0] & 0x80) >> (k & 7);
351 }
352 }
353 break;
354
355 default:
356 return BAD_CIPHER_STATE;
357 }
358
359 return 128*numBlocks;
360 }
361
362 int rijndael_padDecrypt(cipherInstance *cipher, keyInstance *key,
363 BYTE *input, int inputOctets, BYTE *outBuffer) {
364 int i, numBlocks, padLen;
365 u_int8_t block[16];
366 u_int32_t iv[4];
367
368 if (cipher == NULL ||
369 key == NULL ||
370 key->direction == DIR_ENCRYPT) {
371 return BAD_CIPHER_STATE;
372 }
373 if (input == NULL || inputOctets <= 0) {
374 return 0; /* nothing to do */
375 }
376 if (inputOctets % 16 != 0) {
377 return BAD_DATA;
378 }
379
380 numBlocks = inputOctets/16;
381
382 switch (cipher->mode) {
383 case MODE_ECB:
384 /* all blocks but last */
385 for (i = numBlocks - 1; i > 0; i--) {
386 rijndaelDecrypt(key->rk, key->Nr, input, outBuffer);
387 input += 16;
388 outBuffer += 16;
389 }
390 /* last block */
391 rijndaelDecrypt(key->rk, key->Nr, input, block);
392 padLen = block[15];
393 if (padLen >= 16) {
394 return BAD_DATA;
395 }
396 for (i = 16 - padLen; i < 16; i++) {
397 if (block[i] != padLen) {
398 return BAD_DATA;
399 }
400 }
401 memcpy(outBuffer, block, 16 - padLen);
402 break;
403
404 case MODE_CBC:
405 memcpy(iv, cipher->IV, 16);
406 /* all blocks but last */
407 for (i = numBlocks - 1; i > 0; i--) {
408 rijndaelDecrypt(key->rk, key->Nr, input, block);
409 ((u_int32_t*)block)[0] ^= iv[0];
410 ((u_int32_t*)block)[1] ^= iv[1];
411 ((u_int32_t*)block)[2] ^= iv[2];
412 ((u_int32_t*)block)[3] ^= iv[3];
413 memcpy(iv, input, 16);
414 memcpy(outBuffer, block, 16);
415 input += 16;
416 outBuffer += 16;
417 }
418 /* last block */
419 rijndaelDecrypt(key->rk, key->Nr, input, block);
420 ((u_int32_t*)block)[0] ^= iv[0];
421 ((u_int32_t*)block)[1] ^= iv[1];
422 ((u_int32_t*)block)[2] ^= iv[2];
423 ((u_int32_t*)block)[3] ^= iv[3];
424 padLen = block[15];
425 if (padLen <= 0 || padLen > 16) {
426 return BAD_DATA;
427 }
428 for (i = 16 - padLen; i < 16; i++) {
429 if (block[i] != padLen) {
430 return BAD_DATA;
431 }
432 }
433 memcpy(outBuffer, block, 16 - padLen);
434 break;
435
436 default:
437 return BAD_CIPHER_STATE;
438 }
439
440 return 16*numBlocks - padLen;
441 }
Cache object: 6f8be2d2d2a9ccfe1ad8aec3ddd1fac4
|