The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/crypto/sha1.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Cryptographic API.
    3  *
    4  * SHA1 Secure Hash Algorithm.
    5  *
    6  * Derived from cryptoapi implementation, adapted for in-place
    7  * scatterlist interface.  Originally based on the public domain
    8  * implementation written by Steve Reid.
    9  *
   10  * Copyright (c) Alan Smithee.
   11  * Copyright (c) Andrew McDonald <andrew@mcdonald.org.uk>
   12  * Copyright (c) Jean-Francois Dive <jef@linuxbe.org>
   13  *
   14  * This program is free software; you can redistribute it and/or modify it
   15  * under the terms of the GNU General Public License as published by the Free
   16  * Software Foundation; either version 2 of the License, or (at your option) 
   17  * any later version.
   18  *
   19  */
   20 #include <linux/init.h>
   21 #include <linux/module.h>
   22 #include <linux/mm.h>
   23 #include <linux/crypto.h>
   24 #include <asm/scatterlist.h>
   25 #include <asm/byteorder.h>
   26 
   27 #define SHA1_DIGEST_SIZE        20
   28 #define SHA1_HMAC_BLOCK_SIZE    64
   29 
   30 static inline u32 rol(u32 value, u32 bits)
   31 {
   32         return (((value) << (bits)) | ((value) >> (32 - (bits))));
   33 }
   34 
   35 /* blk0() and blk() perform the initial expand. */
   36 /* I got the idea of expanding during the round function from SSLeay */
   37 # define blk0(i) block32[i]
   38 
   39 #define blk(i) (block32[i&15] = rol(block32[(i+13)&15]^block32[(i+8)&15] \
   40     ^block32[(i+2)&15]^block32[i&15],1))
   41 
   42 /* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */
   43 #define R0(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk0(i)+0x5A827999+rol(v,5); \
   44                         w=rol(w,30);
   45 #define R1(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5); \
   46                         w=rol(w,30);
   47 #define R2(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=rol(w,30);
   48 #define R3(v,w,x,y,z,i) z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5); \
   49                         w=rol(w,30);
   50 #define R4(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=rol(w,30);
   51 
   52 struct sha1_ctx {
   53         u64 count;
   54         u32 state[5];
   55         u8 buffer[64];
   56 };
   57 
   58 /* Hash a single 512-bit block. This is the core of the algorithm. */
   59 static void sha1_transform(u32 *state, const u8 *in)
   60 {
   61         u32 a, b, c, d, e;
   62         u32 block32[16];
   63 
   64         /* convert/copy data to workspace */
   65         for (a = 0; a < sizeof(block32)/sizeof(u32); a++)
   66           block32[a] = be32_to_cpu (((const u32 *)in)[a]);
   67 
   68         /* Copy context->state[] to working vars */
   69         a = state[0];
   70         b = state[1];
   71         c = state[2];
   72         d = state[3];
   73         e = state[4];
   74 
   75         /* 4 rounds of 20 operations each. Loop unrolled. */
   76         R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
   77         R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
   78         R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
   79         R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
   80         R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
   81         R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
   82         R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
   83         R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
   84         R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
   85         R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
   86         R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
   87         R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
   88         R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
   89         R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
   90         R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
   91         R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
   92         R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
   93         R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
   94         R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
   95         R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
   96         /* Add the working vars back into context.state[] */
   97         state[0] += a;
   98         state[1] += b;
   99         state[2] += c;
  100         state[3] += d;
  101         state[4] += e;
  102         /* Wipe variables */
  103         a = b = c = d = e = 0;
  104         memset (block32, 0x00, sizeof block32);
  105 }
  106 
  107 static void sha1_init(void *ctx)
  108 {
  109         struct sha1_ctx *sctx = ctx;
  110         static const struct sha1_ctx initstate = {
  111           0,
  112           { 0x67452301, 0xEFCDAB89, 0x98BADCFE, 0x10325476, 0xC3D2E1F0 },
  113           { 0, }
  114         };
  115 
  116         *sctx = initstate;
  117 }
  118 
  119 static void sha1_update(void *ctx, const u8 *data, unsigned int len)
  120 {
  121         struct sha1_ctx *sctx = ctx;
  122         unsigned int i, j;
  123 
  124         j = (sctx->count >> 3) & 0x3f;
  125         sctx->count += len << 3;
  126 
  127         if ((j + len) > 63) {
  128                 memcpy(&sctx->buffer[j], data, (i = 64-j));
  129                 sha1_transform(sctx->state, sctx->buffer);
  130                 for ( ; i + 63 < len; i += 64) {
  131                         sha1_transform(sctx->state, &data[i]);
  132                 }
  133                 j = 0;
  134         }
  135         else i = 0;
  136         memcpy(&sctx->buffer[j], &data[i], len - i);
  137 }
  138 
  139 
  140 /* Add padding and return the message digest. */
  141 static void sha1_final(void* ctx, u8 *out)
  142 {
  143         struct sha1_ctx *sctx = ctx;
  144         u32 i, j, index, padlen;
  145         u64 t;
  146         u8 bits[8] = { 0, };
  147         static const u8 padding[64] = { 0x80, };
  148 
  149         t = sctx->count;
  150         bits[7] = 0xff & t; t>>=8;
  151         bits[6] = 0xff & t; t>>=8;
  152         bits[5] = 0xff & t; t>>=8;
  153         bits[4] = 0xff & t; t>>=8;
  154         bits[3] = 0xff & t; t>>=8;
  155         bits[2] = 0xff & t; t>>=8;
  156         bits[1] = 0xff & t; t>>=8;
  157         bits[0] = 0xff & t;
  158 
  159         /* Pad out to 56 mod 64 */
  160         index = (sctx->count >> 3) & 0x3f;
  161         padlen = (index < 56) ? (56 - index) : ((64+56) - index);
  162         sha1_update(sctx, padding, padlen);
  163 
  164         /* Append length */
  165         sha1_update(sctx, bits, sizeof bits); 
  166 
  167         /* Store state in digest */
  168         for (i = j = 0; i < 5; i++, j += 4) {
  169                 u32 t2 = sctx->state[i];
  170                 out[j+3] = t2 & 0xff; t2>>=8;
  171                 out[j+2] = t2 & 0xff; t2>>=8;
  172                 out[j+1] = t2 & 0xff; t2>>=8;
  173                 out[j  ] = t2 & 0xff;
  174         }
  175 
  176         /* Wipe context */
  177         memset(sctx, 0, sizeof *sctx);
  178 }
  179 
  180 static struct crypto_alg alg = {
  181         .cra_name       =       "sha1",
  182         .cra_flags      =       CRYPTO_ALG_TYPE_DIGEST,
  183         .cra_blocksize  =       SHA1_HMAC_BLOCK_SIZE,
  184         .cra_ctxsize    =       sizeof(struct sha1_ctx),
  185         .cra_module     =       THIS_MODULE,
  186         .cra_list       =       LIST_HEAD_INIT(alg.cra_list),
  187         .cra_u          =       { .digest = {
  188         .dia_digestsize =       SHA1_DIGEST_SIZE,
  189         .dia_init       =       sha1_init,
  190         .dia_update     =       sha1_update,
  191         .dia_final      =       sha1_final } }
  192 };
  193 
  194 static int __init init(void)
  195 {
  196         return crypto_register_alg(&alg);
  197 }
  198 
  199 static void __exit fini(void)
  200 {
  201         crypto_unregister_alg(&alg);
  202 }
  203 
  204 module_init(init);
  205 module_exit(fini);
  206 
  207 MODULE_LICENSE("GPL");
  208 MODULE_DESCRIPTION("SHA1 Secure Hash Algorithm");

Cache object: 575445a20345bb47a18dc602a95bc536


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.