The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/crypto/sha2.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*      $OpenBSD: sha2.c,v 1.21 2022/12/27 20:13:03 patrick Exp $       */
    2 
    3 /*
    4  * FILE:        sha2.c
    5  * AUTHOR:      Aaron D. Gifford <me@aarongifford.com>
    6  * 
    7  * Copyright (c) 2000-2001, Aaron D. Gifford
    8  * All rights reserved.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 3. Neither the name of the copyright holder nor the names of contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  * 
   22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
   26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  *
   34  * $From: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $
   35  */
   36 
   37 #include <sys/time.h>
   38 #include <sys/systm.h>
   39 #include <crypto/sha2.h>
   40 
   41 /*
   42  * UNROLLED TRANSFORM LOOP NOTE:
   43  * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
   44  * loop version for the hash transform rounds (defined using macros
   45  * later in this file).  Either define on the command line, for example:
   46  *
   47  *   cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
   48  *
   49  * or define below:
   50  *
   51  *   #define SHA2_UNROLL_TRANSFORM
   52  *
   53  */
   54 #ifndef SMALL_KERNEL
   55 #if defined(__amd64__) || defined(__i386__)
   56 #define SHA2_UNROLL_TRANSFORM
   57 #endif
   58 #endif
   59 
   60 /*** SHA-256/384/512 Machine Architecture Definitions *****************/
   61 /*
   62  * BYTE_ORDER NOTE:
   63  *
   64  * Please make sure that your system defines BYTE_ORDER.  If your
   65  * architecture is little-endian, make sure it also defines
   66  * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
   67  * equivalent.
   68  *
   69  * If your system does not define the above, then you can do so by
   70  * hand like this:
   71  *
   72  *   #define LITTLE_ENDIAN 1234
   73  *   #define BIG_ENDIAN    4321
   74  *
   75  * And for little-endian machines, add:
   76  *
   77  *   #define BYTE_ORDER LITTLE_ENDIAN 
   78  *
   79  * Or for big-endian machines:
   80  *
   81  *   #define BYTE_ORDER BIG_ENDIAN
   82  *
   83  * The FreeBSD machine this was written on defines BYTE_ORDER
   84  * appropriately by including <sys/types.h> (which in turn includes
   85  * <machine/endian.h> where the appropriate definitions are actually
   86  * made).
   87  */
   88 #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
   89 #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
   90 #endif
   91 
   92 
   93 /*** SHA-256/384/512 Various Length Definitions ***********************/
   94 /* NOTE: Most of these are in sha2.h */
   95 #define SHA256_SHORT_BLOCK_LENGTH       (SHA256_BLOCK_LENGTH - 8)
   96 #define SHA384_SHORT_BLOCK_LENGTH       (SHA384_BLOCK_LENGTH - 16)
   97 #define SHA512_SHORT_BLOCK_LENGTH       (SHA512_BLOCK_LENGTH - 16)
   98 
   99 /*
  100  * Macro for incrementally adding the unsigned 64-bit integer n to the
  101  * unsigned 128-bit integer (represented using a two-element array of
  102  * 64-bit words):
  103  */
  104 #define ADDINC128(w,n)  { \
  105         (w)[0] += (u_int64_t)(n); \
  106         if ((w)[0] < (n)) { \
  107                 (w)[1]++; \
  108         } \
  109 }
  110 
  111 /*** THE SIX LOGICAL FUNCTIONS ****************************************/
  112 /*
  113  * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
  114  *
  115  *   NOTE:  The naming of R and S appears backwards here (R is a SHIFT and
  116  *   S is a ROTATION) because the SHA-256/384/512 description document
  117  *   (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
  118  *   same "backwards" definition.
  119  */
  120 /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
  121 #define R(b,x)          ((x) >> (b))
  122 /* 32-bit Rotate-right (used in SHA-256): */
  123 #define S32(b,x)        (((x) >> (b)) | ((x) << (32 - (b))))
  124 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
  125 #define S64(b,x)        (((x) >> (b)) | ((x) << (64 - (b))))
  126 
  127 /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
  128 #define Ch(x,y,z)       (((x) & (y)) ^ ((~(x)) & (z)))
  129 #define Maj(x,y,z)      (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
  130 
  131 /* Four of six logical functions used in SHA-256: */
  132 #define Sigma0_256(x)   (S32(2,  (x)) ^ S32(13, (x)) ^ S32(22, (x)))
  133 #define Sigma1_256(x)   (S32(6,  (x)) ^ S32(11, (x)) ^ S32(25, (x)))
  134 #define sigma0_256(x)   (S32(7,  (x)) ^ S32(18, (x)) ^ R(3 ,   (x)))
  135 #define sigma1_256(x)   (S32(17, (x)) ^ S32(19, (x)) ^ R(10,   (x)))
  136 
  137 /* Four of six logical functions used in SHA-384 and SHA-512: */
  138 #define Sigma0_512(x)   (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
  139 #define Sigma1_512(x)   (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
  140 #define sigma0_512(x)   (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7,   (x)))
  141 #define sigma1_512(x)   (S64(19, (x)) ^ S64(61, (x)) ^ R( 6,   (x)))
  142 
  143 /*** INTERNAL FUNCTION PROTOTYPES *************************************/
  144 /* NOTE: These should not be accessed directly from outside this
  145  * library -- they are intended for private internal visibility/use
  146  * only.
  147  */
  148 void SHA512Last(SHA2_CTX *);
  149 void SHA256Transform(u_int32_t *, const u_int8_t *);
  150 void SHA512Transform(u_int64_t *, const u_int8_t *);
  151 
  152 
  153 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
  154 /* Hash constant words K for SHA-256: */
  155 static const u_int32_t K256[64] = {
  156         0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
  157         0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
  158         0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
  159         0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
  160         0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
  161         0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
  162         0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
  163         0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
  164         0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
  165         0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
  166         0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
  167         0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
  168         0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
  169         0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
  170         0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
  171         0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
  172 };
  173 
  174 /* Initial hash value H for SHA-256: */
  175 static const u_int32_t sha256_initial_hash_value[8] = {
  176         0x6a09e667UL,
  177         0xbb67ae85UL,
  178         0x3c6ef372UL,
  179         0xa54ff53aUL,
  180         0x510e527fUL,
  181         0x9b05688cUL,
  182         0x1f83d9abUL,
  183         0x5be0cd19UL
  184 };
  185 
  186 /* Hash constant words K for SHA-384 and SHA-512: */
  187 static const u_int64_t K512[80] = {
  188         0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
  189         0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
  190         0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
  191         0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
  192         0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
  193         0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
  194         0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
  195         0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
  196         0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
  197         0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
  198         0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
  199         0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
  200         0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
  201         0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
  202         0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
  203         0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
  204         0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
  205         0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
  206         0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
  207         0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
  208         0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
  209         0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
  210         0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
  211         0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
  212         0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
  213         0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
  214         0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
  215         0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
  216         0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
  217         0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
  218         0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
  219         0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
  220         0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
  221         0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
  222         0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
  223         0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
  224         0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
  225         0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
  226         0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
  227         0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
  228 };
  229 
  230 /* Initial hash value H for SHA-384 */
  231 static const u_int64_t sha384_initial_hash_value[8] = {
  232         0xcbbb9d5dc1059ed8ULL,
  233         0x629a292a367cd507ULL,
  234         0x9159015a3070dd17ULL,
  235         0x152fecd8f70e5939ULL,
  236         0x67332667ffc00b31ULL,
  237         0x8eb44a8768581511ULL,
  238         0xdb0c2e0d64f98fa7ULL,
  239         0x47b5481dbefa4fa4ULL
  240 };
  241 
  242 /* Initial hash value H for SHA-512 */
  243 static const u_int64_t sha512_initial_hash_value[8] = {
  244         0x6a09e667f3bcc908ULL,
  245         0xbb67ae8584caa73bULL,
  246         0x3c6ef372fe94f82bULL,
  247         0xa54ff53a5f1d36f1ULL,
  248         0x510e527fade682d1ULL,
  249         0x9b05688c2b3e6c1fULL,
  250         0x1f83d9abfb41bd6bULL,
  251         0x5be0cd19137e2179ULL
  252 };
  253 
  254 
  255 /*** SHA-256: *********************************************************/
  256 void
  257 SHA256Init(SHA2_CTX *context)
  258 {
  259         memcpy(context->state.st32, sha256_initial_hash_value,
  260             SHA256_DIGEST_LENGTH);
  261         memset(context->buffer, 0, SHA256_BLOCK_LENGTH);
  262         context->bitcount[0] = 0;
  263 }
  264 
  265 #ifdef SHA2_UNROLL_TRANSFORM
  266 
  267 /* Unrolled SHA-256 round macros: */
  268 
  269 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) do {                              \
  270         W256[j] = (u_int32_t)data[3] | ((u_int32_t)data[2] << 8) |          \
  271             ((u_int32_t)data[1] << 16) | ((u_int32_t)data[0] << 24);        \
  272         data += 4;                                                          \
  273         T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + W256[j]; \
  274         (d) += T1;                                                          \
  275         (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c));                    \
  276         j++;                                                                \
  277 } while(0)
  278 
  279 #define ROUND256(a,b,c,d,e,f,g,h) do {                                      \
  280         s0 = W256[(j+1)&0x0f];                                              \
  281         s0 = sigma0_256(s0);                                                \
  282         s1 = W256[(j+14)&0x0f];                                             \
  283         s1 = sigma1_256(s1);                                                \
  284         T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] +          \
  285              (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);                  \
  286         (d) += T1;                                                          \
  287         (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c));                    \
  288         j++;                                                                \
  289 } while(0)
  290 
  291 void
  292 SHA256Transform(u_int32_t *state, const u_int8_t *data)
  293 {
  294         u_int32_t       a, b, c, d, e, f, g, h, s0, s1;
  295         u_int32_t       T1, W256[16];
  296         int             j;
  297 
  298         /* Initialize registers with the prev. intermediate value */
  299         a = state[0];
  300         b = state[1];
  301         c = state[2];
  302         d = state[3];
  303         e = state[4];
  304         f = state[5];
  305         g = state[6];
  306         h = state[7];
  307 
  308         j = 0;
  309         do {
  310                 /* Rounds 0 to 15 (unrolled): */
  311                 ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
  312                 ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
  313                 ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
  314                 ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
  315                 ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
  316                 ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
  317                 ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
  318                 ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
  319         } while (j < 16);
  320 
  321         /* Now for the remaining rounds to 64: */
  322         do {
  323                 ROUND256(a,b,c,d,e,f,g,h);
  324                 ROUND256(h,a,b,c,d,e,f,g);
  325                 ROUND256(g,h,a,b,c,d,e,f);
  326                 ROUND256(f,g,h,a,b,c,d,e);
  327                 ROUND256(e,f,g,h,a,b,c,d);
  328                 ROUND256(d,e,f,g,h,a,b,c);
  329                 ROUND256(c,d,e,f,g,h,a,b);
  330                 ROUND256(b,c,d,e,f,g,h,a);
  331         } while (j < 64);
  332 
  333         /* Compute the current intermediate hash value */
  334         state[0] += a;
  335         state[1] += b;
  336         state[2] += c;
  337         state[3] += d;
  338         state[4] += e;
  339         state[5] += f;
  340         state[6] += g;
  341         state[7] += h;
  342 
  343         /* Clean up */
  344         a = b = c = d = e = f = g = h = T1 = 0;
  345 }
  346 
  347 #else /* SHA2_UNROLL_TRANSFORM */
  348 
  349 void
  350 SHA256Transform(u_int32_t *state, const u_int8_t *data)
  351 {
  352         u_int32_t       a, b, c, d, e, f, g, h, s0, s1;
  353         u_int32_t       T1, T2, W256[16];
  354         int             j;
  355 
  356         /* Initialize registers with the prev. intermediate value */
  357         a = state[0];
  358         b = state[1];
  359         c = state[2];
  360         d = state[3];
  361         e = state[4];
  362         f = state[5];
  363         g = state[6];
  364         h = state[7];
  365 
  366         j = 0;
  367         do {
  368                 W256[j] = (u_int32_t)data[3] | ((u_int32_t)data[2] << 8) |
  369                     ((u_int32_t)data[1] << 16) | ((u_int32_t)data[0] << 24);
  370                 data += 4;
  371                 /* Apply the SHA-256 compression function to update a..h */
  372                 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
  373                 T2 = Sigma0_256(a) + Maj(a, b, c);
  374                 h = g;
  375                 g = f;
  376                 f = e;
  377                 e = d + T1;
  378                 d = c;
  379                 c = b;
  380                 b = a;
  381                 a = T1 + T2;
  382 
  383                 j++;
  384         } while (j < 16);
  385 
  386         do {
  387                 /* Part of the message block expansion: */
  388                 s0 = W256[(j+1)&0x0f];
  389                 s0 = sigma0_256(s0);
  390                 s1 = W256[(j+14)&0x0f]; 
  391                 s1 = sigma1_256(s1);
  392 
  393                 /* Apply the SHA-256 compression function to update a..h */
  394                 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + 
  395                      (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
  396                 T2 = Sigma0_256(a) + Maj(a, b, c);
  397                 h = g;
  398                 g = f;
  399                 f = e;
  400                 e = d + T1;
  401                 d = c;
  402                 c = b;
  403                 b = a;
  404                 a = T1 + T2;
  405 
  406                 j++;
  407         } while (j < 64);
  408 
  409         /* Compute the current intermediate hash value */
  410         state[0] += a;
  411         state[1] += b;
  412         state[2] += c;
  413         state[3] += d;
  414         state[4] += e;
  415         state[5] += f;
  416         state[6] += g;
  417         state[7] += h;
  418 
  419         /* Clean up */
  420         a = b = c = d = e = f = g = h = T1 = T2 = 0;
  421 }
  422 
  423 #endif /* SHA2_UNROLL_TRANSFORM */
  424 
  425 void
  426 SHA256Update(SHA2_CTX *context, const void *dataptr, size_t len)
  427 {
  428         const uint8_t *data = dataptr;
  429         size_t  freespace, usedspace;
  430 
  431         /* Calling with no data is valid (we do nothing) */
  432         if (len == 0)
  433                 return;
  434 
  435         usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH;
  436         if (usedspace > 0) {
  437                 /* Calculate how much free space is available in the buffer */
  438                 freespace = SHA256_BLOCK_LENGTH - usedspace;
  439 
  440                 if (len >= freespace) {
  441                         /* Fill the buffer completely and process it */
  442                         memcpy(&context->buffer[usedspace], data, freespace);
  443                         context->bitcount[0] += freespace << 3;
  444                         len -= freespace;
  445                         data += freespace;
  446                         SHA256Transform(context->state.st32, context->buffer);
  447                 } else {
  448                         /* The buffer is not yet full */
  449                         memcpy(&context->buffer[usedspace], data, len);
  450                         context->bitcount[0] += len << 3;
  451                         /* Clean up: */
  452                         usedspace = freespace = 0;
  453                         return;
  454                 }
  455         }
  456         while (len >= SHA256_BLOCK_LENGTH) {
  457                 /* Process as many complete blocks as we can */
  458                 SHA256Transform(context->state.st32, data);
  459                 context->bitcount[0] += SHA256_BLOCK_LENGTH << 3;
  460                 len -= SHA256_BLOCK_LENGTH;
  461                 data += SHA256_BLOCK_LENGTH;
  462         }
  463         if (len > 0) {
  464                 /* There's left-overs, so save 'em */
  465                 memcpy(context->buffer, data, len);
  466                 context->bitcount[0] += len << 3;
  467         }
  468         /* Clean up: */
  469         usedspace = freespace = 0;
  470 }
  471 
  472 void
  473 SHA256Final(u_int8_t *digest, SHA2_CTX *context)
  474 {
  475         unsigned int    usedspace;
  476 
  477         usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH;
  478 #if BYTE_ORDER == LITTLE_ENDIAN
  479         /* Convert FROM host byte order */
  480         context->bitcount[0] = swap64(context->bitcount[0]);
  481 #endif
  482         if (usedspace > 0) {
  483                 /* Begin padding with a 1 bit: */
  484                 context->buffer[usedspace++] = 0x80;
  485 
  486                 if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
  487                         /* Set-up for the last transform: */
  488                         memset(&context->buffer[usedspace], 0,
  489                             SHA256_SHORT_BLOCK_LENGTH - usedspace);
  490                 } else {
  491                         if (usedspace < SHA256_BLOCK_LENGTH) {
  492                                 memset(&context->buffer[usedspace], 0,
  493                                     SHA256_BLOCK_LENGTH - usedspace);
  494                         }
  495                         /* Do second-to-last transform: */
  496                         SHA256Transform(context->state.st32, context->buffer);
  497 
  498                         /* And set-up for the last transform: */
  499                         memset(context->buffer, 0,
  500                             SHA256_SHORT_BLOCK_LENGTH);
  501                 }
  502         } else {
  503                 /* Set-up for the last transform: */
  504                 memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH);
  505 
  506                 /* Begin padding with a 1 bit: */
  507                 *context->buffer = 0x80;
  508         }
  509         /* Set the bit count: */
  510         *(u_int64_t *)&context->buffer[SHA256_SHORT_BLOCK_LENGTH] = context->bitcount[0];
  511 
  512         /* Final transform: */
  513         SHA256Transform(context->state.st32, context->buffer);
  514 
  515 #if BYTE_ORDER == LITTLE_ENDIAN
  516         {
  517                 /* Convert TO host byte order */
  518                 int     j;
  519                 for (j = 0; j < 8; j++) {
  520                         context->state.st32[j] = swap32(context->state.st32[j]);
  521                 }
  522         }
  523 #endif
  524         memcpy(digest, context->state.st32, SHA256_DIGEST_LENGTH);
  525         /* Clean up state data: */
  526         explicit_bzero(context, sizeof(*context));
  527         usedspace = 0;
  528 }
  529 
  530 
  531 /*** SHA-512: *********************************************************/
  532 void
  533 SHA512Init(SHA2_CTX *context)
  534 {
  535         memcpy(context->state.st64, sha512_initial_hash_value,
  536             SHA512_DIGEST_LENGTH);
  537         memset(context->buffer, 0, SHA512_BLOCK_LENGTH);
  538         context->bitcount[0] = context->bitcount[1] =  0;
  539 }
  540 
  541 #ifdef SHA2_UNROLL_TRANSFORM
  542 
  543 /* Unrolled SHA-512 round macros: */
  544 
  545 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) do {                              \
  546         W512[j] = (u_int64_t)data[7] | ((u_int64_t)data[6] << 8) |          \
  547             ((u_int64_t)data[5] << 16) | ((u_int64_t)data[4] << 24) |       \
  548             ((u_int64_t)data[3] << 32) | ((u_int64_t)data[2] << 40) |       \
  549             ((u_int64_t)data[1] << 48) | ((u_int64_t)data[0] << 56);        \
  550         data += 8;                                                          \
  551         T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + W512[j]; \
  552         (d) += T1;                                                          \
  553         (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c));                    \
  554         j++;                                                                \
  555 } while(0)
  556 
  557 
  558 #define ROUND512(a,b,c,d,e,f,g,h) do {                                      \
  559         s0 = W512[(j+1)&0x0f];                                              \
  560         s0 = sigma0_512(s0);                                                \
  561         s1 = W512[(j+14)&0x0f];                                             \
  562         s1 = sigma1_512(s1);                                                \
  563         T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] +          \
  564              (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);                  \
  565         (d) += T1;                                                          \
  566         (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c));                    \
  567         j++;                                                                \
  568 } while(0)
  569 
  570 void
  571 SHA512Transform(u_int64_t *state, const u_int8_t *data)
  572 {
  573         u_int64_t       a, b, c, d, e, f, g, h, s0, s1;
  574         u_int64_t       T1, W512[16];
  575         int             j;
  576 
  577         /* Initialize registers with the prev. intermediate value */
  578         a = state[0];
  579         b = state[1];
  580         c = state[2];
  581         d = state[3];
  582         e = state[4];
  583         f = state[5];
  584         g = state[6];
  585         h = state[7];
  586 
  587         j = 0;
  588         do {
  589                 ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
  590                 ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
  591                 ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
  592                 ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
  593                 ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
  594                 ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
  595                 ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
  596                 ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
  597         } while (j < 16);
  598 
  599         /* Now for the remaining rounds up to 79: */
  600         do {
  601                 ROUND512(a,b,c,d,e,f,g,h);
  602                 ROUND512(h,a,b,c,d,e,f,g);
  603                 ROUND512(g,h,a,b,c,d,e,f);
  604                 ROUND512(f,g,h,a,b,c,d,e);
  605                 ROUND512(e,f,g,h,a,b,c,d);
  606                 ROUND512(d,e,f,g,h,a,b,c);
  607                 ROUND512(c,d,e,f,g,h,a,b);
  608                 ROUND512(b,c,d,e,f,g,h,a);
  609         } while (j < 80);
  610 
  611         /* Compute the current intermediate hash value */
  612         state[0] += a;
  613         state[1] += b;
  614         state[2] += c;
  615         state[3] += d;
  616         state[4] += e;
  617         state[5] += f;
  618         state[6] += g;
  619         state[7] += h;
  620 
  621         /* Clean up */
  622         a = b = c = d = e = f = g = h = T1 = 0;
  623 }
  624 
  625 #else /* SHA2_UNROLL_TRANSFORM */
  626 
  627 void
  628 SHA512Transform(u_int64_t *state, const u_int8_t *data)
  629 {
  630         u_int64_t       a, b, c, d, e, f, g, h, s0, s1;
  631         u_int64_t       T1, T2, W512[16];
  632         int             j;
  633 
  634         /* Initialize registers with the prev. intermediate value */
  635         a = state[0];
  636         b = state[1];
  637         c = state[2];
  638         d = state[3];
  639         e = state[4];
  640         f = state[5];
  641         g = state[6];
  642         h = state[7];
  643 
  644         j = 0;
  645         do {
  646                 W512[j] = (u_int64_t)data[7] | ((u_int64_t)data[6] << 8) |
  647                     ((u_int64_t)data[5] << 16) | ((u_int64_t)data[4] << 24) |
  648                     ((u_int64_t)data[3] << 32) | ((u_int64_t)data[2] << 40) |
  649                     ((u_int64_t)data[1] << 48) | ((u_int64_t)data[0] << 56);
  650                 data += 8;
  651                 /* Apply the SHA-512 compression function to update a..h */
  652                 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
  653                 T2 = Sigma0_512(a) + Maj(a, b, c);
  654                 h = g;
  655                 g = f;
  656                 f = e;
  657                 e = d + T1;
  658                 d = c;
  659                 c = b;
  660                 b = a;
  661                 a = T1 + T2;
  662 
  663                 j++;
  664         } while (j < 16);
  665 
  666         do {
  667                 /* Part of the message block expansion: */
  668                 s0 = W512[(j+1)&0x0f];
  669                 s0 = sigma0_512(s0);
  670                 s1 = W512[(j+14)&0x0f];
  671                 s1 =  sigma1_512(s1);
  672 
  673                 /* Apply the SHA-512 compression function to update a..h */
  674                 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
  675                      (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
  676                 T2 = Sigma0_512(a) + Maj(a, b, c);
  677                 h = g;
  678                 g = f;
  679                 f = e;
  680                 e = d + T1;
  681                 d = c;
  682                 c = b;
  683                 b = a;
  684                 a = T1 + T2;
  685 
  686                 j++;
  687         } while (j < 80);
  688 
  689         /* Compute the current intermediate hash value */
  690         state[0] += a;
  691         state[1] += b;
  692         state[2] += c;
  693         state[3] += d;
  694         state[4] += e;
  695         state[5] += f;
  696         state[6] += g;
  697         state[7] += h;
  698 
  699         /* Clean up */
  700         a = b = c = d = e = f = g = h = T1 = T2 = 0;
  701 }
  702 
  703 #endif /* SHA2_UNROLL_TRANSFORM */
  704 
  705 void
  706 SHA512Update(SHA2_CTX *context, const void *dataptr, size_t len)
  707 {
  708         const uint8_t *data = dataptr;
  709         size_t  freespace, usedspace;
  710 
  711         /* Calling with no data is valid (we do nothing) */
  712         if (len == 0)
  713                 return;
  714 
  715         usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
  716         if (usedspace > 0) {
  717                 /* Calculate how much free space is available in the buffer */
  718                 freespace = SHA512_BLOCK_LENGTH - usedspace;
  719 
  720                 if (len >= freespace) {
  721                         /* Fill the buffer completely and process it */
  722                         memcpy(&context->buffer[usedspace], data, freespace);
  723                         ADDINC128(context->bitcount, freespace << 3);
  724                         len -= freespace;
  725                         data += freespace;
  726                         SHA512Transform(context->state.st64, context->buffer);
  727                 } else {
  728                         /* The buffer is not yet full */
  729                         memcpy(&context->buffer[usedspace], data, len);
  730                         ADDINC128(context->bitcount, len << 3);
  731                         /* Clean up: */
  732                         usedspace = freespace = 0;
  733                         return;
  734                 }
  735         }
  736         while (len >= SHA512_BLOCK_LENGTH) {
  737                 /* Process as many complete blocks as we can */
  738                 SHA512Transform(context->state.st64, data);
  739                 ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
  740                 len -= SHA512_BLOCK_LENGTH;
  741                 data += SHA512_BLOCK_LENGTH;
  742         }
  743         if (len > 0) {
  744                 /* There's left-overs, so save 'em */
  745                 memcpy(context->buffer, data, len);
  746                 ADDINC128(context->bitcount, len << 3);
  747         }
  748         /* Clean up: */
  749         usedspace = freespace = 0;
  750 }
  751 
  752 void
  753 SHA512Last(SHA2_CTX *context)
  754 {
  755         unsigned int    usedspace;
  756 
  757         usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
  758 #if BYTE_ORDER == LITTLE_ENDIAN
  759         /* Convert FROM host byte order */
  760         context->bitcount[0] = swap64(context->bitcount[0]);
  761         context->bitcount[1] = swap64(context->bitcount[1]);
  762 #endif
  763         if (usedspace > 0) {
  764                 /* Begin padding with a 1 bit: */
  765                 context->buffer[usedspace++] = 0x80;
  766 
  767                 if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
  768                         /* Set-up for the last transform: */
  769                         memset(&context->buffer[usedspace], 0,
  770                             SHA512_SHORT_BLOCK_LENGTH - usedspace);
  771                 } else {
  772                         if (usedspace < SHA512_BLOCK_LENGTH) {
  773                                 memset(&context->buffer[usedspace], 0,
  774                                     SHA512_BLOCK_LENGTH - usedspace);
  775                         }
  776                         /* Do second-to-last transform: */
  777                         SHA512Transform(context->state.st64, context->buffer);
  778 
  779                         /* And set-up for the last transform: */
  780                         memset(context->buffer, 0, SHA512_BLOCK_LENGTH - 2);
  781                 }
  782         } else {
  783                 /* Prepare for final transform: */
  784                 memset(context->buffer, 0, SHA512_SHORT_BLOCK_LENGTH);
  785 
  786                 /* Begin padding with a 1 bit: */
  787                 *context->buffer = 0x80;
  788         }
  789         /* Store the length of input data (in bits): */
  790         *(u_int64_t *)&context->buffer[SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1];
  791         *(u_int64_t *)&context->buffer[SHA512_SHORT_BLOCK_LENGTH+8] = context->bitcount[0];
  792 
  793         /* Final transform: */
  794         SHA512Transform(context->state.st64, context->buffer);
  795 }
  796 
  797 void
  798 SHA512Final(u_int8_t *digest, SHA2_CTX *context)
  799 {
  800 
  801         SHA512Last(context);
  802 
  803         /* Save the hash data for output: */
  804 #if BYTE_ORDER == LITTLE_ENDIAN
  805         {
  806                 /* Convert TO host byte order */
  807                 int     j;
  808                 for (j = 0; j < 8; j++) {
  809                         context->state.st64[j] = swap64(context->state.st64[j]);
  810                 }
  811         }
  812 #endif
  813         memcpy(digest, context->state.st64, SHA512_DIGEST_LENGTH);
  814 
  815         /* Zero out state data */
  816         explicit_bzero(context, sizeof(*context));
  817 }
  818 
  819 
  820 /*** SHA-384: *********************************************************/
  821 void
  822 SHA384Init(SHA2_CTX *context)
  823 {
  824         memcpy(context->state.st64, sha384_initial_hash_value,
  825             SHA512_DIGEST_LENGTH);
  826         memset(context->buffer, 0, SHA384_BLOCK_LENGTH);
  827         context->bitcount[0] = context->bitcount[1] = 0;
  828 }
  829 
  830 void
  831 SHA384Update(SHA2_CTX *context, const void *data, size_t len)
  832 {
  833         SHA512Update(context, data, len);
  834 }
  835 
  836 void
  837 SHA384Final(u_int8_t *digest, SHA2_CTX *context)
  838 {
  839 
  840         SHA512Last(context);
  841 
  842         /* Save the hash data for output: */
  843 #if BYTE_ORDER == LITTLE_ENDIAN
  844         {
  845                 /* Convert TO host byte order */
  846                 int     j;
  847                 for (j = 0; j < 6; j++) {
  848                         context->state.st64[j] = swap64(context->state.st64[j]);
  849                 }
  850         }
  851 #endif
  852         memcpy(digest, context->state.st64, SHA384_DIGEST_LENGTH);
  853         /* Zero out state data */
  854         explicit_bzero(context, sizeof(*context));
  855 }

Cache object: b9e81331949ace49d51ff11d918eb222


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.