The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/crypto/sha2/sha2.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*      $KAME: sha2.c,v 1.8 2001/11/08 01:07:52 itojun Exp $    */
    2 
    3 /*
    4  * sha2.c
    5  *
    6  * Version 1.0.0beta1
    7  *
    8  * Written by Aaron D. Gifford <me@aarongifford.com>
    9  *
   10  * Copyright 2000 Aaron D. Gifford.  All rights reserved.
   11  *
   12  * Redistribution and use in source and binary forms, with or without
   13  * modification, are permitted provided that the following conditions
   14  * are met:
   15  * 1. Redistributions of source code must retain the above copyright
   16  *    notice, this list of conditions and the following disclaimer.
   17  * 2. Redistributions in binary form must reproduce the above copyright
   18  *    notice, this list of conditions and the following disclaimer in the
   19  *    documentation and/or other materials provided with the distribution.
   20  * 3. Neither the name of the copyright holder nor the names of contributors
   21  *    may be used to endorse or promote products derived from this software
   22  *    without specific prior written permission.
   23  * 
   24  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTOR(S) ``AS IS'' AND
   25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR(S) OR CONTRIBUTOR(S) BE LIABLE
   28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   34  * SUCH DAMAGE.
   35  */
   36 
   37 #include <sys/cdefs.h>
   38 __FBSDID("$FreeBSD: src/sys/crypto/sha2/sha2.c,v 1.7 2003/09/08 18:32:33 phk Exp $");
   39 
   40 #include <sys/types.h>
   41 #include <sys/time.h>
   42 #ifdef _KERNEL
   43 #include <sys/systm.h>
   44 #else
   45 #include <string.h>
   46 #endif
   47 #include <machine/endian.h>
   48 #include <crypto/sha2/sha2.h>
   49 
   50 /*
   51  * ASSERT NOTE:
   52  * Some sanity checking code is included using assert().  On my FreeBSD
   53  * system, this additional code can be removed by compiling with NDEBUG
   54  * defined.  Check your own systems manpage on assert() to see how to
   55  * compile WITHOUT the sanity checking code on your system.
   56  *
   57  * UNROLLED TRANSFORM LOOP NOTE:
   58  * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
   59  * loop version for the hash transform rounds (defined using macros
   60  * later in this file).  Either define on the command line, for example:
   61  *
   62  *   cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
   63  *
   64  * or define below:
   65  *
   66  *   #define SHA2_UNROLL_TRANSFORM
   67  *
   68  */
   69 
   70 #if defined(__bsdi__) || defined(__FreeBSD__)
   71 #define assert(x)
   72 #endif
   73 
   74 
   75 /*** SHA-256/384/512 Machine Architecture Definitions *****************/
   76 /*
   77  * BYTE_ORDER NOTE:
   78  *
   79  * Please make sure that your system defines BYTE_ORDER.  If your
   80  * architecture is little-endian, make sure it also defines
   81  * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
   82  * equivilent.
   83  *
   84  * If your system does not define the above, then you can do so by
   85  * hand like this:
   86  *
   87  *   #define LITTLE_ENDIAN 1234
   88  *   #define BIG_ENDIAN    4321
   89  *
   90  * And for little-endian machines, add:
   91  *
   92  *   #define BYTE_ORDER LITTLE_ENDIAN 
   93  *
   94  * Or for big-endian machines:
   95  *
   96  *   #define BYTE_ORDER BIG_ENDIAN
   97  *
   98  * The FreeBSD machine this was written on defines BYTE_ORDER
   99  * appropriately by including <sys/types.h> (which in turn includes
  100  * <machine/endian.h> where the appropriate definitions are actually
  101  * made).
  102  */
  103 #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
  104 #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
  105 #endif
  106 
  107 /*
  108  * Define the followingsha2_* types to types of the correct length on
  109  * the native archtecture.   Most BSD systems and Linux define u_intXX_t
  110  * types.  Machines with very recent ANSI C headers, can use the
  111  * uintXX_t definintions from inttypes.h by defining SHA2_USE_INTTYPES_H
  112  * during compile or in the sha.h header file.
  113  *
  114  * Machines that support neither u_intXX_t nor inttypes.h's uintXX_t
  115  * will need to define these three typedefs below (and the appropriate
  116  * ones in sha.h too) by hand according to their system architecture.
  117  *
  118  * Thank you, Jun-ichiro itojun Hagino, for suggesting using u_intXX_t
  119  * types and pointing out recent ANSI C support for uintXX_t in inttypes.h.
  120  */
  121 #if 0 /*def SHA2_USE_INTTYPES_H*/
  122 
  123 typedef uint8_t  sha2_byte;     /* Exactly 1 byte */
  124 typedef uint32_t sha2_word32;   /* Exactly 4 bytes */
  125 typedef uint64_t sha2_word64;   /* Exactly 8 bytes */
  126 
  127 #else /* SHA2_USE_INTTYPES_H */
  128 
  129 typedef u_int8_t  sha2_byte;    /* Exactly 1 byte */
  130 typedef u_int32_t sha2_word32;  /* Exactly 4 bytes */
  131 typedef u_int64_t sha2_word64;  /* Exactly 8 bytes */
  132 
  133 #endif /* SHA2_USE_INTTYPES_H */
  134 
  135 
  136 /*** SHA-256/384/512 Various Length Definitions ***********************/
  137 /* NOTE: Most of these are in sha2.h */
  138 #define SHA256_SHORT_BLOCK_LENGTH       (SHA256_BLOCK_LENGTH - 8)
  139 #define SHA384_SHORT_BLOCK_LENGTH       (SHA384_BLOCK_LENGTH - 16)
  140 #define SHA512_SHORT_BLOCK_LENGTH       (SHA512_BLOCK_LENGTH - 16)
  141 
  142 
  143 /*** ENDIAN REVERSAL MACROS *******************************************/
  144 #if BYTE_ORDER == LITTLE_ENDIAN
  145 #define REVERSE32(w,x)  { \
  146         sha2_word32 tmp = (w); \
  147         tmp = (tmp >> 16) | (tmp << 16); \
  148         (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
  149 }
  150 #define REVERSE64(w,x)  { \
  151         sha2_word64 tmp = (w); \
  152         tmp = (tmp >> 32) | (tmp << 32); \
  153         tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
  154               ((tmp & 0x00ff00ff00ff00ffULL) << 8); \
  155         (x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
  156               ((tmp & 0x0000ffff0000ffffULL) << 16); \
  157 }
  158 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
  159 
  160 /*
  161  * Macro for incrementally adding the unsigned 64-bit integer n to the
  162  * unsigned 128-bit integer (represented using a two-element array of
  163  * 64-bit words):
  164  */
  165 #define ADDINC128(w,n)  { \
  166         (w)[0] += (sha2_word64)(n); \
  167         if ((w)[0] < (n)) { \
  168                 (w)[1]++; \
  169         } \
  170 }
  171 
  172 /*** THE SIX LOGICAL FUNCTIONS ****************************************/
  173 /*
  174  * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
  175  *
  176  *   NOTE:  The naming of R and S appears backwards here (R is a SHIFT and
  177  *   S is a ROTATION) because the SHA-256/384/512 description document
  178  *   (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
  179  *   same "backwards" definition.
  180  */
  181 /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
  182 #define R(b,x)          ((x) >> (b))
  183 /* 32-bit Rotate-right (used in SHA-256): */
  184 #define S32(b,x)        (((x) >> (b)) | ((x) << (32 - (b))))
  185 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
  186 #define S64(b,x)        (((x) >> (b)) | ((x) << (64 - (b))))
  187 
  188 /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
  189 #define Ch(x,y,z)       (((x) & (y)) ^ ((~(x)) & (z)))
  190 #define Maj(x,y,z)      (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
  191 
  192 /* Four of six logical functions used in SHA-256: */
  193 #define Sigma0_256(x)   (S32(2,  (x)) ^ S32(13, (x)) ^ S32(22, (x)))
  194 #define Sigma1_256(x)   (S32(6,  (x)) ^ S32(11, (x)) ^ S32(25, (x)))
  195 #define sigma0_256(x)   (S32(7,  (x)) ^ S32(18, (x)) ^ R(3 ,   (x)))
  196 #define sigma1_256(x)   (S32(17, (x)) ^ S32(19, (x)) ^ R(10,   (x)))
  197 
  198 /* Four of six logical functions used in SHA-384 and SHA-512: */
  199 #define Sigma0_512(x)   (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
  200 #define Sigma1_512(x)   (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
  201 #define sigma0_512(x)   (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7,   (x)))
  202 #define sigma1_512(x)   (S64(19, (x)) ^ S64(61, (x)) ^ R( 6,   (x)))
  203 
  204 /*** INTERNAL FUNCTION PROTOTYPES *************************************/
  205 /* NOTE: These should not be accessed directly from outside this
  206  * library -- they are intended for private internal visibility/use
  207  * only.
  208  */
  209 void SHA512_Last(SHA512_CTX*);
  210 void SHA256_Transform(SHA256_CTX*, const sha2_word32*);
  211 void SHA512_Transform(SHA512_CTX*, const sha2_word64*);
  212 
  213 
  214 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
  215 /* Hash constant words K for SHA-256: */
  216 static const sha2_word32 K256[64] = {
  217         0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
  218         0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
  219         0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
  220         0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
  221         0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
  222         0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
  223         0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
  224         0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
  225         0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
  226         0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
  227         0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
  228         0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
  229         0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
  230         0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
  231         0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
  232         0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
  233 };
  234 
  235 /* Initial hash value H for SHA-256: */
  236 static const sha2_word32 sha256_initial_hash_value[8] = {
  237         0x6a09e667UL,
  238         0xbb67ae85UL,
  239         0x3c6ef372UL,
  240         0xa54ff53aUL,
  241         0x510e527fUL,
  242         0x9b05688cUL,
  243         0x1f83d9abUL,
  244         0x5be0cd19UL
  245 };
  246 
  247 /* Hash constant words K for SHA-384 and SHA-512: */
  248 static const sha2_word64 K512[80] = {
  249         0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
  250         0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
  251         0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
  252         0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
  253         0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
  254         0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
  255         0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
  256         0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
  257         0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
  258         0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
  259         0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
  260         0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
  261         0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
  262         0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
  263         0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
  264         0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
  265         0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
  266         0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
  267         0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
  268         0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
  269         0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
  270         0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
  271         0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
  272         0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
  273         0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
  274         0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
  275         0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
  276         0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
  277         0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
  278         0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
  279         0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
  280         0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
  281         0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
  282         0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
  283         0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
  284         0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
  285         0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
  286         0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
  287         0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
  288         0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
  289 };
  290 
  291 /* Initial hash value H for SHA-384 */
  292 static const sha2_word64 sha384_initial_hash_value[8] = {
  293         0xcbbb9d5dc1059ed8ULL,
  294         0x629a292a367cd507ULL,
  295         0x9159015a3070dd17ULL,
  296         0x152fecd8f70e5939ULL,
  297         0x67332667ffc00b31ULL,
  298         0x8eb44a8768581511ULL,
  299         0xdb0c2e0d64f98fa7ULL,
  300         0x47b5481dbefa4fa4ULL
  301 };
  302 
  303 /* Initial hash value H for SHA-512 */
  304 static const sha2_word64 sha512_initial_hash_value[8] = {
  305         0x6a09e667f3bcc908ULL,
  306         0xbb67ae8584caa73bULL,
  307         0x3c6ef372fe94f82bULL,
  308         0xa54ff53a5f1d36f1ULL,
  309         0x510e527fade682d1ULL,
  310         0x9b05688c2b3e6c1fULL,
  311         0x1f83d9abfb41bd6bULL,
  312         0x5be0cd19137e2179ULL
  313 };
  314 
  315 /*
  316  * Constant used by SHA256/384/512_End() functions for converting the
  317  * digest to a readable hexadecimal character string:
  318  */
  319 static const char *sha2_hex_digits = "0123456789abcdef";
  320 
  321 
  322 /*** SHA-256: *********************************************************/
  323 void SHA256_Init(SHA256_CTX* context) {
  324         if (context == (SHA256_CTX*)0) {
  325                 return;
  326         }
  327         bcopy(sha256_initial_hash_value, context->state, SHA256_DIGEST_LENGTH);
  328         bzero(context->buffer, SHA256_BLOCK_LENGTH);
  329         context->bitcount = 0;
  330 }
  331 
  332 #ifdef SHA2_UNROLL_TRANSFORM
  333 
  334 /* Unrolled SHA-256 round macros: */
  335 
  336 #if BYTE_ORDER == LITTLE_ENDIAN
  337 
  338 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)       \
  339         REVERSE32(*data++, W256[j]); \
  340         T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
  341              K256[j] + W256[j]; \
  342         (d) += T1; \
  343         (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
  344         j++
  345 
  346 
  347 #else /* BYTE_ORDER == LITTLE_ENDIAN */
  348 
  349 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)       \
  350         T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
  351              K256[j] + (W256[j] = *data++); \
  352         (d) += T1; \
  353         (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
  354         j++
  355 
  356 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
  357 
  358 #define ROUND256(a,b,c,d,e,f,g,h)       \
  359         s0 = W256[(j+1)&0x0f]; \
  360         s0 = sigma0_256(s0); \
  361         s1 = W256[(j+14)&0x0f]; \
  362         s1 = sigma1_256(s1); \
  363         T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
  364              (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
  365         (d) += T1; \
  366         (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
  367         j++
  368 
  369 void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
  370         sha2_word32     a, b, c, d, e, f, g, h, s0, s1;
  371         sha2_word32     T1, *W256;
  372         int             j;
  373 
  374         W256 = (sha2_word32*)context->buffer;
  375 
  376         /* Initialize registers with the prev. intermediate value */
  377         a = context->state[0];
  378         b = context->state[1];
  379         c = context->state[2];
  380         d = context->state[3];
  381         e = context->state[4];
  382         f = context->state[5];
  383         g = context->state[6];
  384         h = context->state[7];
  385 
  386         j = 0;
  387         do {
  388                 /* Rounds 0 to 15 (unrolled): */
  389                 ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
  390                 ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
  391                 ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
  392                 ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
  393                 ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
  394                 ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
  395                 ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
  396                 ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
  397         } while (j < 16);
  398 
  399         /* Now for the remaining rounds to 64: */
  400         do {
  401                 ROUND256(a,b,c,d,e,f,g,h);
  402                 ROUND256(h,a,b,c,d,e,f,g);
  403                 ROUND256(g,h,a,b,c,d,e,f);
  404                 ROUND256(f,g,h,a,b,c,d,e);
  405                 ROUND256(e,f,g,h,a,b,c,d);
  406                 ROUND256(d,e,f,g,h,a,b,c);
  407                 ROUND256(c,d,e,f,g,h,a,b);
  408                 ROUND256(b,c,d,e,f,g,h,a);
  409         } while (j < 64);
  410 
  411         /* Compute the current intermediate hash value */
  412         context->state[0] += a;
  413         context->state[1] += b;
  414         context->state[2] += c;
  415         context->state[3] += d;
  416         context->state[4] += e;
  417         context->state[5] += f;
  418         context->state[6] += g;
  419         context->state[7] += h;
  420 
  421         /* Clean up */
  422         a = b = c = d = e = f = g = h = T1 = 0;
  423 }
  424 
  425 #else /* SHA2_UNROLL_TRANSFORM */
  426 
  427 void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
  428         sha2_word32     a, b, c, d, e, f, g, h, s0, s1;
  429         sha2_word32     T1, T2, *W256;
  430         int             j;
  431 
  432         W256 = (sha2_word32*)context->buffer;
  433 
  434         /* Initialize registers with the prev. intermediate value */
  435         a = context->state[0];
  436         b = context->state[1];
  437         c = context->state[2];
  438         d = context->state[3];
  439         e = context->state[4];
  440         f = context->state[5];
  441         g = context->state[6];
  442         h = context->state[7];
  443 
  444         j = 0;
  445         do {
  446 #if BYTE_ORDER == LITTLE_ENDIAN
  447                 /* Copy data while converting to host byte order */
  448                 REVERSE32(*data++,W256[j]);
  449                 /* Apply the SHA-256 compression function to update a..h */
  450                 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
  451 #else /* BYTE_ORDER == LITTLE_ENDIAN */
  452                 /* Apply the SHA-256 compression function to update a..h with copy */
  453                 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
  454 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
  455                 T2 = Sigma0_256(a) + Maj(a, b, c);
  456                 h = g;
  457                 g = f;
  458                 f = e;
  459                 e = d + T1;
  460                 d = c;
  461                 c = b;
  462                 b = a;
  463                 a = T1 + T2;
  464 
  465                 j++;
  466         } while (j < 16);
  467 
  468         do {
  469                 /* Part of the message block expansion: */
  470                 s0 = W256[(j+1)&0x0f];
  471                 s0 = sigma0_256(s0);
  472                 s1 = W256[(j+14)&0x0f]; 
  473                 s1 = sigma1_256(s1);
  474 
  475                 /* Apply the SHA-256 compression function to update a..h */
  476                 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + 
  477                      (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
  478                 T2 = Sigma0_256(a) + Maj(a, b, c);
  479                 h = g;
  480                 g = f;
  481                 f = e;
  482                 e = d + T1;
  483                 d = c;
  484                 c = b;
  485                 b = a;
  486                 a = T1 + T2;
  487 
  488                 j++;
  489         } while (j < 64);
  490 
  491         /* Compute the current intermediate hash value */
  492         context->state[0] += a;
  493         context->state[1] += b;
  494         context->state[2] += c;
  495         context->state[3] += d;
  496         context->state[4] += e;
  497         context->state[5] += f;
  498         context->state[6] += g;
  499         context->state[7] += h;
  500 
  501         /* Clean up */
  502         a = b = c = d = e = f = g = h = T1 = T2 = 0;
  503 }
  504 
  505 #endif /* SHA2_UNROLL_TRANSFORM */
  506 
  507 void SHA256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) {
  508         unsigned int    freespace, usedspace;
  509 
  510         if (len == 0) {
  511                 /* Calling with no data is valid - we do nothing */
  512                 return;
  513         }
  514 
  515         /* Sanity check: */
  516         assert(context != (SHA256_CTX*)0 && data != (sha2_byte*)0);
  517 
  518         usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
  519         if (usedspace > 0) {
  520                 /* Calculate how much free space is available in the buffer */
  521                 freespace = SHA256_BLOCK_LENGTH - usedspace;
  522 
  523                 if (len >= freespace) {
  524                         /* Fill the buffer completely and process it */
  525                         bcopy(data, &context->buffer[usedspace], freespace);
  526                         context->bitcount += freespace << 3;
  527                         len -= freespace;
  528                         data += freespace;
  529                         SHA256_Transform(context, (sha2_word32*)context->buffer);
  530                 } else {
  531                         /* The buffer is not yet full */
  532                         bcopy(data, &context->buffer[usedspace], len);
  533                         context->bitcount += len << 3;
  534                         /* Clean up: */
  535                         usedspace = freespace = 0;
  536                         return;
  537                 }
  538         }
  539         while (len >= SHA256_BLOCK_LENGTH) {
  540                 /* Process as many complete blocks as we can */
  541                 SHA256_Transform(context, (const sha2_word32*)data);
  542                 context->bitcount += SHA256_BLOCK_LENGTH << 3;
  543                 len -= SHA256_BLOCK_LENGTH;
  544                 data += SHA256_BLOCK_LENGTH;
  545         }
  546         if (len > 0) {
  547                 /* There's left-overs, so save 'em */
  548                 bcopy(data, context->buffer, len);
  549                 context->bitcount += len << 3;
  550         }
  551         /* Clean up: */
  552         usedspace = freespace = 0;
  553 }
  554 
  555 void SHA256_Final(sha2_byte digest[], SHA256_CTX* context) {
  556         sha2_word32     *d = (sha2_word32*)digest;
  557         unsigned int    usedspace;
  558 
  559         /* Sanity check: */
  560         assert(context != (SHA256_CTX*)0);
  561 
  562         /* If no digest buffer is passed, we don't bother doing this: */
  563         if (digest != (sha2_byte*)0) {
  564                 usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
  565 #if BYTE_ORDER == LITTLE_ENDIAN
  566                 /* Convert FROM host byte order */
  567                 REVERSE64(context->bitcount,context->bitcount);
  568 #endif
  569                 if (usedspace > 0) {
  570                         /* Begin padding with a 1 bit: */
  571                         context->buffer[usedspace++] = 0x80;
  572 
  573                         if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
  574                                 /* Set-up for the last transform: */
  575                                 bzero(&context->buffer[usedspace], SHA256_SHORT_BLOCK_LENGTH - usedspace);
  576                         } else {
  577                                 if (usedspace < SHA256_BLOCK_LENGTH) {
  578                                         bzero(&context->buffer[usedspace], SHA256_BLOCK_LENGTH - usedspace);
  579                                 }
  580                                 /* Do second-to-last transform: */
  581                                 SHA256_Transform(context, (sha2_word32*)context->buffer);
  582 
  583                                 /* And set-up for the last transform: */
  584                                 bzero(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
  585                         }
  586                 } else {
  587                         /* Set-up for the last transform: */
  588                         bzero(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
  589 
  590                         /* Begin padding with a 1 bit: */
  591                         *context->buffer = 0x80;
  592                 }
  593                 /* Set the bit count: */
  594                 *(sha2_word64*)&context->buffer[SHA256_SHORT_BLOCK_LENGTH] = context->bitcount;
  595 
  596                 /* Final transform: */
  597                 SHA256_Transform(context, (sha2_word32*)context->buffer);
  598 
  599 #if BYTE_ORDER == LITTLE_ENDIAN
  600                 {
  601                         /* Convert TO host byte order */
  602                         int     j;
  603                         for (j = 0; j < 8; j++) {
  604                                 REVERSE32(context->state[j],context->state[j]);
  605                                 *d++ = context->state[j];
  606                         }
  607                 }
  608 #else
  609                 bcopy(context->state, d, SHA256_DIGEST_LENGTH);
  610 #endif
  611         }
  612 
  613         /* Clean up state data: */
  614         bzero(context, sizeof(*context));
  615         usedspace = 0;
  616 }
  617 
  618 char *SHA256_End(SHA256_CTX* context, char buffer[]) {
  619         sha2_byte       digest[SHA256_DIGEST_LENGTH], *d = digest;
  620         int             i;
  621 
  622         /* Sanity check: */
  623         assert(context != (SHA256_CTX*)0);
  624 
  625         if (buffer != (char*)0) {
  626                 SHA256_Final(digest, context);
  627 
  628                 for (i = 0; i < SHA256_DIGEST_LENGTH; i++) {
  629                         *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
  630                         *buffer++ = sha2_hex_digits[*d & 0x0f];
  631                         d++;
  632                 }
  633                 *buffer = (char)0;
  634         } else {
  635                 bzero(context, sizeof(*context));
  636         }
  637         bzero(digest, SHA256_DIGEST_LENGTH);
  638         return buffer;
  639 }
  640 
  641 char* SHA256_Data(const sha2_byte* data, size_t len, char digest[SHA256_DIGEST_STRING_LENGTH]) {
  642         SHA256_CTX      context;
  643 
  644         SHA256_Init(&context);
  645         SHA256_Update(&context, data, len);
  646         return SHA256_End(&context, digest);
  647 }
  648 
  649 
  650 /*** SHA-512: *********************************************************/
  651 void SHA512_Init(SHA512_CTX* context) {
  652         if (context == (SHA512_CTX*)0) {
  653                 return;
  654         }
  655         bcopy(sha512_initial_hash_value, context->state, SHA512_DIGEST_LENGTH);
  656         bzero(context->buffer, SHA512_BLOCK_LENGTH);
  657         context->bitcount[0] = context->bitcount[1] =  0;
  658 }
  659 
  660 #ifdef SHA2_UNROLL_TRANSFORM
  661 
  662 /* Unrolled SHA-512 round macros: */
  663 #if BYTE_ORDER == LITTLE_ENDIAN
  664 
  665 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h)       \
  666         REVERSE64(*data++, W512[j]); \
  667         T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
  668              K512[j] + W512[j]; \
  669         (d) += T1, \
  670         (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
  671         j++
  672 
  673 
  674 #else /* BYTE_ORDER == LITTLE_ENDIAN */
  675 
  676 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h)       \
  677         T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
  678              K512[j] + (W512[j] = *data++); \
  679         (d) += T1; \
  680         (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
  681         j++
  682 
  683 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
  684 
  685 #define ROUND512(a,b,c,d,e,f,g,h)       \
  686         s0 = W512[(j+1)&0x0f]; \
  687         s0 = sigma0_512(s0); \
  688         s1 = W512[(j+14)&0x0f]; \
  689         s1 = sigma1_512(s1); \
  690         T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
  691              (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
  692         (d) += T1; \
  693         (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
  694         j++
  695 
  696 void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
  697         sha2_word64     a, b, c, d, e, f, g, h, s0, s1;
  698         sha2_word64     T1, *W512 = (sha2_word64*)context->buffer;
  699         int             j;
  700 
  701         /* Initialize registers with the prev. intermediate value */
  702         a = context->state[0];
  703         b = context->state[1];
  704         c = context->state[2];
  705         d = context->state[3];
  706         e = context->state[4];
  707         f = context->state[5];
  708         g = context->state[6];
  709         h = context->state[7];
  710 
  711         j = 0;
  712         do {
  713                 ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
  714                 ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
  715                 ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
  716                 ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
  717                 ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
  718                 ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
  719                 ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
  720                 ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
  721         } while (j < 16);
  722 
  723         /* Now for the remaining rounds up to 79: */
  724         do {
  725                 ROUND512(a,b,c,d,e,f,g,h);
  726                 ROUND512(h,a,b,c,d,e,f,g);
  727                 ROUND512(g,h,a,b,c,d,e,f);
  728                 ROUND512(f,g,h,a,b,c,d,e);
  729                 ROUND512(e,f,g,h,a,b,c,d);
  730                 ROUND512(d,e,f,g,h,a,b,c);
  731                 ROUND512(c,d,e,f,g,h,a,b);
  732                 ROUND512(b,c,d,e,f,g,h,a);
  733         } while (j < 80);
  734 
  735         /* Compute the current intermediate hash value */
  736         context->state[0] += a;
  737         context->state[1] += b;
  738         context->state[2] += c;
  739         context->state[3] += d;
  740         context->state[4] += e;
  741         context->state[5] += f;
  742         context->state[6] += g;
  743         context->state[7] += h;
  744 
  745         /* Clean up */
  746         a = b = c = d = e = f = g = h = T1 = 0;
  747 }
  748 
  749 #else /* SHA2_UNROLL_TRANSFORM */
  750 
  751 void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
  752         sha2_word64     a, b, c, d, e, f, g, h, s0, s1;
  753         sha2_word64     T1, T2, *W512 = (sha2_word64*)context->buffer;
  754         int             j;
  755 
  756         /* Initialize registers with the prev. intermediate value */
  757         a = context->state[0];
  758         b = context->state[1];
  759         c = context->state[2];
  760         d = context->state[3];
  761         e = context->state[4];
  762         f = context->state[5];
  763         g = context->state[6];
  764         h = context->state[7];
  765 
  766         j = 0;
  767         do {
  768 #if BYTE_ORDER == LITTLE_ENDIAN
  769                 /* Convert TO host byte order */
  770                 REVERSE64(*data++, W512[j]);
  771                 /* Apply the SHA-512 compression function to update a..h */
  772                 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
  773 #else /* BYTE_ORDER == LITTLE_ENDIAN */
  774                 /* Apply the SHA-512 compression function to update a..h with copy */
  775                 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++);
  776 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
  777                 T2 = Sigma0_512(a) + Maj(a, b, c);
  778                 h = g;
  779                 g = f;
  780                 f = e;
  781                 e = d + T1;
  782                 d = c;
  783                 c = b;
  784                 b = a;
  785                 a = T1 + T2;
  786 
  787                 j++;
  788         } while (j < 16);
  789 
  790         do {
  791                 /* Part of the message block expansion: */
  792                 s0 = W512[(j+1)&0x0f];
  793                 s0 = sigma0_512(s0);
  794                 s1 = W512[(j+14)&0x0f];
  795                 s1 =  sigma1_512(s1);
  796 
  797                 /* Apply the SHA-512 compression function to update a..h */
  798                 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
  799                      (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
  800                 T2 = Sigma0_512(a) + Maj(a, b, c);
  801                 h = g;
  802                 g = f;
  803                 f = e;
  804                 e = d + T1;
  805                 d = c;
  806                 c = b;
  807                 b = a;
  808                 a = T1 + T2;
  809 
  810                 j++;
  811         } while (j < 80);
  812 
  813         /* Compute the current intermediate hash value */
  814         context->state[0] += a;
  815         context->state[1] += b;
  816         context->state[2] += c;
  817         context->state[3] += d;
  818         context->state[4] += e;
  819         context->state[5] += f;
  820         context->state[6] += g;
  821         context->state[7] += h;
  822 
  823         /* Clean up */
  824         a = b = c = d = e = f = g = h = T1 = T2 = 0;
  825 }
  826 
  827 #endif /* SHA2_UNROLL_TRANSFORM */
  828 
  829 void SHA512_Update(SHA512_CTX* context, const sha2_byte *data, size_t len) {
  830         unsigned int    freespace, usedspace;
  831 
  832         if (len == 0) {
  833                 /* Calling with no data is valid - we do nothing */
  834                 return;
  835         }
  836 
  837         /* Sanity check: */
  838         assert(context != (SHA512_CTX*)0 && data != (sha2_byte*)0);
  839 
  840         usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
  841         if (usedspace > 0) {
  842                 /* Calculate how much free space is available in the buffer */
  843                 freespace = SHA512_BLOCK_LENGTH - usedspace;
  844 
  845                 if (len >= freespace) {
  846                         /* Fill the buffer completely and process it */
  847                         bcopy(data, &context->buffer[usedspace], freespace);
  848                         ADDINC128(context->bitcount, freespace << 3);
  849                         len -= freespace;
  850                         data += freespace;
  851                         SHA512_Transform(context, (sha2_word64*)context->buffer);
  852                 } else {
  853                         /* The buffer is not yet full */
  854                         bcopy(data, &context->buffer[usedspace], len);
  855                         ADDINC128(context->bitcount, len << 3);
  856                         /* Clean up: */
  857                         usedspace = freespace = 0;
  858                         return;
  859                 }
  860         }
  861         while (len >= SHA512_BLOCK_LENGTH) {
  862                 /* Process as many complete blocks as we can */
  863                 SHA512_Transform(context, (const sha2_word64*)data);
  864                 ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
  865                 len -= SHA512_BLOCK_LENGTH;
  866                 data += SHA512_BLOCK_LENGTH;
  867         }
  868         if (len > 0) {
  869                 /* There's left-overs, so save 'em */
  870                 bcopy(data, context->buffer, len);
  871                 ADDINC128(context->bitcount, len << 3);
  872         }
  873         /* Clean up: */
  874         usedspace = freespace = 0;
  875 }
  876 
  877 void SHA512_Last(SHA512_CTX* context) {
  878         unsigned int    usedspace;
  879 
  880         usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
  881 #if BYTE_ORDER == LITTLE_ENDIAN
  882         /* Convert FROM host byte order */
  883         REVERSE64(context->bitcount[0],context->bitcount[0]);
  884         REVERSE64(context->bitcount[1],context->bitcount[1]);
  885 #endif
  886         if (usedspace > 0) {
  887                 /* Begin padding with a 1 bit: */
  888                 context->buffer[usedspace++] = 0x80;
  889 
  890                 if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
  891                         /* Set-up for the last transform: */
  892                         bzero(&context->buffer[usedspace], SHA512_SHORT_BLOCK_LENGTH - usedspace);
  893                 } else {
  894                         if (usedspace < SHA512_BLOCK_LENGTH) {
  895                                 bzero(&context->buffer[usedspace], SHA512_BLOCK_LENGTH - usedspace);
  896                         }
  897                         /* Do second-to-last transform: */
  898                         SHA512_Transform(context, (sha2_word64*)context->buffer);
  899 
  900                         /* And set-up for the last transform: */
  901                         bzero(context->buffer, SHA512_BLOCK_LENGTH - 2);
  902                 }
  903         } else {
  904                 /* Prepare for final transform: */
  905                 bzero(context->buffer, SHA512_SHORT_BLOCK_LENGTH);
  906 
  907                 /* Begin padding with a 1 bit: */
  908                 *context->buffer = 0x80;
  909         }
  910         /* Store the length of input data (in bits): */
  911         *(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1];
  912         *(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH+8] = context->bitcount[0];
  913 
  914         /* Final transform: */
  915         SHA512_Transform(context, (sha2_word64*)context->buffer);
  916 }
  917 
  918 void SHA512_Final(sha2_byte digest[], SHA512_CTX* context) {
  919         sha2_word64     *d = (sha2_word64*)digest;
  920 
  921         /* Sanity check: */
  922         assert(context != (SHA512_CTX*)0);
  923 
  924         /* If no digest buffer is passed, we don't bother doing this: */
  925         if (digest != (sha2_byte*)0) {
  926                 SHA512_Last(context);
  927 
  928                 /* Save the hash data for output: */
  929 #if BYTE_ORDER == LITTLE_ENDIAN
  930                 {
  931                         /* Convert TO host byte order */
  932                         int     j;
  933                         for (j = 0; j < 8; j++) {
  934                                 REVERSE64(context->state[j],context->state[j]);
  935                                 *d++ = context->state[j];
  936                         }
  937                 }
  938 #else
  939                 bcopy(context->state, d, SHA512_DIGEST_LENGTH);
  940 #endif
  941         }
  942 
  943         /* Zero out state data */
  944         bzero(context, sizeof(*context));
  945 }
  946 
  947 char *SHA512_End(SHA512_CTX* context, char buffer[]) {
  948         sha2_byte       digest[SHA512_DIGEST_LENGTH], *d = digest;
  949         int             i;
  950 
  951         /* Sanity check: */
  952         assert(context != (SHA512_CTX*)0);
  953 
  954         if (buffer != (char*)0) {
  955                 SHA512_Final(digest, context);
  956 
  957                 for (i = 0; i < SHA512_DIGEST_LENGTH; i++) {
  958                         *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
  959                         *buffer++ = sha2_hex_digits[*d & 0x0f];
  960                         d++;
  961                 }
  962                 *buffer = (char)0;
  963         } else {
  964                 bzero(context, sizeof(*context));
  965         }
  966         bzero(digest, SHA512_DIGEST_LENGTH);
  967         return buffer;
  968 }
  969 
  970 char* SHA512_Data(const sha2_byte* data, size_t len, char digest[SHA512_DIGEST_STRING_LENGTH]) {
  971         SHA512_CTX      context;
  972 
  973         SHA512_Init(&context);
  974         SHA512_Update(&context, data, len);
  975         return SHA512_End(&context, digest);
  976 }
  977 
  978 
  979 /*** SHA-384: *********************************************************/
  980 void SHA384_Init(SHA384_CTX* context) {
  981         if (context == (SHA384_CTX*)0) {
  982                 return;
  983         }
  984         bcopy(sha384_initial_hash_value, context->state, SHA512_DIGEST_LENGTH);
  985         bzero(context->buffer, SHA384_BLOCK_LENGTH);
  986         context->bitcount[0] = context->bitcount[1] = 0;
  987 }
  988 
  989 void SHA384_Update(SHA384_CTX* context, const sha2_byte* data, size_t len) {
  990         SHA512_Update((SHA512_CTX*)context, data, len);
  991 }
  992 
  993 void SHA384_Final(sha2_byte digest[], SHA384_CTX* context) {
  994         sha2_word64     *d = (sha2_word64*)digest;
  995 
  996         /* Sanity check: */
  997         assert(context != (SHA384_CTX*)0);
  998 
  999         /* If no digest buffer is passed, we don't bother doing this: */
 1000         if (digest != (sha2_byte*)0) {
 1001                 SHA512_Last((SHA512_CTX*)context);
 1002 
 1003                 /* Save the hash data for output: */
 1004 #if BYTE_ORDER == LITTLE_ENDIAN
 1005                 {
 1006                         /* Convert TO host byte order */
 1007                         int     j;
 1008                         for (j = 0; j < 6; j++) {
 1009                                 REVERSE64(context->state[j],context->state[j]);
 1010                                 *d++ = context->state[j];
 1011                         }
 1012                 }
 1013 #else
 1014                 bcopy(context->state, d, SHA384_DIGEST_LENGTH);
 1015 #endif
 1016         }
 1017 
 1018         /* Zero out state data */
 1019         bzero(context, sizeof(*context));
 1020 }
 1021 
 1022 char *SHA384_End(SHA384_CTX* context, char buffer[]) {
 1023         sha2_byte       digest[SHA384_DIGEST_LENGTH], *d = digest;
 1024         int             i;
 1025 
 1026         /* Sanity check: */
 1027         assert(context != (SHA384_CTX*)0);
 1028 
 1029         if (buffer != (char*)0) {
 1030                 SHA384_Final(digest, context);
 1031 
 1032                 for (i = 0; i < SHA384_DIGEST_LENGTH; i++) {
 1033                         *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
 1034                         *buffer++ = sha2_hex_digits[*d & 0x0f];
 1035                         d++;
 1036                 }
 1037                 *buffer = (char)0;
 1038         } else {
 1039                 bzero(context, sizeof(*context));
 1040         }
 1041         bzero(digest, SHA384_DIGEST_LENGTH);
 1042         return buffer;
 1043 }
 1044 
 1045 char* SHA384_Data(const sha2_byte* data, size_t len, char digest[SHA384_DIGEST_STRING_LENGTH]) {
 1046         SHA384_CTX      context;
 1047 
 1048         SHA384_Init(&context);
 1049         SHA384_Update(&context, data, len);
 1050         return SHA384_End(&context, digest);
 1051 }
 1052 

Cache object: 07b04d4a0e71b4f0e6bc837e35f7c8e8


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.