FreeBSD/Linux Kernel Cross Reference
sys/crypto/sha2/sha2.c
1 /* $KAME: sha2.c,v 1.8 2001/11/08 01:07:52 itojun Exp $ */
2
3 /*
4 * sha2.c
5 *
6 * Version 1.0.0beta1
7 *
8 * Written by Aaron D. Gifford <me@aarongifford.com>
9 *
10 * Copyright 2000 Aaron D. Gifford. All rights reserved.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the copyright holder nor the names of contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTOR(S) ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR(S) OR CONTRIBUTOR(S) BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 */
36
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD: releng/9.0/sys/crypto/sha2/sha2.c 218918 2011-02-21 16:21:43Z brucec $");
39
40 #include <sys/types.h>
41 #include <sys/time.h>
42 #ifdef _KERNEL
43 #include <sys/systm.h>
44 #else
45 #include <string.h>
46 #endif
47 #include <machine/endian.h>
48 #include <crypto/sha2/sha2.h>
49
50 /*
51 * ASSERT NOTE:
52 * Some sanity checking code is included using assert(). On my FreeBSD
53 * system, this additional code can be removed by compiling with NDEBUG
54 * defined. Check your own systems manpage on assert() to see how to
55 * compile WITHOUT the sanity checking code on your system.
56 *
57 * UNROLLED TRANSFORM LOOP NOTE:
58 * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
59 * loop version for the hash transform rounds (defined using macros
60 * later in this file). Either define on the command line, for example:
61 *
62 * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
63 *
64 * or define below:
65 *
66 * #define SHA2_UNROLL_TRANSFORM
67 *
68 */
69
70 #if defined(__bsdi__) || defined(__FreeBSD__)
71 #define assert(x)
72 #endif
73
74
75 /*** SHA-256/384/512 Machine Architecture Definitions *****************/
76 /*
77 * BYTE_ORDER NOTE:
78 *
79 * Please make sure that your system defines BYTE_ORDER. If your
80 * architecture is little-endian, make sure it also defines
81 * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
82 * equivilent.
83 *
84 * If your system does not define the above, then you can do so by
85 * hand like this:
86 *
87 * #define LITTLE_ENDIAN 1234
88 * #define BIG_ENDIAN 4321
89 *
90 * And for little-endian machines, add:
91 *
92 * #define BYTE_ORDER LITTLE_ENDIAN
93 *
94 * Or for big-endian machines:
95 *
96 * #define BYTE_ORDER BIG_ENDIAN
97 *
98 * The FreeBSD machine this was written on defines BYTE_ORDER
99 * appropriately by including <sys/types.h> (which in turn includes
100 * <machine/endian.h> where the appropriate definitions are actually
101 * made).
102 */
103 #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
104 #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
105 #endif
106
107 /*
108 * Define the followingsha2_* types to types of the correct length on
109 * the native archtecture. Most BSD systems and Linux define u_intXX_t
110 * types. Machines with very recent ANSI C headers, can use the
111 * uintXX_t definintions from inttypes.h by defining SHA2_USE_INTTYPES_H
112 * during compile or in the sha.h header file.
113 *
114 * Machines that support neither u_intXX_t nor inttypes.h's uintXX_t
115 * will need to define these three typedefs below (and the appropriate
116 * ones in sha.h too) by hand according to their system architecture.
117 *
118 * Thank you, Jun-ichiro itojun Hagino, for suggesting using u_intXX_t
119 * types and pointing out recent ANSI C support for uintXX_t in inttypes.h.
120 */
121 #if 0 /*def SHA2_USE_INTTYPES_H*/
122
123 typedef uint8_t sha2_byte; /* Exactly 1 byte */
124 typedef uint32_t sha2_word32; /* Exactly 4 bytes */
125 typedef uint64_t sha2_word64; /* Exactly 8 bytes */
126
127 #else /* SHA2_USE_INTTYPES_H */
128
129 typedef u_int8_t sha2_byte; /* Exactly 1 byte */
130 typedef u_int32_t sha2_word32; /* Exactly 4 bytes */
131 typedef u_int64_t sha2_word64; /* Exactly 8 bytes */
132
133 #endif /* SHA2_USE_INTTYPES_H */
134
135
136 /*** SHA-256/384/512 Various Length Definitions ***********************/
137 /* NOTE: Most of these are in sha2.h */
138 #define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8)
139 #define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16)
140 #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16)
141
142
143 /*** ENDIAN REVERSAL MACROS *******************************************/
144 #if BYTE_ORDER == LITTLE_ENDIAN
145 #define REVERSE32(w,x) { \
146 sha2_word32 tmp = (w); \
147 tmp = (tmp >> 16) | (tmp << 16); \
148 (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
149 }
150 #define REVERSE64(w,x) { \
151 sha2_word64 tmp = (w); \
152 tmp = (tmp >> 32) | (tmp << 32); \
153 tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
154 ((tmp & 0x00ff00ff00ff00ffULL) << 8); \
155 (x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
156 ((tmp & 0x0000ffff0000ffffULL) << 16); \
157 }
158 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
159
160 /*
161 * Macro for incrementally adding the unsigned 64-bit integer n to the
162 * unsigned 128-bit integer (represented using a two-element array of
163 * 64-bit words):
164 */
165 #define ADDINC128(w,n) { \
166 (w)[0] += (sha2_word64)(n); \
167 if ((w)[0] < (n)) { \
168 (w)[1]++; \
169 } \
170 }
171
172 /*** THE SIX LOGICAL FUNCTIONS ****************************************/
173 /*
174 * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
175 *
176 * NOTE: The naming of R and S appears backwards here (R is a SHIFT and
177 * S is a ROTATION) because the SHA-256/384/512 description document
178 * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
179 * same "backwards" definition.
180 */
181 /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
182 #define R(b,x) ((x) >> (b))
183 /* 32-bit Rotate-right (used in SHA-256): */
184 #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
185 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
186 #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
187
188 /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
189 #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
190 #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
191
192 /* Four of six logical functions used in SHA-256: */
193 #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))
194 #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))
195 #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))
196 #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
197
198 /* Four of six logical functions used in SHA-384 and SHA-512: */
199 #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
200 #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
201 #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x)))
202 #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x)))
203
204 /*** INTERNAL FUNCTION PROTOTYPES *************************************/
205 /* NOTE: These should not be accessed directly from outside this
206 * library -- they are intended for private internal visibility/use
207 * only.
208 */
209 static void SHA512_Last(SHA512_CTX*);
210 static void SHA256_Transform(SHA256_CTX*, const sha2_word32*);
211 static void SHA512_Transform(SHA512_CTX*, const sha2_word64*);
212
213
214 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
215 /* Hash constant words K for SHA-256: */
216 static const sha2_word32 K256[64] = {
217 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
218 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
219 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
220 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
221 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
222 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
223 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
224 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
225 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
226 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
227 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
228 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
229 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
230 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
231 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
232 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
233 };
234
235 /* Initial hash value H for SHA-256: */
236 static const sha2_word32 sha256_initial_hash_value[8] = {
237 0x6a09e667UL,
238 0xbb67ae85UL,
239 0x3c6ef372UL,
240 0xa54ff53aUL,
241 0x510e527fUL,
242 0x9b05688cUL,
243 0x1f83d9abUL,
244 0x5be0cd19UL
245 };
246
247 /* Hash constant words K for SHA-384 and SHA-512: */
248 static const sha2_word64 K512[80] = {
249 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
250 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
251 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
252 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
253 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
254 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
255 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
256 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
257 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
258 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
259 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
260 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
261 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
262 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
263 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
264 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
265 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
266 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
267 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
268 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
269 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
270 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
271 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
272 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
273 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
274 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
275 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
276 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
277 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
278 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
279 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
280 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
281 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
282 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
283 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
284 0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
285 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
286 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
287 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
288 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
289 };
290
291 /* Initial hash value H for SHA-384 */
292 static const sha2_word64 sha384_initial_hash_value[8] = {
293 0xcbbb9d5dc1059ed8ULL,
294 0x629a292a367cd507ULL,
295 0x9159015a3070dd17ULL,
296 0x152fecd8f70e5939ULL,
297 0x67332667ffc00b31ULL,
298 0x8eb44a8768581511ULL,
299 0xdb0c2e0d64f98fa7ULL,
300 0x47b5481dbefa4fa4ULL
301 };
302
303 /* Initial hash value H for SHA-512 */
304 static const sha2_word64 sha512_initial_hash_value[8] = {
305 0x6a09e667f3bcc908ULL,
306 0xbb67ae8584caa73bULL,
307 0x3c6ef372fe94f82bULL,
308 0xa54ff53a5f1d36f1ULL,
309 0x510e527fade682d1ULL,
310 0x9b05688c2b3e6c1fULL,
311 0x1f83d9abfb41bd6bULL,
312 0x5be0cd19137e2179ULL
313 };
314
315 /*
316 * Constant used by SHA256/384/512_End() functions for converting the
317 * digest to a readable hexadecimal character string:
318 */
319 static const char *sha2_hex_digits = "0123456789abcdef";
320
321
322 /*** SHA-256: *********************************************************/
323 void SHA256_Init(SHA256_CTX* context) {
324 if (context == (SHA256_CTX*)0) {
325 return;
326 }
327 bcopy(sha256_initial_hash_value, context->state, SHA256_DIGEST_LENGTH);
328 bzero(context->buffer, SHA256_BLOCK_LENGTH);
329 context->bitcount = 0;
330 }
331
332 #ifdef SHA2_UNROLL_TRANSFORM
333
334 /* Unrolled SHA-256 round macros: */
335
336 #if BYTE_ORDER == LITTLE_ENDIAN
337
338 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
339 REVERSE32(*data++, W256[j]); \
340 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
341 K256[j] + W256[j]; \
342 (d) += T1; \
343 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
344 j++
345
346
347 #else /* BYTE_ORDER == LITTLE_ENDIAN */
348
349 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
350 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
351 K256[j] + (W256[j] = *data++); \
352 (d) += T1; \
353 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
354 j++
355
356 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
357
358 #define ROUND256(a,b,c,d,e,f,g,h) \
359 s0 = W256[(j+1)&0x0f]; \
360 s0 = sigma0_256(s0); \
361 s1 = W256[(j+14)&0x0f]; \
362 s1 = sigma1_256(s1); \
363 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
364 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
365 (d) += T1; \
366 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
367 j++
368
369 static void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
370 sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
371 sha2_word32 T1, *W256;
372 int j;
373
374 W256 = (sha2_word32*)context->buffer;
375
376 /* Initialize registers with the prev. intermediate value */
377 a = context->state[0];
378 b = context->state[1];
379 c = context->state[2];
380 d = context->state[3];
381 e = context->state[4];
382 f = context->state[5];
383 g = context->state[6];
384 h = context->state[7];
385
386 j = 0;
387 do {
388 /* Rounds 0 to 15 (unrolled): */
389 ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
390 ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
391 ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
392 ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
393 ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
394 ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
395 ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
396 ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
397 } while (j < 16);
398
399 /* Now for the remaining rounds to 64: */
400 do {
401 ROUND256(a,b,c,d,e,f,g,h);
402 ROUND256(h,a,b,c,d,e,f,g);
403 ROUND256(g,h,a,b,c,d,e,f);
404 ROUND256(f,g,h,a,b,c,d,e);
405 ROUND256(e,f,g,h,a,b,c,d);
406 ROUND256(d,e,f,g,h,a,b,c);
407 ROUND256(c,d,e,f,g,h,a,b);
408 ROUND256(b,c,d,e,f,g,h,a);
409 } while (j < 64);
410
411 /* Compute the current intermediate hash value */
412 context->state[0] += a;
413 context->state[1] += b;
414 context->state[2] += c;
415 context->state[3] += d;
416 context->state[4] += e;
417 context->state[5] += f;
418 context->state[6] += g;
419 context->state[7] += h;
420
421 /* Clean up */
422 a = b = c = d = e = f = g = h = T1 = 0;
423 }
424
425 #else /* SHA2_UNROLL_TRANSFORM */
426
427 static void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
428 sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
429 sha2_word32 T1, T2, *W256;
430 int j;
431
432 W256 = (sha2_word32*)context->buffer;
433
434 /* Initialize registers with the prev. intermediate value */
435 a = context->state[0];
436 b = context->state[1];
437 c = context->state[2];
438 d = context->state[3];
439 e = context->state[4];
440 f = context->state[5];
441 g = context->state[6];
442 h = context->state[7];
443
444 j = 0;
445 do {
446 #if BYTE_ORDER == LITTLE_ENDIAN
447 /* Copy data while converting to host byte order */
448 REVERSE32(*data++,W256[j]);
449 /* Apply the SHA-256 compression function to update a..h */
450 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
451 #else /* BYTE_ORDER == LITTLE_ENDIAN */
452 /* Apply the SHA-256 compression function to update a..h with copy */
453 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
454 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
455 T2 = Sigma0_256(a) + Maj(a, b, c);
456 h = g;
457 g = f;
458 f = e;
459 e = d + T1;
460 d = c;
461 c = b;
462 b = a;
463 a = T1 + T2;
464
465 j++;
466 } while (j < 16);
467
468 do {
469 /* Part of the message block expansion: */
470 s0 = W256[(j+1)&0x0f];
471 s0 = sigma0_256(s0);
472 s1 = W256[(j+14)&0x0f];
473 s1 = sigma1_256(s1);
474
475 /* Apply the SHA-256 compression function to update a..h */
476 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
477 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
478 T2 = Sigma0_256(a) + Maj(a, b, c);
479 h = g;
480 g = f;
481 f = e;
482 e = d + T1;
483 d = c;
484 c = b;
485 b = a;
486 a = T1 + T2;
487
488 j++;
489 } while (j < 64);
490
491 /* Compute the current intermediate hash value */
492 context->state[0] += a;
493 context->state[1] += b;
494 context->state[2] += c;
495 context->state[3] += d;
496 context->state[4] += e;
497 context->state[5] += f;
498 context->state[6] += g;
499 context->state[7] += h;
500
501 /* Clean up */
502 a = b = c = d = e = f = g = h = T1 = T2 = 0;
503 }
504
505 #endif /* SHA2_UNROLL_TRANSFORM */
506
507 void SHA256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) {
508 unsigned int freespace, usedspace;
509
510 if (len == 0) {
511 /* Calling with no data is valid - we do nothing */
512 return;
513 }
514
515 /* Sanity check: */
516 assert(context != (SHA256_CTX*)0 && data != (sha2_byte*)0);
517
518 usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
519 if (usedspace > 0) {
520 /* Calculate how much free space is available in the buffer */
521 freespace = SHA256_BLOCK_LENGTH - usedspace;
522
523 if (len >= freespace) {
524 /* Fill the buffer completely and process it */
525 bcopy(data, &context->buffer[usedspace], freespace);
526 context->bitcount += freespace << 3;
527 len -= freespace;
528 data += freespace;
529 SHA256_Transform(context, (sha2_word32*)context->buffer);
530 } else {
531 /* The buffer is not yet full */
532 bcopy(data, &context->buffer[usedspace], len);
533 context->bitcount += len << 3;
534 /* Clean up: */
535 usedspace = freespace = 0;
536 return;
537 }
538 }
539 while (len >= SHA256_BLOCK_LENGTH) {
540 /* Process as many complete blocks as we can */
541 SHA256_Transform(context, (const sha2_word32*)data);
542 context->bitcount += SHA256_BLOCK_LENGTH << 3;
543 len -= SHA256_BLOCK_LENGTH;
544 data += SHA256_BLOCK_LENGTH;
545 }
546 if (len > 0) {
547 /* There's left-overs, so save 'em */
548 bcopy(data, context->buffer, len);
549 context->bitcount += len << 3;
550 }
551 /* Clean up: */
552 usedspace = freespace = 0;
553 }
554
555 void SHA256_Final(sha2_byte digest[], SHA256_CTX* context) {
556 sha2_word32 *d = (sha2_word32*)digest;
557 unsigned int usedspace;
558
559 /* Sanity check: */
560 assert(context != (SHA256_CTX*)0);
561
562 /* If no digest buffer is passed, we don't bother doing this: */
563 if (digest != (sha2_byte*)0) {
564 usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
565 #if BYTE_ORDER == LITTLE_ENDIAN
566 /* Convert FROM host byte order */
567 REVERSE64(context->bitcount,context->bitcount);
568 #endif
569 if (usedspace > 0) {
570 /* Begin padding with a 1 bit: */
571 context->buffer[usedspace++] = 0x80;
572
573 if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
574 /* Set-up for the last transform: */
575 bzero(&context->buffer[usedspace], SHA256_SHORT_BLOCK_LENGTH - usedspace);
576 } else {
577 if (usedspace < SHA256_BLOCK_LENGTH) {
578 bzero(&context->buffer[usedspace], SHA256_BLOCK_LENGTH - usedspace);
579 }
580 /* Do second-to-last transform: */
581 SHA256_Transform(context, (sha2_word32*)context->buffer);
582
583 /* And set-up for the last transform: */
584 bzero(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
585 }
586 } else {
587 /* Set-up for the last transform: */
588 bzero(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
589
590 /* Begin padding with a 1 bit: */
591 *context->buffer = 0x80;
592 }
593 /* Set the bit count: */
594 *(sha2_word64*)&context->buffer[SHA256_SHORT_BLOCK_LENGTH] = context->bitcount;
595
596 /* Final transform: */
597 SHA256_Transform(context, (sha2_word32*)context->buffer);
598
599 #if BYTE_ORDER == LITTLE_ENDIAN
600 {
601 /* Convert TO host byte order */
602 int j;
603 for (j = 0; j < 8; j++) {
604 REVERSE32(context->state[j],context->state[j]);
605 *d++ = context->state[j];
606 }
607 }
608 #else
609 bcopy(context->state, d, SHA256_DIGEST_LENGTH);
610 #endif
611 }
612
613 /* Clean up state data: */
614 bzero(context, sizeof(*context));
615 usedspace = 0;
616 }
617
618 char *SHA256_End(SHA256_CTX* context, char buffer[]) {
619 sha2_byte digest[SHA256_DIGEST_LENGTH], *d = digest;
620 int i;
621
622 /* Sanity check: */
623 assert(context != (SHA256_CTX*)0);
624
625 if (buffer != (char*)0) {
626 SHA256_Final(digest, context);
627
628 for (i = 0; i < SHA256_DIGEST_LENGTH; i++) {
629 *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
630 *buffer++ = sha2_hex_digits[*d & 0x0f];
631 d++;
632 }
633 *buffer = (char)0;
634 } else {
635 bzero(context, sizeof(*context));
636 }
637 bzero(digest, SHA256_DIGEST_LENGTH);
638 return buffer;
639 }
640
641 char* SHA256_Data(const sha2_byte* data, size_t len, char digest[SHA256_DIGEST_STRING_LENGTH]) {
642 SHA256_CTX context;
643
644 SHA256_Init(&context);
645 SHA256_Update(&context, data, len);
646 return SHA256_End(&context, digest);
647 }
648
649
650 /*** SHA-512: *********************************************************/
651 void SHA512_Init(SHA512_CTX* context) {
652 if (context == (SHA512_CTX*)0) {
653 return;
654 }
655 bcopy(sha512_initial_hash_value, context->state, SHA512_DIGEST_LENGTH);
656 bzero(context->buffer, SHA512_BLOCK_LENGTH);
657 context->bitcount[0] = context->bitcount[1] = 0;
658 }
659
660 #ifdef SHA2_UNROLL_TRANSFORM
661
662 /* Unrolled SHA-512 round macros: */
663 #if BYTE_ORDER == LITTLE_ENDIAN
664
665 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
666 REVERSE64(*data++, W512[j]); \
667 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
668 K512[j] + W512[j]; \
669 (d) += T1, \
670 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
671 j++
672
673
674 #else /* BYTE_ORDER == LITTLE_ENDIAN */
675
676 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
677 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
678 K512[j] + (W512[j] = *data++); \
679 (d) += T1; \
680 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
681 j++
682
683 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
684
685 #define ROUND512(a,b,c,d,e,f,g,h) \
686 s0 = W512[(j+1)&0x0f]; \
687 s0 = sigma0_512(s0); \
688 s1 = W512[(j+14)&0x0f]; \
689 s1 = sigma1_512(s1); \
690 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
691 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
692 (d) += T1; \
693 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
694 j++
695
696 static void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
697 sha2_word64 a, b, c, d, e, f, g, h, s0, s1;
698 sha2_word64 T1, *W512 = (sha2_word64*)context->buffer;
699 int j;
700
701 /* Initialize registers with the prev. intermediate value */
702 a = context->state[0];
703 b = context->state[1];
704 c = context->state[2];
705 d = context->state[3];
706 e = context->state[4];
707 f = context->state[5];
708 g = context->state[6];
709 h = context->state[7];
710
711 j = 0;
712 do {
713 ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
714 ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
715 ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
716 ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
717 ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
718 ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
719 ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
720 ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
721 } while (j < 16);
722
723 /* Now for the remaining rounds up to 79: */
724 do {
725 ROUND512(a,b,c,d,e,f,g,h);
726 ROUND512(h,a,b,c,d,e,f,g);
727 ROUND512(g,h,a,b,c,d,e,f);
728 ROUND512(f,g,h,a,b,c,d,e);
729 ROUND512(e,f,g,h,a,b,c,d);
730 ROUND512(d,e,f,g,h,a,b,c);
731 ROUND512(c,d,e,f,g,h,a,b);
732 ROUND512(b,c,d,e,f,g,h,a);
733 } while (j < 80);
734
735 /* Compute the current intermediate hash value */
736 context->state[0] += a;
737 context->state[1] += b;
738 context->state[2] += c;
739 context->state[3] += d;
740 context->state[4] += e;
741 context->state[5] += f;
742 context->state[6] += g;
743 context->state[7] += h;
744
745 /* Clean up */
746 a = b = c = d = e = f = g = h = T1 = 0;
747 }
748
749 #else /* SHA2_UNROLL_TRANSFORM */
750
751 static void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
752 sha2_word64 a, b, c, d, e, f, g, h, s0, s1;
753 sha2_word64 T1 = 0, T2 = 0, *W512 = (sha2_word64*)context->buffer;
754 int j;
755
756 /* Initialize registers with the prev. intermediate value */
757 a = context->state[0];
758 b = context->state[1];
759 c = context->state[2];
760 d = context->state[3];
761 e = context->state[4];
762 f = context->state[5];
763 g = context->state[6];
764 h = context->state[7];
765
766 j = 0;
767 do {
768 #if BYTE_ORDER == LITTLE_ENDIAN
769 /* Convert TO host byte order */
770 REVERSE64(*data++, W512[j]);
771 /* Apply the SHA-512 compression function to update a..h */
772 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
773 #else /* BYTE_ORDER == LITTLE_ENDIAN */
774 /* Apply the SHA-512 compression function to update a..h with copy */
775 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++);
776 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
777 T2 = Sigma0_512(a) + Maj(a, b, c);
778 h = g;
779 g = f;
780 f = e;
781 e = d + T1;
782 d = c;
783 c = b;
784 b = a;
785 a = T1 + T2;
786
787 j++;
788 } while (j < 16);
789
790 do {
791 /* Part of the message block expansion: */
792 s0 = W512[(j+1)&0x0f];
793 s0 = sigma0_512(s0);
794 s1 = W512[(j+14)&0x0f];
795 s1 = sigma1_512(s1);
796
797 /* Apply the SHA-512 compression function to update a..h */
798 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
799 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
800 T2 = Sigma0_512(a) + Maj(a, b, c);
801 h = g;
802 g = f;
803 f = e;
804 e = d + T1;
805 d = c;
806 c = b;
807 b = a;
808 a = T1 + T2;
809
810 j++;
811 } while (j < 80);
812
813 /* Compute the current intermediate hash value */
814 context->state[0] += a;
815 context->state[1] += b;
816 context->state[2] += c;
817 context->state[3] += d;
818 context->state[4] += e;
819 context->state[5] += f;
820 context->state[6] += g;
821 context->state[7] += h;
822
823 /* Clean up */
824 a = b = c = d = e = f = g = h = T1 = T2 = 0;
825 }
826
827 #endif /* SHA2_UNROLL_TRANSFORM */
828
829 void SHA512_Update(SHA512_CTX* context, const sha2_byte *data, size_t len) {
830 unsigned int freespace, usedspace;
831
832 if (len == 0) {
833 /* Calling with no data is valid - we do nothing */
834 return;
835 }
836
837 /* Sanity check: */
838 assert(context != (SHA512_CTX*)0 && data != (sha2_byte*)0);
839
840 usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
841 if (usedspace > 0) {
842 /* Calculate how much free space is available in the buffer */
843 freespace = SHA512_BLOCK_LENGTH - usedspace;
844
845 if (len >= freespace) {
846 /* Fill the buffer completely and process it */
847 bcopy(data, &context->buffer[usedspace], freespace);
848 ADDINC128(context->bitcount, freespace << 3);
849 len -= freespace;
850 data += freespace;
851 SHA512_Transform(context, (sha2_word64*)context->buffer);
852 } else {
853 /* The buffer is not yet full */
854 bcopy(data, &context->buffer[usedspace], len);
855 ADDINC128(context->bitcount, len << 3);
856 /* Clean up: */
857 usedspace = freespace = 0;
858 return;
859 }
860 }
861 while (len >= SHA512_BLOCK_LENGTH) {
862 /* Process as many complete blocks as we can */
863 SHA512_Transform(context, (const sha2_word64*)data);
864 ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
865 len -= SHA512_BLOCK_LENGTH;
866 data += SHA512_BLOCK_LENGTH;
867 }
868 if (len > 0) {
869 /* There's left-overs, so save 'em */
870 bcopy(data, context->buffer, len);
871 ADDINC128(context->bitcount, len << 3);
872 }
873 /* Clean up: */
874 usedspace = freespace = 0;
875 }
876
877 static void SHA512_Last(SHA512_CTX* context) {
878 unsigned int usedspace;
879
880 usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
881 #if BYTE_ORDER == LITTLE_ENDIAN
882 /* Convert FROM host byte order */
883 REVERSE64(context->bitcount[0],context->bitcount[0]);
884 REVERSE64(context->bitcount[1],context->bitcount[1]);
885 #endif
886 if (usedspace > 0) {
887 /* Begin padding with a 1 bit: */
888 context->buffer[usedspace++] = 0x80;
889
890 if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
891 /* Set-up for the last transform: */
892 bzero(&context->buffer[usedspace], SHA512_SHORT_BLOCK_LENGTH - usedspace);
893 } else {
894 if (usedspace < SHA512_BLOCK_LENGTH) {
895 bzero(&context->buffer[usedspace], SHA512_BLOCK_LENGTH - usedspace);
896 }
897 /* Do second-to-last transform: */
898 SHA512_Transform(context, (sha2_word64*)context->buffer);
899
900 /* And set-up for the last transform: */
901 bzero(context->buffer, SHA512_BLOCK_LENGTH - 2);
902 }
903 } else {
904 /* Prepare for final transform: */
905 bzero(context->buffer, SHA512_SHORT_BLOCK_LENGTH);
906
907 /* Begin padding with a 1 bit: */
908 *context->buffer = 0x80;
909 }
910 /* Store the length of input data (in bits): */
911 *(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1];
912 *(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH+8] = context->bitcount[0];
913
914 /* Final transform: */
915 SHA512_Transform(context, (sha2_word64*)context->buffer);
916 }
917
918 void SHA512_Final(sha2_byte digest[], SHA512_CTX* context) {
919 sha2_word64 *d = (sha2_word64*)digest;
920
921 /* Sanity check: */
922 assert(context != (SHA512_CTX*)0);
923
924 /* If no digest buffer is passed, we don't bother doing this: */
925 if (digest != (sha2_byte*)0) {
926 SHA512_Last(context);
927
928 /* Save the hash data for output: */
929 #if BYTE_ORDER == LITTLE_ENDIAN
930 {
931 /* Convert TO host byte order */
932 int j;
933 for (j = 0; j < 8; j++) {
934 REVERSE64(context->state[j],context->state[j]);
935 *d++ = context->state[j];
936 }
937 }
938 #else
939 bcopy(context->state, d, SHA512_DIGEST_LENGTH);
940 #endif
941 }
942
943 /* Zero out state data */
944 bzero(context, sizeof(*context));
945 }
946
947 char *SHA512_End(SHA512_CTX* context, char buffer[]) {
948 sha2_byte digest[SHA512_DIGEST_LENGTH], *d = digest;
949 int i;
950
951 /* Sanity check: */
952 assert(context != (SHA512_CTX*)0);
953
954 if (buffer != (char*)0) {
955 SHA512_Final(digest, context);
956
957 for (i = 0; i < SHA512_DIGEST_LENGTH; i++) {
958 *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
959 *buffer++ = sha2_hex_digits[*d & 0x0f];
960 d++;
961 }
962 *buffer = (char)0;
963 } else {
964 bzero(context, sizeof(*context));
965 }
966 bzero(digest, SHA512_DIGEST_LENGTH);
967 return buffer;
968 }
969
970 char* SHA512_Data(const sha2_byte* data, size_t len, char digest[SHA512_DIGEST_STRING_LENGTH]) {
971 SHA512_CTX context;
972
973 SHA512_Init(&context);
974 SHA512_Update(&context, data, len);
975 return SHA512_End(&context, digest);
976 }
977
978
979 /*** SHA-384: *********************************************************/
980 void SHA384_Init(SHA384_CTX* context) {
981 if (context == (SHA384_CTX*)0) {
982 return;
983 }
984 bcopy(sha384_initial_hash_value, context->state, SHA512_DIGEST_LENGTH);
985 bzero(context->buffer, SHA384_BLOCK_LENGTH);
986 context->bitcount[0] = context->bitcount[1] = 0;
987 }
988
989 void SHA384_Update(SHA384_CTX* context, const sha2_byte* data, size_t len) {
990 SHA512_Update((SHA512_CTX*)context, data, len);
991 }
992
993 void SHA384_Final(sha2_byte digest[], SHA384_CTX* context) {
994 sha2_word64 *d = (sha2_word64*)digest;
995
996 /* Sanity check: */
997 assert(context != (SHA384_CTX*)0);
998
999 /* If no digest buffer is passed, we don't bother doing this: */
1000 if (digest != (sha2_byte*)0) {
1001 SHA512_Last((SHA512_CTX*)context);
1002
1003 /* Save the hash data for output: */
1004 #if BYTE_ORDER == LITTLE_ENDIAN
1005 {
1006 /* Convert TO host byte order */
1007 int j;
1008 for (j = 0; j < 6; j++) {
1009 REVERSE64(context->state[j],context->state[j]);
1010 *d++ = context->state[j];
1011 }
1012 }
1013 #else
1014 bcopy(context->state, d, SHA384_DIGEST_LENGTH);
1015 #endif
1016 }
1017
1018 /* Zero out state data */
1019 bzero(context, sizeof(*context));
1020 }
1021
1022 char *SHA384_End(SHA384_CTX* context, char buffer[]) {
1023 sha2_byte digest[SHA384_DIGEST_LENGTH], *d = digest;
1024 int i;
1025
1026 /* Sanity check: */
1027 assert(context != (SHA384_CTX*)0);
1028
1029 if (buffer != (char*)0) {
1030 SHA384_Final(digest, context);
1031
1032 for (i = 0; i < SHA384_DIGEST_LENGTH; i++) {
1033 *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
1034 *buffer++ = sha2_hex_digits[*d & 0x0f];
1035 d++;
1036 }
1037 *buffer = (char)0;
1038 } else {
1039 bzero(context, sizeof(*context));
1040 }
1041 bzero(digest, SHA384_DIGEST_LENGTH);
1042 return buffer;
1043 }
1044
1045 char* SHA384_Data(const sha2_byte* data, size_t len, char digest[SHA384_DIGEST_STRING_LENGTH]) {
1046 SHA384_CTX context;
1047
1048 SHA384_Init(&context);
1049 SHA384_Update(&context, data, len);
1050 return SHA384_End(&context, digest);
1051 }
1052
Cache object: 3916461e1307f72b827d414f85202125
|