1 /*-
2 * Copyright 2005 Colin Percival
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 #include <sys/endian.h>
31 #include <sys/types.h>
32
33 #ifdef _KERNEL
34 #include <sys/systm.h>
35 #else
36 #include <string.h>
37 #endif
38
39 #include "sha224.h"
40 #include "sha256.h"
41
42 #if BYTE_ORDER == BIG_ENDIAN
43
44 /* Copy a vector of big-endian uint32_t into a vector of bytes */
45 #define be32enc_vect(dst, src, len) \
46 memcpy((void *)dst, (const void *)src, (size_t)len)
47
48 /* Copy a vector of bytes into a vector of big-endian uint32_t */
49 #define be32dec_vect(dst, src, len) \
50 memcpy((void *)dst, (const void *)src, (size_t)len)
51
52 #else /* BYTE_ORDER != BIG_ENDIAN */
53
54 /*
55 * Encode a length len/4 vector of (uint32_t) into a length len vector of
56 * (unsigned char) in big-endian form. Assumes len is a multiple of 4.
57 */
58 static void
59 be32enc_vect(unsigned char *dst, const uint32_t *src, size_t len)
60 {
61 size_t i;
62
63 for (i = 0; i < len / 4; i++)
64 be32enc(dst + i * 4, src[i]);
65 }
66
67 /*
68 * Decode a big-endian length len vector of (unsigned char) into a length
69 * len/4 vector of (uint32_t). Assumes len is a multiple of 4.
70 */
71 static void
72 be32dec_vect(uint32_t *dst, const unsigned char *src, size_t len)
73 {
74 size_t i;
75
76 for (i = 0; i < len / 4; i++)
77 dst[i] = be32dec(src + i * 4);
78 }
79
80 #endif /* BYTE_ORDER != BIG_ENDIAN */
81
82 /* SHA256 round constants. */
83 static const uint32_t K[64] = {
84 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
85 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
86 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
87 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
88 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
89 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
90 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
91 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
92 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
93 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
94 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
95 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
96 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
97 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
98 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
99 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
100 };
101
102 /* Elementary functions used by SHA256 */
103 #define Ch(x, y, z) ((x & (y ^ z)) ^ z)
104 #define Maj(x, y, z) ((x & (y | z)) | (y & z))
105 #define SHR(x, n) (x >> n)
106 #define ROTR(x, n) ((x >> n) | (x << (32 - n)))
107 #define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
108 #define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
109 #define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3))
110 #define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10))
111
112 /* SHA256 round function */
113 #define RND(a, b, c, d, e, f, g, h, k) \
114 h += S1(e) + Ch(e, f, g) + k; \
115 d += h; \
116 h += S0(a) + Maj(a, b, c);
117
118 /* Adjusted round function for rotating state */
119 #define RNDr(S, W, i, ii) \
120 RND(S[(64 - i) % 8], S[(65 - i) % 8], \
121 S[(66 - i) % 8], S[(67 - i) % 8], \
122 S[(68 - i) % 8], S[(69 - i) % 8], \
123 S[(70 - i) % 8], S[(71 - i) % 8], \
124 W[i + ii] + K[i + ii])
125
126 /* Message schedule computation */
127 #define MSCH(W, ii, i) \
128 W[i + ii + 16] = s1(W[i + ii + 14]) + W[i + ii + 9] + s0(W[i + ii + 1]) + W[i + ii]
129
130 /*
131 * SHA256 block compression function. The 256-bit state is transformed via
132 * the 512-bit input block to produce a new state.
133 */
134 static void
135 SHA256_Transform(uint32_t * state, const unsigned char block[64])
136 {
137 uint32_t W[64];
138 uint32_t S[8];
139 int i;
140
141 /* 1. Prepare the first part of the message schedule W. */
142 be32dec_vect(W, block, 64);
143
144 /* 2. Initialize working variables. */
145 memcpy(S, state, 32);
146
147 /* 3. Mix. */
148 for (i = 0; i < 64; i += 16) {
149 RNDr(S, W, 0, i);
150 RNDr(S, W, 1, i);
151 RNDr(S, W, 2, i);
152 RNDr(S, W, 3, i);
153 RNDr(S, W, 4, i);
154 RNDr(S, W, 5, i);
155 RNDr(S, W, 6, i);
156 RNDr(S, W, 7, i);
157 RNDr(S, W, 8, i);
158 RNDr(S, W, 9, i);
159 RNDr(S, W, 10, i);
160 RNDr(S, W, 11, i);
161 RNDr(S, W, 12, i);
162 RNDr(S, W, 13, i);
163 RNDr(S, W, 14, i);
164 RNDr(S, W, 15, i);
165
166 if (i == 48)
167 break;
168 MSCH(W, 0, i);
169 MSCH(W, 1, i);
170 MSCH(W, 2, i);
171 MSCH(W, 3, i);
172 MSCH(W, 4, i);
173 MSCH(W, 5, i);
174 MSCH(W, 6, i);
175 MSCH(W, 7, i);
176 MSCH(W, 8, i);
177 MSCH(W, 9, i);
178 MSCH(W, 10, i);
179 MSCH(W, 11, i);
180 MSCH(W, 12, i);
181 MSCH(W, 13, i);
182 MSCH(W, 14, i);
183 MSCH(W, 15, i);
184 }
185
186 /* 4. Mix local working variables into global state */
187 for (i = 0; i < 8; i++)
188 state[i] += S[i];
189 }
190
191 static unsigned char PAD[64] = {
192 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
193 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
194 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
195 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
196 };
197
198 /* Add padding and terminating bit-count. */
199 static void
200 SHA256_Pad(SHA256_CTX * ctx)
201 {
202 size_t r;
203
204 /* Figure out how many bytes we have buffered. */
205 r = (ctx->count >> 3) & 0x3f;
206
207 /* Pad to 56 mod 64, transforming if we finish a block en route. */
208 if (r < 56) {
209 /* Pad to 56 mod 64. */
210 memcpy(&ctx->buf[r], PAD, 56 - r);
211 } else {
212 /* Finish the current block and mix. */
213 memcpy(&ctx->buf[r], PAD, 64 - r);
214 SHA256_Transform(ctx->state, ctx->buf);
215
216 /* The start of the final block is all zeroes. */
217 memset(&ctx->buf[0], 0, 56);
218 }
219
220 /* Add the terminating bit-count. */
221 be64enc(&ctx->buf[56], ctx->count);
222
223 /* Mix in the final block. */
224 SHA256_Transform(ctx->state, ctx->buf);
225 }
226
227 /* SHA-256 initialization. Begins a SHA-256 operation. */
228 void
229 SHA256_Init(SHA256_CTX * ctx)
230 {
231
232 /* Zero bits processed so far */
233 ctx->count = 0;
234
235 /* Magic initialization constants */
236 ctx->state[0] = 0x6A09E667;
237 ctx->state[1] = 0xBB67AE85;
238 ctx->state[2] = 0x3C6EF372;
239 ctx->state[3] = 0xA54FF53A;
240 ctx->state[4] = 0x510E527F;
241 ctx->state[5] = 0x9B05688C;
242 ctx->state[6] = 0x1F83D9AB;
243 ctx->state[7] = 0x5BE0CD19;
244 }
245
246 /* Add bytes into the hash */
247 void
248 SHA256_Update(SHA256_CTX * ctx, const void *in, size_t len)
249 {
250 uint64_t bitlen;
251 uint32_t r;
252 const unsigned char *src = in;
253
254 /* Number of bytes left in the buffer from previous updates */
255 r = (ctx->count >> 3) & 0x3f;
256
257 /* Convert the length into a number of bits */
258 bitlen = len << 3;
259
260 /* Update number of bits */
261 ctx->count += bitlen;
262
263 /* Handle the case where we don't need to perform any transforms */
264 if (len < 64 - r) {
265 memcpy(&ctx->buf[r], src, len);
266 return;
267 }
268
269 /* Finish the current block */
270 memcpy(&ctx->buf[r], src, 64 - r);
271 SHA256_Transform(ctx->state, ctx->buf);
272 src += 64 - r;
273 len -= 64 - r;
274
275 /* Perform complete blocks */
276 while (len >= 64) {
277 SHA256_Transform(ctx->state, src);
278 src += 64;
279 len -= 64;
280 }
281
282 /* Copy left over data into buffer */
283 memcpy(ctx->buf, src, len);
284 }
285
286 /*
287 * SHA-256 finalization. Pads the input data, exports the hash value,
288 * and clears the context state.
289 */
290 void
291 SHA256_Final(unsigned char digest[static SHA256_DIGEST_LENGTH], SHA256_CTX *ctx)
292 {
293
294 /* Add padding */
295 SHA256_Pad(ctx);
296
297 /* Write the hash */
298 be32enc_vect(digest, ctx->state, SHA256_DIGEST_LENGTH);
299
300 /* Clear the context state */
301 explicit_bzero(ctx, sizeof(*ctx));
302 }
303
304 /*** SHA-224: *********************************************************/
305 /*
306 * the SHA224 and SHA256 transforms are identical
307 */
308
309 /* SHA-224 initialization. Begins a SHA-224 operation. */
310 void
311 SHA224_Init(SHA224_CTX * ctx)
312 {
313
314 /* Zero bits processed so far */
315 ctx->count = 0;
316
317 /* Magic initialization constants */
318 ctx->state[0] = 0xC1059ED8;
319 ctx->state[1] = 0x367CD507;
320 ctx->state[2] = 0x3070DD17;
321 ctx->state[3] = 0xF70E5939;
322 ctx->state[4] = 0xFFC00B31;
323 ctx->state[5] = 0x68581511;
324 ctx->state[6] = 0x64f98FA7;
325 ctx->state[7] = 0xBEFA4FA4;
326 }
327
328 /* Add bytes into the SHA-224 hash */
329 void
330 SHA224_Update(SHA224_CTX * ctx, const void *in, size_t len)
331 {
332
333 SHA256_Update((SHA256_CTX *)ctx, in, len);
334 }
335
336 /*
337 * SHA-224 finalization. Pads the input data, exports the hash value,
338 * and clears the context state.
339 */
340 void
341 SHA224_Final(unsigned char digest[static SHA224_DIGEST_LENGTH], SHA224_CTX *ctx)
342 {
343
344 /* Add padding */
345 SHA256_Pad((SHA256_CTX *)ctx);
346
347 /* Write the hash */
348 be32enc_vect(digest, ctx->state, SHA224_DIGEST_LENGTH);
349
350 /* Clear the context state */
351 explicit_bzero(ctx, sizeof(*ctx));
352 }
353
354 #ifdef WEAK_REFS
355 /* When building libmd, provide weak references. Note: this is not
356 activated in the context of compiling these sources for internal
357 use in libcrypt.
358 */
359 #undef SHA256_Init
360 __weak_reference(_libmd_SHA256_Init, SHA256_Init);
361 #undef SHA256_Update
362 __weak_reference(_libmd_SHA256_Update, SHA256_Update);
363 #undef SHA256_Final
364 __weak_reference(_libmd_SHA256_Final, SHA256_Final);
365 #undef SHA256_Transform
366 __weak_reference(_libmd_SHA256_Transform, SHA256_Transform);
367
368 #undef SHA224_Init
369 __weak_reference(_libmd_SHA224_Init, SHA224_Init);
370 #undef SHA224_Update
371 __weak_reference(_libmd_SHA224_Update, SHA224_Update);
372 #undef SHA224_Final
373 __weak_reference(_libmd_SHA224_Final, SHA224_Final);
374 #endif
Cache object: ab8b07fc70378b80a92b718c11689e71
|