1 /*-
2 * Copyright (c) 2006 Pawel Jakub Dawidek <pjd@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/module.h>
34 #include <sys/malloc.h>
35 #include <sys/libkern.h>
36 #include <sys/endian.h>
37 #if defined(__amd64__) || (defined(__i386__) && !defined(PC98))
38 #include <machine/cpufunc.h>
39 #include <machine/cputypes.h>
40 #include <machine/md_var.h>
41 #include <machine/specialreg.h>
42 #endif
43
44 #include <opencrypto/cryptodev.h>
45 #include <opencrypto/cryptosoft.h> /* for hmac_ipad_buffer and hmac_opad_buffer */
46 #include <opencrypto/xform.h>
47
48 #include <crypto/via/padlock.h>
49
50 /*
51 * Implementation notes.
52 *
53 * Some VIA CPUs provides SHA1 and SHA256 acceleration.
54 * We implement all HMAC algorithms provided by crypto(9) framework, but we do
55 * the crypto work in software unless this is HMAC/SHA1 or HMAC/SHA256 and
56 * our CPU can accelerate it.
57 *
58 * Additional CPU instructions, which preform SHA1 and SHA256 are one-shot
59 * functions - we have only one chance to give the data, CPU itself will add
60 * the padding and calculate hash automatically.
61 * This means, it is not possible to implement common init(), update(), final()
62 * methods.
63 * The way I've choosen is to keep adding data to the buffer on update()
64 * (reallocating the buffer if necessary) and call XSHA{1,256} instruction on
65 * final().
66 */
67
68 struct padlock_sha_ctx {
69 uint8_t *psc_buf;
70 int psc_offset;
71 int psc_size;
72 };
73 CTASSERT(sizeof(struct padlock_sha_ctx) <= sizeof(union authctx));
74
75 static void padlock_sha_init(struct padlock_sha_ctx *ctx);
76 static int padlock_sha_update(struct padlock_sha_ctx *ctx, uint8_t *buf,
77 uint16_t bufsize);
78 static void padlock_sha1_final(uint8_t *hash, struct padlock_sha_ctx *ctx);
79 static void padlock_sha256_final(uint8_t *hash, struct padlock_sha_ctx *ctx);
80
81 static struct auth_hash padlock_hmac_sha1 = {
82 CRYPTO_SHA1_HMAC, "HMAC-SHA1",
83 20, SHA1_HASH_LEN, SHA1_HMAC_BLOCK_LEN, sizeof(struct padlock_sha_ctx),
84 (void (*)(void *))padlock_sha_init,
85 (int (*)(void *, uint8_t *, uint16_t))padlock_sha_update,
86 (void (*)(uint8_t *, void *))padlock_sha1_final
87 };
88
89 static struct auth_hash padlock_hmac_sha256 = {
90 CRYPTO_SHA2_256_HMAC, "HMAC-SHA2-256",
91 32, SHA2_256_HASH_LEN, SHA2_256_HMAC_BLOCK_LEN, sizeof(struct padlock_sha_ctx),
92 (void (*)(void *))padlock_sha_init,
93 (int (*)(void *, uint8_t *, uint16_t))padlock_sha_update,
94 (void (*)(uint8_t *, void *))padlock_sha256_final
95 };
96
97 MALLOC_DECLARE(M_PADLOCK);
98
99 static __inline void
100 padlock_output_block(uint32_t *src, uint32_t *dst, size_t count)
101 {
102
103 while (count-- > 0)
104 *dst++ = bswap32(*src++);
105 }
106
107 static void
108 padlock_do_sha1(const u_char *in, u_char *out, int count)
109 {
110 u_char buf[128+16]; /* PadLock needs at least 128 bytes buffer. */
111 u_char *result = PADLOCK_ALIGN(buf);
112
113 ((uint32_t *)result)[0] = 0x67452301;
114 ((uint32_t *)result)[1] = 0xEFCDAB89;
115 ((uint32_t *)result)[2] = 0x98BADCFE;
116 ((uint32_t *)result)[3] = 0x10325476;
117 ((uint32_t *)result)[4] = 0xC3D2E1F0;
118
119 #ifdef __GNUCLIKE_ASM
120 __asm __volatile(
121 ".byte 0xf3, 0x0f, 0xa6, 0xc8" /* rep xsha1 */
122 : "+S"(in), "+D"(result)
123 : "c"(count), "a"(0)
124 );
125 #endif
126
127 padlock_output_block((uint32_t *)result, (uint32_t *)out,
128 SHA1_HASH_LEN / sizeof(uint32_t));
129 }
130
131 static void
132 padlock_do_sha256(const char *in, char *out, int count)
133 {
134 char buf[128+16]; /* PadLock needs at least 128 bytes buffer. */
135 char *result = PADLOCK_ALIGN(buf);
136
137 ((uint32_t *)result)[0] = 0x6A09E667;
138 ((uint32_t *)result)[1] = 0xBB67AE85;
139 ((uint32_t *)result)[2] = 0x3C6EF372;
140 ((uint32_t *)result)[3] = 0xA54FF53A;
141 ((uint32_t *)result)[4] = 0x510E527F;
142 ((uint32_t *)result)[5] = 0x9B05688C;
143 ((uint32_t *)result)[6] = 0x1F83D9AB;
144 ((uint32_t *)result)[7] = 0x5BE0CD19;
145
146 #ifdef __GNUCLIKE_ASM
147 __asm __volatile(
148 ".byte 0xf3, 0x0f, 0xa6, 0xd0" /* rep xsha256 */
149 : "+S"(in), "+D"(result)
150 : "c"(count), "a"(0)
151 );
152 #endif
153
154 padlock_output_block((uint32_t *)result, (uint32_t *)out,
155 SHA2_256_HASH_LEN / sizeof(uint32_t));
156 }
157
158 static void
159 padlock_sha_init(struct padlock_sha_ctx *ctx)
160 {
161
162 ctx->psc_buf = NULL;
163 ctx->psc_offset = 0;
164 ctx->psc_size = 0;
165 }
166
167 static int
168 padlock_sha_update(struct padlock_sha_ctx *ctx, uint8_t *buf, uint16_t bufsize)
169 {
170
171 if (ctx->psc_size - ctx->psc_offset < bufsize) {
172 ctx->psc_size = MAX(ctx->psc_size * 2, ctx->psc_size + bufsize);
173 ctx->psc_buf = realloc(ctx->psc_buf, ctx->psc_size, M_PADLOCK,
174 M_NOWAIT);
175 if(ctx->psc_buf == NULL)
176 return (ENOMEM);
177 }
178 bcopy(buf, ctx->psc_buf + ctx->psc_offset, bufsize);
179 ctx->psc_offset += bufsize;
180 return (0);
181 }
182
183 static void
184 padlock_sha_free(struct padlock_sha_ctx *ctx)
185 {
186
187 if (ctx->psc_buf != NULL) {
188 //bzero(ctx->psc_buf, ctx->psc_size);
189 free(ctx->psc_buf, M_PADLOCK);
190 ctx->psc_buf = NULL;
191 ctx->psc_offset = 0;
192 ctx->psc_size = 0;
193 }
194 }
195
196 static void
197 padlock_sha1_final(uint8_t *hash, struct padlock_sha_ctx *ctx)
198 {
199
200 padlock_do_sha1(ctx->psc_buf, hash, ctx->psc_offset);
201 padlock_sha_free(ctx);
202 }
203
204 static void
205 padlock_sha256_final(uint8_t *hash, struct padlock_sha_ctx *ctx)
206 {
207
208 padlock_do_sha256(ctx->psc_buf, hash, ctx->psc_offset);
209 padlock_sha_free(ctx);
210 }
211
212 static void
213 padlock_copy_ctx(struct auth_hash *axf, void *sctx, void *dctx)
214 {
215
216 if ((via_feature_xcrypt & VIA_HAS_SHA) != 0 &&
217 (axf->type == CRYPTO_SHA1_HMAC ||
218 axf->type == CRYPTO_SHA2_256_HMAC)) {
219 struct padlock_sha_ctx *spctx = sctx, *dpctx = dctx;
220
221 dpctx->psc_offset = spctx->psc_offset;
222 dpctx->psc_size = spctx->psc_size;
223 dpctx->psc_buf = malloc(dpctx->psc_size, M_PADLOCK, M_WAITOK);
224 bcopy(spctx->psc_buf, dpctx->psc_buf, dpctx->psc_size);
225 } else {
226 bcopy(sctx, dctx, axf->ctxsize);
227 }
228 }
229
230 static void
231 padlock_free_ctx(struct auth_hash *axf, void *ctx)
232 {
233
234 if ((via_feature_xcrypt & VIA_HAS_SHA) != 0 &&
235 (axf->type == CRYPTO_SHA1_HMAC ||
236 axf->type == CRYPTO_SHA2_256_HMAC)) {
237 padlock_sha_free(ctx);
238 }
239 }
240
241 static void
242 padlock_hash_key_setup(struct padlock_session *ses, caddr_t key, int klen)
243 {
244 struct auth_hash *axf;
245 int i;
246
247 klen /= 8;
248 axf = ses->ses_axf;
249
250 /*
251 * Try to free contexts before using them, because
252 * padlock_hash_key_setup() can be called twice - once from
253 * padlock_newsession() and again from padlock_process().
254 */
255 padlock_free_ctx(axf, ses->ses_ictx);
256 padlock_free_ctx(axf, ses->ses_octx);
257
258 for (i = 0; i < klen; i++)
259 key[i] ^= HMAC_IPAD_VAL;
260
261 axf->Init(ses->ses_ictx);
262 axf->Update(ses->ses_ictx, key, klen);
263 axf->Update(ses->ses_ictx, hmac_ipad_buffer, axf->blocksize - klen);
264
265 for (i = 0; i < klen; i++)
266 key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
267
268 axf->Init(ses->ses_octx);
269 axf->Update(ses->ses_octx, key, klen);
270 axf->Update(ses->ses_octx, hmac_opad_buffer, axf->blocksize - klen);
271
272 for (i = 0; i < klen; i++)
273 key[i] ^= HMAC_OPAD_VAL;
274 }
275
276 /*
277 * Compute keyed-hash authenticator.
278 */
279 static int
280 padlock_authcompute(struct padlock_session *ses, struct cryptodesc *crd,
281 caddr_t buf, int flags)
282 {
283 u_char hash[HASH_MAX_LEN];
284 struct auth_hash *axf;
285 union authctx ctx;
286 int error;
287
288 axf = ses->ses_axf;
289
290 padlock_copy_ctx(axf, ses->ses_ictx, &ctx);
291 error = crypto_apply(flags, buf, crd->crd_skip, crd->crd_len,
292 (int (*)(void *, void *, unsigned int))axf->Update, (caddr_t)&ctx);
293 if (error != 0) {
294 padlock_free_ctx(axf, &ctx);
295 return (error);
296 }
297 axf->Final(hash, &ctx);
298
299 padlock_copy_ctx(axf, ses->ses_octx, &ctx);
300 axf->Update(&ctx, hash, axf->hashsize);
301 axf->Final(hash, &ctx);
302
303 /* Inject the authentication data */
304 crypto_copyback(flags, buf, crd->crd_inject,
305 ses->ses_mlen == 0 ? axf->hashsize : ses->ses_mlen, hash);
306 return (0);
307 }
308
309 int
310 padlock_hash_setup(struct padlock_session *ses, struct cryptoini *macini)
311 {
312
313 ses->ses_mlen = macini->cri_mlen;
314
315 /* Find software structure which describes HMAC algorithm. */
316 switch (macini->cri_alg) {
317 case CRYPTO_NULL_HMAC:
318 ses->ses_axf = &auth_hash_null;
319 break;
320 case CRYPTO_MD5_HMAC:
321 ses->ses_axf = &auth_hash_hmac_md5;
322 break;
323 case CRYPTO_SHA1_HMAC:
324 if ((via_feature_xcrypt & VIA_HAS_SHA) != 0)
325 ses->ses_axf = &padlock_hmac_sha1;
326 else
327 ses->ses_axf = &auth_hash_hmac_sha1;
328 break;
329 case CRYPTO_RIPEMD160_HMAC:
330 ses->ses_axf = &auth_hash_hmac_ripemd_160;
331 break;
332 case CRYPTO_SHA2_256_HMAC:
333 if ((via_feature_xcrypt & VIA_HAS_SHA) != 0)
334 ses->ses_axf = &padlock_hmac_sha256;
335 else
336 ses->ses_axf = &auth_hash_hmac_sha2_256;
337 break;
338 case CRYPTO_SHA2_384_HMAC:
339 ses->ses_axf = &auth_hash_hmac_sha2_384;
340 break;
341 case CRYPTO_SHA2_512_HMAC:
342 ses->ses_axf = &auth_hash_hmac_sha2_512;
343 break;
344 }
345
346 /* Allocate memory for HMAC inner and outer contexts. */
347 ses->ses_ictx = malloc(ses->ses_axf->ctxsize, M_PADLOCK,
348 M_ZERO | M_NOWAIT);
349 ses->ses_octx = malloc(ses->ses_axf->ctxsize, M_PADLOCK,
350 M_ZERO | M_NOWAIT);
351 if (ses->ses_ictx == NULL || ses->ses_octx == NULL)
352 return (ENOMEM);
353
354 /* Setup key if given. */
355 if (macini->cri_key != NULL) {
356 padlock_hash_key_setup(ses, macini->cri_key,
357 macini->cri_klen);
358 }
359 return (0);
360 }
361
362 int
363 padlock_hash_process(struct padlock_session *ses, struct cryptodesc *maccrd,
364 struct cryptop *crp)
365 {
366 int error;
367
368 if ((maccrd->crd_flags & CRD_F_KEY_EXPLICIT) != 0)
369 padlock_hash_key_setup(ses, maccrd->crd_key, maccrd->crd_klen);
370
371 error = padlock_authcompute(ses, maccrd, crp->crp_buf, crp->crp_flags);
372 return (error);
373 }
374
375 void
376 padlock_hash_free(struct padlock_session *ses)
377 {
378
379 if (ses->ses_ictx != NULL) {
380 padlock_free_ctx(ses->ses_axf, ses->ses_ictx);
381 bzero(ses->ses_ictx, ses->ses_axf->ctxsize);
382 free(ses->ses_ictx, M_PADLOCK);
383 ses->ses_ictx = NULL;
384 }
385 if (ses->ses_octx != NULL) {
386 padlock_free_ctx(ses->ses_axf, ses->ses_octx);
387 bzero(ses->ses_octx, ses->ses_axf->ctxsize);
388 free(ses->ses_octx, M_PADLOCK);
389 ses->ses_octx = NULL;
390 }
391 }
Cache object: 1b08d9824d5293454ae0ba1cb2563eb1
|