The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/crypto/vmac.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Modified to interface to the Linux kernel
    3  * Copyright (c) 2009, Intel Corporation.
    4  *
    5  * This program is free software; you can redistribute it and/or modify it
    6  * under the terms and conditions of the GNU General Public License,
    7  * version 2, as published by the Free Software Foundation.
    8  *
    9  * This program is distributed in the hope it will be useful, but WITHOUT
   10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
   11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
   12  * more details.
   13  *
   14  * You should have received a copy of the GNU General Public License along with
   15  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
   16  * Place - Suite 330, Boston, MA 02111-1307 USA.
   17  */
   18 
   19 /* --------------------------------------------------------------------------
   20  * VMAC and VHASH Implementation by Ted Krovetz (tdk@acm.org) and Wei Dai.
   21  * This implementation is herby placed in the public domain.
   22  * The authors offers no warranty. Use at your own risk.
   23  * Please send bug reports to the authors.
   24  * Last modified: 17 APR 08, 1700 PDT
   25  * ----------------------------------------------------------------------- */
   26 
   27 #include <linux/init.h>
   28 #include <linux/types.h>
   29 #include <linux/crypto.h>
   30 #include <linux/module.h>
   31 #include <linux/scatterlist.h>
   32 #include <asm/byteorder.h>
   33 #include <crypto/scatterwalk.h>
   34 #include <crypto/vmac.h>
   35 #include <crypto/internal/hash.h>
   36 
   37 /*
   38  * Constants and masks
   39  */
   40 #define UINT64_C(x) x##ULL
   41 static const u64 p64   = UINT64_C(0xfffffffffffffeff);  /* 2^64 - 257 prime  */
   42 static const u64 m62   = UINT64_C(0x3fffffffffffffff);  /* 62-bit mask       */
   43 static const u64 m63   = UINT64_C(0x7fffffffffffffff);  /* 63-bit mask       */
   44 static const u64 m64   = UINT64_C(0xffffffffffffffff);  /* 64-bit mask       */
   45 static const u64 mpoly = UINT64_C(0x1fffffff1fffffff);  /* Poly key mask     */
   46 
   47 #define pe64_to_cpup le64_to_cpup               /* Prefer little endian */
   48 
   49 #ifdef __LITTLE_ENDIAN
   50 #define INDEX_HIGH 1
   51 #define INDEX_LOW 0
   52 #else
   53 #define INDEX_HIGH 0
   54 #define INDEX_LOW 1
   55 #endif
   56 
   57 /*
   58  * The following routines are used in this implementation. They are
   59  * written via macros to simulate zero-overhead call-by-reference.
   60  *
   61  * MUL64: 64x64->128-bit multiplication
   62  * PMUL64: assumes top bits cleared on inputs
   63  * ADD128: 128x128->128-bit addition
   64  */
   65 
   66 #define ADD128(rh, rl, ih, il)                                          \
   67         do {                                                            \
   68                 u64 _il = (il);                                         \
   69                 (rl) += (_il);                                          \
   70                 if ((rl) < (_il))                                       \
   71                         (rh)++;                                         \
   72                 (rh) += (ih);                                           \
   73         } while (0)
   74 
   75 #define MUL32(i1, i2)   ((u64)(u32)(i1)*(u32)(i2))
   76 
   77 #define PMUL64(rh, rl, i1, i2)  /* Assumes m doesn't overflow */        \
   78         do {                                                            \
   79                 u64 _i1 = (i1), _i2 = (i2);                             \
   80                 u64 m = MUL32(_i1, _i2>>32) + MUL32(_i1>>32, _i2);      \
   81                 rh = MUL32(_i1>>32, _i2>>32);                           \
   82                 rl = MUL32(_i1, _i2);                                   \
   83                 ADD128(rh, rl, (m >> 32), (m << 32));                   \
   84         } while (0)
   85 
   86 #define MUL64(rh, rl, i1, i2)                                           \
   87         do {                                                            \
   88                 u64 _i1 = (i1), _i2 = (i2);                             \
   89                 u64 m1 = MUL32(_i1, _i2>>32);                           \
   90                 u64 m2 = MUL32(_i1>>32, _i2);                           \
   91                 rh = MUL32(_i1>>32, _i2>>32);                           \
   92                 rl = MUL32(_i1, _i2);                                   \
   93                 ADD128(rh, rl, (m1 >> 32), (m1 << 32));                 \
   94                 ADD128(rh, rl, (m2 >> 32), (m2 << 32));                 \
   95         } while (0)
   96 
   97 /*
   98  * For highest performance the L1 NH and L2 polynomial hashes should be
   99  * carefully implemented to take advantage of one's target architecture.
  100  * Here these two hash functions are defined multiple time; once for
  101  * 64-bit architectures, once for 32-bit SSE2 architectures, and once
  102  * for the rest (32-bit) architectures.
  103  * For each, nh_16 *must* be defined (works on multiples of 16 bytes).
  104  * Optionally, nh_vmac_nhbytes can be defined (for multiples of
  105  * VMAC_NHBYTES), and nh_16_2 and nh_vmac_nhbytes_2 (versions that do two
  106  * NH computations at once).
  107  */
  108 
  109 #ifdef CONFIG_64BIT
  110 
  111 #define nh_16(mp, kp, nw, rh, rl)                                       \
  112         do {                                                            \
  113                 int i; u64 th, tl;                                      \
  114                 rh = rl = 0;                                            \
  115                 for (i = 0; i < nw; i += 2) {                           \
  116                         MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i],     \
  117                                 pe64_to_cpup((mp)+i+1)+(kp)[i+1]);      \
  118                         ADD128(rh, rl, th, tl);                         \
  119                 }                                                       \
  120         } while (0)
  121 
  122 #define nh_16_2(mp, kp, nw, rh, rl, rh1, rl1)                           \
  123         do {                                                            \
  124                 int i; u64 th, tl;                                      \
  125                 rh1 = rl1 = rh = rl = 0;                                \
  126                 for (i = 0; i < nw; i += 2) {                           \
  127                         MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i],     \
  128                                 pe64_to_cpup((mp)+i+1)+(kp)[i+1]);      \
  129                         ADD128(rh, rl, th, tl);                         \
  130                         MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i+2],   \
  131                                 pe64_to_cpup((mp)+i+1)+(kp)[i+3]);      \
  132                         ADD128(rh1, rl1, th, tl);                       \
  133                 }                                                       \
  134         } while (0)
  135 
  136 #if (VMAC_NHBYTES >= 64) /* These versions do 64-bytes of message at a time */
  137 #define nh_vmac_nhbytes(mp, kp, nw, rh, rl)                             \
  138         do {                                                            \
  139                 int i; u64 th, tl;                                      \
  140                 rh = rl = 0;                                            \
  141                 for (i = 0; i < nw; i += 8) {                           \
  142                         MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i],     \
  143                                 pe64_to_cpup((mp)+i+1)+(kp)[i+1]);      \
  144                         ADD128(rh, rl, th, tl);                         \
  145                         MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+2], \
  146                                 pe64_to_cpup((mp)+i+3)+(kp)[i+3]);      \
  147                         ADD128(rh, rl, th, tl);                         \
  148                         MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+4], \
  149                                 pe64_to_cpup((mp)+i+5)+(kp)[i+5]);      \
  150                         ADD128(rh, rl, th, tl);                         \
  151                         MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+6], \
  152                                 pe64_to_cpup((mp)+i+7)+(kp)[i+7]);      \
  153                         ADD128(rh, rl, th, tl);                         \
  154                 }                                                       \
  155         } while (0)
  156 
  157 #define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh1, rl1)                 \
  158         do {                                                            \
  159                 int i; u64 th, tl;                                      \
  160                 rh1 = rl1 = rh = rl = 0;                                \
  161                 for (i = 0; i < nw; i += 8) {                           \
  162                         MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i],     \
  163                                 pe64_to_cpup((mp)+i+1)+(kp)[i+1]);      \
  164                         ADD128(rh, rl, th, tl);                         \
  165                         MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i+2],   \
  166                                 pe64_to_cpup((mp)+i+1)+(kp)[i+3]);      \
  167                         ADD128(rh1, rl1, th, tl);                       \
  168                         MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+2], \
  169                                 pe64_to_cpup((mp)+i+3)+(kp)[i+3]);      \
  170                         ADD128(rh, rl, th, tl);                         \
  171                         MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+4], \
  172                                 pe64_to_cpup((mp)+i+3)+(kp)[i+5]);      \
  173                         ADD128(rh1, rl1, th, tl);                       \
  174                         MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+4], \
  175                                 pe64_to_cpup((mp)+i+5)+(kp)[i+5]);      \
  176                         ADD128(rh, rl, th, tl);                         \
  177                         MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+6], \
  178                                 pe64_to_cpup((mp)+i+5)+(kp)[i+7]);      \
  179                         ADD128(rh1, rl1, th, tl);                       \
  180                         MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+6], \
  181                                 pe64_to_cpup((mp)+i+7)+(kp)[i+7]);      \
  182                         ADD128(rh, rl, th, tl);                         \
  183                         MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+8], \
  184                                 pe64_to_cpup((mp)+i+7)+(kp)[i+9]);      \
  185                         ADD128(rh1, rl1, th, tl);                       \
  186                 }                                                       \
  187         } while (0)
  188 #endif
  189 
  190 #define poly_step(ah, al, kh, kl, mh, ml)                               \
  191         do {                                                            \
  192                 u64 t1h, t1l, t2h, t2l, t3h, t3l, z = 0;                \
  193                 /* compute ab*cd, put bd into result registers */       \
  194                 PMUL64(t3h, t3l, al, kh);                               \
  195                 PMUL64(t2h, t2l, ah, kl);                               \
  196                 PMUL64(t1h, t1l, ah, 2*kh);                             \
  197                 PMUL64(ah, al, al, kl);                                 \
  198                 /* add 2 * ac to result */                              \
  199                 ADD128(ah, al, t1h, t1l);                               \
  200                 /* add together ad + bc */                              \
  201                 ADD128(t2h, t2l, t3h, t3l);                             \
  202                 /* now (ah,al), (t2l,2*t2h) need summing */             \
  203                 /* first add the high registers, carrying into t2h */   \
  204                 ADD128(t2h, ah, z, t2l);                                \
  205                 /* double t2h and add top bit of ah */                  \
  206                 t2h = 2 * t2h + (ah >> 63);                             \
  207                 ah &= m63;                                              \
  208                 /* now add the low registers */                         \
  209                 ADD128(ah, al, mh, ml);                                 \
  210                 ADD128(ah, al, z, t2h);                                 \
  211         } while (0)
  212 
  213 #else /* ! CONFIG_64BIT */
  214 
  215 #ifndef nh_16
  216 #define nh_16(mp, kp, nw, rh, rl)                                       \
  217         do {                                                            \
  218                 u64 t1, t2, m1, m2, t;                                  \
  219                 int i;                                                  \
  220                 rh = rl = t = 0;                                        \
  221                 for (i = 0; i < nw; i += 2)  {                          \
  222                         t1 = pe64_to_cpup(mp+i) + kp[i];                \
  223                         t2 = pe64_to_cpup(mp+i+1) + kp[i+1];            \
  224                         m2 = MUL32(t1 >> 32, t2);                       \
  225                         m1 = MUL32(t1, t2 >> 32);                       \
  226                         ADD128(rh, rl, MUL32(t1 >> 32, t2 >> 32),       \
  227                                 MUL32(t1, t2));                         \
  228                         rh += (u64)(u32)(m1 >> 32)                      \
  229                                 + (u32)(m2 >> 32);                      \
  230                         t += (u64)(u32)m1 + (u32)m2;                    \
  231                 }                                                       \
  232                 ADD128(rh, rl, (t >> 32), (t << 32));                   \
  233         } while (0)
  234 #endif
  235 
  236 static void poly_step_func(u64 *ahi, u64 *alo,
  237                         const u64 *kh, const u64 *kl,
  238                         const u64 *mh, const u64 *ml)
  239 {
  240 #define a0 (*(((u32 *)alo)+INDEX_LOW))
  241 #define a1 (*(((u32 *)alo)+INDEX_HIGH))
  242 #define a2 (*(((u32 *)ahi)+INDEX_LOW))
  243 #define a3 (*(((u32 *)ahi)+INDEX_HIGH))
  244 #define k0 (*(((u32 *)kl)+INDEX_LOW))
  245 #define k1 (*(((u32 *)kl)+INDEX_HIGH))
  246 #define k2 (*(((u32 *)kh)+INDEX_LOW))
  247 #define k3 (*(((u32 *)kh)+INDEX_HIGH))
  248 
  249         u64 p, q, t;
  250         u32 t2;
  251 
  252         p = MUL32(a3, k3);
  253         p += p;
  254         p += *(u64 *)mh;
  255         p += MUL32(a0, k2);
  256         p += MUL32(a1, k1);
  257         p += MUL32(a2, k0);
  258         t = (u32)(p);
  259         p >>= 32;
  260         p += MUL32(a0, k3);
  261         p += MUL32(a1, k2);
  262         p += MUL32(a2, k1);
  263         p += MUL32(a3, k0);
  264         t |= ((u64)((u32)p & 0x7fffffff)) << 32;
  265         p >>= 31;
  266         p += (u64)(((u32 *)ml)[INDEX_LOW]);
  267         p += MUL32(a0, k0);
  268         q =  MUL32(a1, k3);
  269         q += MUL32(a2, k2);
  270         q += MUL32(a3, k1);
  271         q += q;
  272         p += q;
  273         t2 = (u32)(p);
  274         p >>= 32;
  275         p += (u64)(((u32 *)ml)[INDEX_HIGH]);
  276         p += MUL32(a0, k1);
  277         p += MUL32(a1, k0);
  278         q =  MUL32(a2, k3);
  279         q += MUL32(a3, k2);
  280         q += q;
  281         p += q;
  282         *(u64 *)(alo) = (p << 32) | t2;
  283         p >>= 32;
  284         *(u64 *)(ahi) = p + t;
  285 
  286 #undef a0
  287 #undef a1
  288 #undef a2
  289 #undef a3
  290 #undef k0
  291 #undef k1
  292 #undef k2
  293 #undef k3
  294 }
  295 
  296 #define poly_step(ah, al, kh, kl, mh, ml)                               \
  297         poly_step_func(&(ah), &(al), &(kh), &(kl), &(mh), &(ml))
  298 
  299 #endif  /* end of specialized NH and poly definitions */
  300 
  301 /* At least nh_16 is defined. Defined others as needed here */
  302 #ifndef nh_16_2
  303 #define nh_16_2(mp, kp, nw, rh, rl, rh2, rl2)                           \
  304         do {                                                            \
  305                 nh_16(mp, kp, nw, rh, rl);                              \
  306                 nh_16(mp, ((kp)+2), nw, rh2, rl2);                      \
  307         } while (0)
  308 #endif
  309 #ifndef nh_vmac_nhbytes
  310 #define nh_vmac_nhbytes(mp, kp, nw, rh, rl)                             \
  311         nh_16(mp, kp, nw, rh, rl)
  312 #endif
  313 #ifndef nh_vmac_nhbytes_2
  314 #define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh2, rl2)                 \
  315         do {                                                            \
  316                 nh_vmac_nhbytes(mp, kp, nw, rh, rl);                    \
  317                 nh_vmac_nhbytes(mp, ((kp)+2), nw, rh2, rl2);            \
  318         } while (0)
  319 #endif
  320 
  321 static void vhash_abort(struct vmac_ctx *ctx)
  322 {
  323         ctx->polytmp[0] = ctx->polykey[0] ;
  324         ctx->polytmp[1] = ctx->polykey[1] ;
  325         ctx->first_block_processed = 0;
  326 }
  327 
  328 static u64 l3hash(u64 p1, u64 p2, u64 k1, u64 k2, u64 len)
  329 {
  330         u64 rh, rl, t, z = 0;
  331 
  332         /* fully reduce (p1,p2)+(len,0) mod p127 */
  333         t = p1 >> 63;
  334         p1 &= m63;
  335         ADD128(p1, p2, len, t);
  336         /* At this point, (p1,p2) is at most 2^127+(len<<64) */
  337         t = (p1 > m63) + ((p1 == m63) && (p2 == m64));
  338         ADD128(p1, p2, z, t);
  339         p1 &= m63;
  340 
  341         /* compute (p1,p2)/(2^64-2^32) and (p1,p2)%(2^64-2^32) */
  342         t = p1 + (p2 >> 32);
  343         t += (t >> 32);
  344         t += (u32)t > 0xfffffffeu;
  345         p1 += (t >> 32);
  346         p2 += (p1 << 32);
  347 
  348         /* compute (p1+k1)%p64 and (p2+k2)%p64 */
  349         p1 += k1;
  350         p1 += (0 - (p1 < k1)) & 257;
  351         p2 += k2;
  352         p2 += (0 - (p2 < k2)) & 257;
  353 
  354         /* compute (p1+k1)*(p2+k2)%p64 */
  355         MUL64(rh, rl, p1, p2);
  356         t = rh >> 56;
  357         ADD128(t, rl, z, rh);
  358         rh <<= 8;
  359         ADD128(t, rl, z, rh);
  360         t += t << 8;
  361         rl += t;
  362         rl += (0 - (rl < t)) & 257;
  363         rl += (0 - (rl > p64-1)) & 257;
  364         return rl;
  365 }
  366 
  367 static void vhash_update(const unsigned char *m,
  368                         unsigned int mbytes, /* Pos multiple of VMAC_NHBYTES */
  369                         struct vmac_ctx *ctx)
  370 {
  371         u64 rh, rl, *mptr;
  372         const u64 *kptr = (u64 *)ctx->nhkey;
  373         int i;
  374         u64 ch, cl;
  375         u64 pkh = ctx->polykey[0];
  376         u64 pkl = ctx->polykey[1];
  377 
  378         if (!mbytes)
  379                 return;
  380 
  381         BUG_ON(mbytes % VMAC_NHBYTES);
  382 
  383         mptr = (u64 *)m;
  384         i = mbytes / VMAC_NHBYTES;  /* Must be non-zero */
  385 
  386         ch = ctx->polytmp[0];
  387         cl = ctx->polytmp[1];
  388 
  389         if (!ctx->first_block_processed) {
  390                 ctx->first_block_processed = 1;
  391                 nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl);
  392                 rh &= m62;
  393                 ADD128(ch, cl, rh, rl);
  394                 mptr += (VMAC_NHBYTES/sizeof(u64));
  395                 i--;
  396         }
  397 
  398         while (i--) {
  399                 nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl);
  400                 rh &= m62;
  401                 poly_step(ch, cl, pkh, pkl, rh, rl);
  402                 mptr += (VMAC_NHBYTES/sizeof(u64));
  403         }
  404 
  405         ctx->polytmp[0] = ch;
  406         ctx->polytmp[1] = cl;
  407 }
  408 
  409 static u64 vhash(unsigned char m[], unsigned int mbytes,
  410                         u64 *tagl, struct vmac_ctx *ctx)
  411 {
  412         u64 rh, rl, *mptr;
  413         const u64 *kptr = (u64 *)ctx->nhkey;
  414         int i, remaining;
  415         u64 ch, cl;
  416         u64 pkh = ctx->polykey[0];
  417         u64 pkl = ctx->polykey[1];
  418 
  419         mptr = (u64 *)m;
  420         i = mbytes / VMAC_NHBYTES;
  421         remaining = mbytes % VMAC_NHBYTES;
  422 
  423         if (ctx->first_block_processed) {
  424                 ch = ctx->polytmp[0];
  425                 cl = ctx->polytmp[1];
  426         } else if (i) {
  427                 nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, ch, cl);
  428                 ch &= m62;
  429                 ADD128(ch, cl, pkh, pkl);
  430                 mptr += (VMAC_NHBYTES/sizeof(u64));
  431                 i--;
  432         } else if (remaining) {
  433                 nh_16(mptr, kptr, 2*((remaining+15)/16), ch, cl);
  434                 ch &= m62;
  435                 ADD128(ch, cl, pkh, pkl);
  436                 mptr += (VMAC_NHBYTES/sizeof(u64));
  437                 goto do_l3;
  438         } else {/* Empty String */
  439                 ch = pkh; cl = pkl;
  440                 goto do_l3;
  441         }
  442 
  443         while (i--) {
  444                 nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl);
  445                 rh &= m62;
  446                 poly_step(ch, cl, pkh, pkl, rh, rl);
  447                 mptr += (VMAC_NHBYTES/sizeof(u64));
  448         }
  449         if (remaining) {
  450                 nh_16(mptr, kptr, 2*((remaining+15)/16), rh, rl);
  451                 rh &= m62;
  452                 poly_step(ch, cl, pkh, pkl, rh, rl);
  453         }
  454 
  455 do_l3:
  456         vhash_abort(ctx);
  457         remaining *= 8;
  458         return l3hash(ch, cl, ctx->l3key[0], ctx->l3key[1], remaining);
  459 }
  460 
  461 static u64 vmac(unsigned char m[], unsigned int mbytes,
  462                         const unsigned char n[16], u64 *tagl,
  463                         struct vmac_ctx_t *ctx)
  464 {
  465         u64 *in_n, *out_p;
  466         u64 p, h;
  467         int i;
  468 
  469         in_n = ctx->__vmac_ctx.cached_nonce;
  470         out_p = ctx->__vmac_ctx.cached_aes;
  471 
  472         i = n[15] & 1;
  473         if ((*(u64 *)(n+8) != in_n[1]) || (*(u64 *)(n) != in_n[0])) {
  474                 in_n[0] = *(u64 *)(n);
  475                 in_n[1] = *(u64 *)(n+8);
  476                 ((unsigned char *)in_n)[15] &= 0xFE;
  477                 crypto_cipher_encrypt_one(ctx->child,
  478                         (unsigned char *)out_p, (unsigned char *)in_n);
  479 
  480                 ((unsigned char *)in_n)[15] |= (unsigned char)(1-i);
  481         }
  482         p = be64_to_cpup(out_p + i);
  483         h = vhash(m, mbytes, (u64 *)0, &ctx->__vmac_ctx);
  484         return le64_to_cpu(p + h);
  485 }
  486 
  487 static int vmac_set_key(unsigned char user_key[], struct vmac_ctx_t *ctx)
  488 {
  489         u64 in[2] = {0}, out[2];
  490         unsigned i;
  491         int err = 0;
  492 
  493         err = crypto_cipher_setkey(ctx->child, user_key, VMAC_KEY_LEN);
  494         if (err)
  495                 return err;
  496 
  497         /* Fill nh key */
  498         ((unsigned char *)in)[0] = 0x80;
  499         for (i = 0; i < sizeof(ctx->__vmac_ctx.nhkey)/8; i += 2) {
  500                 crypto_cipher_encrypt_one(ctx->child,
  501                         (unsigned char *)out, (unsigned char *)in);
  502                 ctx->__vmac_ctx.nhkey[i] = be64_to_cpup(out);
  503                 ctx->__vmac_ctx.nhkey[i+1] = be64_to_cpup(out+1);
  504                 ((unsigned char *)in)[15] += 1;
  505         }
  506 
  507         /* Fill poly key */
  508         ((unsigned char *)in)[0] = 0xC0;
  509         in[1] = 0;
  510         for (i = 0; i < sizeof(ctx->__vmac_ctx.polykey)/8; i += 2) {
  511                 crypto_cipher_encrypt_one(ctx->child,
  512                         (unsigned char *)out, (unsigned char *)in);
  513                 ctx->__vmac_ctx.polytmp[i] =
  514                         ctx->__vmac_ctx.polykey[i] =
  515                                 be64_to_cpup(out) & mpoly;
  516                 ctx->__vmac_ctx.polytmp[i+1] =
  517                         ctx->__vmac_ctx.polykey[i+1] =
  518                                 be64_to_cpup(out+1) & mpoly;
  519                 ((unsigned char *)in)[15] += 1;
  520         }
  521 
  522         /* Fill ip key */
  523         ((unsigned char *)in)[0] = 0xE0;
  524         in[1] = 0;
  525         for (i = 0; i < sizeof(ctx->__vmac_ctx.l3key)/8; i += 2) {
  526                 do {
  527                         crypto_cipher_encrypt_one(ctx->child,
  528                                 (unsigned char *)out, (unsigned char *)in);
  529                         ctx->__vmac_ctx.l3key[i] = be64_to_cpup(out);
  530                         ctx->__vmac_ctx.l3key[i+1] = be64_to_cpup(out+1);
  531                         ((unsigned char *)in)[15] += 1;
  532                 } while (ctx->__vmac_ctx.l3key[i] >= p64
  533                         || ctx->__vmac_ctx.l3key[i+1] >= p64);
  534         }
  535 
  536         /* Invalidate nonce/aes cache and reset other elements */
  537         ctx->__vmac_ctx.cached_nonce[0] = (u64)-1; /* Ensure illegal nonce */
  538         ctx->__vmac_ctx.cached_nonce[1] = (u64)0;  /* Ensure illegal nonce */
  539         ctx->__vmac_ctx.first_block_processed = 0;
  540 
  541         return err;
  542 }
  543 
  544 static int vmac_setkey(struct crypto_shash *parent,
  545                 const u8 *key, unsigned int keylen)
  546 {
  547         struct vmac_ctx_t *ctx = crypto_shash_ctx(parent);
  548 
  549         if (keylen != VMAC_KEY_LEN) {
  550                 crypto_shash_set_flags(parent, CRYPTO_TFM_RES_BAD_KEY_LEN);
  551                 return -EINVAL;
  552         }
  553 
  554         return vmac_set_key((u8 *)key, ctx);
  555 }
  556 
  557 static int vmac_init(struct shash_desc *pdesc)
  558 {
  559         return 0;
  560 }
  561 
  562 static int vmac_update(struct shash_desc *pdesc, const u8 *p,
  563                 unsigned int len)
  564 {
  565         struct crypto_shash *parent = pdesc->tfm;
  566         struct vmac_ctx_t *ctx = crypto_shash_ctx(parent);
  567         int expand;
  568         int min;
  569 
  570         expand = VMAC_NHBYTES - ctx->partial_size > 0 ?
  571                         VMAC_NHBYTES - ctx->partial_size : 0;
  572 
  573         min = len < expand ? len : expand;
  574 
  575         memcpy(ctx->partial + ctx->partial_size, p, min);
  576         ctx->partial_size += min;
  577 
  578         if (len < expand)
  579                 return 0;
  580 
  581         vhash_update(ctx->partial, VMAC_NHBYTES, &ctx->__vmac_ctx);
  582         ctx->partial_size = 0;
  583 
  584         len -= expand;
  585         p += expand;
  586 
  587         if (len % VMAC_NHBYTES) {
  588                 memcpy(ctx->partial, p + len - (len % VMAC_NHBYTES),
  589                         len % VMAC_NHBYTES);
  590                 ctx->partial_size = len % VMAC_NHBYTES;
  591         }
  592 
  593         vhash_update(p, len - len % VMAC_NHBYTES, &ctx->__vmac_ctx);
  594 
  595         return 0;
  596 }
  597 
  598 static int vmac_final(struct shash_desc *pdesc, u8 *out)
  599 {
  600         struct crypto_shash *parent = pdesc->tfm;
  601         struct vmac_ctx_t *ctx = crypto_shash_ctx(parent);
  602         vmac_t mac;
  603         u8 nonce[16] = {};
  604 
  605         /* vmac() ends up accessing outside the array bounds that
  606          * we specify.  In appears to access up to the next 2-word
  607          * boundary.  We'll just be uber cautious and zero the
  608          * unwritten bytes in the buffer.
  609          */
  610         if (ctx->partial_size) {
  611                 memset(ctx->partial + ctx->partial_size, 0,
  612                         VMAC_NHBYTES - ctx->partial_size);
  613         }
  614         mac = vmac(ctx->partial, ctx->partial_size, nonce, NULL, ctx);
  615         memcpy(out, &mac, sizeof(vmac_t));
  616         memset(&mac, 0, sizeof(vmac_t));
  617         memset(&ctx->__vmac_ctx, 0, sizeof(struct vmac_ctx));
  618         ctx->partial_size = 0;
  619         return 0;
  620 }
  621 
  622 static int vmac_init_tfm(struct crypto_tfm *tfm)
  623 {
  624         struct crypto_cipher *cipher;
  625         struct crypto_instance *inst = (void *)tfm->__crt_alg;
  626         struct crypto_spawn *spawn = crypto_instance_ctx(inst);
  627         struct vmac_ctx_t *ctx = crypto_tfm_ctx(tfm);
  628 
  629         cipher = crypto_spawn_cipher(spawn);
  630         if (IS_ERR(cipher))
  631                 return PTR_ERR(cipher);
  632 
  633         ctx->child = cipher;
  634         return 0;
  635 }
  636 
  637 static void vmac_exit_tfm(struct crypto_tfm *tfm)
  638 {
  639         struct vmac_ctx_t *ctx = crypto_tfm_ctx(tfm);
  640         crypto_free_cipher(ctx->child);
  641 }
  642 
  643 static int vmac_create(struct crypto_template *tmpl, struct rtattr **tb)
  644 {
  645         struct shash_instance *inst;
  646         struct crypto_alg *alg;
  647         int err;
  648 
  649         err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SHASH);
  650         if (err)
  651                 return err;
  652 
  653         alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_CIPHER,
  654                         CRYPTO_ALG_TYPE_MASK);
  655         if (IS_ERR(alg))
  656                 return PTR_ERR(alg);
  657 
  658         inst = shash_alloc_instance("vmac", alg);
  659         err = PTR_ERR(inst);
  660         if (IS_ERR(inst))
  661                 goto out_put_alg;
  662 
  663         err = crypto_init_spawn(shash_instance_ctx(inst), alg,
  664                         shash_crypto_instance(inst),
  665                         CRYPTO_ALG_TYPE_MASK);
  666         if (err)
  667                 goto out_free_inst;
  668 
  669         inst->alg.base.cra_priority = alg->cra_priority;
  670         inst->alg.base.cra_blocksize = alg->cra_blocksize;
  671         inst->alg.base.cra_alignmask = alg->cra_alignmask;
  672 
  673         inst->alg.digestsize = sizeof(vmac_t);
  674         inst->alg.base.cra_ctxsize = sizeof(struct vmac_ctx_t);
  675         inst->alg.base.cra_init = vmac_init_tfm;
  676         inst->alg.base.cra_exit = vmac_exit_tfm;
  677 
  678         inst->alg.init = vmac_init;
  679         inst->alg.update = vmac_update;
  680         inst->alg.final = vmac_final;
  681         inst->alg.setkey = vmac_setkey;
  682 
  683         err = shash_register_instance(tmpl, inst);
  684         if (err) {
  685 out_free_inst:
  686                 shash_free_instance(shash_crypto_instance(inst));
  687         }
  688 
  689 out_put_alg:
  690         crypto_mod_put(alg);
  691         return err;
  692 }
  693 
  694 static struct crypto_template vmac_tmpl = {
  695         .name = "vmac",
  696         .create = vmac_create,
  697         .free = shash_free_instance,
  698         .module = THIS_MODULE,
  699 };
  700 
  701 static int __init vmac_module_init(void)
  702 {
  703         return crypto_register_template(&vmac_tmpl);
  704 }
  705 
  706 static void __exit vmac_module_exit(void)
  707 {
  708         crypto_unregister_template(&vmac_tmpl);
  709 }
  710 
  711 module_init(vmac_module_init);
  712 module_exit(vmac_module_exit);
  713 
  714 MODULE_LICENSE("GPL");
  715 MODULE_DESCRIPTION("VMAC hash algorithm");

Cache object: 4d3a01031883b5e0e11703364e18bdbb


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.