The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/acpica/acpi.c

Version: -  FREEBSD  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-2  -  FREEBSD-11-1  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-4  -  FREEBSD-10-3  -  FREEBSD-10-2  -  FREEBSD-10-1  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-3  -  FREEBSD-9-2  -  FREEBSD-9-1  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-4  -  FREEBSD-8-3  -  FREEBSD-8-2  -  FREEBSD-8-1  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-4  -  FREEBSD-7-3  -  FREEBSD-7-2  -  FREEBSD-7-1  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-4  -  FREEBSD-6-3  -  FREEBSD-6-2  -  FREEBSD-6-1  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-5  -  FREEBSD-5-4  -  FREEBSD-5-3  -  FREEBSD-5-2  -  FREEBSD-5-1  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  linux-2.6  -  linux-2.4.22  -  MK83  -  MK84  -  PLAN9  -  DFBSD  -  NETBSD  -  NETBSD5  -  NETBSD4  -  NETBSD3  -  NETBSD20  -  OPENBSD  -  xnu-517  -  xnu-792  -  xnu-792.6.70  -  xnu-1228  -  xnu-1456.1.26  -  xnu-1699.24.8  -  xnu-2050.18.24  -  OPENSOLARIS  -  minix-3-1-1 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2000 Takanori Watanabe <takawata@jp.kfreebsd.org>
    3  * Copyright (c) 2000 Mitsuru IWASAKI <iwasaki@jp.kfreebsd.org>
    4  * Copyright (c) 2000, 2001 Michael Smith
    5  * Copyright (c) 2000 BSDi
    6  * All rights reserved.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  *
   29  * $FreeBSD: src/sys/dev/acpica/acpi.c,v 1.243.2.4.4.1 2009/04/15 03:14:26 kensmith Exp $
   30  */
   31 
   32 #include "opt_acpi.h"
   33 #include <sys/param.h>
   34 #include <sys/kernel.h>
   35 #include <sys/proc.h>
   36 #include <sys/fcntl.h>
   37 #include <sys/malloc.h>
   38 #include <sys/module.h>
   39 #include <sys/bus.h>
   40 #include <sys/conf.h>
   41 #include <sys/reboot.h>
   42 #include <sys/sysctl.h>
   43 #include <sys/ctype.h>
   44 #include <sys/linker.h>
   45 #include <sys/power.h>
   46 #include <sys/sbuf.h>
   47 #include <sys/device.h>
   48 #include <sys/spinlock.h>
   49 #include <sys/spinlock2.h>
   50 
   51 #include <sys/rman.h>
   52 #include <bus/isa/isavar.h>
   53 #include <bus/isa/pnpvar.h>
   54 
   55 #include "acpi.h"
   56 #include <dev/acpica/acpivar.h>
   57 #include <dev/acpica/acpiio.h>
   58 #include "achware.h"
   59 #include "acnamesp.h"
   60 #include "acglobal.h"
   61 
   62 #include "pci_if.h"
   63 #include <bus/pci/pci_cfgreg.h>
   64 #include <bus/pci/pcivar.h>
   65 #include <bus/pci/pci_private.h>
   66 
   67 #include <vm/vm_param.h>
   68 
   69 MALLOC_DEFINE(M_ACPIDEV, "acpidev", "ACPI devices");
   70 
   71 #define GIANT_REQUIRED
   72 #define mtx_lock(a)
   73 #define mtx_unlock(a)
   74 /* Hooks for the ACPI CA debugging infrastructure */
   75 #define _COMPONENT      ACPI_BUS
   76 ACPI_MODULE_NAME("ACPI")
   77 
   78 static d_open_t         acpiopen;
   79 static d_close_t        acpiclose;
   80 static d_ioctl_t        acpiioctl;
   81 
   82 static struct dev_ops acpi_ops = {
   83         { "acpi", 0, 0 },
   84         .d_open = acpiopen,
   85         .d_close = acpiclose,
   86         .d_ioctl = acpiioctl
   87 };
   88 
   89 /* Global mutex for locking access to the ACPI subsystem. */
   90 struct lock acpi_lock;
   91 /* Bitmap of device quirks. */
   92 int             acpi_quirks;
   93 
   94 static int      acpi_modevent(struct module *mod, int event, void *junk);
   95 static void     acpi_identify(driver_t *driver, device_t parent);
   96 static int      acpi_probe(device_t dev);
   97 static int      acpi_attach(device_t dev);
   98 static int      acpi_suspend(device_t dev);
   99 static int      acpi_resume(device_t dev);
  100 static int      acpi_shutdown(device_t dev);
  101 static device_t acpi_add_child(device_t bus, device_t parent, int order, const char *name,
  102                         int unit);
  103 static int      acpi_print_child(device_t bus, device_t child);
  104 static void     acpi_probe_nomatch(device_t bus, device_t child);
  105 static void     acpi_driver_added(device_t dev, driver_t *driver);
  106 static int      acpi_read_ivar(device_t dev, device_t child, int index,
  107                         uintptr_t *result);
  108 static int      acpi_write_ivar(device_t dev, device_t child, int index,
  109                         uintptr_t value);
  110 static struct resource_list *acpi_get_rlist(device_t dev, device_t child);
  111 static int      acpi_sysres_alloc(device_t dev);
  112 static struct resource *acpi_alloc_resource(device_t bus, device_t child,
  113                         int type, int *rid, u_long start, u_long end,
  114                         u_long count, u_int flags, int cpuid);
  115 static int      acpi_release_resource(device_t bus, device_t child, int type,
  116                         int rid, struct resource *r);
  117 static void     acpi_delete_resource(device_t bus, device_t child, int type,
  118                     int rid);
  119 static uint32_t acpi_isa_get_logicalid(device_t dev);
  120 static int      acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count);
  121 static char     *acpi_device_id_probe(device_t bus, device_t dev, char **ids);
  122 static ACPI_STATUS acpi_device_eval_obj(device_t bus, device_t dev,
  123                     ACPI_STRING pathname, ACPI_OBJECT_LIST *parameters,
  124                     ACPI_BUFFER *ret);
  125 static int      acpi_device_pwr_for_sleep(device_t bus, device_t dev,
  126                     int *dstate);
  127 static ACPI_STATUS acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level,
  128                     void *context, void **retval);
  129 static ACPI_STATUS acpi_device_scan_children(device_t bus, device_t dev,
  130                     int max_depth, acpi_scan_cb_t user_fn, void *arg);
  131 static int      acpi_set_powerstate_method(device_t bus, device_t child,
  132                     int state);
  133 static int      acpi_isa_pnp_probe(device_t bus, device_t child,
  134                     struct isa_pnp_id *ids);
  135 static void     acpi_probe_children(device_t bus);
  136 static void     acpi_probe_order(ACPI_HANDLE handle, int *order);
  137 static ACPI_STATUS acpi_probe_child(ACPI_HANDLE handle, UINT32 level,
  138                     void *context, void **status);
  139 static ACPI_STATUS acpi_EnterSleepState(struct acpi_softc *sc, int state);
  140 static void     acpi_shutdown_final(void *arg, int howto);
  141 static void     acpi_enable_fixed_events(struct acpi_softc *sc);
  142 static int      acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate);
  143 static int      acpi_wake_run_prep(ACPI_HANDLE handle, int sstate);
  144 static int      acpi_wake_prep_walk(int sstate);
  145 static int      acpi_wake_sysctl_walk(device_t dev);
  146 #ifdef notyet
  147 static int      acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS);
  148 #endif
  149 static void     acpi_system_eventhandler_sleep(void *arg, int state);
  150 static void     acpi_system_eventhandler_wakeup(void *arg, int state);
  151 static int      acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS);
  152 static int      acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS);
  153 static int      acpi_pm_func(u_long cmd, void *arg, ...);
  154 static int      acpi_child_location_str_method(device_t acdev, device_t child,
  155                                                char *buf, size_t buflen);
  156 static int      acpi_child_pnpinfo_str_method(device_t acdev, device_t child,
  157                                               char *buf, size_t buflen);
  158 static void     acpi_enable_pcie(void);
  159 
  160 static device_method_t acpi_methods[] = {
  161     /* Device interface */
  162     DEVMETHOD(device_identify,          acpi_identify),
  163     DEVMETHOD(device_probe,             acpi_probe),
  164     DEVMETHOD(device_attach,            acpi_attach),
  165     DEVMETHOD(device_shutdown,          acpi_shutdown),
  166     DEVMETHOD(device_detach,            bus_generic_detach),
  167     DEVMETHOD(device_suspend,           acpi_suspend),
  168     DEVMETHOD(device_resume,            acpi_resume),
  169 
  170     /* Bus interface */
  171     DEVMETHOD(bus_add_child,            acpi_add_child),
  172     DEVMETHOD(bus_print_child,          acpi_print_child),
  173     DEVMETHOD(bus_probe_nomatch,        acpi_probe_nomatch),
  174     DEVMETHOD(bus_driver_added,         acpi_driver_added),
  175     DEVMETHOD(bus_read_ivar,            acpi_read_ivar),
  176     DEVMETHOD(bus_write_ivar,           acpi_write_ivar),
  177     DEVMETHOD(bus_get_resource_list,    acpi_get_rlist),
  178     DEVMETHOD(bus_set_resource,         bus_generic_rl_set_resource),
  179     DEVMETHOD(bus_get_resource,         bus_generic_rl_get_resource),
  180     DEVMETHOD(bus_alloc_resource,       acpi_alloc_resource),
  181     DEVMETHOD(bus_release_resource,     acpi_release_resource),
  182     DEVMETHOD(bus_delete_resource,      acpi_delete_resource),
  183     DEVMETHOD(bus_child_pnpinfo_str,    acpi_child_pnpinfo_str_method),
  184     DEVMETHOD(bus_child_location_str,   acpi_child_location_str_method),
  185     DEVMETHOD(bus_activate_resource,    bus_generic_activate_resource),
  186     DEVMETHOD(bus_deactivate_resource,  bus_generic_deactivate_resource),
  187     DEVMETHOD(bus_setup_intr,           bus_generic_setup_intr),
  188     DEVMETHOD(bus_teardown_intr,        bus_generic_teardown_intr),
  189 
  190     /* ACPI bus */
  191     DEVMETHOD(acpi_id_probe,            acpi_device_id_probe),
  192     DEVMETHOD(acpi_evaluate_object,     acpi_device_eval_obj),
  193     DEVMETHOD(acpi_pwr_for_sleep,       acpi_device_pwr_for_sleep),
  194     DEVMETHOD(acpi_scan_children,       acpi_device_scan_children),
  195 
  196     /* PCI emulation */
  197     DEVMETHOD(pci_set_powerstate,       acpi_set_powerstate_method),
  198 
  199     /* ISA emulation */
  200     DEVMETHOD(isa_pnp_probe,            acpi_isa_pnp_probe),
  201 
  202     DEVMETHOD_END
  203 };
  204 
  205 static driver_t acpi_driver = {
  206     "acpi",
  207     acpi_methods,
  208     sizeof(struct acpi_softc),
  209 };
  210 
  211 static devclass_t acpi_devclass;
  212 DRIVER_MODULE(acpi, nexus, acpi_driver, acpi_devclass, acpi_modevent, NULL);
  213 MODULE_VERSION(acpi, 1);
  214 
  215 ACPI_SERIAL_DECL(acpi, "ACPI serializer")
  216 
  217 /* Local pools for managing system resources for ACPI child devices. */
  218 static struct rman acpi_rman_io, acpi_rman_mem;
  219 
  220 #define ACPI_MINIMUM_AWAKETIME  5
  221 
  222 static const char* sleep_state_names[] = {
  223     "S0", "S1", "S2", "S3", "S4", "S5", "NONE"};
  224 
  225 SYSCTL_NODE(_debug, OID_AUTO, acpi, CTLFLAG_RD, NULL, "ACPI debugging");
  226 static char acpi_ca_version[12];
  227 SYSCTL_STRING(_debug_acpi, OID_AUTO, acpi_ca_version, CTLFLAG_RD,
  228               acpi_ca_version, 0, "Version of Intel ACPI-CA");
  229 
  230 /*
  231  * Allow override of whether methods execute in parallel or not.
  232  * Enable this for serial behavior, which fixes "AE_ALREADY_EXISTS"
  233  * errors for AML that really can't handle parallel method execution.
  234  * It is off by default since this breaks recursive methods and
  235  * some IBMs use such code.
  236  */
  237 static int acpi_serialize_methods;
  238 TUNABLE_INT("hw.acpi.serialize_methods", &acpi_serialize_methods);
  239 
  240 /* Power devices off and on in suspend and resume.  XXX Remove once tested. */
  241 static int acpi_do_powerstate = 1;
  242 TUNABLE_INT("debug.acpi.do_powerstate", &acpi_do_powerstate);
  243 SYSCTL_INT(_debug_acpi, OID_AUTO, do_powerstate, CTLFLAG_RW,
  244     &acpi_do_powerstate, 1, "Turn off devices when suspending.");
  245 
  246 /* Allow users to override quirks. */
  247 TUNABLE_INT("debug.acpi.quirks", &acpi_quirks);
  248 
  249 static int acpi_susp_bounce;
  250 SYSCTL_INT(_debug_acpi, OID_AUTO, suspend_bounce, CTLFLAG_RW,
  251     &acpi_susp_bounce, 0, "Don't actually suspend, just test devices.");
  252 
  253 /*
  254  * ACPI can only be loaded as a module by the loader; activating it after
  255  * system bootstrap time is not useful, and can be fatal to the system.
  256  * It also cannot be unloaded, since the entire system bus heirarchy hangs
  257  * off it.
  258  */
  259 static int
  260 acpi_modevent(struct module *mod, int event, void *junk)
  261 {
  262     switch (event) {
  263     case MOD_LOAD:
  264         if (!cold) {
  265             kprintf("The ACPI driver cannot be loaded after boot.\n");
  266             return (EPERM);
  267         }
  268         break;
  269     case MOD_UNLOAD:
  270         if (!cold && power_pm_get_type() == POWER_PM_TYPE_ACPI)
  271             return (EBUSY);
  272         break;
  273     default:
  274         break;
  275     }
  276     return (0);
  277 }
  278 
  279 /*
  280  * Perform early initialization.
  281  */
  282 ACPI_STATUS
  283 acpi_Startup(void)
  284 {
  285     static int started = 0;
  286     ACPI_STATUS status;
  287     int val;
  288 
  289     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
  290 
  291     /* Only run the startup code once.  The MADT driver also calls this. */
  292     if (started)
  293         return_VALUE (AE_OK);
  294     started = 1;
  295 
  296     /*
  297      * Pre-allocate space for RSDT/XSDT and DSDT tables and allow resizing
  298      * if more tables exist.
  299      */
  300     if (ACPI_FAILURE(status = AcpiInitializeTables(NULL, 2, TRUE))) {
  301         kprintf("ACPI: Table initialisation failed: %s\n",
  302             AcpiFormatException(status));
  303         return_VALUE (status);
  304     }
  305 
  306     /* Set up any quirks we have for this system. */
  307 #ifdef notyet
  308     if (acpi_quirks == ACPI_Q_OK)
  309         acpi_table_quirks(&acpi_quirks);
  310 #endif
  311 
  312     /* If the user manually set the disabled hint to 0, force-enable ACPI. */
  313     if (resource_int_value("acpi", 0, "disabled", &val) == 0 && val == 0)
  314         acpi_quirks &= ~ACPI_Q_BROKEN;
  315     if (acpi_quirks & ACPI_Q_BROKEN) {
  316         kprintf("ACPI disabled by blacklist.  Contact your BIOS vendor.\n");
  317         status = AE_SUPPORT;
  318     }
  319 
  320     return_VALUE (status);
  321 }
  322 
  323 /*
  324  * Detect ACPI, perform early initialisation
  325  */
  326 static void
  327 acpi_identify(driver_t *driver, device_t parent)
  328 {
  329     device_t    child;
  330 
  331     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
  332 
  333     if (!cold)
  334         return_VOID;
  335 
  336     /* Check that we haven't been disabled with a hint. */
  337     if (resource_disabled("acpi", 0))
  338         return_VOID;
  339 
  340     /* Make sure we're not being doubly invoked. */
  341     if (device_find_child(parent, "acpi", 0) != NULL)
  342         return_VOID;
  343 
  344     ksnprintf(acpi_ca_version, sizeof(acpi_ca_version), "%x", ACPI_CA_VERSION);
  345 
  346     /* Initialize root tables. */
  347     if (ACPI_FAILURE(acpi_Startup())) {
  348         kprintf("ACPI: Try disabling either ACPI or apic support.\n");
  349         return_VOID;
  350     }
  351 
  352     /* Attach the actual ACPI device. */
  353     if ((child = BUS_ADD_CHILD(parent, parent, 10, "acpi", 0)) == NULL) {
  354         device_printf(parent, "device_identify failed\n");
  355         return_VOID;
  356     }
  357 }
  358 
  359 /*
  360  * Fetch some descriptive data from ACPI to put in our attach message.
  361  */
  362 static int
  363 acpi_probe(device_t dev)
  364 {
  365     ACPI_TABLE_RSDP     *rsdp;
  366     ACPI_TABLE_HEADER   *rsdt;
  367     ACPI_PHYSICAL_ADDRESS paddr;
  368     char                buf[ACPI_OEM_ID_SIZE + ACPI_OEM_TABLE_ID_SIZE + 2];
  369     struct sbuf         sb;
  370 
  371     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
  372 
  373     if (power_pm_get_type() != POWER_PM_TYPE_NONE &&
  374         power_pm_get_type() != POWER_PM_TYPE_ACPI) {
  375         device_printf(dev, "probe failed, other PM system enabled.\n");
  376         return_VALUE (ENXIO);
  377     }
  378 
  379     if ((paddr = AcpiOsGetRootPointer()) == 0 ||
  380         (rsdp = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_RSDP))) == NULL)
  381         return_VALUE (ENXIO);
  382     if (rsdp->Revision > 1 && rsdp->XsdtPhysicalAddress != 0)
  383         paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->XsdtPhysicalAddress;
  384     else
  385         paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->RsdtPhysicalAddress;
  386     AcpiOsUnmapMemory(rsdp, sizeof(ACPI_TABLE_RSDP));
  387 
  388     if ((rsdt = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_HEADER))) == NULL)
  389         return_VALUE (ENXIO);
  390     sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
  391     sbuf_bcat(&sb, rsdt->OemId, ACPI_OEM_ID_SIZE);
  392     sbuf_trim(&sb);
  393     sbuf_putc(&sb, ' ');
  394     sbuf_bcat(&sb, rsdt->OemTableId, ACPI_OEM_TABLE_ID_SIZE);
  395     sbuf_trim(&sb);
  396     sbuf_finish(&sb);
  397     device_set_desc_copy(dev, sbuf_data(&sb));
  398     sbuf_delete(&sb);
  399     AcpiOsUnmapMemory(rsdt, sizeof(ACPI_TABLE_HEADER));
  400 
  401     return_VALUE (0);
  402 }
  403 
  404 static int
  405 acpi_attach(device_t dev)
  406 {
  407     struct acpi_softc   *sc;
  408     ACPI_STATUS         status;
  409     int                 error, state;
  410     UINT32              flags;
  411     UINT8               TypeA, TypeB;
  412     char                *env;
  413 
  414     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
  415 
  416     sc = device_get_softc(dev);
  417     sc->acpi_dev = dev;
  418     callout_init(&sc->susp_force_to);
  419 
  420     if ((error = acpi_task_thread_init())) {
  421         device_printf(dev, "Could not start task thread.\n");
  422         goto out;
  423     }
  424 
  425     error = ENXIO;
  426 
  427     /* Initialize resource manager. */
  428     acpi_rman_io.rm_type = RMAN_ARRAY;
  429     acpi_rman_io.rm_start = 0;
  430     acpi_rman_io.rm_end = 0xffff;
  431     acpi_rman_io.rm_descr = "ACPI I/O ports";
  432     if (rman_init(&acpi_rman_io, -1) != 0)
  433         panic("acpi rman_init IO ports failed");
  434     acpi_rman_mem.rm_type = RMAN_ARRAY;
  435     acpi_rman_mem.rm_start = 0;
  436     acpi_rman_mem.rm_end = ~0ul;
  437     acpi_rman_mem.rm_descr = "ACPI I/O memory addresses";
  438     if (rman_init(&acpi_rman_mem, -1) != 0)
  439         panic("acpi rman_init memory failed");
  440 
  441     /* Initialise the ACPI mutex */
  442     ACPI_LOCK_INIT(acpi, "acpi");
  443     ACPI_SERIAL_INIT(acpi);
  444 
  445     /*
  446      * Set the globals from our tunables.  This is needed because ACPI-CA
  447      * uses UINT8 for some values and we have no tunable_byte.
  448      */
  449     AcpiGbl_AllMethodsSerialized = acpi_serialize_methods;
  450     AcpiGbl_EnableInterpreterSlack = TRUE;
  451 
  452     /* Start up the ACPI CA subsystem. */
  453     status = AcpiInitializeSubsystem();
  454     if (ACPI_FAILURE(status)) {
  455         device_printf(dev, "Could not initialize Subsystem: %s\n",
  456                       AcpiFormatException(status));
  457         goto out;
  458     }
  459 
  460     /* Load ACPI name space. */
  461     status = AcpiLoadTables();
  462     if (ACPI_FAILURE(status)) {
  463         device_printf(dev, "Could not load Namespace: %s\n",
  464                       AcpiFormatException(status));
  465         goto out;
  466     }
  467 
  468     /* Handle MCFG table if present. */
  469     acpi_enable_pcie();
  470 
  471     /* Install the default address space handlers. */
  472     status = AcpiInstallAddressSpaceHandler(ACPI_ROOT_OBJECT,
  473                 ACPI_ADR_SPACE_SYSTEM_MEMORY, ACPI_DEFAULT_HANDLER, NULL, NULL);
  474     if (ACPI_FAILURE(status)) {
  475         device_printf(dev, "Could not initialise SystemMemory handler: %s\n",
  476                       AcpiFormatException(status));
  477         goto out;
  478     }
  479     status = AcpiInstallAddressSpaceHandler(ACPI_ROOT_OBJECT,
  480                 ACPI_ADR_SPACE_SYSTEM_IO, ACPI_DEFAULT_HANDLER, NULL, NULL);
  481     if (ACPI_FAILURE(status)) {
  482         device_printf(dev, "Could not initialise SystemIO handler: %s\n",
  483                       AcpiFormatException(status));
  484         goto out;
  485     }
  486     status = AcpiInstallAddressSpaceHandler(ACPI_ROOT_OBJECT,
  487                 ACPI_ADR_SPACE_PCI_CONFIG, ACPI_DEFAULT_HANDLER, NULL, NULL);
  488     if (ACPI_FAILURE(status)) {
  489         device_printf(dev, "could not initialise PciConfig handler: %s\n",
  490                       AcpiFormatException(status));
  491         goto out;
  492     }
  493 
  494     /*
  495      * Note that some systems (specifically, those with namespace evaluation
  496      * issues that require the avoidance of parts of the namespace) must
  497      * avoid running _INI and _STA on everything, as well as dodging the final
  498      * object init pass.
  499      *
  500      * For these devices, we set ACPI_NO_DEVICE_INIT and ACPI_NO_OBJECT_INIT).
  501      *
  502      * XXX We should arrange for the object init pass after we have attached
  503      *     all our child devices, but on many systems it works here.
  504      */
  505     flags = 0;
  506     if (ktestenv("debug.acpi.avoid"))
  507         flags = ACPI_NO_DEVICE_INIT | ACPI_NO_OBJECT_INIT;
  508 
  509     /* Bring the hardware and basic handlers online. */
  510     if (ACPI_FAILURE(status = AcpiEnableSubsystem(flags))) {
  511         device_printf(dev, "Could not enable ACPI: %s\n",
  512                       AcpiFormatException(status));
  513         goto out;
  514     }
  515 
  516     /*
  517      * Fix up the interrupt timer after enabling ACPI, so that the
  518      * interrupt cputimer that choked by ACPI power management could
  519      * be resurrected before probing various devices.
  520      */
  521     DELAY(5000);
  522     cputimer_intr_pmfixup();
  523 
  524     /*
  525      * Call the ECDT probe function to provide EC functionality before
  526      * the namespace has been evaluated.
  527      *
  528      * XXX This happens before the sysresource devices have been probed and
  529      * attached so its resources come from nexus0.  In practice, this isn't
  530      * a problem but should be addressed eventually.
  531      */
  532     acpi_ec_ecdt_probe(dev);
  533 
  534     /* Bring device objects and regions online. */
  535     if (ACPI_FAILURE(status = AcpiInitializeObjects(flags))) {
  536         device_printf(dev, "Could not initialize ACPI objects: %s\n",
  537                       AcpiFormatException(status));
  538         goto out;
  539     }
  540 
  541     /*
  542      * Setup our sysctl tree.
  543      *
  544      * XXX: This doesn't check to make sure that none of these fail.
  545      */
  546     sysctl_ctx_init(&sc->acpi_sysctl_ctx);
  547     sc->acpi_sysctl_tree = SYSCTL_ADD_NODE(&sc->acpi_sysctl_ctx,
  548                                SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
  549                                device_get_name(dev), CTLFLAG_RD, 0, "");
  550     SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
  551         OID_AUTO, "supported_sleep_state", CTLTYPE_STRING | CTLFLAG_RD,
  552         0, 0, acpi_supported_sleep_state_sysctl, "A", "");
  553     SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
  554         OID_AUTO, "power_button_state", CTLTYPE_STRING | CTLFLAG_RW,
  555         &sc->acpi_power_button_sx, 0, acpi_sleep_state_sysctl, "A", "");
  556     SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
  557         OID_AUTO, "sleep_button_state", CTLTYPE_STRING | CTLFLAG_RW,
  558         &sc->acpi_sleep_button_sx, 0, acpi_sleep_state_sysctl, "A", "");
  559     SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
  560         OID_AUTO, "lid_switch_state", CTLTYPE_STRING | CTLFLAG_RW,
  561         &sc->acpi_lid_switch_sx, 0, acpi_sleep_state_sysctl, "A", "");
  562     SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
  563         OID_AUTO, "standby_state", CTLTYPE_STRING | CTLFLAG_RW,
  564         &sc->acpi_standby_sx, 0, acpi_sleep_state_sysctl, "A", "");
  565     SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
  566         OID_AUTO, "suspend_state", CTLTYPE_STRING | CTLFLAG_RW,
  567         &sc->acpi_suspend_sx, 0, acpi_sleep_state_sysctl, "A", "");
  568     SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
  569         OID_AUTO, "sleep_delay", CTLFLAG_RW, &sc->acpi_sleep_delay, 0,
  570         "sleep delay");
  571     SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
  572         OID_AUTO, "s4bios", CTLFLAG_RW, &sc->acpi_s4bios, 0, "S4BIOS mode");
  573     SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
  574         OID_AUTO, "verbose", CTLFLAG_RW, &sc->acpi_verbose, 0, "verbose mode");
  575     SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
  576         OID_AUTO, "disable_on_reboot", CTLFLAG_RW,
  577         &sc->acpi_do_disable, 0, "Disable ACPI when rebooting/halting system");
  578     SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
  579         OID_AUTO, "handle_reboot", CTLFLAG_RW,
  580         &sc->acpi_handle_reboot, 0, "Use ACPI Reset Register to reboot");
  581 
  582     /*
  583      * Default to 1 second before sleeping to give some machines time to
  584      * stabilize.
  585      */
  586     sc->acpi_sleep_delay = 1;
  587     if (bootverbose)
  588         sc->acpi_verbose = 1;
  589     if ((env = kgetenv("hw.acpi.verbose")) != NULL) {
  590         if (strcmp(env, "") != 0)
  591             sc->acpi_verbose = 1;
  592         kfreeenv(env);
  593     }
  594 
  595     /* Only enable reboot by default if the FADT says it is available. */
  596     if (AcpiGbl_FADT.Flags & ACPI_FADT_RESET_REGISTER)
  597         sc->acpi_handle_reboot = 1;
  598 
  599     /* Only enable S4BIOS by default if the FACS says it is available. */
  600     if (AcpiGbl_FACS->Flags & ACPI_FACS_S4_BIOS_PRESENT)
  601         sc->acpi_s4bios = 1;
  602 
  603     /*
  604      * Dispatch the default sleep state to devices.  The lid switch is set
  605      * to NONE by default to avoid surprising users.
  606      */
  607     sc->acpi_power_button_sx = ACPI_STATE_S5;
  608     sc->acpi_lid_switch_sx = ACPI_S_STATES_MAX + 1;
  609     sc->acpi_standby_sx = ACPI_STATE_S1;
  610     sc->acpi_suspend_sx = ACPI_STATE_S3;
  611 
  612     /* Pick the first valid sleep state for the sleep button default. */
  613     sc->acpi_sleep_button_sx = ACPI_S_STATES_MAX + 1;
  614     for (state = ACPI_STATE_S1; state <= ACPI_STATE_S4; state++)
  615         if (ACPI_SUCCESS(AcpiGetSleepTypeData(state, &TypeA, &TypeB))) {
  616             sc->acpi_sleep_button_sx = state;
  617             break;
  618         }
  619 
  620     acpi_enable_fixed_events(sc);
  621 
  622     /*
  623      * Scan the namespace and attach/initialise children.
  624      */
  625 
  626     /* Register our shutdown handler. */
  627     EVENTHANDLER_REGISTER(shutdown_final, acpi_shutdown_final, sc,
  628         SHUTDOWN_PRI_LAST);
  629 
  630     /*
  631      * Register our acpi event handlers.
  632      * XXX should be configurable eg. via userland policy manager.
  633      */
  634     EVENTHANDLER_REGISTER(acpi_sleep_event, acpi_system_eventhandler_sleep,
  635         sc, ACPI_EVENT_PRI_LAST);
  636     EVENTHANDLER_REGISTER(acpi_wakeup_event, acpi_system_eventhandler_wakeup,
  637         sc, ACPI_EVENT_PRI_LAST);
  638 
  639     /* Flag our initial states. */
  640     sc->acpi_enabled = 1;
  641     sc->acpi_sstate = ACPI_STATE_S0;
  642     sc->acpi_sleep_disabled = 0;
  643     /* Create the control device */
  644     sc->acpi_dev_t = make_dev(&acpi_ops, 0, UID_ROOT, GID_WHEEL, 0644,
  645                               "acpi");
  646     sc->acpi_dev_t->si_drv1 = sc;
  647 
  648     if ((error = acpi_machdep_init(dev)))
  649         goto out;
  650 
  651     /* Register ACPI again to pass the correct argument of pm_func. */
  652     power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, sc);
  653 
  654     if (!acpi_disabled("bus"))
  655         acpi_probe_children(dev);
  656 
  657     /* Update all GPEs and enable runtime GPEs. */
  658     status = AcpiUpdateAllGpes();
  659     if (ACPI_FAILURE(status)) {
  660         device_printf(dev, "Could not update all GPEs: %s\n",
  661                       AcpiFormatException(status));
  662     }
  663 
  664     /* Allow sleep request after a while. */
  665     /* timeout(acpi_sleep_enable, sc, hz * ACPI_MINIMUM_AWAKETIME); */
  666 
  667     error = 0;
  668 
  669  out:
  670     cputimer_intr_pmfixup();
  671     return_VALUE (error);
  672 }
  673 
  674 static int
  675 acpi_suspend(device_t dev)
  676 {
  677     device_t child, *devlist;
  678     int error, i, numdevs, pstate;
  679 
  680     GIANT_REQUIRED;
  681 
  682     /* First give child devices a chance to suspend. */
  683     error = bus_generic_suspend(dev);
  684     if (error)
  685         return (error);
  686 
  687     /*
  688      * Now, set them into the appropriate power state, usually D3.  If the
  689      * device has an _SxD method for the next sleep state, use that power
  690      * state instead.
  691      */
  692     device_get_children(dev, &devlist, &numdevs);
  693     for (i = 0; i < numdevs; i++) {
  694         /* If the device is not attached, we've powered it down elsewhere. */
  695         child = devlist[i];
  696         if (!device_is_attached(child))
  697             continue;
  698 
  699         /*
  700          * Default to D3 for all sleep states.  The _SxD method is optional
  701          * so set the powerstate even if it's absent.
  702          */
  703         pstate = PCI_POWERSTATE_D3;
  704         error = acpi_device_pwr_for_sleep(device_get_parent(child),
  705             child, &pstate);
  706         if ((error == 0 || error == ESRCH) && acpi_do_powerstate)
  707             pci_set_powerstate(child, pstate);
  708     }
  709     kfree(devlist, M_TEMP);
  710     error = 0;
  711 
  712     return (error);
  713 }
  714 
  715 static int
  716 acpi_resume(device_t dev)
  717 {
  718     ACPI_HANDLE handle;
  719     int i, numdevs;
  720     device_t child, *devlist;
  721 
  722     GIANT_REQUIRED;
  723 
  724     /*
  725      * Put all devices in D0 before resuming them.  Call _S0D on each one
  726      * since some systems expect this.
  727      */
  728     device_get_children(dev, &devlist, &numdevs);
  729     for (i = 0; i < numdevs; i++) {
  730         child = devlist[i];
  731         handle = acpi_get_handle(child);
  732         if (handle)
  733             AcpiEvaluateObject(handle, "_S0D", NULL, NULL);
  734         if (device_is_attached(child) && acpi_do_powerstate)
  735             pci_set_powerstate(child, PCI_POWERSTATE_D0);
  736     }
  737     kfree(devlist, M_TEMP);
  738 
  739     return (bus_generic_resume(dev));
  740 }
  741 
  742 static int
  743 acpi_shutdown(device_t dev)
  744 {
  745 
  746     GIANT_REQUIRED;
  747 
  748     /* Allow children to shutdown first. */
  749     bus_generic_shutdown(dev);
  750 
  751     /*
  752      * Enable any GPEs that are able to power-on the system (i.e., RTC).
  753      * Also, disable any that are not valid for this state (most).
  754      */
  755     acpi_wake_prep_walk(ACPI_STATE_S5);
  756 
  757     return (0);
  758 }
  759 
  760 /*
  761  * Handle a new device being added
  762  */
  763 static device_t
  764 acpi_add_child(device_t bus, device_t parent, int order, const char *name, int unit)
  765 {
  766     struct acpi_device  *ad;
  767     device_t            child;
  768 
  769     if ((ad = kmalloc(sizeof(*ad), M_ACPIDEV, M_NOWAIT | M_ZERO)) == NULL)
  770         return (NULL);
  771 
  772     resource_list_init(&ad->ad_rl);
  773     child = device_add_child_ordered(parent, order, name, unit);
  774     if (child != NULL)
  775         device_set_ivars(child, ad);
  776     else
  777         kfree(ad, M_ACPIDEV);
  778     return (child);
  779 }
  780 
  781 static int
  782 acpi_print_child(device_t bus, device_t child)
  783 {
  784     struct acpi_device   *adev = device_get_ivars(child);
  785     struct resource_list *rl = &adev->ad_rl;
  786     int retval = 0;
  787 
  788     retval += bus_print_child_header(bus, child);
  789     retval += resource_list_print_type(rl, "port",  SYS_RES_IOPORT, "%#lx");
  790     retval += resource_list_print_type(rl, "iomem", SYS_RES_MEMORY, "%#lx");
  791     retval += resource_list_print_type(rl, "irq",   SYS_RES_IRQ,    "%ld");
  792     retval += resource_list_print_type(rl, "drq",   SYS_RES_DRQ,    "%ld");
  793     if (device_get_flags(child))
  794         retval += kprintf(" flags %#x", device_get_flags(child));
  795     retval += bus_print_child_footer(bus, child);
  796 
  797     return (retval);
  798 }
  799 
  800 /*
  801  * If this device is an ACPI child but no one claimed it, attempt
  802  * to power it off.  We'll power it back up when a driver is added.
  803  *
  804  * XXX Disabled for now since many necessary devices (like fdc and
  805  * ATA) don't claim the devices we created for them but still expect
  806  * them to be powered up.
  807  */
  808 static void
  809 acpi_probe_nomatch(device_t bus, device_t child)
  810 {
  811 
  812     /* pci_set_powerstate(child, PCI_POWERSTATE_D3); */
  813 }
  814 
  815 /*
  816  * If a new driver has a chance to probe a child, first power it up.
  817  *
  818  * XXX Disabled for now (see acpi_probe_nomatch for details).
  819  */
  820 static void
  821 acpi_driver_added(device_t dev, driver_t *driver)
  822 {
  823     device_t child, *devlist;
  824     int i, numdevs;
  825 
  826     DEVICE_IDENTIFY(driver, dev);
  827     device_get_children(dev, &devlist, &numdevs);
  828     for (i = 0; i < numdevs; i++) {
  829         child = devlist[i];
  830         if (device_get_state(child) == DS_NOTPRESENT) {
  831             /* pci_set_powerstate(child, PCI_POWERSTATE_D0); */
  832             if (device_probe_and_attach(child) != 0)
  833                 ; /* pci_set_powerstate(child, PCI_POWERSTATE_D3); */
  834         }
  835     }
  836     kfree(devlist, M_TEMP);
  837 }
  838 
  839 /* Location hint for devctl(8) */
  840 static int
  841 acpi_child_location_str_method(device_t cbdev, device_t child, char *buf,
  842     size_t buflen)
  843 {
  844     struct acpi_device *dinfo = device_get_ivars(child);
  845 
  846     if (dinfo->ad_handle)
  847         ksnprintf(buf, buflen, "handle=%s", acpi_name(dinfo->ad_handle));
  848     else
  849         ksnprintf(buf, buflen, "unknown");
  850     return (0);
  851 }
  852 
  853 /* PnP information for devctl(8) */
  854 static int
  855 acpi_child_pnpinfo_str_method(device_t cbdev, device_t child, char *buf,
  856     size_t buflen)
  857 {
  858     ACPI_DEVICE_INFO *adinfo;
  859     struct acpi_device *dinfo = device_get_ivars(child);
  860     char *end;
  861     int error;
  862 
  863     error = AcpiGetObjectInfo(dinfo->ad_handle, &adinfo);
  864     if (error) {
  865         ksnprintf(buf, buflen, "unknown");
  866     } else {
  867         ksnprintf(buf, buflen, "_HID=%s _UID=%lu",
  868                  (adinfo->Valid & ACPI_VALID_HID) ?
  869                  adinfo->HardwareId.String : "none",
  870                  (adinfo->Valid & ACPI_VALID_UID) ?
  871                  strtoul(adinfo->UniqueId.String, &end, 10) : 0);
  872         if (adinfo)
  873             AcpiOsFree(adinfo);
  874     }
  875     return (0);
  876 }
  877 
  878 /*
  879  * Handle per-device ivars
  880  */
  881 static int
  882 acpi_read_ivar(device_t dev, device_t child, int index, uintptr_t *result)
  883 {
  884     struct acpi_device  *ad;
  885 
  886     if ((ad = device_get_ivars(child)) == NULL) {
  887         kprintf("device has no ivars\n");
  888         return (ENOENT);
  889     }
  890 
  891     /* ACPI and ISA compatibility ivars */
  892     switch(index) {
  893     case ACPI_IVAR_HANDLE:
  894         *(ACPI_HANDLE *)result = ad->ad_handle;
  895         break;
  896     case ACPI_IVAR_MAGIC:
  897         *result = ad->ad_magic;
  898         break;
  899     case ACPI_IVAR_PRIVATE:
  900         *(void **)result = ad->ad_private;
  901         break;
  902     case ACPI_IVAR_FLAGS:
  903         *(int *)result = ad->ad_flags;
  904         break;
  905     case ISA_IVAR_VENDORID:
  906     case ISA_IVAR_SERIAL:
  907     case ISA_IVAR_COMPATID:
  908         *(int *)result = -1;
  909         break;
  910     case ISA_IVAR_LOGICALID:
  911         *(int *)result = acpi_isa_get_logicalid(child);
  912         break;
  913     default:
  914         return (ENOENT);
  915     }
  916 
  917     return (0);
  918 }
  919 
  920 static int
  921 acpi_write_ivar(device_t dev, device_t child, int index, uintptr_t value)
  922 {
  923     struct acpi_device  *ad;
  924 
  925     if ((ad = device_get_ivars(child)) == NULL) {
  926         kprintf("device has no ivars\n");
  927         return (ENOENT);
  928     }
  929 
  930     switch(index) {
  931     case ACPI_IVAR_HANDLE:
  932         ad->ad_handle = (ACPI_HANDLE)value;
  933         break;
  934     case ACPI_IVAR_MAGIC:
  935         ad->ad_magic = value;
  936         break;
  937     case ACPI_IVAR_PRIVATE:
  938         ad->ad_private = (void *)value;
  939         break;
  940     case ACPI_IVAR_FLAGS:
  941         ad->ad_flags = (int)value;
  942         break;
  943     default:
  944         panic("bad ivar write request (%d)", index);
  945         return (ENOENT);
  946     }
  947 
  948     return (0);
  949 }
  950 
  951 /*
  952  * Handle child resource allocation/removal
  953  */
  954 static struct resource_list *
  955 acpi_get_rlist(device_t dev, device_t child)
  956 {
  957     struct acpi_device          *ad;
  958 
  959     ad = device_get_ivars(child);
  960     return (&ad->ad_rl);
  961 }
  962 
  963 /*
  964  * Pre-allocate/manage all memory and IO resources.  Since rman can't handle
  965  * duplicates, we merge any in the sysresource attach routine.
  966  */
  967 static int
  968 acpi_sysres_alloc(device_t dev)
  969 {
  970     struct resource *res;
  971     struct resource_list *rl;
  972     struct resource_list_entry *rle;
  973     struct rman *rm;
  974     char *sysres_ids[] = { "PNP0C01", "PNP0C02", NULL };
  975     device_t *children;
  976     int child_count, i;
  977     /*
  978      * Probe/attach any sysresource devices.  This would be unnecessary if we
  979      * had multi-pass probe/attach.
  980      */
  981     if (device_get_children(dev, &children, &child_count) != 0)
  982         return (ENXIO);
  983     for (i = 0; i < child_count; i++) {
  984         if (ACPI_ID_PROBE(dev, children[i], sysres_ids) != NULL)
  985             device_probe_and_attach(children[i]);
  986     }
  987     kfree(children, M_TEMP);
  988 
  989     rl = BUS_GET_RESOURCE_LIST(device_get_parent(dev), dev);
  990     if(!rl)
  991         return 0;
  992     SLIST_FOREACH(rle, rl, link) {
  993         if (rle->res != NULL) {
  994             device_printf(dev, "duplicate resource for %lx\n", rle->start);
  995             continue;
  996         }
  997 
  998         /* Only memory and IO resources are valid here. */
  999         switch (rle->type) {
 1000         case SYS_RES_IOPORT:
 1001             rm = &acpi_rman_io;
 1002             break;
 1003         case SYS_RES_MEMORY:
 1004             rm = &acpi_rman_mem;
 1005             break;
 1006         default:
 1007             continue;
 1008         }
 1009 
 1010         /* Pre-allocate resource and add to our rman pool. */
 1011         res = BUS_ALLOC_RESOURCE(device_get_parent(dev), dev, rle->type,
 1012             &rle->rid, rle->start, rle->start + rle->count - 1, rle->count,
 1013             0, -1);
 1014         if (res != NULL) {
 1015             rman_manage_region(rm, rman_get_start(res), rman_get_end(res));
 1016             rle->res = res;
 1017         } else
 1018             device_printf(dev, "reservation of %lx, %lx (%d) failed\n",
 1019                 rle->start, rle->count, rle->type);
 1020     }
 1021     return (0);
 1022 }
 1023 
 1024 static struct resource *
 1025 acpi_alloc_resource(device_t bus, device_t child, int type, int *rid,
 1026     u_long start, u_long end, u_long count, u_int flags, int cpuid)
 1027 {
 1028     ACPI_RESOURCE ares;
 1029     struct acpi_device *ad = device_get_ivars(child);
 1030     struct resource_list *rl = &ad->ad_rl;
 1031     struct resource_list_entry *rle;
 1032     struct resource *res;
 1033     struct rman *rm;
 1034 
 1035     res = NULL;
 1036 
 1037     /* We only handle memory and IO resources through rman. */
 1038     switch (type) {
 1039     case SYS_RES_IOPORT:
 1040         rm = &acpi_rman_io;
 1041         break;
 1042     case SYS_RES_MEMORY:
 1043         rm = &acpi_rman_mem;
 1044         break;
 1045     default:
 1046         rm = NULL;
 1047     }
 1048 
 1049     ACPI_SERIAL_BEGIN(acpi);
 1050 
 1051     /*
 1052      * If this is an allocation of the "default" range for a given RID, and
 1053      * we know what the resources for this device are (i.e., they're on the
 1054      * child's resource list), use those start/end values.
 1055      */
 1056     if (bus == device_get_parent(child) && start == 0UL && end == ~0UL) {
 1057         rle = resource_list_find(rl, type, *rid);
 1058         if (rle == NULL)
 1059             goto out;
 1060         start = rle->start;
 1061         end = rle->end;
 1062         count = rle->count;
 1063         cpuid = rle->cpuid;
 1064     }
 1065 
 1066     /*
 1067      * If this is an allocation of a specific range, see if we can satisfy
 1068      * the request from our system resource regions.  If we can't, pass the
 1069      * request up to the parent.
 1070      */
 1071     if (start + count - 1 == end && rm != NULL)
 1072         res = rman_reserve_resource(rm, start, end, count, flags & ~RF_ACTIVE,
 1073             child);
 1074     if (res == NULL) {
 1075         res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, type, rid,
 1076             start, end, count, flags, cpuid);
 1077     } else {
 1078         rman_set_rid(res, *rid);
 1079 
 1080         /* If requested, activate the resource using the parent's method. */
 1081         if (flags & RF_ACTIVE)
 1082             if (bus_activate_resource(child, type, *rid, res) != 0) {
 1083                 rman_release_resource(res);
 1084                 res = NULL;
 1085                 goto out;
 1086             }
 1087     }
 1088 
 1089     if (res != NULL && device_get_parent(child) == bus)
 1090         switch (type) {
 1091         case SYS_RES_IRQ:
 1092             /*
 1093              * Since bus_config_intr() takes immediate effect, we cannot
 1094              * configure the interrupt associated with a device when we
 1095              * parse the resources but have to defer it until a driver
 1096              * actually allocates the interrupt via bus_alloc_resource().
 1097              *
 1098              * XXX: Should we handle the lookup failing?
 1099              */
 1100             if (ACPI_SUCCESS(acpi_lookup_irq_resource(child, *rid, res, &ares)))
 1101                 acpi_config_intr(child, &ares);
 1102             else
 1103                 kprintf("irq resource not found\n");
 1104             break;
 1105         }
 1106 
 1107 out:
 1108     ACPI_SERIAL_END(acpi);
 1109     return (res);
 1110 }
 1111 
 1112 static int
 1113 acpi_release_resource(device_t bus, device_t child, int type, int rid,
 1114     struct resource *r)
 1115 {
 1116     struct rman *rm;
 1117     int ret;
 1118 
 1119     /* We only handle memory and IO resources through rman. */
 1120     switch (type) {
 1121     case SYS_RES_IOPORT:
 1122         rm = &acpi_rman_io;
 1123         break;
 1124     case SYS_RES_MEMORY:
 1125         rm = &acpi_rman_mem;
 1126         break;
 1127     default:
 1128         rm = NULL;
 1129     }
 1130 
 1131     ACPI_SERIAL_BEGIN(acpi);
 1132 
 1133     /*
 1134      * If this resource belongs to one of our internal managers,
 1135      * deactivate it and release it to the local pool.  If it doesn't,
 1136      * pass this request up to the parent.
 1137      */
 1138     if (rm != NULL && rman_is_region_manager(r, rm)) {
 1139         if (rman_get_flags(r) & RF_ACTIVE) {
 1140             ret = bus_deactivate_resource(child, type, rid, r);
 1141             if (ret != 0)
 1142                 goto out;
 1143         }
 1144         ret = rman_release_resource(r);
 1145     } else
 1146         ret = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, type, rid, r);
 1147 
 1148 out:
 1149     ACPI_SERIAL_END(acpi);
 1150     return (ret);
 1151 }
 1152 
 1153 static void
 1154 acpi_delete_resource(device_t bus, device_t child, int type, int rid)
 1155 {
 1156     struct resource_list *rl;
 1157 
 1158     rl = acpi_get_rlist(bus, child);
 1159     resource_list_delete(rl, type, rid);
 1160 }
 1161 
 1162 /* Allocate an IO port or memory resource, given its GAS. */
 1163 int
 1164 acpi_bus_alloc_gas(device_t dev, int *type, int *rid, ACPI_GENERIC_ADDRESS *gas,
 1165     struct resource **res, u_int flags)
 1166 {
 1167     int error, res_type;
 1168 
 1169     error = ENOMEM;
 1170     if (type == NULL || rid == NULL || gas == NULL || res == NULL)
 1171         return (EINVAL);
 1172 
 1173     /* We only support memory and IO spaces. */
 1174     switch (gas->SpaceId) {
 1175     case ACPI_ADR_SPACE_SYSTEM_MEMORY:
 1176         res_type = SYS_RES_MEMORY;
 1177         break;
 1178     case ACPI_ADR_SPACE_SYSTEM_IO:
 1179         res_type = SYS_RES_IOPORT;
 1180         break;
 1181     default:
 1182         return (EOPNOTSUPP);
 1183     }
 1184 
 1185     /*
 1186      * If the register width is less than 8, assume the BIOS author means
 1187      * it is a bit field and just allocate a byte.
 1188      */
 1189     if (gas->BitWidth && gas->BitWidth < 8)
 1190         gas->BitWidth = 8;
 1191 
 1192     /* Validate the address after we're sure we support the space. */
 1193     if (gas->Address == 0 || gas->BitWidth == 0)
 1194         return (EINVAL);
 1195 
 1196     bus_set_resource(dev, res_type, *rid, gas->Address,
 1197         gas->BitWidth / 8, -1);
 1198     *res = bus_alloc_resource_any(dev, res_type, rid, RF_ACTIVE | flags);
 1199     if (*res != NULL) {
 1200         *type = res_type;
 1201         error = 0;
 1202     } else
 1203         bus_delete_resource(dev, res_type, *rid);
 1204 
 1205     return (error);
 1206 }
 1207 
 1208 /* Probe _HID and _CID for compatible ISA PNP ids. */
 1209 static uint32_t
 1210 acpi_isa_get_logicalid(device_t dev)
 1211 {
 1212     ACPI_DEVICE_INFO    *devinfo;
 1213     ACPI_HANDLE         h;
 1214     ACPI_STATUS         error;
 1215     u_int32_t           pnpid;
 1216 
 1217     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
 1218 
 1219     devinfo = NULL;
 1220     pnpid = 0;
 1221 
 1222     /* Fetch and validate the HID. */
 1223     if ((h = acpi_get_handle(dev)) == NULL)
 1224         goto out;
 1225     error = AcpiGetObjectInfo(h, &devinfo);
 1226     if (ACPI_FAILURE(error))
 1227         goto out;
 1228 
 1229     if ((devinfo->Valid & ACPI_VALID_HID) != 0)
 1230         pnpid = PNP_EISAID(devinfo->HardwareId.String);
 1231 
 1232 out:
 1233     if (devinfo)
 1234         AcpiOsFree(devinfo);
 1235     return_VALUE (pnpid);
 1236 }
 1237 
 1238 static int
 1239 acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count)
 1240 {
 1241     ACPI_DEVICE_INFO    *devinfo;
 1242     ACPI_HANDLE         h;
 1243     ACPI_STATUS         error;
 1244     uint32_t            *pnpid;
 1245     int                 valid, i;
 1246 
 1247     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
 1248 
 1249     devinfo = NULL;
 1250     pnpid = cids;
 1251     valid = 0;
 1252 
 1253     /* Fetch and validate the CID */
 1254     if ((h = acpi_get_handle(dev)) == NULL)
 1255         goto out;
 1256     error = AcpiGetObjectInfo(h, &devinfo);
 1257     if (ACPI_FAILURE(error))
 1258         goto out;
 1259     if ((devinfo->Valid & ACPI_VALID_CID) == 0)
 1260         goto out;
 1261 
 1262     if (devinfo->CompatibleIdList.Count < count)
 1263         count = devinfo->CompatibleIdList.Count;
 1264     for (i = 0; i < count; i++) {
 1265         if (strncmp(devinfo->CompatibleIdList.Ids[i].String, "PNP", 3) != 0)
 1266             continue;
 1267         *pnpid++ = PNP_EISAID(devinfo->CompatibleIdList.Ids[i].String);
 1268         valid++;
 1269     }
 1270 
 1271 out:
 1272     if (devinfo)
 1273         AcpiOsFree(devinfo);
 1274     return_VALUE (valid);
 1275 }
 1276 
 1277 static char *
 1278 acpi_device_id_probe(device_t bus, device_t dev, char **ids) 
 1279 {
 1280     ACPI_HANDLE h;
 1281     int i;
 1282 
 1283     h = acpi_get_handle(dev);
 1284     if (ids == NULL || h == NULL || acpi_get_type(dev) != ACPI_TYPE_DEVICE)
 1285         return (NULL);
 1286 
 1287     /* Try to match one of the array of IDs with a HID or CID. */
 1288     for (i = 0; ids[i] != NULL; i++) {
 1289         if (acpi_MatchHid(h, ids[i]))
 1290             return (ids[i]);
 1291     }
 1292     return (NULL);
 1293 }
 1294 
 1295 static ACPI_STATUS
 1296 acpi_device_eval_obj(device_t bus, device_t dev, ACPI_STRING pathname,
 1297     ACPI_OBJECT_LIST *parameters, ACPI_BUFFER *ret)
 1298 {
 1299     ACPI_HANDLE h;
 1300 
 1301     if (dev == NULL)
 1302         h = ACPI_ROOT_OBJECT;
 1303     else if ((h = acpi_get_handle(dev)) == NULL)
 1304         return (AE_BAD_PARAMETER);
 1305     return (AcpiEvaluateObject(h, pathname, parameters, ret));
 1306 }
 1307 
 1308 static int
 1309 acpi_device_pwr_for_sleep(device_t bus, device_t dev, int *dstate)
 1310 {
 1311     struct acpi_softc *sc;
 1312     ACPI_HANDLE handle;
 1313     ACPI_STATUS status;
 1314     char sxd[8];
 1315     int error;
 1316 
 1317     sc = device_get_softc(bus);
 1318     handle = acpi_get_handle(dev);
 1319 
 1320     /*
 1321      * XXX If we find these devices, don't try to power them down.
 1322      * The serial and IRDA ports on my T23 hang the system when
 1323      * set to D3 and it appears that such legacy devices may
 1324      * need special handling in their drivers.
 1325      */
 1326     if (handle == NULL ||
 1327         acpi_MatchHid(handle, "PNP0500") ||
 1328         acpi_MatchHid(handle, "PNP0501") ||
 1329         acpi_MatchHid(handle, "PNP0502") ||
 1330         acpi_MatchHid(handle, "PNP0510") ||
 1331         acpi_MatchHid(handle, "PNP0511"))
 1332         return (ENXIO);
 1333 
 1334     /*
 1335      * Override next state with the value from _SxD, if present.  If no
 1336      * dstate argument was provided, don't fetch the return value.
 1337      */
 1338     ksnprintf(sxd, sizeof(sxd), "_S%dD", sc->acpi_sstate);
 1339     if (dstate)
 1340         status = acpi_GetInteger(handle, sxd, dstate);
 1341     else
 1342         status = AcpiEvaluateObject(handle, sxd, NULL, NULL);
 1343 
 1344     switch (status) {
 1345     case AE_OK:
 1346         error = 0;
 1347         break;
 1348     case AE_NOT_FOUND:
 1349         error = ESRCH;
 1350         break;
 1351     default:
 1352         error = ENXIO;
 1353         break;
 1354     }
 1355 
 1356     return (error);
 1357 }
 1358 
 1359 /* Callback arg for our implementation of walking the namespace. */
 1360 struct acpi_device_scan_ctx {
 1361     acpi_scan_cb_t      user_fn;
 1362     void                *arg;
 1363     ACPI_HANDLE         parent;
 1364 };
 1365 
 1366 static ACPI_STATUS
 1367 acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level, void *arg, void **retval)
 1368 {
 1369     struct acpi_device_scan_ctx *ctx;
 1370     device_t dev, old_dev;
 1371     ACPI_STATUS status;
 1372     ACPI_OBJECT_TYPE type;
 1373 
 1374     /*
 1375      * Skip this device if we think we'll have trouble with it or it is
 1376      * the parent where the scan began.
 1377      */
 1378     ctx = (struct acpi_device_scan_ctx *)arg;
 1379     if (acpi_avoid(h) || h == ctx->parent)
 1380         return (AE_OK);
 1381 
 1382     /* If this is not a valid device type (e.g., a method), skip it. */
 1383     if (ACPI_FAILURE(AcpiGetType(h, &type)))
 1384         return (AE_OK);
 1385     if (type != ACPI_TYPE_DEVICE && type != ACPI_TYPE_PROCESSOR &&
 1386         type != ACPI_TYPE_THERMAL && type != ACPI_TYPE_POWER)
 1387         return (AE_OK);
 1388 
 1389     /*
 1390      * Call the user function with the current device.  If it is unchanged
 1391      * afterwards, return.  Otherwise, we update the handle to the new dev.
 1392      */
 1393     old_dev = acpi_get_device(h);
 1394     dev = old_dev;
 1395     status = ctx->user_fn(h, &dev, level, ctx->arg);
 1396     if (ACPI_FAILURE(status) || old_dev == dev)
 1397         return (status);
 1398 
 1399     /* Remove the old child and its connection to the handle. */
 1400     if (old_dev != NULL) {
 1401         device_delete_child(device_get_parent(old_dev), old_dev);
 1402         AcpiDetachData(h, acpi_fake_objhandler);
 1403     }
 1404 
 1405     /* Recreate the handle association if the user created a device. */
 1406     if (dev != NULL)
 1407         AcpiAttachData(h, acpi_fake_objhandler, dev);
 1408 
 1409     return (AE_OK);
 1410 }
 1411 
 1412 static ACPI_STATUS
 1413 acpi_device_scan_children(device_t bus, device_t dev, int max_depth,
 1414     acpi_scan_cb_t user_fn, void *arg)
 1415 {
 1416     ACPI_HANDLE h;
 1417     struct acpi_device_scan_ctx ctx;
 1418 
 1419     if (acpi_disabled("children"))
 1420         return (AE_OK);
 1421 
 1422     if (dev == NULL)
 1423         h = ACPI_ROOT_OBJECT;
 1424     else if ((h = acpi_get_handle(dev)) == NULL)
 1425         return (AE_BAD_PARAMETER);
 1426     ctx.user_fn = user_fn;
 1427     ctx.arg = arg;
 1428     ctx.parent = h;
 1429     return (AcpiWalkNamespace(ACPI_TYPE_ANY, h, max_depth,
 1430         acpi_device_scan_cb, NULL, &ctx, NULL));
 1431 }
 1432 
 1433 /*
 1434  * Even though ACPI devices are not PCI, we use the PCI approach for setting
 1435  * device power states since it's close enough to ACPI.
 1436  */
 1437 static int
 1438 acpi_set_powerstate_method(device_t bus, device_t child, int state)
 1439 {
 1440     ACPI_HANDLE h;
 1441     ACPI_STATUS status;
 1442     int error;
 1443 
 1444     error = 0;
 1445     h = acpi_get_handle(child);
 1446     if (state < ACPI_STATE_D0 || state > ACPI_STATE_D3)
 1447         return (EINVAL);
 1448     if (h == NULL)
 1449         return (0);
 1450 
 1451     /* Ignore errors if the power methods aren't present. */
 1452     status = acpi_pwr_switch_consumer(h, state);
 1453     if (ACPI_FAILURE(status) && status != AE_NOT_FOUND
 1454         && status != AE_BAD_PARAMETER)
 1455         device_printf(bus, "failed to set ACPI power state D%d on %s: %s\n",
 1456             state, acpi_name(h), AcpiFormatException(status));
 1457 
 1458     return (error);
 1459 }
 1460 
 1461 static int
 1462 acpi_isa_pnp_probe(device_t bus, device_t child, struct isa_pnp_id *ids)
 1463 {
 1464     int                 result, cid_count, i;
 1465     uint32_t            lid, cids[8];
 1466 
 1467     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
 1468 
 1469     /*
 1470      * ISA-style drivers attached to ACPI may persist and
 1471      * probe manually if we return ENOENT.  We never want
 1472      * that to happen, so don't ever return it.
 1473      */
 1474     result = ENXIO;
 1475 
 1476     /* Scan the supplied IDs for a match */
 1477     lid = acpi_isa_get_logicalid(child);
 1478     cid_count = acpi_isa_get_compatid(child, cids, 8);
 1479     while (ids && ids->ip_id) {
 1480         if (lid == ids->ip_id) {
 1481             result = 0;
 1482             goto out;
 1483         }
 1484         for (i = 0; i < cid_count; i++) {
 1485             if (cids[i] == ids->ip_id) {
 1486                 result = 0;
 1487                 goto out;
 1488             }
 1489         }
 1490         ids++;
 1491     }
 1492 
 1493  out:
 1494     if (result == 0 && ids->ip_desc)
 1495         device_set_desc(child, ids->ip_desc);
 1496 
 1497     return_VALUE (result);
 1498 }
 1499 
 1500 /*
 1501  * Look for a MCFG table.  If it is present, use the settings for
 1502  * domain (segment) 0 to setup PCI config space access via the memory
 1503  * map.
 1504  */
 1505 static void
 1506 acpi_enable_pcie(void)
 1507 {
 1508         ACPI_TABLE_HEADER *hdr;
 1509         ACPI_MCFG_ALLOCATION *alloc, *end;
 1510         ACPI_STATUS status;
 1511 
 1512         status = AcpiGetTable(ACPI_SIG_MCFG, 1, &hdr);
 1513         if (ACPI_FAILURE(status))
 1514                 return;
 1515 
 1516         end = (ACPI_MCFG_ALLOCATION *)((char *)hdr + hdr->Length);
 1517         alloc = (ACPI_MCFG_ALLOCATION *)((ACPI_TABLE_MCFG *)hdr + 1);
 1518         while (alloc < end) {
 1519                 if (alloc->PciSegment == 0) {
 1520                         pcie_cfgregopen(alloc->Address, alloc->StartBusNumber,
 1521                             alloc->EndBusNumber);
 1522                         return;
 1523                 }
 1524                 alloc++;
 1525         }
 1526 }
 1527 
 1528 /*
 1529  * Scan all of the ACPI namespace and attach child devices.
 1530  *
 1531  * We should only expect to find devices in the \_PR, \_TZ, \_SI, and
 1532  * \_SB scopes, and \_PR and \_TZ became obsolete in the ACPI 2.0 spec.
 1533  * However, in violation of the spec, some systems place their PCI link
 1534  * devices in \, so we have to walk the whole namespace.  We check the
 1535  * type of namespace nodes, so this should be ok.
 1536  */
 1537 static void
 1538 acpi_probe_children(device_t bus)
 1539 {
 1540 
 1541     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
 1542 
 1543     /*
 1544      * Scan the namespace and insert placeholders for all the devices that
 1545      * we find.  We also probe/attach any early devices.
 1546      *
 1547      * Note that we use AcpiWalkNamespace rather than AcpiGetDevices because
 1548      * we want to create nodes for all devices, not just those that are
 1549      * currently present. (This assumes that we don't want to create/remove
 1550      * devices as they appear, which might be smarter.)
 1551      */
 1552     ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "namespace scan\n"));
 1553     AcpiWalkNamespace(ACPI_TYPE_ANY, ACPI_ROOT_OBJECT, 100,
 1554         acpi_probe_child, NULL, bus, NULL);
 1555 
 1556     /* Pre-allocate resources for our rman from any sysresource devices. */
 1557     acpi_sysres_alloc(bus);
 1558     /* Create any static children by calling device identify methods. */
 1559     ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "device identify routines\n"));
 1560     bus_generic_probe(bus);
 1561 
 1562     /* Probe/attach all children, created staticly and from the namespace. */
 1563     ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "first bus_generic_attach\n"));
 1564     bus_generic_attach(bus);
 1565 
 1566     /*
 1567      * Some of these children may have attached others as part of their attach
 1568      * process (eg. the root PCI bus driver), so rescan.
 1569      */
 1570     ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "second bus_generic_attach\n"));
 1571     bus_generic_attach(bus);
 1572 
 1573     /* Attach wake sysctls. */
 1574     acpi_wake_sysctl_walk(bus);
 1575 
 1576     ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "done attaching children\n"));
 1577     return_VOID;
 1578 }
 1579 
 1580 /*
 1581  * Determine the probe order for a given device.
 1582  */
 1583 static void
 1584 acpi_probe_order(ACPI_HANDLE handle, int *order)
 1585 {
 1586     ACPI_OBJECT_TYPE type;
 1587 
 1588     /*
 1589      * 1. I/O port and memory system resource holders
 1590      * 2. Embedded controllers (to handle early accesses)
 1591      * 3. PCI Link Devices
 1592      * 100000. CPUs
 1593      */
 1594     AcpiGetType(handle, &type);
 1595     if (acpi_MatchHid(handle, "PNP0C01") || acpi_MatchHid(handle, "PNP0C02"))
 1596         *order = 1;
 1597     else if (acpi_MatchHid(handle, "PNP0C09"))
 1598         *order = 2;
 1599     else if (acpi_MatchHid(handle, "PNP0C0F"))
 1600         *order = 3;
 1601     else if (type == ACPI_TYPE_PROCESSOR)
 1602         *order = 100000;
 1603 }
 1604 
 1605 /*
 1606  * Evaluate a child device and determine whether we might attach a device to
 1607  * it.
 1608  */
 1609 static ACPI_STATUS
 1610 acpi_probe_child(ACPI_HANDLE handle, UINT32 level, void *context, void **status)
 1611 {
 1612     struct acpi_prw_data prw;
 1613     ACPI_OBJECT_TYPE type;
 1614     ACPI_HANDLE h;
 1615     device_t bus, child;
 1616     int order;
 1617     char *handle_str;
 1618 
 1619     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
 1620 
 1621     if (acpi_disabled("children"))
 1622         return_ACPI_STATUS (AE_OK);
 1623 
 1624     /* Skip this device if we think we'll have trouble with it. */
 1625     if (acpi_avoid(handle))
 1626         return_ACPI_STATUS (AE_OK);
 1627 
 1628     bus = (device_t)context;
 1629     if (ACPI_SUCCESS(AcpiGetType(handle, &type))) {
 1630         handle_str = acpi_name(handle);
 1631         switch (type) {
 1632         case ACPI_TYPE_DEVICE:
 1633             /*
 1634              * Since we scan from \, be sure to skip system scope objects.
 1635              * \_SB_ and \_TZ_ are defined in ACPICA as devices to work around
 1636              * BIOS bugs.  For example, \_SB_ is to allow \_SB_._INI to be run
 1637              * during the intialization and \_TZ_ is to support Notify() on it.
 1638              */
 1639             if (strcmp(handle_str, "\\_SB_") == 0 ||
 1640                 strcmp(handle_str, "\\_TZ_") == 0)
 1641                 break;
 1642 
 1643             if (acpi_parse_prw(handle, &prw) == 0)
 1644                 AcpiSetupGpeForWake(handle, prw.gpe_handle, prw.gpe_bit);
 1645 
 1646             /* FALLTHROUGH */
 1647         case ACPI_TYPE_PROCESSOR:
 1648         case ACPI_TYPE_THERMAL:
 1649         case ACPI_TYPE_POWER:
 1650             /* 
 1651              * Create a placeholder device for this node.  Sort the
 1652              * placeholder so that the probe/attach passes will run
 1653              * breadth-first.  Orders less than ACPI_DEV_BASE_ORDER
 1654              * are reserved for special objects (i.e., system
 1655              * resources).  CPU devices have a very high order to
 1656              * ensure they are probed after other devices.
 1657              */
 1658             ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "scanning '%s'\n", handle_str));
 1659             order = level * 10 + 100;
 1660             acpi_probe_order(handle, &order);
 1661             child = BUS_ADD_CHILD(bus, bus, order, NULL, -1);
 1662             if (child == NULL)
 1663                 break;
 1664 
 1665             /* Associate the handle with the device_t and vice versa. */
 1666             acpi_set_handle(child, handle);
 1667             AcpiAttachData(handle, acpi_fake_objhandler, child);
 1668 
 1669             /*
 1670              * Check that the device is present.  If it's not present,
 1671              * leave it disabled (so that we have a device_t attached to
 1672              * the handle, but we don't probe it).
 1673              *
 1674              * XXX PCI link devices sometimes report "present" but not
 1675              * "functional" (i.e. if disabled).  Go ahead and probe them
 1676              * anyway since we may enable them later.
 1677              */
 1678             if (type == ACPI_TYPE_DEVICE && !acpi_DeviceIsPresent(child)) {
 1679                 /* Never disable PCI link devices. */
 1680                 if (acpi_MatchHid(handle, "PNP0C0F"))
 1681                     break;
 1682                 /*
 1683                  * Docking stations should remain enabled since the system
 1684                  * may be undocked at boot.
 1685                  */
 1686                 if (ACPI_SUCCESS(AcpiGetHandle(handle, "_DCK", &h)))
 1687                     break;
 1688 
 1689                 device_disable(child);
 1690                 break;
 1691             }
 1692 
 1693             /*
 1694              * Get the device's resource settings and attach them.
 1695              * Note that if the device has _PRS but no _CRS, we need
 1696              * to decide when it's appropriate to try to configure the
 1697              * device.  Ignore the return value here; it's OK for the
 1698              * device not to have any resources.
 1699              */
 1700             acpi_parse_resources(child, handle, &acpi_res_parse_set, NULL);
 1701             break;
 1702         }
 1703     }
 1704 
 1705     return_ACPI_STATUS (AE_OK);
 1706 }
 1707 
 1708 /*
 1709  * AcpiAttachData() requires an object handler but never uses it.  This is a
 1710  * placeholder object handler so we can store a device_t in an ACPI_HANDLE.
 1711  */
 1712 void
 1713 acpi_fake_objhandler(ACPI_HANDLE h, void *data)
 1714 {
 1715 }
 1716 
 1717 static void
 1718 acpi_shutdown_final(void *arg, int howto)
 1719 {
 1720     struct acpi_softc *sc;
 1721     ACPI_STATUS status;
 1722 
 1723     /*
 1724      * XXX Shutdown code should only run on the BSP (cpuid 0).
 1725      * Some chipsets do not power off the system correctly if called from
 1726      * an AP.
 1727      */
 1728     sc = arg;
 1729     if ((howto & RB_POWEROFF) != 0) {
 1730         status = AcpiEnterSleepStatePrep(ACPI_STATE_S5);
 1731         if (ACPI_FAILURE(status)) {
 1732             kprintf("AcpiEnterSleepStatePrep failed - %s\n",
 1733                    AcpiFormatException(status));
 1734             return;
 1735         }
 1736         kprintf("Powering system off using ACPI\n");
 1737         ACPI_DISABLE_IRQS();
 1738         status = AcpiEnterSleepState(ACPI_STATE_S5);
 1739         if (ACPI_FAILURE(status)) {
 1740             kprintf("ACPI power-off failed - %s\n", AcpiFormatException(status));
 1741         } else {
 1742             DELAY(1000000);
 1743             kprintf("ACPI power-off failed - timeout\n");
 1744         }
 1745     } else if ((howto & RB_HALT) == 0 && sc->acpi_handle_reboot) {
 1746         /* Reboot using the reset register. */
 1747         status = AcpiReset();
 1748         if (ACPI_FAILURE(status)) {
 1749             if (status != AE_NOT_EXIST)
 1750                     kprintf("ACPI reset failed - %s\n", AcpiFormatException(status));
 1751         } else {
 1752             DELAY(1000000);
 1753             kprintf("ACPI reset failed - timeout\n");
 1754         }
 1755     } else if (sc->acpi_do_disable && panicstr == NULL) {
 1756         /*
 1757          * Only disable ACPI if the user requested.  On some systems, writing
 1758          * the disable value to SMI_CMD hangs the system.
 1759          */
 1760         kprintf("Shutting down ACPI\n");
 1761         AcpiTerminate();
 1762     }
 1763 }
 1764 
 1765 static void
 1766 acpi_enable_fixed_events(struct acpi_softc *sc)
 1767 {
 1768     static int  first_time = 1;
 1769 
 1770     /* Enable and clear fixed events and install handlers. */
 1771     if ((AcpiGbl_FADT.Flags & ACPI_FADT_POWER_BUTTON) == 0) {
 1772         AcpiClearEvent(ACPI_EVENT_POWER_BUTTON);
 1773         AcpiInstallFixedEventHandler(ACPI_EVENT_POWER_BUTTON,
 1774                                      acpi_event_power_button_sleep, sc);
 1775         if (first_time)
 1776             device_printf(sc->acpi_dev, "Power Button (fixed)\n");
 1777     }
 1778     if ((AcpiGbl_FADT.Flags & ACPI_FADT_SLEEP_BUTTON) == 0) {
 1779         AcpiClearEvent(ACPI_EVENT_SLEEP_BUTTON);
 1780         AcpiInstallFixedEventHandler(ACPI_EVENT_SLEEP_BUTTON,
 1781                                      acpi_event_sleep_button_sleep, sc);
 1782         if (first_time)
 1783             device_printf(sc->acpi_dev, "Sleep Button (fixed)\n");
 1784     }
 1785 
 1786     first_time = 0;
 1787 }
 1788 
 1789 /*
 1790  * Returns true if the device is actually present and should
 1791  * be attached to.  This requires the present, enabled, UI-visible 
 1792  * and diagnostics-passed bits to be set.
 1793  */
 1794 BOOLEAN
 1795 acpi_DeviceIsPresent(device_t dev)
 1796 {
 1797     ACPI_DEVICE_INFO    *devinfo;
 1798     ACPI_HANDLE         h;
 1799     ACPI_STATUS         error;
 1800     int                 ret;
 1801 
 1802     ret = FALSE;
 1803     if ((h = acpi_get_handle(dev)) == NULL)
 1804         return (FALSE);
 1805     error = AcpiGetObjectInfo(h, &devinfo);
 1806     if (ACPI_FAILURE(error))
 1807         return (FALSE);
 1808 
 1809     /* If no _STA method, must be present */
 1810     if ((devinfo->Valid & ACPI_VALID_STA) == 0)
 1811         ret = TRUE;
 1812 
 1813     /* Return true for 'present' and 'functioning' */
 1814     if (ACPI_DEVICE_PRESENT(devinfo->CurrentStatus))
 1815         ret = TRUE;
 1816 
 1817     AcpiOsFree(devinfo);
 1818     return (ret);
 1819 }
 1820 
 1821 /*
 1822  * Returns true if the battery is actually present and inserted.
 1823  */
 1824 BOOLEAN
 1825 acpi_BatteryIsPresent(device_t dev)
 1826 {
 1827     ACPI_DEVICE_INFO    *devinfo;
 1828     ACPI_HANDLE         h;
 1829     ACPI_STATUS         error;
 1830     int                 ret;
 1831 
 1832     ret = FALSE;
 1833     if ((h = acpi_get_handle(dev)) == NULL)
 1834         return (FALSE);
 1835     error = AcpiGetObjectInfo(h, &devinfo);
 1836     if (ACPI_FAILURE(error))
 1837         return (FALSE);
 1838 
 1839     /* If no _STA method, must be present */
 1840     if ((devinfo->Valid & ACPI_VALID_STA) == 0)
 1841         ret = TRUE;
 1842 
 1843     /* Return true for 'present', 'battery present', and 'functioning' */
 1844     if (ACPI_BATTERY_PRESENT(devinfo->CurrentStatus))
 1845         ret = TRUE;
 1846 
 1847     AcpiOsFree(devinfo);
 1848     return (ret);
 1849 }
 1850 
 1851 /*
 1852  * Match a HID string against a handle
 1853  */
 1854 BOOLEAN
 1855 acpi_MatchHid(ACPI_HANDLE h, const char *hid)
 1856 {
 1857     ACPI_DEVICE_INFO    *devinfo;
 1858     ACPI_STATUS         error;
 1859     int                 ret, i;
 1860 
 1861     ret = FALSE;
 1862     if (hid == NULL || h == NULL)
 1863         return (ret);
 1864     error = AcpiGetObjectInfo(h, &devinfo);
 1865     if (ACPI_FAILURE(error))
 1866         return (ret);
 1867 
 1868     if ((devinfo->Valid & ACPI_VALID_HID) != 0 &&
 1869         strcmp(hid, devinfo->HardwareId.String) == 0)
 1870             ret = TRUE;
 1871     else if ((devinfo->Valid & ACPI_VALID_CID) != 0) {
 1872         for (i = 0; i < devinfo->CompatibleIdList.Count; i++) {
 1873             if (strcmp(hid, devinfo->CompatibleIdList.Ids[i].String) == 0) {
 1874                 ret = TRUE;
 1875                 break;
 1876             }
 1877         }
 1878     }
 1879 
 1880     AcpiOsFree(devinfo);
 1881     return (ret);
 1882 }
 1883 
 1884 /*
 1885  * Return the handle of a named object within our scope, ie. that of (parent)
 1886  * or one if its parents.
 1887  */
 1888 ACPI_STATUS
 1889 acpi_GetHandleInScope(ACPI_HANDLE parent, char *path, ACPI_HANDLE *result)
 1890 {
 1891     ACPI_HANDLE         r;
 1892     ACPI_STATUS         status;
 1893 
 1894     /* Walk back up the tree to the root */
 1895     for (;;) {
 1896         status = AcpiGetHandle(parent, path, &r);
 1897         if (ACPI_SUCCESS(status)) {
 1898             *result = r;
 1899             return (AE_OK);
 1900         }
 1901         /* XXX Return error here? */
 1902         if (status != AE_NOT_FOUND)
 1903             return (AE_OK);
 1904         if (ACPI_FAILURE(AcpiGetParent(parent, &r)))
 1905             return (AE_NOT_FOUND);
 1906         parent = r;
 1907     }
 1908 }
 1909 
 1910 /*
 1911  * Allocate a buffer with a preset data size.
 1912  */
 1913 ACPI_BUFFER *
 1914 acpi_AllocBuffer(int size)
 1915 {
 1916     ACPI_BUFFER *buf;
 1917 
 1918     if ((buf = kmalloc(size + sizeof(*buf), M_ACPIDEV, M_NOWAIT)) == NULL)
 1919         return (NULL);
 1920     buf->Length = size;
 1921     buf->Pointer = (void *)(buf + 1);
 1922     return (buf);
 1923 }
 1924 
 1925 ACPI_STATUS
 1926 acpi_SetInteger(ACPI_HANDLE handle, char *path, UINT32 number)
 1927 {
 1928     ACPI_OBJECT arg1;
 1929     ACPI_OBJECT_LIST args;
 1930 
 1931     arg1.Type = ACPI_TYPE_INTEGER;
 1932     arg1.Integer.Value = number;
 1933     args.Count = 1;
 1934     args.Pointer = &arg1;
 1935 
 1936     return (AcpiEvaluateObject(handle, path, &args, NULL));
 1937 }
 1938 
 1939 /*
 1940  * Evaluate a path that should return an integer.
 1941  */
 1942 ACPI_STATUS
 1943 acpi_GetInteger(ACPI_HANDLE handle, char *path, UINT32 *number)
 1944 {
 1945     ACPI_STATUS status;
 1946     ACPI_BUFFER buf;
 1947     ACPI_OBJECT param;
 1948 
 1949     if (handle == NULL)
 1950         handle = ACPI_ROOT_OBJECT;
 1951 
 1952     /*
 1953      * Assume that what we've been pointed at is an Integer object, or
 1954      * a method that will return an Integer.
 1955      */
 1956     buf.Pointer = &param;
 1957     buf.Length = sizeof(param);
 1958     status = AcpiEvaluateObject(handle, path, NULL, &buf);
 1959     if (ACPI_SUCCESS(status)) {
 1960         if (param.Type == ACPI_TYPE_INTEGER)
 1961             *number = param.Integer.Value;
 1962         else
 1963             status = AE_TYPE;
 1964     }
 1965 
 1966     /* 
 1967      * In some applications, a method that's expected to return an Integer
 1968      * may instead return a Buffer (probably to simplify some internal
 1969      * arithmetic).  We'll try to fetch whatever it is, and if it's a Buffer,
 1970      * convert it into an Integer as best we can.
 1971      *
 1972      * This is a hack.
 1973      */
 1974     if (status == AE_BUFFER_OVERFLOW) {
 1975         if ((buf.Pointer = AcpiOsAllocate(buf.Length)) == NULL) {
 1976             status = AE_NO_MEMORY;
 1977         } else {
 1978             status = AcpiEvaluateObject(handle, path, NULL, &buf);
 1979             if (ACPI_SUCCESS(status))
 1980                 status = acpi_ConvertBufferToInteger(&buf, number);
 1981             AcpiOsFree(buf.Pointer);
 1982         }
 1983     }
 1984     return (status);
 1985 }
 1986 
 1987 ACPI_STATUS
 1988 acpi_ConvertBufferToInteger(ACPI_BUFFER *bufp, UINT32 *number)
 1989 {
 1990     ACPI_OBJECT *p;
 1991     UINT8       *val;
 1992     int         i;
 1993 
 1994     p = (ACPI_OBJECT *)bufp->Pointer;
 1995     if (p->Type == ACPI_TYPE_INTEGER) {
 1996         *number = p->Integer.Value;
 1997         return (AE_OK);
 1998     }
 1999     if (p->Type != ACPI_TYPE_BUFFER)
 2000         return (AE_TYPE);
 2001     if (p->Buffer.Length > sizeof(int))
 2002         return (AE_BAD_DATA);
 2003 
 2004     *number = 0;
 2005     val = p->Buffer.Pointer;
 2006     for (i = 0; i < p->Buffer.Length; i++)
 2007         *number += val[i] << (i * 8);
 2008     return (AE_OK);
 2009 }
 2010 
 2011 /*
 2012  * Iterate over the elements of an a package object, calling the supplied
 2013  * function for each element.
 2014  *
 2015  * XXX possible enhancement might be to abort traversal on error.
 2016  */
 2017 ACPI_STATUS
 2018 acpi_ForeachPackageObject(ACPI_OBJECT *pkg,
 2019         void (*func)(ACPI_OBJECT *comp, void *arg), void *arg)
 2020 {
 2021     ACPI_OBJECT *comp;
 2022     int         i;
 2023 
 2024     if (pkg == NULL || pkg->Type != ACPI_TYPE_PACKAGE)
 2025         return (AE_BAD_PARAMETER);
 2026 
 2027     /* Iterate over components */
 2028     i = 0;
 2029     comp = pkg->Package.Elements;
 2030     for (; i < pkg->Package.Count; i++, comp++)
 2031         func(comp, arg);
 2032 
 2033     return (AE_OK);
 2034 }
 2035 
 2036 /*
 2037  * Find the (index)th resource object in a set.
 2038  */
 2039 ACPI_STATUS
 2040 acpi_FindIndexedResource(ACPI_BUFFER *buf, int index, ACPI_RESOURCE **resp)
 2041 {
 2042     ACPI_RESOURCE       *rp;
 2043     int                 i;
 2044 
 2045     rp = (ACPI_RESOURCE *)buf->Pointer;
 2046     i = index;
 2047     while (i-- > 0) {
 2048         /* Range check */
 2049         if (rp > (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length))
 2050             return (AE_BAD_PARAMETER);
 2051 
 2052         /* Check for terminator */
 2053         if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0)
 2054             return (AE_NOT_FOUND);
 2055         rp = ACPI_NEXT_RESOURCE(rp);
 2056     }
 2057     if (resp != NULL)
 2058         *resp = rp;
 2059 
 2060     return (AE_OK);
 2061 }
 2062 
 2063 /*
 2064  * Append an ACPI_RESOURCE to an ACPI_BUFFER.
 2065  *
 2066  * Given a pointer to an ACPI_RESOURCE structure, expand the ACPI_BUFFER
 2067  * provided to contain it.  If the ACPI_BUFFER is empty, allocate a sensible
 2068  * backing block.  If the ACPI_RESOURCE is NULL, return an empty set of
 2069  * resources.
 2070  */
 2071 #define ACPI_INITIAL_RESOURCE_BUFFER_SIZE       512
 2072 
 2073 ACPI_STATUS
 2074 acpi_AppendBufferResource(ACPI_BUFFER *buf, ACPI_RESOURCE *res)
 2075 {
 2076     ACPI_RESOURCE       *rp;
 2077     void                *newp;
 2078 
 2079     /* Initialise the buffer if necessary. */
 2080     if (buf->Pointer == NULL) {
 2081         buf->Length = ACPI_INITIAL_RESOURCE_BUFFER_SIZE;
 2082         if ((buf->Pointer = AcpiOsAllocate(buf->Length)) == NULL)
 2083             return (AE_NO_MEMORY);
 2084         rp = (ACPI_RESOURCE *)buf->Pointer;
 2085         rp->Type = ACPI_RESOURCE_TYPE_END_TAG;
 2086         rp->Length = 0;
 2087     }
 2088     if (res == NULL)
 2089         return (AE_OK);
 2090 
 2091     /*
 2092      * Scan the current buffer looking for the terminator.
 2093      * This will either find the terminator or hit the end
 2094      * of the buffer and return an error.
 2095      */
 2096     rp = (ACPI_RESOURCE *)buf->Pointer;
 2097     for (;;) {
 2098         /* Range check, don't go outside the buffer */
 2099         if (rp >= (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length))
 2100             return (AE_BAD_PARAMETER);
 2101         if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0)
 2102             break;
 2103         rp = ACPI_NEXT_RESOURCE(rp);
 2104     }
 2105 
 2106     /*
 2107      * Check the size of the buffer and expand if required.
 2108      *
 2109      * Required size is:
 2110      *  size of existing resources before terminator + 
 2111      *  size of new resource and header +
 2112      *  size of terminator.
 2113      *
 2114      * Note that this loop should really only run once, unless
 2115      * for some reason we are stuffing a *really* huge resource.
 2116      */
 2117     while ((((u_int8_t *)rp - (u_int8_t *)buf->Pointer) + 
 2118             res->Length + ACPI_RS_SIZE_NO_DATA +
 2119             ACPI_RS_SIZE_MIN) >= buf->Length) {
 2120         if ((newp = AcpiOsAllocate(buf->Length * 2)) == NULL)
 2121             return (AE_NO_MEMORY);
 2122         bcopy(buf->Pointer, newp, buf->Length);
 2123         rp = (ACPI_RESOURCE *)((u_int8_t *)newp +
 2124                                ((u_int8_t *)rp - (u_int8_t *)buf->Pointer));
 2125         AcpiOsFree(buf->Pointer);
 2126         buf->Pointer = newp;
 2127         buf->Length += buf->Length;
 2128     }
 2129 
 2130     /* Insert the new resource. */
 2131     bcopy(res, rp, res->Length + ACPI_RS_SIZE_NO_DATA);
 2132 
 2133     /* And add the terminator. */
 2134     rp = ACPI_NEXT_RESOURCE(rp);
 2135     rp->Type = ACPI_RESOURCE_TYPE_END_TAG;
 2136     rp->Length = 0;
 2137 
 2138     return (AE_OK);
 2139 }
 2140 
 2141 /*
 2142  * Set interrupt model.
 2143  */
 2144 ACPI_STATUS
 2145 acpi_SetIntrModel(int model)
 2146 {
 2147 
 2148     return (acpi_SetInteger(ACPI_ROOT_OBJECT, "_PIC", model));
 2149 }
 2150 
 2151 /*
 2152  * DEPRECATED.  This interface has serious deficiencies and will be
 2153  * removed.
 2154  *
 2155  * Immediately enter the sleep state.  In the old model, acpiconf(8) ran
 2156  * rc.suspend and rc.resume so we don't have to notify devd(8) to do this.
 2157  */
 2158 ACPI_STATUS
 2159 acpi_SetSleepState(struct acpi_softc *sc, int state)
 2160 {
 2161     static int once;
 2162 
 2163     if (!once) {
 2164         kprintf(
 2165 "warning: acpi_SetSleepState() deprecated, need to update your software\n");
 2166         once = 1;
 2167     }
 2168     return (acpi_EnterSleepState(sc, state));
 2169 }
 2170 
 2171 static void
 2172 acpi_sleep_force(void *arg)
 2173 {
 2174     struct acpi_softc *sc;
 2175 
 2176     kprintf("acpi: suspend request timed out, forcing sleep now\n");
 2177     sc = arg;
 2178     if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate)))
 2179         kprintf("acpi: force sleep state S%d failed\n", sc->acpi_next_sstate);
 2180 }
 2181 
 2182 /*
 2183  * Request that the system enter the given suspend state.  All /dev/apm
 2184  * devices and devd(8) will be notified.  Userland then has a chance to
 2185  * save state and acknowledge the request.  The system sleeps once all
 2186  * acks are in.
 2187  */
 2188 int
 2189 acpi_ReqSleepState(struct acpi_softc *sc, int state)
 2190 {
 2191 #ifdef notyet
 2192     struct apm_clone_data *clone;
 2193 #endif
 2194 
 2195     if (state < ACPI_STATE_S1 || state > ACPI_STATE_S5)
 2196         return (EINVAL);
 2197 
 2198     /* S5 (soft-off) should be entered directly with no waiting. */
 2199     if (state == ACPI_STATE_S5) {
 2200         if (ACPI_SUCCESS(acpi_EnterSleepState(sc, state)))
 2201             return (0);
 2202         else
 2203             return (ENXIO);
 2204     }
 2205 
 2206 #if !defined(__i386__)
 2207     /* This platform does not support acpi suspend/resume. */
 2208     return (EOPNOTSUPP);
 2209 #endif
 2210 
 2211     /* If a suspend request is already in progress, just return. */
 2212     ACPI_LOCK(acpi);
 2213     if (sc->acpi_next_sstate != 0) {
 2214         ACPI_UNLOCK(acpi);
 2215         return (0);
 2216     }
 2217 
 2218     /* Record the pending state and notify all apm devices. */
 2219     sc->acpi_next_sstate = state;
 2220 #if 0
 2221     STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) {
 2222         clone->notify_status = APM_EV_NONE;
 2223         if ((clone->flags & ACPI_EVF_DEVD) == 0) {
 2224             KNOTE(&clone->sel_read.si_note, 0);
 2225         }
 2226     }
 2227 #endif
 2228 
 2229     /* If devd(8) is not running, immediately enter the sleep state. */
 2230     if (devctl_process_running() == FALSE) {
 2231         ACPI_UNLOCK(acpi);
 2232         if (ACPI_SUCCESS(acpi_EnterSleepState(sc, sc->acpi_next_sstate))) {
 2233             return (0);
 2234         } else {
 2235             return (ENXIO);
 2236         }
 2237     }
 2238 
 2239     /* Now notify devd(8) also. */
 2240     acpi_UserNotify("Suspend", ACPI_ROOT_OBJECT, state);
 2241 
 2242     /*
 2243      * Set a timeout to fire if userland doesn't ack the suspend request
 2244      * in time.  This way we still eventually go to sleep if we were
 2245      * overheating or running low on battery, even if userland is hung.
 2246      * We cancel this timeout once all userland acks are in or the
 2247      * suspend request is aborted.
 2248      */
 2249     callout_reset(&sc->susp_force_to, 10 * hz, acpi_sleep_force, sc);
 2250     ACPI_UNLOCK(acpi);
 2251     return (0);
 2252 }
 2253 
 2254 /*
 2255  * Acknowledge (or reject) a pending sleep state.  The caller has
 2256  * prepared for suspend and is now ready for it to proceed.  If the
 2257  * error argument is non-zero, it indicates suspend should be cancelled
 2258  * and gives an errno value describing why.  Once all votes are in,
 2259  * we suspend the system.
 2260  */
 2261 int
 2262 acpi_AckSleepState(struct apm_clone_data *clone, int error)
 2263 {
 2264     struct acpi_softc *sc;
 2265     int ret, sleeping;
 2266 
 2267 #if !defined(__i386__)
 2268     /* This platform does not support acpi suspend/resume. */
 2269     return (EOPNOTSUPP);
 2270 #endif
 2271 
 2272     /* If no pending sleep state, return an error. */
 2273     ACPI_LOCK(acpi);
 2274     sc = clone->acpi_sc;
 2275     if (sc->acpi_next_sstate == 0) {
 2276         ACPI_UNLOCK(acpi);
 2277         return (ENXIO);
 2278     }
 2279 
 2280     /* Caller wants to abort suspend process. */
 2281     if (error) {
 2282         sc->acpi_next_sstate = 0;
 2283         callout_stop(&sc->susp_force_to);
 2284         kprintf("acpi: listener on %s cancelled the pending suspend\n",
 2285             devtoname(clone->cdev));
 2286         ACPI_UNLOCK(acpi);
 2287         return (0);
 2288     }
 2289 
 2290     /*
 2291      * Mark this device as acking the suspend request.  Then, walk through
 2292      * all devices, seeing if they agree yet.  We only count devices that
 2293      * are writable since read-only devices couldn't ack the request.
 2294      */
 2295     clone->notify_status = APM_EV_ACKED;
 2296     sleeping = TRUE;
 2297     STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) {
 2298         if ((clone->flags & ACPI_EVF_WRITE) != 0 &&
 2299             clone->notify_status != APM_EV_ACKED) {
 2300             sleeping = FALSE;
 2301             break;
 2302         }
 2303     }
 2304 
 2305     /* If all devices have voted "yes", we will suspend now. */
 2306     if (sleeping)
 2307         callout_stop(&sc->susp_force_to);
 2308     ACPI_UNLOCK(acpi);
 2309     ret = 0;
 2310     if (sleeping) {
 2311         if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate)))
 2312                 ret = ENODEV;
 2313     }
 2314 
 2315     return (ret);
 2316 }
 2317 
 2318 static void
 2319 acpi_sleep_enable(void *arg)
 2320 {
 2321     ((struct acpi_softc *)arg)->acpi_sleep_disabled = 0;
 2322 }
 2323 
 2324 enum acpi_sleep_state {
 2325     ACPI_SS_NONE,
 2326     ACPI_SS_GPE_SET,
 2327     ACPI_SS_DEV_SUSPEND,
 2328     ACPI_SS_SLP_PREP,
 2329     ACPI_SS_SLEPT,
 2330 };
 2331 
 2332 /*
 2333  * Enter the desired system sleep state.
 2334  *
 2335  * Currently we support S1-S5 but S4 is only S4BIOS
 2336  */
 2337 static ACPI_STATUS
 2338 acpi_EnterSleepState(struct acpi_softc *sc, int state)
 2339 {
 2340     ACPI_STATUS status;
 2341     UINT8       TypeA;
 2342     UINT8       TypeB;
 2343     enum acpi_sleep_state slp_state;
 2344 
 2345     ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state);
 2346 
 2347     /* Re-entry once we're suspending is not allowed. */
 2348     status = AE_OK;
 2349     ACPI_LOCK(acpi);
 2350     if (sc->acpi_sleep_disabled) {
 2351         ACPI_UNLOCK(acpi);
 2352         kprintf("acpi: suspend request ignored (not ready yet)\n");
 2353         return (AE_ERROR);
 2354     }
 2355     sc->acpi_sleep_disabled = 1;
 2356     ACPI_UNLOCK(acpi);
 2357 
 2358     /*
 2359      * Be sure to hold Giant across DEVICE_SUSPEND/RESUME since non-MPSAFE
 2360      * drivers need this.
 2361      */
 2362     //get_mplock();
 2363     slp_state = ACPI_SS_NONE;
 2364     switch (state) {
 2365     case ACPI_STATE_S1:
 2366     case ACPI_STATE_S2:
 2367     case ACPI_STATE_S3:
 2368     case ACPI_STATE_S4:
 2369         status = AcpiGetSleepTypeData(state, &TypeA, &TypeB);
 2370         if (status == AE_NOT_FOUND) {
 2371             device_printf(sc->acpi_dev,
 2372                           "Sleep state S%d not supported by BIOS\n", state);
 2373             break;
 2374         } else if (ACPI_FAILURE(status)) {
 2375             device_printf(sc->acpi_dev, "AcpiGetSleepTypeData failed - %s\n",
 2376                           AcpiFormatException(status));
 2377             break;
 2378         }
 2379 
 2380         sc->acpi_sstate = state;
 2381 
 2382         /* Enable any GPEs as appropriate and requested by the user. */
 2383         acpi_wake_prep_walk(state);
 2384         slp_state = ACPI_SS_GPE_SET;
 2385 
 2386         /*
 2387          * Inform all devices that we are going to sleep.  If at least one
 2388          * device fails, DEVICE_SUSPEND() automatically resumes the tree.
 2389          *
 2390          * XXX Note that a better two-pass approach with a 'veto' pass
 2391          * followed by a "real thing" pass would be better, but the current
 2392          * bus interface does not provide for this.
 2393          */
 2394         if (DEVICE_SUSPEND(root_bus) != 0) {
 2395             device_printf(sc->acpi_dev, "device_suspend failed\n");
 2396             break;
 2397         }
 2398         slp_state = ACPI_SS_DEV_SUSPEND;
 2399 
 2400         /* If testing device suspend only, back out of everything here. */
 2401         if (acpi_susp_bounce)
 2402             break;
 2403 
 2404         status = AcpiEnterSleepStatePrep(state);
 2405         if (ACPI_FAILURE(status)) {
 2406             device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n",
 2407                           AcpiFormatException(status));
 2408             break;
 2409         }
 2410         slp_state = ACPI_SS_SLP_PREP;
 2411 
 2412         if (sc->acpi_sleep_delay > 0)
 2413             DELAY(sc->acpi_sleep_delay * 1000000);
 2414 
 2415         if (state != ACPI_STATE_S1) {
 2416             acpi_sleep_machdep(sc, state);
 2417 
 2418             /* Re-enable ACPI hardware on wakeup from sleep state 4. */
 2419             if (state == ACPI_STATE_S4)
 2420                 AcpiEnable();
 2421         } else {
 2422             ACPI_DISABLE_IRQS();
 2423             status = AcpiEnterSleepState(state);
 2424             if (ACPI_FAILURE(status)) {
 2425                 device_printf(sc->acpi_dev, "AcpiEnterSleepState failed - %s\n",
 2426                               AcpiFormatException(status));
 2427                 break;
 2428             }
 2429         }
 2430         slp_state = ACPI_SS_SLEPT;
 2431         break;
 2432     case ACPI_STATE_S5:
 2433         /*
 2434          * Shut down cleanly and power off.  This will call us back through the
 2435          * shutdown handlers.
 2436          */
 2437         shutdown_nice(RB_POWEROFF);
 2438         break;
 2439     case ACPI_STATE_S0:
 2440     default:
 2441         status = AE_BAD_PARAMETER;
 2442         break;
 2443     }
 2444 
 2445     /*
 2446      * Back out state according to how far along we got in the suspend
 2447      * process.  This handles both the error and success cases.
 2448      */
 2449     sc->acpi_next_sstate = 0;
 2450     if (slp_state >= ACPI_SS_GPE_SET) {
 2451         acpi_wake_prep_walk(state);
 2452         sc->acpi_sstate = ACPI_STATE_S0;
 2453     }
 2454     if (slp_state >= ACPI_SS_SLP_PREP)
 2455         AcpiLeaveSleepState(state);
 2456     if (slp_state >= ACPI_SS_DEV_SUSPEND)
 2457         DEVICE_RESUME(root_bus);
 2458     if (slp_state >= ACPI_SS_SLEPT)
 2459         acpi_enable_fixed_events(sc);
 2460 
 2461     /* Allow another sleep request after a while. */
 2462     /* XXX: needs timeout */
 2463     if (state != ACPI_STATE_S5)
 2464               acpi_sleep_enable(sc);
 2465 
 2466     /* Run /etc/rc.resume after we are back. */
 2467     acpi_UserNotify("Resume", ACPI_ROOT_OBJECT, state);
 2468 
 2469     //rel_mplock();
 2470     return_ACPI_STATUS (status);
 2471 }
 2472 
 2473 /* Enable or disable the device's GPE. */
 2474 int
 2475 acpi_wake_set_enable(device_t dev, int enable)
 2476 {
 2477     struct acpi_prw_data prw;
 2478     ACPI_STATUS status;
 2479     int flags;
 2480 
 2481     /* Make sure the device supports waking the system and get the GPE. */
 2482     if (acpi_parse_prw(acpi_get_handle(dev), &prw) != 0)
 2483         return (ENXIO);
 2484 
 2485     flags = acpi_get_flags(dev);
 2486     if (enable) {
 2487         status = AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit,
 2488                                     ACPI_GPE_ENABLE);
 2489         if (ACPI_FAILURE(status)) {
 2490             device_printf(dev, "enable wake failed\n");
 2491             return (ENXIO);
 2492         }
 2493         acpi_set_flags(dev, flags | ACPI_FLAG_WAKE_ENABLED);
 2494     } else {
 2495         status = AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit,
 2496                                     ACPI_GPE_DISABLE);
 2497         if (ACPI_FAILURE(status)) {
 2498             device_printf(dev, "disable wake failed\n");
 2499             return (ENXIO);
 2500         }
 2501         acpi_set_flags(dev, flags & ~ACPI_FLAG_WAKE_ENABLED);
 2502     }
 2503 
 2504     return (0);
 2505 }
 2506 
 2507 static int
 2508 acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate)
 2509 {
 2510     struct acpi_prw_data prw;
 2511     device_t dev;
 2512 
 2513     /* Check that this is a wake-capable device and get its GPE. */
 2514     if (acpi_parse_prw(handle, &prw) != 0)
 2515         return (ENXIO);
 2516     dev = acpi_get_device(handle);
 2517 
 2518     /*
 2519      * The destination sleep state must be less than (i.e., higher power)
 2520      * or equal to the value specified by _PRW.  If this GPE cannot be
 2521      * enabled for the next sleep state, then disable it.  If it can and
 2522      * the user requested it be enabled, turn on any required power resources
 2523      * and set _PSW.
 2524      */
 2525     if (sstate > prw.lowest_wake) {
 2526         AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_DISABLE);
 2527         if (bootverbose)
 2528             device_printf(dev, "wake_prep disabled wake for %s (S%d)\n",
 2529                 acpi_name(handle), sstate);
 2530     } else if (dev && (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) != 0) {
 2531         acpi_pwr_wake_enable(handle, 1);
 2532         acpi_SetInteger(handle, "_PSW", 1);
 2533         if (bootverbose)
 2534             device_printf(dev, "wake_prep enabled for %s (S%d)\n",
 2535                 acpi_name(handle), sstate);
 2536     }
 2537 
 2538     return (0);
 2539 }
 2540 
 2541 static int
 2542 acpi_wake_run_prep(ACPI_HANDLE handle, int sstate)
 2543 {
 2544     struct acpi_prw_data prw;
 2545     device_t dev;
 2546 
 2547     /*
 2548      * Check that this is a wake-capable device and get its GPE.  Return
 2549      * now if the user didn't enable this device for wake.
 2550      */
 2551     if (acpi_parse_prw(handle, &prw) != 0)
 2552         return (ENXIO);
 2553     dev = acpi_get_device(handle);
 2554     if (dev == NULL || (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) == 0)
 2555         return (0);
 2556 
 2557     /*
 2558      * If this GPE couldn't be enabled for the previous sleep state, it was
 2559      * disabled before going to sleep so re-enable it.  If it was enabled,
 2560      * clear _PSW and turn off any power resources it used.
 2561      */
 2562     if (sstate > prw.lowest_wake) {
 2563         AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_ENABLE);
 2564         if (bootverbose)
 2565             device_printf(dev, "run_prep re-enabled %s\n", acpi_name(handle));
 2566     } else {
 2567         acpi_SetInteger(handle, "_PSW", 0);
 2568         acpi_pwr_wake_enable(handle, 0);
 2569         if (bootverbose)
 2570             device_printf(dev, "run_prep cleaned up for %s\n",
 2571                 acpi_name(handle));
 2572     }
 2573 
 2574     return (0);
 2575 }
 2576 
 2577 static ACPI_STATUS
 2578 acpi_wake_prep(ACPI_HANDLE handle, UINT32 level, void *context, void **status)
 2579 {
 2580     int sstate;
 2581 
 2582     /* If suspending, run the sleep prep function, otherwise wake. */
 2583     sstate = *(int *)context;
 2584     if (AcpiGbl_SystemAwakeAndRunning)
 2585         acpi_wake_sleep_prep(handle, sstate);
 2586     else
 2587         acpi_wake_run_prep(handle, sstate);
 2588     return (AE_OK);
 2589 }
 2590 
 2591 /* Walk the tree rooted at acpi0 to prep devices for suspend/resume. */
 2592 static int
 2593 acpi_wake_prep_walk(int sstate)
 2594 {
 2595     ACPI_HANDLE sb_handle;
 2596 
 2597     if (ACPI_SUCCESS(AcpiGetHandle(ACPI_ROOT_OBJECT, "\\_SB_", &sb_handle))) {
 2598         AcpiWalkNamespace(ACPI_TYPE_DEVICE, sb_handle, 100,
 2599             acpi_wake_prep, NULL, &sstate, NULL);
 2600     }
 2601     return (0);
 2602 }
 2603 
 2604 /* Walk the tree rooted at acpi0 to attach per-device wake sysctls. */
 2605 static int
 2606 acpi_wake_sysctl_walk(device_t dev)
 2607 {
 2608 #ifdef notyet
 2609     int error, i, numdevs;
 2610     device_t *devlist;
 2611     device_t child;
 2612     ACPI_STATUS status;
 2613 
 2614     error = device_get_children(dev, &devlist, &numdevs);
 2615     if (error != 0 || numdevs == 0) {
 2616         if (numdevs == 0)
 2617             kfree(devlist, M_TEMP);
 2618         return (error);
 2619     }
 2620     for (i = 0; i < numdevs; i++) {
 2621         child = devlist[i];
 2622         acpi_wake_sysctl_walk(child);
 2623         if (!device_is_attached(child))
 2624             continue;
 2625         status = AcpiEvaluateObject(acpi_get_handle(child), "_PRW", NULL, NULL);
 2626         if (ACPI_SUCCESS(status)) {
 2627             SYSCTL_ADD_PROC(device_get_sysctl_ctx(child),
 2628                 SYSCTL_CHILDREN(device_get_sysctl_tree(child)), OID_AUTO,
 2629                 "wake", CTLTYPE_INT | CTLFLAG_RW, child, 0,
 2630                 acpi_wake_set_sysctl, "I", "Device set to wake the system");
 2631         }
 2632     }
 2633     kfree(devlist, M_TEMP);
 2634 #endif
 2635 
 2636     return (0);
 2637 }
 2638 
 2639 #ifdef notyet
 2640 /* Enable or disable wake from userland. */
 2641 static int
 2642 acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS)
 2643 {
 2644     int enable, error;
 2645     device_t dev;
 2646 
 2647     dev = (device_t)arg1;
 2648     enable = (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) ? 1 : 0;
 2649 
 2650     error = sysctl_handle_int(oidp, &enable, 0, req);
 2651     if (error != 0 || req->newptr == NULL)
 2652         return (error);
 2653     if (enable != 0 && enable != 1)
 2654         return (EINVAL);
 2655 
 2656     return (acpi_wake_set_enable(dev, enable));
 2657 }
 2658 #endif
 2659 
 2660 /* Parse a device's _PRW into a structure. */
 2661 int
 2662 acpi_parse_prw(ACPI_HANDLE h, struct acpi_prw_data *prw)
 2663 {
 2664     ACPI_STATUS                 status;
 2665     ACPI_BUFFER                 prw_buffer;
 2666     ACPI_OBJECT                 *res, *res2;
 2667     int                         error, i, power_count;
 2668 
 2669     if (h == NULL || prw == NULL)
 2670         return (EINVAL);
 2671 
 2672     /*
 2673      * The _PRW object (7.2.9) is only required for devices that have the
 2674      * ability to wake the system from a sleeping state.
 2675      */
 2676     error = EINVAL;
 2677     prw_buffer.Pointer = NULL;
 2678     prw_buffer.Length = ACPI_ALLOCATE_BUFFER;
 2679     status = AcpiEvaluateObject(h, "_PRW", NULL, &prw_buffer);
 2680     if (ACPI_FAILURE(status))
 2681         return (ENOENT);
 2682     res = (ACPI_OBJECT *)prw_buffer.Pointer;
 2683     if (res == NULL)
 2684         return (ENOENT);
 2685     if (!ACPI_PKG_VALID(res, 2))
 2686         goto out;
 2687 
 2688     /*
 2689      * Element 1 of the _PRW object:
 2690      * The lowest power system sleeping state that can be entered while still
 2691      * providing wake functionality.  The sleeping state being entered must
 2692      * be less than (i.e., higher power) or equal to this value.
 2693      */
 2694     if (acpi_PkgInt32(res, 1, &prw->lowest_wake) != 0)
 2695         goto out;
 2696 
 2697     /*
 2698      * Element 0 of the _PRW object:
 2699      */
 2700     switch (res->Package.Elements[0].Type) {
 2701     case ACPI_TYPE_INTEGER:
 2702         /*
 2703          * If the data type of this package element is numeric, then this
 2704          * _PRW package element is the bit index in the GPEx_EN, in the
 2705          * GPE blocks described in the FADT, of the enable bit that is
 2706          * enabled for the wake event.
 2707          */
 2708         prw->gpe_handle = NULL;
 2709         prw->gpe_bit = res->Package.Elements[0].Integer.Value;
 2710         error = 0;
 2711         break;
 2712     case ACPI_TYPE_PACKAGE:
 2713         /*
 2714          * If the data type of this package element is a package, then this
 2715          * _PRW package element is itself a package containing two
 2716          * elements.  The first is an object reference to the GPE Block
 2717          * device that contains the GPE that will be triggered by the wake
 2718          * event.  The second element is numeric and it contains the bit
 2719          * index in the GPEx_EN, in the GPE Block referenced by the
 2720          * first element in the package, of the enable bit that is enabled for
 2721          * the wake event.
 2722          *
 2723          * For example, if this field is a package then it is of the form:
 2724          * Package() {\_SB.PCI0.ISA.GPE, 2}
 2725          */
 2726         res2 = &res->Package.Elements[0];
 2727         if (!ACPI_PKG_VALID(res2, 2))
 2728             goto out;
 2729         prw->gpe_handle = acpi_GetReference(NULL, &res2->Package.Elements[0]);
 2730         if (prw->gpe_handle == NULL)
 2731             goto out;
 2732         if (acpi_PkgInt32(res2, 1, &prw->gpe_bit) != 0)
 2733             goto out;
 2734         error = 0;
 2735         break;
 2736     default:
 2737         goto out;
 2738     }
 2739 
 2740     /* Elements 2 to N of the _PRW object are power resources. */
 2741     power_count = res->Package.Count - 2;
 2742     if (power_count > ACPI_PRW_MAX_POWERRES) {
 2743         kprintf("ACPI device %s has too many power resources\n", acpi_name(h));
 2744         power_count = 0;
 2745     }
 2746     prw->power_res_count = power_count;
 2747     for (i = 0; i < power_count; i++)
 2748         prw->power_res[i] = res->Package.Elements[i];
 2749 
 2750 out:
 2751     if (prw_buffer.Pointer != NULL)
 2752         AcpiOsFree(prw_buffer.Pointer);
 2753     return (error);
 2754 }
 2755 
 2756 /*
 2757  * ACPI Event Handlers
 2758  */
 2759 
 2760 /* System Event Handlers (registered by EVENTHANDLER_REGISTER) */
 2761 
 2762 static void
 2763 acpi_system_eventhandler_sleep(void *arg, int state)
 2764 {
 2765     int ret;
 2766 
 2767     ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state);
 2768 
 2769     /* Check if button action is disabled. */
 2770     if (state == ACPI_S_STATES_MAX + 1)
 2771         return;
 2772 
 2773     /* Request that the system prepare to enter the given suspend state. */
 2774     ret = acpi_ReqSleepState((struct acpi_softc *)arg, state);
 2775     if (ret != 0)
 2776         kprintf("acpi: request to enter state S%d failed (err %d)\n",
 2777             state, ret);
 2778 
 2779     return_VOID;
 2780 }
 2781 
 2782 static void
 2783 acpi_system_eventhandler_wakeup(void *arg, int state)
 2784 {
 2785 
 2786     ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state);
 2787 
 2788     /* Currently, nothing to do for wakeup. */
 2789 
 2790     return_VOID;
 2791 }
 2792 
 2793 /* 
 2794  * ACPICA Event Handlers (FixedEvent, also called from button notify handler)
 2795  */
 2796 UINT32
 2797 acpi_event_power_button_sleep(void *context)
 2798 {
 2799     struct acpi_softc   *sc = (struct acpi_softc *)context;
 2800 
 2801     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
 2802 
 2803     EVENTHANDLER_INVOKE(acpi_sleep_event, sc->acpi_power_button_sx);
 2804 
 2805     return_VALUE (ACPI_INTERRUPT_HANDLED);
 2806 }
 2807 
 2808 UINT32
 2809 acpi_event_power_button_wake(void *context)
 2810 {
 2811     struct acpi_softc   *sc = (struct acpi_softc *)context;
 2812 
 2813     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
 2814 
 2815     EVENTHANDLER_INVOKE(acpi_wakeup_event, sc->acpi_power_button_sx);
 2816 
 2817     return_VALUE (ACPI_INTERRUPT_HANDLED);
 2818 }
 2819 
 2820 UINT32
 2821 acpi_event_sleep_button_sleep(void *context)
 2822 {
 2823     struct acpi_softc   *sc = (struct acpi_softc *)context;
 2824 
 2825     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
 2826 
 2827     EVENTHANDLER_INVOKE(acpi_sleep_event, sc->acpi_sleep_button_sx);
 2828 
 2829     return_VALUE (ACPI_INTERRUPT_HANDLED);
 2830 }
 2831 
 2832 UINT32
 2833 acpi_event_sleep_button_wake(void *context)
 2834 {
 2835     struct acpi_softc   *sc = (struct acpi_softc *)context;
 2836 
 2837     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
 2838 
 2839     EVENTHANDLER_INVOKE(acpi_wakeup_event, sc->acpi_sleep_button_sx);
 2840 
 2841     return_VALUE (ACPI_INTERRUPT_HANDLED);
 2842 }
 2843 
 2844 /*
 2845  * XXX This static buffer is suboptimal.  There is no locking so only
 2846  * use this for single-threaded callers.
 2847  */
 2848 char *
 2849 acpi_name(ACPI_HANDLE handle)
 2850 {
 2851     ACPI_BUFFER buf;
 2852     static char data[256];
 2853 
 2854     buf.Length = sizeof(data);
 2855     buf.Pointer = data;
 2856 
 2857     if (handle && ACPI_SUCCESS(AcpiGetName(handle, ACPI_FULL_PATHNAME, &buf)))
 2858         return (data);
 2859     return ("(unknown)");
 2860 }
 2861 
 2862 /*
 2863  * Debugging/bug-avoidance.  Avoid trying to fetch info on various
 2864  * parts of the namespace.
 2865  */
 2866 int
 2867 acpi_avoid(ACPI_HANDLE handle)
 2868 {
 2869     char        *cp, *env, *np;
 2870     int         len;
 2871 
 2872     np = acpi_name(handle);
 2873     if (*np == '\\')
 2874         np++;
 2875     if ((env = kgetenv("debug.acpi.avoid")) == NULL)
 2876         return (0);
 2877 
 2878     /* Scan the avoid list checking for a match */
 2879     cp = env;
 2880     for (;;) {
 2881         while (*cp != 0 && isspace(*cp))
 2882             cp++;
 2883         if (*cp == 0)
 2884             break;
 2885         len = 0;
 2886         while (cp[len] != 0 && !isspace(cp[len]))
 2887             len++;
 2888         if (!strncmp(cp, np, len)) {
 2889             kfreeenv(env);
 2890             return(1);
 2891         }
 2892         cp += len;
 2893     }
 2894     kfreeenv(env);
 2895 
 2896     return (0);
 2897 }
 2898 
 2899 /*
 2900  * Debugging/bug-avoidance.  Disable ACPI subsystem components.
 2901  */
 2902 int
 2903 acpi_disabled(char *subsys)
 2904 {
 2905     char        *cp, *env;
 2906     int         len;
 2907 
 2908     if ((env = kgetenv("debug.acpi.disabled")) == NULL)
 2909         return (0);
 2910     if (strcmp(env, "all") == 0) {
 2911         kfreeenv(env);
 2912         return (1);
 2913     }
 2914 
 2915     /* Scan the disable list, checking for a match. */
 2916     cp = env;
 2917     for (;;) {
 2918         while (*cp != '\0' && isspace(*cp))
 2919             cp++;
 2920         if (*cp == '\0')
 2921             break;
 2922         len = 0;
 2923         while (cp[len] != '\0' && !isspace(cp[len]))
 2924             len++;
 2925         if (strncmp(cp, subsys, len) == 0) {
 2926             kfreeenv(env);
 2927             return (1);
 2928         }
 2929         cp += len;
 2930     }
 2931     kfreeenv(env);
 2932 
 2933     return (0);
 2934 }
 2935 
 2936 /*
 2937  * Debugging/bug-avoidance.  Enable ACPI subsystem components.  Most 
 2938  * components are enabled by default.  The ones that are not have to be 
 2939  * enabled via debug.acpi.enabled.
 2940  */
 2941 int
 2942 acpi_enabled(char *subsys)
 2943 {
 2944     char        *cp, *env;
 2945     int         len;
 2946 
 2947     if ((env = kgetenv("debug.acpi.enabled")) == NULL)
 2948         return (0);
 2949     if (strcmp(env, "all") == 0) {
 2950         kfreeenv(env);
 2951         return (1);
 2952     }
 2953 
 2954     /* Scan the enable list, checking for a match. */
 2955     cp = env;
 2956     for (;;) {
 2957         while (*cp != '\0' && isspace(*cp))
 2958             cp++;
 2959         if (*cp == '\0')
 2960             break;
 2961         len = 0;
 2962         while (cp[len] != '\0' && !isspace(cp[len]))
 2963             len++;
 2964         if (strncmp(cp, subsys, len) == 0) {
 2965             kfreeenv(env);
 2966             return (1);
 2967         }
 2968         cp += len;
 2969     }
 2970     kfreeenv(env);
 2971 
 2972     return (0);
 2973 }
 2974 
 2975 /*
 2976  * Control interface.
 2977  *
 2978  * We multiplex ioctls for all participating ACPI devices here.  Individual 
 2979  * drivers wanting to be accessible via /dev/acpi should use the
 2980  * register/deregister interface to make their handlers visible.
 2981  */
 2982 struct acpi_ioctl_hook
 2983 {
 2984     TAILQ_ENTRY(acpi_ioctl_hook) link;
 2985     u_long                       cmd;
 2986     acpi_ioctl_fn                fn;
 2987     void                         *arg;
 2988 };
 2989 
 2990 static TAILQ_HEAD(,acpi_ioctl_hook)     acpi_ioctl_hooks;
 2991 static int                              acpi_ioctl_hooks_initted;
 2992 
 2993 int
 2994 acpi_register_ioctl(u_long cmd, acpi_ioctl_fn fn, void *arg)
 2995 {
 2996     struct acpi_ioctl_hook      *hp;
 2997 
 2998     if ((hp = kmalloc(sizeof(*hp), M_ACPIDEV, M_NOWAIT)) == NULL)
 2999         return (ENOMEM);
 3000     hp->cmd = cmd;
 3001     hp->fn = fn;
 3002     hp->arg = arg;
 3003 
 3004     ACPI_LOCK(acpi);
 3005     if (acpi_ioctl_hooks_initted == 0) {
 3006         TAILQ_INIT(&acpi_ioctl_hooks);
 3007         acpi_ioctl_hooks_initted = 1;
 3008     }
 3009     TAILQ_INSERT_TAIL(&acpi_ioctl_hooks, hp, link);
 3010     ACPI_UNLOCK(acpi);
 3011 
 3012     return (0);
 3013 }
 3014 
 3015 void
 3016 acpi_deregister_ioctl(u_long cmd, acpi_ioctl_fn fn)
 3017 {
 3018     struct acpi_ioctl_hook      *hp;
 3019 
 3020     ACPI_LOCK(acpi);
 3021     TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link)
 3022         if (hp->cmd == cmd && hp->fn == fn)
 3023             break;
 3024 
 3025     if (hp != NULL) {
 3026         TAILQ_REMOVE(&acpi_ioctl_hooks, hp, link);
 3027         kfree(hp, M_ACPIDEV);
 3028     }
 3029     ACPI_UNLOCK(acpi);
 3030 }
 3031 
 3032 static int
 3033 acpiopen(struct dev_open_args *ap)
 3034 {
 3035     return (0);
 3036 }
 3037 
 3038 static int
 3039 acpiclose(struct dev_close_args *ap)
 3040 {
 3041     return (0);
 3042 }
 3043 
 3044 static int
 3045 acpiioctl(struct dev_ioctl_args *ap)
 3046 {
 3047     struct acpi_softc           *sc;
 3048     struct acpi_ioctl_hook      *hp;
 3049     int                         error, state;
 3050 
 3051     error = 0;
 3052     hp = NULL;
 3053     sc = ap->a_head.a_dev->si_drv1;
 3054 
 3055     /*
 3056      * Scan the list of registered ioctls, looking for handlers.
 3057      */
 3058     ACPI_LOCK(acpi);
 3059     if (acpi_ioctl_hooks_initted)
 3060         TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link) {
 3061             if (hp->cmd == ap->a_cmd)
 3062                 break;
 3063         }
 3064     ACPI_UNLOCK(acpi);
 3065     if (hp)
 3066         return (hp->fn(ap->a_cmd, ap->a_data, hp->arg));
 3067 
 3068     /*
 3069      * Core ioctls are not permitted for non-writable user.
 3070      * Currently, other ioctls just fetch information.
 3071      * Not changing system behavior.
 3072      */
 3073     if ((ap->a_fflag & FWRITE) == 0)
 3074         return (EPERM);
 3075 
 3076     /* Core system ioctls. */
 3077     switch (ap->a_cmd) {
 3078     case ACPIIO_REQSLPSTATE:
 3079         state = *(int *)ap->a_data;
 3080         if (state != ACPI_STATE_S5)
 3081             error = acpi_ReqSleepState(sc, state);
 3082         else {
 3083             kprintf("power off via acpi ioctl not supported\n");
 3084             error = ENXIO;
 3085         }
 3086         break;
 3087     case ACPIIO_ACKSLPSTATE:
 3088         error = EOPNOTSUPP;
 3089 #if 0 /* notyet */
 3090         error = *(int *)ap->a_data;
 3091         error = acpi_AckSleepState(sc->acpi_clone, error);
 3092 #endif
 3093         break;
 3094     case ACPIIO_SETSLPSTATE:    /* DEPRECATED */
 3095         error = EINVAL;
 3096         state = *(int *)ap->a_data;
 3097         if (state >= ACPI_STATE_S0 && state <= ACPI_S_STATES_MAX)
 3098             if (ACPI_SUCCESS(acpi_SetSleepState(sc, state)))
 3099                 error = 0;
 3100         break;
 3101     default:
 3102         error = ENXIO;
 3103         break;
 3104     }
 3105     return (error);
 3106 }
 3107 
 3108 static int
 3109 acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS)
 3110 {
 3111     int error;
 3112     struct sbuf sb;
 3113     UINT8 state, TypeA, TypeB;
 3114 
 3115     sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND);
 3116     for (state = ACPI_STATE_S1; state < ACPI_S_STATES_MAX + 1; state++)
 3117         if (ACPI_SUCCESS(AcpiGetSleepTypeData(state, &TypeA, &TypeB)))
 3118             sbuf_printf(&sb, "S%d ", state);
 3119     sbuf_trim(&sb);
 3120     sbuf_finish(&sb);
 3121     error = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
 3122     sbuf_delete(&sb);
 3123     return (error);
 3124 }
 3125 
 3126 static int
 3127 acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS)
 3128 {
 3129     char sleep_state[10];
 3130     int error;
 3131     u_int new_state, old_state;
 3132 
 3133     old_state = *(u_int *)oidp->oid_arg1;
 3134     if (old_state > ACPI_S_STATES_MAX + 1)
 3135         strlcpy(sleep_state, "unknown", sizeof(sleep_state));
 3136     else
 3137         strlcpy(sleep_state, sleep_state_names[old_state], sizeof(sleep_state));
 3138     error = sysctl_handle_string(oidp, sleep_state, sizeof(sleep_state), req);
 3139     if (error == 0 && req->newptr != NULL) {
 3140         new_state = ACPI_STATE_S0;
 3141         for (; new_state <= ACPI_S_STATES_MAX + 1; new_state++)
 3142             if (strcmp(sleep_state, sleep_state_names[new_state]) == 0)
 3143                 break;
 3144         if (new_state <= ACPI_S_STATES_MAX + 1) {
 3145             if (new_state != old_state)
 3146                 *(u_int *)oidp->oid_arg1 = new_state;
 3147         } else
 3148             error = EINVAL;
 3149     }
 3150 
 3151     return (error);
 3152 }
 3153 
 3154 /* Inform devctl(4) when we receive a Notify. */
 3155 void
 3156 acpi_UserNotify(const char *subsystem, ACPI_HANDLE h, uint8_t notify)
 3157 {
 3158     char                notify_buf[16];
 3159     ACPI_BUFFER         handle_buf;
 3160     ACPI_STATUS         status;
 3161 
 3162     if (subsystem == NULL)
 3163         return;
 3164 
 3165     handle_buf.Pointer = NULL;
 3166     handle_buf.Length = ACPI_ALLOCATE_BUFFER;
 3167     status = AcpiNsHandleToPathname(h, &handle_buf);
 3168     if (ACPI_FAILURE(status))
 3169         return;
 3170     ksnprintf(notify_buf, sizeof(notify_buf), "notify=0x%02x", notify);
 3171     devctl_notify("ACPI", subsystem, handle_buf.Pointer, notify_buf);
 3172     AcpiOsFree(handle_buf.Pointer);
 3173 }
 3174 
 3175 #ifdef ACPI_DEBUG
 3176 /*
 3177  * Support for parsing debug options from the kernel environment.
 3178  *
 3179  * Bits may be set in the AcpiDbgLayer and AcpiDbgLevel debug registers
 3180  * by specifying the names of the bits in the debug.acpi.layer and
 3181  * debug.acpi.level environment variables.  Bits may be unset by 
 3182  * prefixing the bit name with !.
 3183  */
 3184 struct debugtag
 3185 {
 3186     char        *name;
 3187     UINT32      value;
 3188 };
 3189 
 3190 static struct debugtag  dbg_layer[] = {
 3191     {"ACPI_UTILITIES",          ACPI_UTILITIES},
 3192     {"ACPI_HARDWARE",           ACPI_HARDWARE},
 3193     {"ACPI_EVENTS",             ACPI_EVENTS},
 3194     {"ACPI_TABLES",             ACPI_TABLES},
 3195     {"ACPI_NAMESPACE",          ACPI_NAMESPACE},
 3196     {"ACPI_PARSER",             ACPI_PARSER},
 3197     {"ACPI_DISPATCHER",         ACPI_DISPATCHER},
 3198     {"ACPI_EXECUTER",           ACPI_EXECUTER},
 3199     {"ACPI_RESOURCES",          ACPI_RESOURCES},
 3200     {"ACPI_CA_DEBUGGER",        ACPI_CA_DEBUGGER},
 3201     {"ACPI_OS_SERVICES",        ACPI_OS_SERVICES},
 3202     {"ACPI_CA_DISASSEMBLER",    ACPI_CA_DISASSEMBLER},
 3203     {"ACPI_ALL_COMPONENTS",     ACPI_ALL_COMPONENTS},
 3204 
 3205     {"ACPI_AC_ADAPTER",         ACPI_AC_ADAPTER},
 3206     {"ACPI_BATTERY",            ACPI_BATTERY},
 3207     {"ACPI_BUS",                ACPI_BUS},
 3208     {"ACPI_BUTTON",             ACPI_BUTTON},
 3209     {"ACPI_EC",                 ACPI_EC},
 3210     {"ACPI_FAN",                ACPI_FAN},
 3211     {"ACPI_POWERRES",           ACPI_POWERRES},
 3212     {"ACPI_PROCESSOR",          ACPI_PROCESSOR},
 3213     {"ACPI_THERMAL",            ACPI_THERMAL},
 3214     {"ACPI_TIMER",              ACPI_TIMER},
 3215     {"ACPI_ALL_DRIVERS",        ACPI_ALL_DRIVERS},
 3216     {NULL, 0}
 3217 };
 3218 
 3219 static struct debugtag dbg_level[] = {
 3220     {"ACPI_LV_INIT",            ACPI_LV_INIT},
 3221     {"ACPI_LV_DEBUG_OBJECT",    ACPI_LV_DEBUG_OBJECT},
 3222     {"ACPI_LV_INFO",            ACPI_LV_INFO},
 3223     {"ACPI_LV_ALL_EXCEPTIONS",  ACPI_LV_ALL_EXCEPTIONS},
 3224 
 3225     /* Trace verbosity level 1 [Standard Trace Level] */
 3226     {"ACPI_LV_INIT_NAMES",      ACPI_LV_INIT_NAMES},
 3227     {"ACPI_LV_PARSE",           ACPI_LV_PARSE},
 3228     {"ACPI_LV_LOAD",            ACPI_LV_LOAD},
 3229     {"ACPI_LV_DISPATCH",        ACPI_LV_DISPATCH},
 3230     {"ACPI_LV_EXEC",            ACPI_LV_EXEC},
 3231     {"ACPI_LV_NAMES",           ACPI_LV_NAMES},
 3232     {"ACPI_LV_OPREGION",        ACPI_LV_OPREGION},
 3233     {"ACPI_LV_BFIELD",          ACPI_LV_BFIELD},
 3234     {"ACPI_LV_TABLES",          ACPI_LV_TABLES},
 3235     {"ACPI_LV_VALUES",          ACPI_LV_VALUES},
 3236     {"ACPI_LV_OBJECTS",         ACPI_LV_OBJECTS},
 3237     {"ACPI_LV_RESOURCES",       ACPI_LV_RESOURCES},
 3238     {"ACPI_LV_USER_REQUESTS",   ACPI_LV_USER_REQUESTS},
 3239     {"ACPI_LV_PACKAGE",         ACPI_LV_PACKAGE},
 3240     {"ACPI_LV_VERBOSITY1",      ACPI_LV_VERBOSITY1},
 3241 
 3242     /* Trace verbosity level 2 [Function tracing and memory allocation] */
 3243     {"ACPI_LV_ALLOCATIONS",     ACPI_LV_ALLOCATIONS},
 3244     {"ACPI_LV_FUNCTIONS",       ACPI_LV_FUNCTIONS},
 3245     {"ACPI_LV_OPTIMIZATIONS",   ACPI_LV_OPTIMIZATIONS},
 3246     {"ACPI_LV_VERBOSITY2",      ACPI_LV_VERBOSITY2},
 3247     {"ACPI_LV_ALL",             ACPI_LV_ALL},
 3248 
 3249     /* Trace verbosity level 3 [Threading, I/O, and Interrupts] */
 3250     {"ACPI_LV_MUTEX",           ACPI_LV_MUTEX},
 3251     {"ACPI_LV_THREADS",         ACPI_LV_THREADS},
 3252     {"ACPI_LV_IO",              ACPI_LV_IO},
 3253     {"ACPI_LV_INTERRUPTS",      ACPI_LV_INTERRUPTS},
 3254     {"ACPI_LV_VERBOSITY3",      ACPI_LV_VERBOSITY3},
 3255 
 3256     /* Exceptionally verbose output -- also used in the global "DebugLevel"  */
 3257     {"ACPI_LV_AML_DISASSEMBLE", ACPI_LV_AML_DISASSEMBLE},
 3258     {"ACPI_LV_VERBOSE_INFO",    ACPI_LV_VERBOSE_INFO},
 3259     {"ACPI_LV_FULL_TABLES",     ACPI_LV_FULL_TABLES},
 3260     {"ACPI_LV_EVENTS",          ACPI_LV_EVENTS},
 3261     {"ACPI_LV_VERBOSE",         ACPI_LV_VERBOSE},
 3262     {NULL, 0}
 3263 };    
 3264 
 3265 static void
 3266 acpi_parse_debug(char *cp, struct debugtag *tag, UINT32 *flag)
 3267 {
 3268     char        *ep;
 3269     int         i, l;
 3270     int         set;
 3271 
 3272     while (*cp) {
 3273         if (isspace(*cp)) {
 3274             cp++;
 3275             continue;
 3276         }
 3277         ep = cp;
 3278         while (*ep && !isspace(*ep))
 3279             ep++;
 3280         if (*cp == '!') {
 3281             set = 0;
 3282             cp++;
 3283             if (cp == ep)
 3284                 continue;
 3285         } else {
 3286             set = 1;
 3287         }
 3288         l = ep - cp;
 3289         for (i = 0; tag[i].name != NULL; i++) {
 3290             if (!strncmp(cp, tag[i].name, l)) {
 3291                 if (set)
 3292                     *flag |= tag[i].value;
 3293                 else
 3294                     *flag &= ~tag[i].value;
 3295             }
 3296         }
 3297         cp = ep;
 3298     }
 3299 }
 3300 
 3301 static void
 3302 acpi_set_debugging(void *junk)
 3303 {
 3304     char        *layer, *level;
 3305 
 3306     if (cold) {
 3307         AcpiDbgLayer = 0;
 3308         AcpiDbgLevel = 0;
 3309     }
 3310 
 3311     layer = kgetenv("debug.acpi.layer");
 3312     level = kgetenv("debug.acpi.level");
 3313     if (layer == NULL && level == NULL)
 3314         return;
 3315 
 3316     kprintf("ACPI set debug");
 3317     if (layer != NULL) {
 3318         if (strcmp("NONE", layer) != 0)
 3319             kprintf(" layer '%s'", layer);
 3320         acpi_parse_debug(layer, &dbg_layer[0], &AcpiDbgLayer);
 3321         kfreeenv(layer);
 3322     }
 3323     if (level != NULL) {
 3324         if (strcmp("NONE", level) != 0)
 3325             kprintf(" level '%s'", level);
 3326         acpi_parse_debug(level, &dbg_level[0], &AcpiDbgLevel);
 3327         kfreeenv(level);
 3328     }
 3329     kprintf("\n");
 3330 }
 3331 
 3332 SYSINIT(acpi_debugging, SI_BOOT1_TUNABLES, SI_ORDER_ANY, acpi_set_debugging,
 3333         NULL);
 3334 
 3335 static int
 3336 acpi_debug_sysctl(SYSCTL_HANDLER_ARGS)
 3337 {
 3338     int          error, *dbg;
 3339     struct       debugtag *tag;
 3340     struct       sbuf sb;
 3341 
 3342     if (sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND) == NULL)
 3343         return (ENOMEM);
 3344     if (strcmp(oidp->oid_arg1, "debug.acpi.layer") == 0) {
 3345         tag = &dbg_layer[0];
 3346         dbg = &AcpiDbgLayer;
 3347     } else {
 3348         tag = &dbg_level[0];
 3349         dbg = &AcpiDbgLevel;
 3350     }
 3351 
 3352     /* Get old values if this is a get request. */
 3353     ACPI_SERIAL_BEGIN(acpi);
 3354     if (*dbg == 0) {
 3355         sbuf_cpy(&sb, "NONE");
 3356     } else if (req->newptr == NULL) {
 3357         for (; tag->name != NULL; tag++) {
 3358             if ((*dbg & tag->value) == tag->value)
 3359                 sbuf_printf(&sb, "%s ", tag->name);
 3360         }
 3361     }
 3362     sbuf_trim(&sb);
 3363     sbuf_finish(&sb);
 3364 
 3365     /* Copy out the old values to the user. */
 3366     error = SYSCTL_OUT(req, sbuf_data(&sb), sbuf_len(&sb));
 3367     sbuf_delete(&sb);
 3368 
 3369     /* If the user is setting a string, parse it. */
 3370     if (error == 0 && req->newptr != NULL) {
 3371         *dbg = 0;
 3372         ksetenv((char *)oidp->oid_arg1, (char *)req->newptr);
 3373         acpi_set_debugging(NULL);
 3374     }
 3375     ACPI_SERIAL_END(acpi);
 3376 
 3377     return (error);
 3378 }
 3379 
 3380 SYSCTL_PROC(_debug_acpi, OID_AUTO, layer, CTLFLAG_RW | CTLTYPE_STRING,
 3381             "debug.acpi.layer", 0, acpi_debug_sysctl, "A", "");
 3382 SYSCTL_PROC(_debug_acpi, OID_AUTO, level, CTLFLAG_RW | CTLTYPE_STRING,
 3383             "debug.acpi.level", 0, acpi_debug_sysctl, "A", "");
 3384 #endif /* ACPI_DEBUG */
 3385 
 3386 static int
 3387 acpi_pm_func(u_long cmd, void *arg, ...)
 3388 {
 3389         int     state, acpi_state;
 3390         int     error;
 3391         struct  acpi_softc *sc;
 3392         va_list ap;
 3393 
 3394         error = 0;
 3395         switch (cmd) {
 3396         case POWER_CMD_SUSPEND:
 3397                 sc = (struct acpi_softc *)arg;
 3398                 if (sc == NULL) {
 3399                         error = EINVAL;
 3400                         goto out;
 3401                 }
 3402 
 3403                 va_start(ap, arg);
 3404                 state = va_arg(ap, int);
 3405                 va_end(ap);
 3406 
 3407                 switch (state) {
 3408                 case POWER_SLEEP_STATE_STANDBY:
 3409                         acpi_state = sc->acpi_standby_sx;
 3410                         break;
 3411                 case POWER_SLEEP_STATE_SUSPEND:
 3412                         acpi_state = sc->acpi_suspend_sx;
 3413                         break;
 3414                 case POWER_SLEEP_STATE_HIBERNATE:
 3415                         acpi_state = ACPI_STATE_S4;
 3416                         break;
 3417                 default:
 3418                         error = EINVAL;
 3419                         goto out;
 3420                 }
 3421 
 3422                 if (ACPI_FAILURE(acpi_EnterSleepState(sc, acpi_state)))
 3423                         error = ENXIO;
 3424                 break;
 3425         default:
 3426                 error = EINVAL;
 3427                 goto out;
 3428         }
 3429 
 3430 out:
 3431         return (error);
 3432 }
 3433 
 3434 static void
 3435 acpi_pm_register(void *arg)
 3436 {
 3437     if (!cold || resource_disabled("acpi", 0))
 3438         return;
 3439 
 3440     power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, NULL);
 3441 }
 3442 
 3443 SYSINIT(power, SI_BOOT2_KLD, SI_ORDER_ANY, acpi_pm_register, 0);

Cache object: 841ec81066f8004c575f5fd462890b5b


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.