The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/acpica/acpi_cpu.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2003-2005 Nate Lawson (SDG)
    3  * Copyright (c) 2001 Michael Smith
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   25  * SUCH DAMAGE.
   26  */
   27 
   28 #include <sys/cdefs.h>
   29 __FBSDID("$FreeBSD$");
   30 
   31 #include "opt_acpi.h"
   32 #include <sys/param.h>
   33 #include <sys/bus.h>
   34 #include <sys/cpu.h>
   35 #include <sys/kernel.h>
   36 #include <sys/malloc.h>
   37 #include <sys/module.h>
   38 #include <sys/pcpu.h>
   39 #include <sys/power.h>
   40 #include <sys/proc.h>
   41 #include <sys/sched.h>
   42 #include <sys/sbuf.h>
   43 #include <sys/smp.h>
   44 
   45 #include <dev/pci/pcivar.h>
   46 #include <machine/atomic.h>
   47 #include <machine/bus.h>
   48 #if defined(__amd64__) || defined(__i386__)
   49 #include <machine/clock.h>
   50 #include <machine/specialreg.h>
   51 #include <machine/md_var.h>
   52 #endif
   53 #include <sys/rman.h>
   54 
   55 #include <contrib/dev/acpica/include/acpi.h>
   56 #include <contrib/dev/acpica/include/accommon.h>
   57 
   58 #include <dev/acpica/acpivar.h>
   59 
   60 /*
   61  * Support for ACPI Processor devices, including C[1-3] sleep states.
   62  */
   63 
   64 /* Hooks for the ACPI CA debugging infrastructure */
   65 #define _COMPONENT      ACPI_PROCESSOR
   66 ACPI_MODULE_NAME("PROCESSOR")
   67 
   68 struct acpi_cx {
   69     struct resource     *p_lvlx;        /* Register to read to enter state. */
   70     uint32_t             type;          /* C1-3 (C4 and up treated as C3). */
   71     uint32_t             trans_lat;     /* Transition latency (usec). */
   72     uint32_t             power;         /* Power consumed (mW). */
   73     int                  res_type;      /* Resource type for p_lvlx. */
   74     int                  res_rid;       /* Resource ID for p_lvlx. */
   75     bool                 do_mwait;
   76     uint32_t             mwait_hint;
   77     bool                 mwait_hw_coord;
   78     bool                 mwait_bm_avoidance;
   79 };
   80 #define MAX_CX_STATES    8
   81 
   82 struct acpi_cpu_softc {
   83     device_t             cpu_dev;
   84     ACPI_HANDLE          cpu_handle;
   85     struct pcpu         *cpu_pcpu;
   86     uint32_t             cpu_acpi_id;   /* ACPI processor id */
   87     uint32_t             cpu_p_blk;     /* ACPI P_BLK location */
   88     uint32_t             cpu_p_blk_len; /* P_BLK length (must be 6). */
   89     struct acpi_cx       cpu_cx_states[MAX_CX_STATES];
   90     int                  cpu_cx_count;  /* Number of valid Cx states. */
   91     int                  cpu_prev_sleep;/* Last idle sleep duration. */
   92     int                  cpu_features;  /* Child driver supported features. */
   93     /* Runtime state. */
   94     int                  cpu_non_c2;    /* Index of lowest non-C2 state. */
   95     int                  cpu_non_c3;    /* Index of lowest non-C3 state. */
   96     u_int                cpu_cx_stats[MAX_CX_STATES];/* Cx usage history. */
   97     /* Values for sysctl. */
   98     struct sysctl_ctx_list cpu_sysctl_ctx;
   99     struct sysctl_oid   *cpu_sysctl_tree;
  100     int                  cpu_cx_lowest;
  101     int                  cpu_cx_lowest_lim;
  102     int                  cpu_disable_idle; /* Disable entry to idle function */
  103     char                 cpu_cx_supported[64];
  104 };
  105 
  106 struct acpi_cpu_device {
  107     struct resource_list        ad_rl;
  108 };
  109 
  110 #define CPU_GET_REG(reg, width)                                         \
  111     (bus_space_read_ ## width(rman_get_bustag((reg)),                   \
  112                       rman_get_bushandle((reg)), 0))
  113 #define CPU_SET_REG(reg, width, val)                                    \
  114     (bus_space_write_ ## width(rman_get_bustag((reg)),                  \
  115                        rman_get_bushandle((reg)), 0, (val)))
  116 
  117 #define ACPI_NOTIFY_CX_STATES   0x81    /* _CST changed. */
  118 
  119 #define CPU_QUIRK_NO_C3         (1<<0)  /* C3-type states are not usable. */
  120 #define CPU_QUIRK_NO_BM_CTRL    (1<<2)  /* No bus mastering control. */
  121 
  122 #define PCI_VENDOR_INTEL        0x8086
  123 #define PCI_DEVICE_82371AB_3    0x7113  /* PIIX4 chipset for quirks. */
  124 #define PCI_REVISION_A_STEP     0
  125 #define PCI_REVISION_B_STEP     1
  126 #define PCI_REVISION_4E         2
  127 #define PCI_REVISION_4M         3
  128 #define PIIX4_DEVACTB_REG       0x58
  129 #define PIIX4_BRLD_EN_IRQ0      (1<<0)
  130 #define PIIX4_BRLD_EN_IRQ       (1<<1)
  131 #define PIIX4_BRLD_EN_IRQ8      (1<<5)
  132 #define PIIX4_STOP_BREAK_MASK   (PIIX4_BRLD_EN_IRQ0 | PIIX4_BRLD_EN_IRQ | PIIX4_BRLD_EN_IRQ8)
  133 #define PIIX4_PCNTRL_BST_EN     (1<<10)
  134 
  135 #define CST_FFH_VENDOR_INTEL    1
  136 #define CST_FFH_INTEL_CL_C1IO   1
  137 #define CST_FFH_INTEL_CL_MWAIT  2
  138 #define CST_FFH_MWAIT_HW_COORD  0x0001
  139 #define CST_FFH_MWAIT_BM_AVOID  0x0002
  140 
  141 #define CPUDEV_DEVICE_ID        "ACPI0007"
  142 
  143 /* Knob to disable acpi_cpu devices */
  144 bool acpi_cpu_disabled = false;
  145 
  146 /* Platform hardware resource information. */
  147 static uint32_t          cpu_smi_cmd;   /* Value to write to SMI_CMD. */
  148 static uint8_t           cpu_cst_cnt;   /* Indicate we are _CST aware. */
  149 static int               cpu_quirks;    /* Indicate any hardware bugs. */
  150 
  151 /* Values for sysctl. */
  152 static struct sysctl_ctx_list cpu_sysctl_ctx;
  153 static struct sysctl_oid *cpu_sysctl_tree;
  154 static int               cpu_cx_generic;
  155 static int               cpu_cx_lowest_lim;
  156 #if defined(__i386__) || defined(__amd64__)
  157 static bool              cppc_notify;
  158 #endif
  159 
  160 static struct acpi_cpu_softc **cpu_softc;
  161 ACPI_SERIAL_DECL(cpu, "ACPI CPU");
  162 
  163 static int      acpi_cpu_probe(device_t dev);
  164 static int      acpi_cpu_attach(device_t dev);
  165 static int      acpi_cpu_suspend(device_t dev);
  166 static int      acpi_cpu_resume(device_t dev);
  167 static int      acpi_pcpu_get_id(device_t dev, uint32_t acpi_id,
  168                     u_int *cpu_id);
  169 static struct resource_list *acpi_cpu_get_rlist(device_t dev, device_t child);
  170 static device_t acpi_cpu_add_child(device_t dev, u_int order, const char *name,
  171                     int unit);
  172 static int      acpi_cpu_read_ivar(device_t dev, device_t child, int index,
  173                     uintptr_t *result);
  174 static int      acpi_cpu_shutdown(device_t dev);
  175 static void     acpi_cpu_cx_probe(struct acpi_cpu_softc *sc);
  176 static void     acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc);
  177 static int      acpi_cpu_cx_cst(struct acpi_cpu_softc *sc);
  178 static void     acpi_cpu_startup(void *arg);
  179 static void     acpi_cpu_startup_cx(struct acpi_cpu_softc *sc);
  180 static void     acpi_cpu_cx_list(struct acpi_cpu_softc *sc);
  181 #if defined(__i386__) || defined(__amd64__)
  182 static void     acpi_cpu_idle(sbintime_t sbt);
  183 #endif
  184 static void     acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context);
  185 static void     acpi_cpu_quirks(void);
  186 static void     acpi_cpu_quirks_piix4(void);
  187 static int      acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS);
  188 static int      acpi_cpu_usage_counters_sysctl(SYSCTL_HANDLER_ARGS);
  189 static int      acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc);
  190 static int      acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
  191 static int      acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
  192 #if defined(__i386__) || defined(__amd64__)
  193 static int      acpi_cpu_method_sysctl(SYSCTL_HANDLER_ARGS);
  194 #endif
  195 
  196 static device_method_t acpi_cpu_methods[] = {
  197     /* Device interface */
  198     DEVMETHOD(device_probe,     acpi_cpu_probe),
  199     DEVMETHOD(device_attach,    acpi_cpu_attach),
  200     DEVMETHOD(device_detach,    bus_generic_detach),
  201     DEVMETHOD(device_shutdown,  acpi_cpu_shutdown),
  202     DEVMETHOD(device_suspend,   acpi_cpu_suspend),
  203     DEVMETHOD(device_resume,    acpi_cpu_resume),
  204 
  205     /* Bus interface */
  206     DEVMETHOD(bus_add_child,    acpi_cpu_add_child),
  207     DEVMETHOD(bus_read_ivar,    acpi_cpu_read_ivar),
  208     DEVMETHOD(bus_get_resource_list, acpi_cpu_get_rlist),
  209     DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource),
  210     DEVMETHOD(bus_set_resource, bus_generic_rl_set_resource),
  211     DEVMETHOD(bus_alloc_resource, bus_generic_rl_alloc_resource),
  212     DEVMETHOD(bus_release_resource, bus_generic_rl_release_resource),
  213     DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
  214     DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
  215     DEVMETHOD(bus_setup_intr,   bus_generic_setup_intr),
  216     DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr),
  217 
  218     DEVMETHOD_END
  219 };
  220 
  221 static driver_t acpi_cpu_driver = {
  222     "cpu",
  223     acpi_cpu_methods,
  224     sizeof(struct acpi_cpu_softc),
  225 };
  226 
  227 DRIVER_MODULE(cpu, acpi, acpi_cpu_driver, 0, 0);
  228 MODULE_DEPEND(cpu, acpi, 1, 1, 1);
  229 
  230 static int
  231 acpi_cpu_probe(device_t dev)
  232 {
  233     static char            *cpudev_ids[] = { CPUDEV_DEVICE_ID, NULL };
  234     int                    acpi_id, cpu_id;
  235     ACPI_BUFFER            buf;
  236     ACPI_HANDLE            handle;
  237     ACPI_OBJECT            *obj;
  238     ACPI_STATUS            status;
  239     ACPI_OBJECT_TYPE       type;
  240 
  241     if (acpi_disabled("cpu") || acpi_cpu_disabled)
  242         return (ENXIO);
  243     type = acpi_get_type(dev);
  244     if (type != ACPI_TYPE_PROCESSOR && type != ACPI_TYPE_DEVICE)
  245         return (ENXIO);
  246     if (type == ACPI_TYPE_DEVICE &&
  247         ACPI_ID_PROBE(device_get_parent(dev), dev, cpudev_ids, NULL) >= 0)
  248         return (ENXIO);
  249 
  250     handle = acpi_get_handle(dev);
  251     if (cpu_softc == NULL)
  252         cpu_softc = malloc(sizeof(struct acpi_cpu_softc *) *
  253             (mp_maxid + 1), M_TEMP /* XXX */, M_WAITOK | M_ZERO);
  254 
  255     if (type == ACPI_TYPE_PROCESSOR) {
  256         /* Get our Processor object. */
  257         buf.Pointer = NULL;
  258         buf.Length = ACPI_ALLOCATE_BUFFER;
  259         status = AcpiEvaluateObject(handle, NULL, NULL, &buf);
  260         if (ACPI_FAILURE(status)) {
  261             device_printf(dev, "probe failed to get Processor obj - %s\n",
  262                 AcpiFormatException(status));
  263             return (ENXIO);
  264         }
  265         obj = (ACPI_OBJECT *)buf.Pointer;
  266         if (obj->Type != ACPI_TYPE_PROCESSOR) {
  267             device_printf(dev, "Processor object has bad type %d\n",
  268                 obj->Type);
  269             AcpiOsFree(obj);
  270             return (ENXIO);
  271         }
  272 
  273         /*
  274          * Find the processor associated with our unit.  We could use the
  275          * ProcId as a key, however, some boxes do not have the same values
  276          * in their Processor object as the ProcId values in the MADT.
  277          */
  278         acpi_id = obj->Processor.ProcId;
  279         AcpiOsFree(obj);
  280     } else {
  281         status = acpi_GetInteger(handle, "_UID", &acpi_id);
  282         if (ACPI_FAILURE(status)) {
  283             device_printf(dev, "Device object has bad value - %s\n",
  284                 AcpiFormatException(status));
  285             return (ENXIO);
  286         }
  287     }
  288     if (acpi_pcpu_get_id(dev, acpi_id, &cpu_id) != 0) {
  289         if (bootverbose && (type != ACPI_TYPE_PROCESSOR || acpi_id != 255))
  290             printf("ACPI: Processor %s (ACPI ID %u) ignored\n",
  291                 acpi_name(acpi_get_handle(dev)), acpi_id);
  292         return (ENXIO);
  293     }
  294 
  295     if (device_set_unit(dev, cpu_id) != 0)
  296         return (ENXIO);
  297 
  298     device_set_desc(dev, "ACPI CPU");
  299 
  300     if (!bootverbose && device_get_unit(dev) != 0) {
  301             device_quiet(dev);
  302             device_quiet_children(dev);
  303     }
  304 
  305     return (BUS_PROBE_DEFAULT);
  306 }
  307 
  308 static int
  309 acpi_cpu_attach(device_t dev)
  310 {
  311     ACPI_BUFFER            buf;
  312     ACPI_OBJECT            arg, *obj;
  313     ACPI_OBJECT_LIST       arglist;
  314     struct pcpu            *pcpu_data;
  315     struct acpi_cpu_softc *sc;
  316     struct acpi_softc     *acpi_sc;
  317     ACPI_STATUS            status;
  318     u_int                  features;
  319     int                    cpu_id, drv_count, i;
  320     driver_t              **drivers;
  321     uint32_t               cap_set[3];
  322 
  323     /* UUID needed by _OSC evaluation */
  324     static uint8_t cpu_oscuuid[16] = { 0x16, 0xA6, 0x77, 0x40, 0x0C, 0x29,
  325                                        0xBE, 0x47, 0x9E, 0xBD, 0xD8, 0x70,
  326                                        0x58, 0x71, 0x39, 0x53 };
  327 
  328     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
  329 
  330     sc = device_get_softc(dev);
  331     sc->cpu_dev = dev;
  332     sc->cpu_handle = acpi_get_handle(dev);
  333     cpu_id = device_get_unit(dev);
  334     cpu_softc[cpu_id] = sc;
  335     pcpu_data = pcpu_find(cpu_id);
  336     pcpu_data->pc_device = dev;
  337     sc->cpu_pcpu = pcpu_data;
  338     cpu_smi_cmd = AcpiGbl_FADT.SmiCommand;
  339     cpu_cst_cnt = AcpiGbl_FADT.CstControl;
  340 
  341     if (acpi_get_type(dev) == ACPI_TYPE_PROCESSOR) {
  342         buf.Pointer = NULL;
  343         buf.Length = ACPI_ALLOCATE_BUFFER;
  344         status = AcpiEvaluateObject(sc->cpu_handle, NULL, NULL, &buf);
  345         if (ACPI_FAILURE(status)) {
  346             device_printf(dev, "attach failed to get Processor obj - %s\n",
  347                 AcpiFormatException(status));
  348             return (ENXIO);
  349         }
  350         obj = (ACPI_OBJECT *)buf.Pointer;
  351         sc->cpu_p_blk = obj->Processor.PblkAddress;
  352         sc->cpu_p_blk_len = obj->Processor.PblkLength;
  353         sc->cpu_acpi_id = obj->Processor.ProcId;
  354         AcpiOsFree(obj);
  355     } else {
  356         KASSERT(acpi_get_type(dev) == ACPI_TYPE_DEVICE,
  357             ("Unexpected ACPI object"));
  358         status = acpi_GetInteger(sc->cpu_handle, "_UID", &sc->cpu_acpi_id);
  359         if (ACPI_FAILURE(status)) {
  360             device_printf(dev, "Device object has bad value - %s\n",
  361                 AcpiFormatException(status));
  362             return (ENXIO);
  363         }
  364         sc->cpu_p_blk = 0;
  365         sc->cpu_p_blk_len = 0;
  366     }
  367     ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: P_BLK at %#x/%d\n",
  368                      device_get_unit(dev), sc->cpu_p_blk, sc->cpu_p_blk_len));
  369 
  370     /*
  371      * If this is the first cpu we attach, create and initialize the generic
  372      * resources that will be used by all acpi cpu devices.
  373      */
  374     if (device_get_unit(dev) == 0) {
  375         /* Assume we won't be using generic Cx mode by default */
  376         cpu_cx_generic = FALSE;
  377 
  378         /* Install hw.acpi.cpu sysctl tree */
  379         acpi_sc = acpi_device_get_parent_softc(dev);
  380         sysctl_ctx_init(&cpu_sysctl_ctx);
  381         cpu_sysctl_tree = SYSCTL_ADD_NODE(&cpu_sysctl_ctx,
  382             SYSCTL_CHILDREN(acpi_sc->acpi_sysctl_tree), OID_AUTO, "cpu",
  383             CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "node for CPU children");
  384 
  385 #if defined(__i386__) || defined(__amd64__)
  386         /* Add sysctl handler to control registering for CPPC notifications */
  387         cppc_notify = 1;
  388         SYSCTL_ADD_BOOL(&cpu_sysctl_ctx, SYSCTL_CHILDREN(cpu_sysctl_tree),
  389             OID_AUTO, "cppc_notify", CTLFLAG_RDTUN | CTLFLAG_MPSAFE,
  390             &cppc_notify, 0, "Register for CPPC Notifications");
  391 #endif
  392     }
  393 
  394     /*
  395      * Before calling any CPU methods, collect child driver feature hints
  396      * and notify ACPI of them.  We support unified SMP power control
  397      * so advertise this ourselves.  Note this is not the same as independent
  398      * SMP control where each CPU can have different settings.
  399      */
  400     sc->cpu_features = ACPI_CAP_SMP_SAME | ACPI_CAP_SMP_SAME_C3 |
  401       ACPI_CAP_C1_IO_HALT;
  402 
  403 #if defined(__i386__) || defined(__amd64__)
  404     /*
  405      * Ask for MWAIT modes if not disabled and interrupts work
  406      * reasonable with MWAIT.
  407      */
  408     if (!acpi_disabled("mwait") && cpu_mwait_usable())
  409         sc->cpu_features |= ACPI_CAP_SMP_C1_NATIVE | ACPI_CAP_SMP_C3_NATIVE;
  410 
  411     /*
  412      * Work around a lingering SMM bug which leads to freezes when handling
  413      * CPPC notifications. Tell the SMM we will handle any CPPC notifications.
  414      */
  415     if ((cpu_power_eax & CPUTPM1_HWP_NOTIFICATION) && cppc_notify)
  416             sc->cpu_features |= ACPI_CAP_INTR_CPPC;
  417 #endif
  418 
  419     if (devclass_get_drivers(device_get_devclass(dev), &drivers,
  420         &drv_count) == 0) {
  421         for (i = 0; i < drv_count; i++) {
  422             if (ACPI_GET_FEATURES(drivers[i], &features) == 0)
  423                 sc->cpu_features |= features;
  424         }
  425         free(drivers, M_TEMP);
  426     }
  427 
  428     /*
  429      * CPU capabilities are specified in
  430      * Intel Processor Vendor-Specific ACPI Interface Specification.
  431      */
  432     if (sc->cpu_features) {
  433         cap_set[1] = sc->cpu_features;
  434         status = acpi_EvaluateOSC(sc->cpu_handle, cpu_oscuuid, 1, 2, cap_set,
  435             cap_set, false);
  436         if (ACPI_SUCCESS(status)) {
  437             if (cap_set[0] != 0)
  438                 device_printf(dev, "_OSC returned status %#x\n", cap_set[0]);
  439         }
  440         else {
  441             arglist.Pointer = &arg;
  442             arglist.Count = 1;
  443             arg.Type = ACPI_TYPE_BUFFER;
  444             arg.Buffer.Length = sizeof(cap_set);
  445             arg.Buffer.Pointer = (uint8_t *)cap_set;
  446             cap_set[0] = 1; /* revision */
  447             cap_set[1] = 1; /* number of capabilities integers */
  448             cap_set[2] = sc->cpu_features;
  449             AcpiEvaluateObject(sc->cpu_handle, "_PDC", &arglist, NULL);
  450         }
  451     }
  452 
  453     /* Probe for Cx state support. */
  454     acpi_cpu_cx_probe(sc);
  455 
  456     return (0);
  457 }
  458 
  459 static void
  460 acpi_cpu_postattach(void *unused __unused)
  461 {
  462     struct acpi_cpu_softc *sc;
  463     int attached = 0, i;
  464 
  465     if (cpu_softc == NULL)
  466         return;
  467 
  468     bus_topo_lock();
  469     CPU_FOREACH(i) {
  470         if ((sc = cpu_softc[i]) != NULL)
  471                 bus_generic_probe(sc->cpu_dev);
  472     }
  473     CPU_FOREACH(i) {
  474         if ((sc = cpu_softc[i]) != NULL) {
  475                 bus_generic_attach(sc->cpu_dev);
  476                 attached = 1;
  477         }
  478     }
  479     bus_topo_unlock();
  480 
  481     if (attached) {
  482 #ifdef EARLY_AP_STARTUP
  483         acpi_cpu_startup(NULL);
  484 #else
  485         /* Queue post cpu-probing task handler */
  486         AcpiOsExecute(OSL_NOTIFY_HANDLER, acpi_cpu_startup, NULL);
  487 #endif
  488     }
  489 }
  490 
  491 SYSINIT(acpi_cpu, SI_SUB_CONFIGURE, SI_ORDER_MIDDLE,
  492     acpi_cpu_postattach, NULL);
  493 
  494 static void
  495 disable_idle(struct acpi_cpu_softc *sc)
  496 {
  497     cpuset_t cpuset;
  498 
  499     CPU_SETOF(sc->cpu_pcpu->pc_cpuid, &cpuset);
  500     sc->cpu_disable_idle = TRUE;
  501 
  502     /*
  503      * Ensure that the CPU is not in idle state or in acpi_cpu_idle().
  504      * Note that this code depends on the fact that the rendezvous IPI
  505      * can not penetrate context where interrupts are disabled and acpi_cpu_idle
  506      * is called and executed in such a context with interrupts being re-enabled
  507      * right before return.
  508      */
  509     smp_rendezvous_cpus(cpuset, smp_no_rendezvous_barrier, NULL,
  510         smp_no_rendezvous_barrier, NULL);
  511 }
  512 
  513 static void
  514 enable_idle(struct acpi_cpu_softc *sc)
  515 {
  516 
  517     sc->cpu_disable_idle = FALSE;
  518 }
  519 
  520 #if defined(__i386__) || defined(__amd64__)
  521 static int
  522 is_idle_disabled(struct acpi_cpu_softc *sc)
  523 {
  524 
  525     return (sc->cpu_disable_idle);
  526 }
  527 #endif
  528 
  529 /*
  530  * Disable any entry to the idle function during suspend and re-enable it
  531  * during resume.
  532  */
  533 static int
  534 acpi_cpu_suspend(device_t dev)
  535 {
  536     int error;
  537 
  538     error = bus_generic_suspend(dev);
  539     if (error)
  540         return (error);
  541     disable_idle(device_get_softc(dev));
  542     return (0);
  543 }
  544 
  545 static int
  546 acpi_cpu_resume(device_t dev)
  547 {
  548 
  549     enable_idle(device_get_softc(dev));
  550     return (bus_generic_resume(dev));
  551 }
  552 
  553 /*
  554  * Find the processor associated with a given ACPI ID.
  555  */
  556 static int
  557 acpi_pcpu_get_id(device_t dev, uint32_t acpi_id, u_int *cpu_id)
  558 {
  559     struct pcpu *pc;
  560     u_int        i;
  561 
  562     CPU_FOREACH(i) {
  563         pc = pcpu_find(i);
  564         if (pc->pc_acpi_id == acpi_id) {
  565             *cpu_id = pc->pc_cpuid;
  566             return (0);
  567         }
  568     }
  569 
  570     /*
  571      * If pc_acpi_id for CPU 0 is not initialized (e.g. a non-APIC
  572      * UP box) use the ACPI ID from the first processor we find.
  573      */
  574     if (mp_ncpus == 1) {
  575         pc = pcpu_find(0);
  576         if (pc->pc_acpi_id == 0xffffffff)
  577             pc->pc_acpi_id = acpi_id;
  578         *cpu_id = 0;
  579         return (0);
  580     }
  581 
  582     return (ESRCH);
  583 }
  584 
  585 static struct resource_list *
  586 acpi_cpu_get_rlist(device_t dev, device_t child)
  587 {
  588     struct acpi_cpu_device *ad;
  589 
  590     ad = device_get_ivars(child);
  591     if (ad == NULL)
  592         return (NULL);
  593     return (&ad->ad_rl);
  594 }
  595 
  596 static device_t
  597 acpi_cpu_add_child(device_t dev, u_int order, const char *name, int unit)
  598 {
  599     struct acpi_cpu_device *ad;
  600     device_t child;
  601 
  602     if ((ad = malloc(sizeof(*ad), M_TEMP, M_NOWAIT | M_ZERO)) == NULL)
  603         return (NULL);
  604 
  605     resource_list_init(&ad->ad_rl);
  606     
  607     child = device_add_child_ordered(dev, order, name, unit);
  608     if (child != NULL)
  609         device_set_ivars(child, ad);
  610     else
  611         free(ad, M_TEMP);
  612     return (child);
  613 }
  614 
  615 static int
  616 acpi_cpu_read_ivar(device_t dev, device_t child, int index, uintptr_t *result)
  617 {
  618     struct acpi_cpu_softc *sc;
  619 
  620     sc = device_get_softc(dev);
  621     switch (index) {
  622     case ACPI_IVAR_HANDLE:
  623         *result = (uintptr_t)sc->cpu_handle;
  624         break;
  625     case CPU_IVAR_PCPU:
  626         *result = (uintptr_t)sc->cpu_pcpu;
  627         break;
  628 #if defined(__amd64__) || defined(__i386__)
  629     case CPU_IVAR_NOMINAL_MHZ:
  630         if (tsc_is_invariant) {
  631             *result = (uintptr_t)(atomic_load_acq_64(&tsc_freq) / 1000000);
  632             break;
  633         }
  634         /* FALLTHROUGH */
  635 #endif
  636     default:
  637         return (ENOENT);
  638     }
  639     return (0);
  640 }
  641 
  642 static int
  643 acpi_cpu_shutdown(device_t dev)
  644 {
  645     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
  646 
  647     /* Allow children to shutdown first. */
  648     bus_generic_shutdown(dev);
  649 
  650     /*
  651      * Disable any entry to the idle function.
  652      */
  653     disable_idle(device_get_softc(dev));
  654 
  655     /*
  656      * CPU devices are not truly detached and remain referenced,
  657      * so their resources are not freed.
  658      */
  659 
  660     return_VALUE (0);
  661 }
  662 
  663 static void
  664 acpi_cpu_cx_probe(struct acpi_cpu_softc *sc)
  665 {
  666     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
  667 
  668     /* Use initial sleep value of 1 sec. to start with lowest idle state. */
  669     sc->cpu_prev_sleep = 1000000;
  670     sc->cpu_cx_lowest = 0;
  671     sc->cpu_cx_lowest_lim = 0;
  672 
  673     /*
  674      * Check for the ACPI 2.0 _CST sleep states object. If we can't find
  675      * any, we'll revert to generic FADT/P_BLK Cx control method which will
  676      * be handled by acpi_cpu_startup. We need to defer to after having
  677      * probed all the cpus in the system before probing for generic Cx
  678      * states as we may already have found cpus with valid _CST packages
  679      */
  680     if (!cpu_cx_generic && acpi_cpu_cx_cst(sc) != 0) {
  681         /*
  682          * We were unable to find a _CST package for this cpu or there
  683          * was an error parsing it. Switch back to generic mode.
  684          */
  685         cpu_cx_generic = TRUE;
  686         if (bootverbose)
  687             device_printf(sc->cpu_dev, "switching to generic Cx mode\n");
  688     }
  689 
  690     /*
  691      * TODO: _CSD Package should be checked here.
  692      */
  693 }
  694 
  695 static void
  696 acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc)
  697 {
  698     ACPI_GENERIC_ADDRESS         gas;
  699     struct acpi_cx              *cx_ptr;
  700 
  701     sc->cpu_cx_count = 0;
  702     cx_ptr = sc->cpu_cx_states;
  703 
  704     /* Use initial sleep value of 1 sec. to start with lowest idle state. */
  705     sc->cpu_prev_sleep = 1000000;
  706 
  707     /* C1 has been required since just after ACPI 1.0 */
  708     cx_ptr->type = ACPI_STATE_C1;
  709     cx_ptr->trans_lat = 0;
  710     cx_ptr++;
  711     sc->cpu_non_c2 = sc->cpu_cx_count;
  712     sc->cpu_non_c3 = sc->cpu_cx_count;
  713     sc->cpu_cx_count++;
  714 
  715     /* 
  716      * The spec says P_BLK must be 6 bytes long.  However, some systems
  717      * use it to indicate a fractional set of features present so we
  718      * take 5 as C2.  Some may also have a value of 7 to indicate
  719      * another C3 but most use _CST for this (as required) and having
  720      * "only" C1-C3 is not a hardship.
  721      */
  722     if (sc->cpu_p_blk_len < 5)
  723         return; 
  724 
  725     /* Validate and allocate resources for C2 (P_LVL2). */
  726     gas.SpaceId = ACPI_ADR_SPACE_SYSTEM_IO;
  727     gas.BitWidth = 8;
  728     if (AcpiGbl_FADT.C2Latency <= 100) {
  729         gas.Address = sc->cpu_p_blk + 4;
  730         cx_ptr->res_rid = 0;
  731         acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &cx_ptr->res_rid,
  732             &gas, &cx_ptr->p_lvlx, RF_SHAREABLE);
  733         if (cx_ptr->p_lvlx != NULL) {
  734             cx_ptr->type = ACPI_STATE_C2;
  735             cx_ptr->trans_lat = AcpiGbl_FADT.C2Latency;
  736             cx_ptr++;
  737             sc->cpu_non_c3 = sc->cpu_cx_count;
  738             sc->cpu_cx_count++;
  739         }
  740     }
  741     if (sc->cpu_p_blk_len < 6)
  742         return;
  743 
  744     /* Validate and allocate resources for C3 (P_LVL3). */
  745     if (AcpiGbl_FADT.C3Latency <= 1000 && !(cpu_quirks & CPU_QUIRK_NO_C3)) {
  746         gas.Address = sc->cpu_p_blk + 5;
  747         cx_ptr->res_rid = 1;
  748         acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &cx_ptr->res_rid,
  749             &gas, &cx_ptr->p_lvlx, RF_SHAREABLE);
  750         if (cx_ptr->p_lvlx != NULL) {
  751             cx_ptr->type = ACPI_STATE_C3;
  752             cx_ptr->trans_lat = AcpiGbl_FADT.C3Latency;
  753             cx_ptr++;
  754             sc->cpu_cx_count++;
  755         }
  756     }
  757 }
  758 
  759 #if defined(__i386__) || defined(__amd64__)
  760 static void
  761 acpi_cpu_cx_cst_mwait(struct acpi_cx *cx_ptr, uint64_t address, int accsize)
  762 {
  763 
  764         cx_ptr->do_mwait = true;
  765         cx_ptr->mwait_hint = address & 0xffffffff;
  766         cx_ptr->mwait_hw_coord = (accsize & CST_FFH_MWAIT_HW_COORD) != 0;
  767         cx_ptr->mwait_bm_avoidance = (accsize & CST_FFH_MWAIT_BM_AVOID) != 0;
  768 }
  769 #endif
  770 
  771 static void
  772 acpi_cpu_cx_cst_free_plvlx(device_t cpu_dev, struct acpi_cx *cx_ptr)
  773 {
  774 
  775         if (cx_ptr->p_lvlx == NULL)
  776                 return;
  777         bus_release_resource(cpu_dev, cx_ptr->res_type, cx_ptr->res_rid,
  778             cx_ptr->p_lvlx);
  779         cx_ptr->p_lvlx = NULL;
  780 }
  781 
  782 /*
  783  * Parse a _CST package and set up its Cx states.  Since the _CST object
  784  * can change dynamically, our notify handler may call this function
  785  * to clean up and probe the new _CST package.
  786  */
  787 static int
  788 acpi_cpu_cx_cst(struct acpi_cpu_softc *sc)
  789 {
  790     struct       acpi_cx *cx_ptr;
  791     ACPI_STATUS  status;
  792     ACPI_BUFFER  buf;
  793     ACPI_OBJECT *top;
  794     ACPI_OBJECT *pkg;
  795     uint32_t     count;
  796     int          i;
  797 #if defined(__i386__) || defined(__amd64__)
  798     uint64_t     address;
  799     int          vendor, class, accsize;
  800 #endif
  801 
  802     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
  803 
  804     buf.Pointer = NULL;
  805     buf.Length = ACPI_ALLOCATE_BUFFER;
  806     status = AcpiEvaluateObject(sc->cpu_handle, "_CST", NULL, &buf);
  807     if (ACPI_FAILURE(status))
  808         return (ENXIO);
  809 
  810     /* _CST is a package with a count and at least one Cx package. */
  811     top = (ACPI_OBJECT *)buf.Pointer;
  812     if (!ACPI_PKG_VALID(top, 2) || acpi_PkgInt32(top, 0, &count) != 0) {
  813         device_printf(sc->cpu_dev, "invalid _CST package\n");
  814         AcpiOsFree(buf.Pointer);
  815         return (ENXIO);
  816     }
  817     if (count != top->Package.Count - 1) {
  818         device_printf(sc->cpu_dev, "invalid _CST state count (%d != %d)\n",
  819                count, top->Package.Count - 1);
  820         count = top->Package.Count - 1;
  821     }
  822     if (count > MAX_CX_STATES) {
  823         device_printf(sc->cpu_dev, "_CST has too many states (%d)\n", count);
  824         count = MAX_CX_STATES;
  825     }
  826 
  827     sc->cpu_non_c2 = 0;
  828     sc->cpu_non_c3 = 0;
  829     sc->cpu_cx_count = 0;
  830     cx_ptr = sc->cpu_cx_states;
  831 
  832     /*
  833      * C1 has been required since just after ACPI 1.0.
  834      * Reserve the first slot for it.
  835      */
  836     cx_ptr->type = ACPI_STATE_C0;
  837     cx_ptr++;
  838     sc->cpu_cx_count++;
  839 
  840     /* Set up all valid states. */
  841     for (i = 0; i < count; i++) {
  842         pkg = &top->Package.Elements[i + 1];
  843         if (!ACPI_PKG_VALID(pkg, 4) ||
  844             acpi_PkgInt32(pkg, 1, &cx_ptr->type) != 0 ||
  845             acpi_PkgInt32(pkg, 2, &cx_ptr->trans_lat) != 0 ||
  846             acpi_PkgInt32(pkg, 3, &cx_ptr->power) != 0) {
  847             device_printf(sc->cpu_dev, "skipping invalid Cx state package\n");
  848             continue;
  849         }
  850 
  851         /* Validate the state to see if we should use it. */
  852         switch (cx_ptr->type) {
  853         case ACPI_STATE_C1:
  854             acpi_cpu_cx_cst_free_plvlx(sc->cpu_dev, cx_ptr);
  855 #if defined(__i386__) || defined(__amd64__)
  856             if (acpi_PkgFFH_IntelCpu(pkg, 0, &vendor, &class, &address,
  857               &accsize) == 0 && vendor == CST_FFH_VENDOR_INTEL) {
  858                 if (class == CST_FFH_INTEL_CL_C1IO) {
  859                     /* C1 I/O then Halt */
  860                     cx_ptr->res_rid = sc->cpu_cx_count;
  861                     bus_set_resource(sc->cpu_dev, SYS_RES_IOPORT,
  862                       cx_ptr->res_rid, address, 1);
  863                     cx_ptr->p_lvlx = bus_alloc_resource_any(sc->cpu_dev,
  864                       SYS_RES_IOPORT, &cx_ptr->res_rid, RF_ACTIVE |
  865                       RF_SHAREABLE);
  866                     if (cx_ptr->p_lvlx == NULL) {
  867                         bus_delete_resource(sc->cpu_dev, SYS_RES_IOPORT,
  868                           cx_ptr->res_rid);
  869                         device_printf(sc->cpu_dev,
  870                           "C1 I/O failed to allocate port %d, "
  871                           "degrading to C1 Halt", (int)address);
  872                     }
  873                 } else if (class == CST_FFH_INTEL_CL_MWAIT) {
  874                     acpi_cpu_cx_cst_mwait(cx_ptr, address, accsize);
  875                 }
  876             }
  877 #endif
  878             if (sc->cpu_cx_states[0].type == ACPI_STATE_C0) {
  879                 /* This is the first C1 state.  Use the reserved slot. */
  880                 sc->cpu_cx_states[0] = *cx_ptr;
  881             } else {
  882                 sc->cpu_non_c2 = sc->cpu_cx_count;
  883                 sc->cpu_non_c3 = sc->cpu_cx_count;
  884                 cx_ptr++;
  885                 sc->cpu_cx_count++;
  886             }
  887             continue;
  888         case ACPI_STATE_C2:
  889             sc->cpu_non_c3 = sc->cpu_cx_count;
  890             break;
  891         case ACPI_STATE_C3:
  892         default:
  893             if ((cpu_quirks & CPU_QUIRK_NO_C3) != 0) {
  894                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  895                                  "acpi_cpu%d: C3[%d] not available.\n",
  896                                  device_get_unit(sc->cpu_dev), i));
  897                 continue;
  898             }
  899             break;
  900         }
  901 
  902         /* Free up any previous register. */
  903         acpi_cpu_cx_cst_free_plvlx(sc->cpu_dev, cx_ptr);
  904 
  905         /* Allocate the control register for C2 or C3. */
  906 #if defined(__i386__) || defined(__amd64__)
  907         if (acpi_PkgFFH_IntelCpu(pkg, 0, &vendor, &class, &address,
  908           &accsize) == 0 && vendor == CST_FFH_VENDOR_INTEL &&
  909           class == CST_FFH_INTEL_CL_MWAIT) {
  910             /* Native C State Instruction use (mwait) */
  911             acpi_cpu_cx_cst_mwait(cx_ptr, address, accsize);
  912             ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  913               "acpi_cpu%d: Got C%d/mwait - %d latency\n",
  914               device_get_unit(sc->cpu_dev), cx_ptr->type, cx_ptr->trans_lat));
  915             cx_ptr++;
  916             sc->cpu_cx_count++;
  917         } else
  918 #endif
  919         {
  920             cx_ptr->res_rid = sc->cpu_cx_count;
  921             acpi_PkgGas(sc->cpu_dev, pkg, 0, &cx_ptr->res_type,
  922                 &cx_ptr->res_rid, &cx_ptr->p_lvlx, RF_SHAREABLE);
  923             if (cx_ptr->p_lvlx) {
  924                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  925                      "acpi_cpu%d: Got C%d - %d latency\n",
  926                      device_get_unit(sc->cpu_dev), cx_ptr->type,
  927                      cx_ptr->trans_lat));
  928                 cx_ptr++;
  929                 sc->cpu_cx_count++;
  930             }
  931         }
  932     }
  933     AcpiOsFree(buf.Pointer);
  934 
  935     /* If C1 state was not found, we need one now. */
  936     cx_ptr = sc->cpu_cx_states;
  937     if (cx_ptr->type == ACPI_STATE_C0) {
  938         cx_ptr->type = ACPI_STATE_C1;
  939         cx_ptr->trans_lat = 0;
  940     }
  941 
  942     return (0);
  943 }
  944 
  945 /*
  946  * Call this *after* all CPUs have been attached.
  947  */
  948 static void
  949 acpi_cpu_startup(void *arg)
  950 {
  951     struct acpi_cpu_softc *sc;
  952     int i;
  953 
  954     /*
  955      * Setup any quirks that might necessary now that we have probed
  956      * all the CPUs
  957      */
  958     acpi_cpu_quirks();
  959 
  960     if (cpu_cx_generic) {
  961         /*
  962          * We are using generic Cx mode, probe for available Cx states
  963          * for all processors.
  964          */
  965         CPU_FOREACH(i) {
  966             if ((sc = cpu_softc[i]) != NULL)
  967                 acpi_cpu_generic_cx_probe(sc);
  968         }
  969     } else {
  970         /*
  971          * We are using _CST mode, remove C3 state if necessary.
  972          * As we now know for sure that we will be using _CST mode
  973          * install our notify handler.
  974          */
  975         CPU_FOREACH(i) {
  976             if ((sc = cpu_softc[i]) == NULL)
  977                 continue;
  978             if (cpu_quirks & CPU_QUIRK_NO_C3) {
  979                 sc->cpu_cx_count = min(sc->cpu_cx_count, sc->cpu_non_c3 + 1);
  980             }
  981             AcpiInstallNotifyHandler(sc->cpu_handle, ACPI_DEVICE_NOTIFY,
  982                 acpi_cpu_notify, sc);
  983         }
  984     }
  985 
  986     /* Perform Cx final initialization. */
  987     CPU_FOREACH(i) {
  988         if ((sc = cpu_softc[i]) != NULL)
  989             acpi_cpu_startup_cx(sc);
  990     }
  991 
  992     /* Add a sysctl handler to handle global Cx lowest setting */
  993     SYSCTL_ADD_PROC(&cpu_sysctl_ctx, SYSCTL_CHILDREN(cpu_sysctl_tree),
  994         OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
  995         NULL, 0, acpi_cpu_global_cx_lowest_sysctl, "A",
  996         "Global lowest Cx sleep state to use");
  997 
  998     /* Take over idling from cpu_idle_default(). */
  999     cpu_cx_lowest_lim = 0;
 1000     CPU_FOREACH(i) {
 1001         if ((sc = cpu_softc[i]) != NULL)
 1002             enable_idle(sc);
 1003     }
 1004 #if defined(__i386__) || defined(__amd64__)
 1005     cpu_idle_hook = acpi_cpu_idle;
 1006 #endif
 1007 }
 1008 
 1009 static void
 1010 acpi_cpu_cx_list(struct acpi_cpu_softc *sc)
 1011 {
 1012     struct sbuf sb;
 1013     int i;
 1014 
 1015     /*
 1016      * Set up the list of Cx states
 1017      */
 1018     sbuf_new(&sb, sc->cpu_cx_supported, sizeof(sc->cpu_cx_supported),
 1019         SBUF_FIXEDLEN);
 1020     for (i = 0; i < sc->cpu_cx_count; i++)
 1021         sbuf_printf(&sb, "C%d/%d/%d ", i + 1, sc->cpu_cx_states[i].type,
 1022             sc->cpu_cx_states[i].trans_lat);
 1023     sbuf_trim(&sb);
 1024     sbuf_finish(&sb);
 1025 }       
 1026 
 1027 static void
 1028 acpi_cpu_startup_cx(struct acpi_cpu_softc *sc)
 1029 {
 1030     acpi_cpu_cx_list(sc);
 1031     
 1032     SYSCTL_ADD_STRING(&sc->cpu_sysctl_ctx,
 1033                       SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
 1034                       OID_AUTO, "cx_supported", CTLFLAG_RD,
 1035                       sc->cpu_cx_supported, 0,
 1036                       "Cx/microsecond values for supported Cx states");
 1037     SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
 1038         SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)), OID_AUTO,
 1039         "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
 1040         (void *)sc, 0, acpi_cpu_cx_lowest_sysctl, "A",
 1041         "lowest Cx sleep state to use");
 1042     SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
 1043         SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)), OID_AUTO,
 1044         "cx_usage", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
 1045         (void *)sc, 0, acpi_cpu_usage_sysctl, "A",
 1046         "percent usage for each Cx state");
 1047     SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
 1048         SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)), OID_AUTO,
 1049         "cx_usage_counters", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
 1050         (void *)sc, 0, acpi_cpu_usage_counters_sysctl, "A",
 1051         "Cx sleep state counters");
 1052 #if defined(__i386__) || defined(__amd64__)
 1053     SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
 1054         SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)), OID_AUTO,
 1055         "cx_method", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
 1056         (void *)sc, 0, acpi_cpu_method_sysctl, "A", "Cx entrance methods");
 1057 #endif
 1058 
 1059     /* Signal platform that we can handle _CST notification. */
 1060     if (!cpu_cx_generic && cpu_cst_cnt != 0) {
 1061         ACPI_LOCK(acpi);
 1062         AcpiOsWritePort(cpu_smi_cmd, cpu_cst_cnt, 8);
 1063         ACPI_UNLOCK(acpi);
 1064     }
 1065 }
 1066 
 1067 #if defined(__i386__) || defined(__amd64__)
 1068 /*
 1069  * Idle the CPU in the lowest state possible.  This function is called with
 1070  * interrupts disabled.  Note that once it re-enables interrupts, a task
 1071  * switch can occur so do not access shared data (i.e. the softc) after
 1072  * interrupts are re-enabled.
 1073  */
 1074 static void
 1075 acpi_cpu_idle(sbintime_t sbt)
 1076 {
 1077     struct      acpi_cpu_softc *sc;
 1078     struct      acpi_cx *cx_next;
 1079     uint64_t    start_ticks, end_ticks;
 1080     uint32_t    start_time, end_time;
 1081     ACPI_STATUS status;
 1082     int         bm_active, cx_next_idx, i, us;
 1083 
 1084     /*
 1085      * Look up our CPU id to get our softc.  If it's NULL, we'll use C1
 1086      * since there is no ACPI processor object for this CPU.  This occurs
 1087      * for logical CPUs in the HTT case.
 1088      */
 1089     sc = cpu_softc[PCPU_GET(cpuid)];
 1090     if (sc == NULL) {
 1091         acpi_cpu_c1();
 1092         return;
 1093     }
 1094 
 1095     /* If disabled, take the safe path. */
 1096     if (is_idle_disabled(sc)) {
 1097         acpi_cpu_c1();
 1098         return;
 1099     }
 1100 
 1101     /* Find the lowest state that has small enough latency. */
 1102     us = sc->cpu_prev_sleep;
 1103     if (sbt >= 0 && us > (sbt >> 12))
 1104         us = (sbt >> 12);
 1105     cx_next_idx = 0;
 1106     if (cpu_disable_c2_sleep)
 1107         i = min(sc->cpu_cx_lowest, sc->cpu_non_c2);
 1108     else if (cpu_disable_c3_sleep)
 1109         i = min(sc->cpu_cx_lowest, sc->cpu_non_c3);
 1110     else
 1111         i = sc->cpu_cx_lowest;
 1112     for (; i >= 0; i--) {
 1113         if (sc->cpu_cx_states[i].trans_lat * 3 <= us) {
 1114             cx_next_idx = i;
 1115             break;
 1116         }
 1117     }
 1118 
 1119     /*
 1120      * Check for bus master activity.  If there was activity, clear
 1121      * the bit and use the lowest non-C3 state.  Note that the USB
 1122      * driver polling for new devices keeps this bit set all the
 1123      * time if USB is loaded.
 1124      */
 1125     cx_next = &sc->cpu_cx_states[cx_next_idx];
 1126     if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0 &&
 1127         cx_next_idx > sc->cpu_non_c3 &&
 1128         (!cx_next->do_mwait || cx_next->mwait_bm_avoidance)) {
 1129         status = AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, &bm_active);
 1130         if (ACPI_SUCCESS(status) && bm_active != 0) {
 1131             AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, 1);
 1132             cx_next_idx = sc->cpu_non_c3;
 1133             cx_next = &sc->cpu_cx_states[cx_next_idx];
 1134         }
 1135     }
 1136 
 1137     /* Select the next state and update statistics. */
 1138     sc->cpu_cx_stats[cx_next_idx]++;
 1139     KASSERT(cx_next->type != ACPI_STATE_C0, ("acpi_cpu_idle: C0 sleep"));
 1140 
 1141     /*
 1142      * Execute HLT (or equivalent) and wait for an interrupt.  We can't
 1143      * precisely calculate the time spent in C1 since the place we wake up
 1144      * is an ISR.  Assume we slept no more then half of quantum, unless
 1145      * we are called inside critical section, delaying context switch.
 1146      */
 1147     if (cx_next->type == ACPI_STATE_C1) {
 1148         start_ticks = cpu_ticks();
 1149         if (cx_next->p_lvlx != NULL) {
 1150             /* C1 I/O then Halt */
 1151             CPU_GET_REG(cx_next->p_lvlx, 1);
 1152         }
 1153         if (cx_next->do_mwait)
 1154             acpi_cpu_idle_mwait(cx_next->mwait_hint);
 1155         else
 1156             acpi_cpu_c1();
 1157         end_ticks = cpu_ticks();
 1158         /* acpi_cpu_c1() returns with interrupts enabled. */
 1159         if (cx_next->do_mwait)
 1160             ACPI_ENABLE_IRQS();
 1161         end_time = ((end_ticks - start_ticks) << 20) / cpu_tickrate();
 1162         if (!cx_next->do_mwait && curthread->td_critnest == 0)
 1163                 end_time = min(end_time, 500000 / hz);
 1164         sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + end_time) / 4;
 1165         return;
 1166     }
 1167 
 1168     /*
 1169      * For C3, disable bus master arbitration and enable bus master wake
 1170      * if BM control is available, otherwise flush the CPU cache.
 1171      */
 1172     if (cx_next->type == ACPI_STATE_C3) {
 1173         if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
 1174             AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 1);
 1175             AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 1);
 1176         } else
 1177             ACPI_FLUSH_CPU_CACHE();
 1178     }
 1179 
 1180     /*
 1181      * Read from P_LVLx to enter C2(+), checking time spent asleep.
 1182      * Use the ACPI timer for measuring sleep time.  Since we need to
 1183      * get the time very close to the CPU start/stop clock logic, this
 1184      * is the only reliable time source.
 1185      */
 1186     if (cx_next->type == ACPI_STATE_C3) {
 1187         AcpiGetTimer(&start_time);
 1188         start_ticks = 0;
 1189     } else {
 1190         start_time = 0;
 1191         start_ticks = cpu_ticks();
 1192     }
 1193     if (cx_next->do_mwait) {
 1194         acpi_cpu_idle_mwait(cx_next->mwait_hint);
 1195     } else {
 1196         CPU_GET_REG(cx_next->p_lvlx, 1);
 1197         /*
 1198          * Read the end time twice.  Since it may take an arbitrary time
 1199          * to enter the idle state, the first read may be executed before
 1200          * the processor has stopped.  Doing it again provides enough
 1201          * margin that we are certain to have a correct value.
 1202          */
 1203         AcpiGetTimer(&end_time);
 1204     }
 1205 
 1206     if (cx_next->type == ACPI_STATE_C3)
 1207         AcpiGetTimer(&end_time);
 1208     else
 1209         end_ticks = cpu_ticks();
 1210 
 1211     /* Enable bus master arbitration and disable bus master wakeup. */
 1212     if (cx_next->type == ACPI_STATE_C3 &&
 1213       (cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
 1214         AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 0);
 1215         AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
 1216     }
 1217     ACPI_ENABLE_IRQS();
 1218 
 1219     if (cx_next->type == ACPI_STATE_C3)
 1220         AcpiGetTimerDuration(start_time, end_time, &end_time);
 1221     else
 1222         end_time = ((end_ticks - start_ticks) << 20) / cpu_tickrate();
 1223     sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + end_time) / 4;
 1224 }
 1225 #endif
 1226 
 1227 /*
 1228  * Re-evaluate the _CST object when we are notified that it changed.
 1229  */
 1230 static void
 1231 acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context)
 1232 {
 1233     struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)context;
 1234 
 1235     if (notify != ACPI_NOTIFY_CX_STATES)
 1236         return;
 1237 
 1238     /*
 1239      * C-state data for target CPU is going to be in flux while we execute
 1240      * acpi_cpu_cx_cst, so disable entering acpi_cpu_idle.
 1241      * Also, it may happen that multiple ACPI taskqueues may concurrently
 1242      * execute notifications for the same CPU.  ACPI_SERIAL is used to
 1243      * protect against that.
 1244      */
 1245     ACPI_SERIAL_BEGIN(cpu);
 1246     disable_idle(sc);
 1247 
 1248     /* Update the list of Cx states. */
 1249     acpi_cpu_cx_cst(sc);
 1250     acpi_cpu_cx_list(sc);
 1251     acpi_cpu_set_cx_lowest(sc);
 1252 
 1253     enable_idle(sc);
 1254     ACPI_SERIAL_END(cpu);
 1255 
 1256     acpi_UserNotify("PROCESSOR", sc->cpu_handle, notify);
 1257 }
 1258 
 1259 static void
 1260 acpi_cpu_quirks(void)
 1261 {
 1262     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
 1263 
 1264     /*
 1265      * Bus mastering arbitration control is needed to keep caches coherent
 1266      * while sleeping in C3.  If it's not present but a working flush cache
 1267      * instruction is present, flush the caches before entering C3 instead.
 1268      * Otherwise, just disable C3 completely.
 1269      */
 1270     if (AcpiGbl_FADT.Pm2ControlBlock == 0 ||
 1271         AcpiGbl_FADT.Pm2ControlLength == 0) {
 1272         if ((AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD) &&
 1273             (AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD_FLUSH) == 0) {
 1274             cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
 1275             ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1276                 "acpi_cpu: no BM control, using flush cache method\n"));
 1277         } else {
 1278             cpu_quirks |= CPU_QUIRK_NO_C3;
 1279             ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1280                 "acpi_cpu: no BM control, C3 not available\n"));
 1281         }
 1282     }
 1283 
 1284     /*
 1285      * If we are using generic Cx mode, C3 on multiple CPUs requires using
 1286      * the expensive flush cache instruction.
 1287      */
 1288     if (cpu_cx_generic && mp_ncpus > 1) {
 1289         cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
 1290         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1291             "acpi_cpu: SMP, using flush cache mode for C3\n"));
 1292     }
 1293 
 1294     /* Look for various quirks of the PIIX4 part. */
 1295     acpi_cpu_quirks_piix4();
 1296 }
 1297 
 1298 static void
 1299 acpi_cpu_quirks_piix4(void)
 1300 {
 1301 #ifdef __i386__
 1302     device_t acpi_dev;
 1303     uint32_t val;
 1304     ACPI_STATUS status;
 1305 
 1306     acpi_dev = pci_find_device(PCI_VENDOR_INTEL, PCI_DEVICE_82371AB_3);
 1307     if (acpi_dev != NULL) {
 1308         switch (pci_get_revid(acpi_dev)) {
 1309         /*
 1310          * Disable C3 support for all PIIX4 chipsets.  Some of these parts
 1311          * do not report the BMIDE status to the BM status register and
 1312          * others have a livelock bug if Type-F DMA is enabled.  Linux
 1313          * works around the BMIDE bug by reading the BM status directly
 1314          * but we take the simpler approach of disabling C3 for these
 1315          * parts.
 1316          *
 1317          * See erratum #18 ("C3 Power State/BMIDE and Type-F DMA
 1318          * Livelock") from the January 2002 PIIX4 specification update.
 1319          * Applies to all PIIX4 models.
 1320          *
 1321          * Also, make sure that all interrupts cause a "Stop Break"
 1322          * event to exit from C2 state.
 1323          * Also, BRLD_EN_BM (ACPI_BITREG_BUS_MASTER_RLD in ACPI-speak)
 1324          * should be set to zero, otherwise it causes C2 to short-sleep.
 1325          * PIIX4 doesn't properly support C3 and bus master activity
 1326          * need not break out of C2.
 1327          */
 1328         case PCI_REVISION_A_STEP:
 1329         case PCI_REVISION_B_STEP:
 1330         case PCI_REVISION_4E:
 1331         case PCI_REVISION_4M:
 1332             cpu_quirks |= CPU_QUIRK_NO_C3;
 1333             ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1334                 "acpi_cpu: working around PIIX4 bug, disabling C3\n"));
 1335 
 1336             val = pci_read_config(acpi_dev, PIIX4_DEVACTB_REG, 4);
 1337             if ((val & PIIX4_STOP_BREAK_MASK) != PIIX4_STOP_BREAK_MASK) {
 1338                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1339                     "acpi_cpu: PIIX4: enabling IRQs to generate Stop Break\n"));
 1340                 val |= PIIX4_STOP_BREAK_MASK;
 1341                 pci_write_config(acpi_dev, PIIX4_DEVACTB_REG, val, 4);
 1342             }
 1343             status = AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_RLD, &val);
 1344             if (ACPI_SUCCESS(status) && val != 0) {
 1345                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1346                     "acpi_cpu: PIIX4: reset BRLD_EN_BM\n"));
 1347                 AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
 1348             }
 1349             break;
 1350         default:
 1351             break;
 1352         }
 1353     }
 1354 #endif
 1355 }
 1356 
 1357 static int
 1358 acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS)
 1359 {
 1360         struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)arg1;
 1361         struct sbuf      sb;
 1362         char             buf[128];
 1363         int              error, i;
 1364         uintmax_t        fract, sum, whole;
 1365 
 1366         sbuf_new_for_sysctl(&sb, buf, sizeof(buf), req);
 1367         sum = 0;
 1368         for (i = 0; i < sc->cpu_cx_count; i++)
 1369                 sum += sc->cpu_cx_stats[i];
 1370         for (i = 0; i < sc->cpu_cx_count; i++) {
 1371                 if (sum > 0) {
 1372                         whole = (uintmax_t)sc->cpu_cx_stats[i] * 100;
 1373                         fract = (whole % sum) * 100;
 1374                         sbuf_printf(&sb, "%u.%02u%% ", (u_int)(whole / sum),
 1375                             (u_int)(fract / sum));
 1376                 } else
 1377                         sbuf_printf(&sb, "0.00%% ");
 1378         }
 1379         sbuf_printf(&sb, "last %dus", sc->cpu_prev_sleep);
 1380         error = sbuf_finish(&sb);
 1381         sbuf_delete(&sb);
 1382         return (error);
 1383 }
 1384 
 1385 /*
 1386  * XXX TODO: actually add support to count each entry/exit
 1387  * from the Cx states.
 1388  */
 1389 static int
 1390 acpi_cpu_usage_counters_sysctl(SYSCTL_HANDLER_ARGS)
 1391 {
 1392         struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)arg1;
 1393         struct sbuf      sb;
 1394         char             buf[128];
 1395         int              error, i;
 1396 
 1397         sbuf_new_for_sysctl(&sb, buf, sizeof(buf), req);
 1398         for (i = 0; i < sc->cpu_cx_count; i++) {
 1399                 if (i > 0)
 1400                         sbuf_putc(&sb, ' ');
 1401                 sbuf_printf(&sb, "%u", sc->cpu_cx_stats[i]);
 1402         }
 1403         error = sbuf_finish(&sb);
 1404         sbuf_delete(&sb);
 1405         return (error);
 1406 }
 1407 
 1408 #if defined(__i386__) || defined(__amd64__)
 1409 static int
 1410 acpi_cpu_method_sysctl(SYSCTL_HANDLER_ARGS)
 1411 {
 1412         struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)arg1;
 1413         struct acpi_cx *cx;
 1414         struct sbuf sb;
 1415         char buf[128];
 1416         int error, i;
 1417 
 1418         sbuf_new_for_sysctl(&sb, buf, sizeof(buf), req);
 1419         for (i = 0; i < sc->cpu_cx_count; i++) {
 1420                 cx = &sc->cpu_cx_states[i];
 1421                 if (i > 0)
 1422                         sbuf_putc(&sb, ' ');
 1423                 sbuf_printf(&sb, "C%d/", i + 1);
 1424                 if (cx->do_mwait) {
 1425                         sbuf_cat(&sb, "mwait");
 1426                         if (cx->mwait_hw_coord)
 1427                                 sbuf_cat(&sb, "/hwc");
 1428                         if (cx->mwait_bm_avoidance)
 1429                                 sbuf_cat(&sb, "/bma");
 1430                 } else if (cx->type == ACPI_STATE_C1) {
 1431                         sbuf_cat(&sb, "hlt");
 1432                 } else {
 1433                         sbuf_cat(&sb, "io");
 1434                 }
 1435                 if (cx->type == ACPI_STATE_C1 && cx->p_lvlx != NULL)
 1436                         sbuf_cat(&sb, "/iohlt");
 1437         }
 1438         error = sbuf_finish(&sb);
 1439         sbuf_delete(&sb);
 1440         return (error);
 1441 }
 1442 #endif
 1443 
 1444 static int
 1445 acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc)
 1446 {
 1447     int i;
 1448 
 1449     ACPI_SERIAL_ASSERT(cpu);
 1450     sc->cpu_cx_lowest = min(sc->cpu_cx_lowest_lim, sc->cpu_cx_count - 1);
 1451 
 1452     /* If not disabling, cache the new lowest non-C3 state. */
 1453     sc->cpu_non_c3 = 0;
 1454     for (i = sc->cpu_cx_lowest; i >= 0; i--) {
 1455         if (sc->cpu_cx_states[i].type < ACPI_STATE_C3) {
 1456             sc->cpu_non_c3 = i;
 1457             break;
 1458         }
 1459     }
 1460 
 1461     /* Reset the statistics counters. */
 1462     bzero(sc->cpu_cx_stats, sizeof(sc->cpu_cx_stats));
 1463     return (0);
 1464 }
 1465 
 1466 static int
 1467 acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
 1468 {
 1469     struct       acpi_cpu_softc *sc;
 1470     char         state[8];
 1471     int          val, error;
 1472 
 1473     sc = (struct acpi_cpu_softc *) arg1;
 1474     snprintf(state, sizeof(state), "C%d", sc->cpu_cx_lowest_lim + 1);
 1475     error = sysctl_handle_string(oidp, state, sizeof(state), req);
 1476     if (error != 0 || req->newptr == NULL)
 1477         return (error);
 1478     if (strlen(state) < 2 || toupper(state[0]) != 'C')
 1479         return (EINVAL);
 1480     if (strcasecmp(state, "Cmax") == 0)
 1481         val = MAX_CX_STATES;
 1482     else {
 1483         val = (int) strtol(state + 1, NULL, 10);
 1484         if (val < 1 || val > MAX_CX_STATES)
 1485             return (EINVAL);
 1486     }
 1487 
 1488     ACPI_SERIAL_BEGIN(cpu);
 1489     sc->cpu_cx_lowest_lim = val - 1;
 1490     acpi_cpu_set_cx_lowest(sc);
 1491     ACPI_SERIAL_END(cpu);
 1492 
 1493     return (0);
 1494 }
 1495 
 1496 static int
 1497 acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
 1498 {
 1499     struct      acpi_cpu_softc *sc;
 1500     char        state[8];
 1501     int         val, error, i;
 1502 
 1503     snprintf(state, sizeof(state), "C%d", cpu_cx_lowest_lim + 1);
 1504     error = sysctl_handle_string(oidp, state, sizeof(state), req);
 1505     if (error != 0 || req->newptr == NULL)
 1506         return (error);
 1507     if (strlen(state) < 2 || toupper(state[0]) != 'C')
 1508         return (EINVAL);
 1509     if (strcasecmp(state, "Cmax") == 0)
 1510         val = MAX_CX_STATES;
 1511     else {
 1512         val = (int) strtol(state + 1, NULL, 10);
 1513         if (val < 1 || val > MAX_CX_STATES)
 1514             return (EINVAL);
 1515     }
 1516 
 1517     /* Update the new lowest useable Cx state for all CPUs. */
 1518     ACPI_SERIAL_BEGIN(cpu);
 1519     cpu_cx_lowest_lim = val - 1;
 1520     CPU_FOREACH(i) {
 1521         if ((sc = cpu_softc[i]) == NULL)
 1522             continue;
 1523         sc->cpu_cx_lowest_lim = cpu_cx_lowest_lim;
 1524         acpi_cpu_set_cx_lowest(sc);
 1525     }
 1526     ACPI_SERIAL_END(cpu);
 1527 
 1528     return (0);
 1529 }

Cache object: 185ae416c89ed63027038f92f5047f18


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.