The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/acpica/acpi_cpu.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2003-2005 Nate Lawson (SDG)
    3  * Copyright (c) 2001 Michael Smith
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   25  * SUCH DAMAGE.
   26  */
   27 
   28 #include <sys/cdefs.h>
   29 __FBSDID("$FreeBSD: releng/10.2/sys/dev/acpica/acpi_cpu.c 283892 2015-06-01 19:26:24Z jkim $");
   30 
   31 #include "opt_acpi.h"
   32 #include <sys/param.h>
   33 #include <sys/bus.h>
   34 #include <sys/cpu.h>
   35 #include <sys/kernel.h>
   36 #include <sys/malloc.h>
   37 #include <sys/module.h>
   38 #include <sys/pcpu.h>
   39 #include <sys/power.h>
   40 #include <sys/proc.h>
   41 #include <sys/sched.h>
   42 #include <sys/sbuf.h>
   43 #include <sys/smp.h>
   44 
   45 #include <dev/pci/pcivar.h>
   46 #include <machine/atomic.h>
   47 #include <machine/bus.h>
   48 #if defined(__amd64__) || defined(__i386__)
   49 #include <machine/clock.h>
   50 #endif
   51 #include <sys/rman.h>
   52 
   53 #include <contrib/dev/acpica/include/acpi.h>
   54 #include <contrib/dev/acpica/include/accommon.h>
   55 
   56 #include <dev/acpica/acpivar.h>
   57 
   58 /*
   59  * Support for ACPI Processor devices, including C[1-3] sleep states.
   60  */
   61 
   62 /* Hooks for the ACPI CA debugging infrastructure */
   63 #define _COMPONENT      ACPI_PROCESSOR
   64 ACPI_MODULE_NAME("PROCESSOR")
   65 
   66 struct acpi_cx {
   67     struct resource     *p_lvlx;        /* Register to read to enter state. */
   68     uint32_t             type;          /* C1-3 (C4 and up treated as C3). */
   69     uint32_t             trans_lat;     /* Transition latency (usec). */
   70     uint32_t             power;         /* Power consumed (mW). */
   71     int                  res_type;      /* Resource type for p_lvlx. */
   72     int                  res_rid;       /* Resource ID for p_lvlx. */
   73 };
   74 #define MAX_CX_STATES    8
   75 
   76 struct acpi_cpu_softc {
   77     device_t             cpu_dev;
   78     ACPI_HANDLE          cpu_handle;
   79     struct pcpu         *cpu_pcpu;
   80     uint32_t             cpu_acpi_id;   /* ACPI processor id */
   81     uint32_t             cpu_p_blk;     /* ACPI P_BLK location */
   82     uint32_t             cpu_p_blk_len; /* P_BLK length (must be 6). */
   83     struct acpi_cx       cpu_cx_states[MAX_CX_STATES];
   84     int                  cpu_cx_count;  /* Number of valid Cx states. */
   85     int                  cpu_prev_sleep;/* Last idle sleep duration. */
   86     int                  cpu_features;  /* Child driver supported features. */
   87     /* Runtime state. */
   88     int                  cpu_non_c2;    /* Index of lowest non-C2 state. */
   89     int                  cpu_non_c3;    /* Index of lowest non-C3 state. */
   90     u_int                cpu_cx_stats[MAX_CX_STATES];/* Cx usage history. */
   91     /* Values for sysctl. */
   92     struct sysctl_ctx_list cpu_sysctl_ctx;
   93     struct sysctl_oid   *cpu_sysctl_tree;
   94     int                  cpu_cx_lowest;
   95     int                  cpu_cx_lowest_lim;
   96     int                  cpu_disable_idle; /* Disable entry to idle function */
   97     char                 cpu_cx_supported[64];
   98 };
   99 
  100 struct acpi_cpu_device {
  101     struct resource_list        ad_rl;
  102 };
  103 
  104 #define CPU_GET_REG(reg, width)                                         \
  105     (bus_space_read_ ## width(rman_get_bustag((reg)),                   \
  106                       rman_get_bushandle((reg)), 0))
  107 #define CPU_SET_REG(reg, width, val)                                    \
  108     (bus_space_write_ ## width(rman_get_bustag((reg)),                  \
  109                        rman_get_bushandle((reg)), 0, (val)))
  110 
  111 #define PM_USEC(x)       ((x) >> 2)     /* ~4 clocks per usec (3.57955 Mhz) */
  112 
  113 #define ACPI_NOTIFY_CX_STATES   0x81    /* _CST changed. */
  114 
  115 #define CPU_QUIRK_NO_C3         (1<<0)  /* C3-type states are not usable. */
  116 #define CPU_QUIRK_NO_BM_CTRL    (1<<2)  /* No bus mastering control. */
  117 
  118 #define PCI_VENDOR_INTEL        0x8086
  119 #define PCI_DEVICE_82371AB_3    0x7113  /* PIIX4 chipset for quirks. */
  120 #define PCI_REVISION_A_STEP     0
  121 #define PCI_REVISION_B_STEP     1
  122 #define PCI_REVISION_4E         2
  123 #define PCI_REVISION_4M         3
  124 #define PIIX4_DEVACTB_REG       0x58
  125 #define PIIX4_BRLD_EN_IRQ0      (1<<0)
  126 #define PIIX4_BRLD_EN_IRQ       (1<<1)
  127 #define PIIX4_BRLD_EN_IRQ8      (1<<5)
  128 #define PIIX4_STOP_BREAK_MASK   (PIIX4_BRLD_EN_IRQ0 | PIIX4_BRLD_EN_IRQ | PIIX4_BRLD_EN_IRQ8)
  129 #define PIIX4_PCNTRL_BST_EN     (1<<10)
  130 
  131 /* Allow users to ignore processor orders in MADT. */
  132 static int cpu_unordered;
  133 TUNABLE_INT("debug.acpi.cpu_unordered", &cpu_unordered);
  134 SYSCTL_INT(_debug_acpi, OID_AUTO, cpu_unordered, CTLFLAG_RDTUN,
  135     &cpu_unordered, 0,
  136     "Do not use the MADT to match ACPI Processor objects to CPUs.");
  137 
  138 /* Platform hardware resource information. */
  139 static uint32_t          cpu_smi_cmd;   /* Value to write to SMI_CMD. */
  140 static uint8_t           cpu_cst_cnt;   /* Indicate we are _CST aware. */
  141 static int               cpu_quirks;    /* Indicate any hardware bugs. */
  142 
  143 /* Values for sysctl. */
  144 static struct sysctl_ctx_list cpu_sysctl_ctx;
  145 static struct sysctl_oid *cpu_sysctl_tree;
  146 static int               cpu_cx_generic;
  147 static int               cpu_cx_lowest_lim;
  148 
  149 static device_t         *cpu_devices;
  150 static int               cpu_ndevices;
  151 static struct acpi_cpu_softc **cpu_softc;
  152 ACPI_SERIAL_DECL(cpu, "ACPI CPU");
  153 
  154 static int      acpi_cpu_probe(device_t dev);
  155 static int      acpi_cpu_attach(device_t dev);
  156 static int      acpi_cpu_suspend(device_t dev);
  157 static int      acpi_cpu_resume(device_t dev);
  158 static int      acpi_pcpu_get_id(device_t dev, uint32_t *acpi_id,
  159                     uint32_t *cpu_id);
  160 static struct resource_list *acpi_cpu_get_rlist(device_t dev, device_t child);
  161 static device_t acpi_cpu_add_child(device_t dev, u_int order, const char *name,
  162                     int unit);
  163 static int      acpi_cpu_read_ivar(device_t dev, device_t child, int index,
  164                     uintptr_t *result);
  165 static int      acpi_cpu_shutdown(device_t dev);
  166 static void     acpi_cpu_cx_probe(struct acpi_cpu_softc *sc);
  167 static void     acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc);
  168 static int      acpi_cpu_cx_cst(struct acpi_cpu_softc *sc);
  169 static void     acpi_cpu_startup(void *arg);
  170 static void     acpi_cpu_startup_cx(struct acpi_cpu_softc *sc);
  171 static void     acpi_cpu_cx_list(struct acpi_cpu_softc *sc);
  172 static void     acpi_cpu_idle(sbintime_t sbt);
  173 static void     acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context);
  174 static void     acpi_cpu_quirks(void);
  175 static void     acpi_cpu_quirks_piix4(void);
  176 static int      acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS);
  177 static int      acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc);
  178 static int      acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
  179 static int      acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
  180 
  181 static device_method_t acpi_cpu_methods[] = {
  182     /* Device interface */
  183     DEVMETHOD(device_probe,     acpi_cpu_probe),
  184     DEVMETHOD(device_attach,    acpi_cpu_attach),
  185     DEVMETHOD(device_detach,    bus_generic_detach),
  186     DEVMETHOD(device_shutdown,  acpi_cpu_shutdown),
  187     DEVMETHOD(device_suspend,   acpi_cpu_suspend),
  188     DEVMETHOD(device_resume,    acpi_cpu_resume),
  189 
  190     /* Bus interface */
  191     DEVMETHOD(bus_add_child,    acpi_cpu_add_child),
  192     DEVMETHOD(bus_read_ivar,    acpi_cpu_read_ivar),
  193     DEVMETHOD(bus_get_resource_list, acpi_cpu_get_rlist),
  194     DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource),
  195     DEVMETHOD(bus_set_resource, bus_generic_rl_set_resource),
  196     DEVMETHOD(bus_alloc_resource, bus_generic_rl_alloc_resource),
  197     DEVMETHOD(bus_release_resource, bus_generic_rl_release_resource),
  198     DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
  199     DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
  200     DEVMETHOD(bus_setup_intr,   bus_generic_setup_intr),
  201     DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr),
  202 
  203     DEVMETHOD_END
  204 };
  205 
  206 static driver_t acpi_cpu_driver = {
  207     "cpu",
  208     acpi_cpu_methods,
  209     sizeof(struct acpi_cpu_softc),
  210 };
  211 
  212 static devclass_t acpi_cpu_devclass;
  213 DRIVER_MODULE(cpu, acpi, acpi_cpu_driver, acpi_cpu_devclass, 0, 0);
  214 MODULE_DEPEND(cpu, acpi, 1, 1, 1);
  215 
  216 static int
  217 acpi_cpu_probe(device_t dev)
  218 {
  219     int                    acpi_id, cpu_id;
  220     ACPI_BUFFER            buf;
  221     ACPI_HANDLE            handle;
  222     ACPI_OBJECT            *obj;
  223     ACPI_STATUS            status;
  224 
  225     if (acpi_disabled("cpu") || acpi_get_type(dev) != ACPI_TYPE_PROCESSOR)
  226         return (ENXIO);
  227 
  228     handle = acpi_get_handle(dev);
  229     if (cpu_softc == NULL)
  230         cpu_softc = malloc(sizeof(struct acpi_cpu_softc *) *
  231             (mp_maxid + 1), M_TEMP /* XXX */, M_WAITOK | M_ZERO);
  232 
  233     /* Get our Processor object. */
  234     buf.Pointer = NULL;
  235     buf.Length = ACPI_ALLOCATE_BUFFER;
  236     status = AcpiEvaluateObject(handle, NULL, NULL, &buf);
  237     if (ACPI_FAILURE(status)) {
  238         device_printf(dev, "probe failed to get Processor obj - %s\n",
  239                       AcpiFormatException(status));
  240         return (ENXIO);
  241     }
  242     obj = (ACPI_OBJECT *)buf.Pointer;
  243     if (obj->Type != ACPI_TYPE_PROCESSOR) {
  244         device_printf(dev, "Processor object has bad type %d\n", obj->Type);
  245         AcpiOsFree(obj);
  246         return (ENXIO);
  247     }
  248 
  249     /*
  250      * Find the processor associated with our unit.  We could use the
  251      * ProcId as a key, however, some boxes do not have the same values
  252      * in their Processor object as the ProcId values in the MADT.
  253      */
  254     acpi_id = obj->Processor.ProcId;
  255     AcpiOsFree(obj);
  256     if (acpi_pcpu_get_id(dev, &acpi_id, &cpu_id) != 0)
  257         return (ENXIO);
  258 
  259     /*
  260      * Check if we already probed this processor.  We scan the bus twice
  261      * so it's possible we've already seen this one.
  262      */
  263     if (cpu_softc[cpu_id] != NULL)
  264         return (ENXIO);
  265 
  266     /* Mark this processor as in-use and save our derived id for attach. */
  267     cpu_softc[cpu_id] = (void *)1;
  268     acpi_set_private(dev, (void*)(intptr_t)cpu_id);
  269     device_set_desc(dev, "ACPI CPU");
  270 
  271     return (0);
  272 }
  273 
  274 static int
  275 acpi_cpu_attach(device_t dev)
  276 {
  277     ACPI_BUFFER            buf;
  278     ACPI_OBJECT            arg[4], *obj;
  279     ACPI_OBJECT_LIST       arglist;
  280     struct pcpu            *pcpu_data;
  281     struct acpi_cpu_softc *sc;
  282     struct acpi_softc     *acpi_sc;
  283     ACPI_STATUS            status;
  284     u_int                  features;
  285     int                    cpu_id, drv_count, i;
  286     driver_t              **drivers;
  287     uint32_t               cap_set[3];
  288 
  289     /* UUID needed by _OSC evaluation */
  290     static uint8_t cpu_oscuuid[16] = { 0x16, 0xA6, 0x77, 0x40, 0x0C, 0x29,
  291                                        0xBE, 0x47, 0x9E, 0xBD, 0xD8, 0x70,
  292                                        0x58, 0x71, 0x39, 0x53 };
  293 
  294     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
  295 
  296     sc = device_get_softc(dev);
  297     sc->cpu_dev = dev;
  298     sc->cpu_handle = acpi_get_handle(dev);
  299     cpu_id = (int)(intptr_t)acpi_get_private(dev);
  300     cpu_softc[cpu_id] = sc;
  301     pcpu_data = pcpu_find(cpu_id);
  302     pcpu_data->pc_device = dev;
  303     sc->cpu_pcpu = pcpu_data;
  304     cpu_smi_cmd = AcpiGbl_FADT.SmiCommand;
  305     cpu_cst_cnt = AcpiGbl_FADT.CstControl;
  306 
  307     buf.Pointer = NULL;
  308     buf.Length = ACPI_ALLOCATE_BUFFER;
  309     status = AcpiEvaluateObject(sc->cpu_handle, NULL, NULL, &buf);
  310     if (ACPI_FAILURE(status)) {
  311         device_printf(dev, "attach failed to get Processor obj - %s\n",
  312                       AcpiFormatException(status));
  313         return (ENXIO);
  314     }
  315     obj = (ACPI_OBJECT *)buf.Pointer;
  316     sc->cpu_p_blk = obj->Processor.PblkAddress;
  317     sc->cpu_p_blk_len = obj->Processor.PblkLength;
  318     sc->cpu_acpi_id = obj->Processor.ProcId;
  319     AcpiOsFree(obj);
  320     ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: P_BLK at %#x/%d\n",
  321                      device_get_unit(dev), sc->cpu_p_blk, sc->cpu_p_blk_len));
  322 
  323     /*
  324      * If this is the first cpu we attach, create and initialize the generic
  325      * resources that will be used by all acpi cpu devices.
  326      */
  327     if (device_get_unit(dev) == 0) {
  328         /* Assume we won't be using generic Cx mode by default */
  329         cpu_cx_generic = FALSE;
  330 
  331         /* Install hw.acpi.cpu sysctl tree */
  332         acpi_sc = acpi_device_get_parent_softc(dev);
  333         sysctl_ctx_init(&cpu_sysctl_ctx);
  334         cpu_sysctl_tree = SYSCTL_ADD_NODE(&cpu_sysctl_ctx,
  335             SYSCTL_CHILDREN(acpi_sc->acpi_sysctl_tree), OID_AUTO, "cpu",
  336             CTLFLAG_RD, 0, "node for CPU children");
  337 
  338         /* Queue post cpu-probing task handler */
  339         AcpiOsExecute(OSL_NOTIFY_HANDLER, acpi_cpu_startup, NULL);
  340     }
  341 
  342     /*
  343      * Before calling any CPU methods, collect child driver feature hints
  344      * and notify ACPI of them.  We support unified SMP power control
  345      * so advertise this ourselves.  Note this is not the same as independent
  346      * SMP control where each CPU can have different settings.
  347      */
  348     sc->cpu_features = ACPI_CAP_SMP_SAME | ACPI_CAP_SMP_SAME_C3;
  349     if (devclass_get_drivers(acpi_cpu_devclass, &drivers, &drv_count) == 0) {
  350         for (i = 0; i < drv_count; i++) {
  351             if (ACPI_GET_FEATURES(drivers[i], &features) == 0)
  352                 sc->cpu_features |= features;
  353         }
  354         free(drivers, M_TEMP);
  355     }
  356 
  357     /*
  358      * CPU capabilities are specified in
  359      * Intel Processor Vendor-Specific ACPI Interface Specification.
  360      */
  361     if (sc->cpu_features) {
  362         arglist.Pointer = arg;
  363         arglist.Count = 4;
  364         arg[0].Type = ACPI_TYPE_BUFFER;
  365         arg[0].Buffer.Length = sizeof(cpu_oscuuid);
  366         arg[0].Buffer.Pointer = cpu_oscuuid;    /* UUID */
  367         arg[1].Type = ACPI_TYPE_INTEGER;
  368         arg[1].Integer.Value = 1;               /* revision */
  369         arg[2].Type = ACPI_TYPE_INTEGER;
  370         arg[2].Integer.Value = 1;               /* count */
  371         arg[3].Type = ACPI_TYPE_BUFFER;
  372         arg[3].Buffer.Length = sizeof(cap_set); /* Capabilities buffer */
  373         arg[3].Buffer.Pointer = (uint8_t *)cap_set;
  374         cap_set[0] = 0;                         /* status */
  375         cap_set[1] = sc->cpu_features;
  376         status = AcpiEvaluateObject(sc->cpu_handle, "_OSC", &arglist, NULL);
  377         if (ACPI_SUCCESS(status)) {
  378             if (cap_set[0] != 0)
  379                 device_printf(dev, "_OSC returned status %#x\n", cap_set[0]);
  380         }
  381         else {
  382             arglist.Pointer = arg;
  383             arglist.Count = 1;
  384             arg[0].Type = ACPI_TYPE_BUFFER;
  385             arg[0].Buffer.Length = sizeof(cap_set);
  386             arg[0].Buffer.Pointer = (uint8_t *)cap_set;
  387             cap_set[0] = 1; /* revision */
  388             cap_set[1] = 1; /* number of capabilities integers */
  389             cap_set[2] = sc->cpu_features;
  390             AcpiEvaluateObject(sc->cpu_handle, "_PDC", &arglist, NULL);
  391         }
  392     }
  393 
  394     /* Probe for Cx state support. */
  395     acpi_cpu_cx_probe(sc);
  396 
  397     return (0);
  398 }
  399 
  400 static void
  401 acpi_cpu_postattach(void *unused __unused)
  402 {
  403     device_t *devices;
  404     int err;
  405     int i, n;
  406 
  407     err = devclass_get_devices(acpi_cpu_devclass, &devices, &n);
  408     if (err != 0) {
  409         printf("devclass_get_devices(acpi_cpu_devclass) failed\n");
  410         return;
  411     }
  412     for (i = 0; i < n; i++)
  413         bus_generic_probe(devices[i]);
  414     for (i = 0; i < n; i++)
  415         bus_generic_attach(devices[i]);
  416     free(devices, M_TEMP);
  417 }
  418 
  419 SYSINIT(acpi_cpu, SI_SUB_CONFIGURE, SI_ORDER_MIDDLE,
  420     acpi_cpu_postattach, NULL);
  421 
  422 static void
  423 disable_idle(struct acpi_cpu_softc *sc)
  424 {
  425     cpuset_t cpuset;
  426 
  427     CPU_SETOF(sc->cpu_pcpu->pc_cpuid, &cpuset);
  428     sc->cpu_disable_idle = TRUE;
  429 
  430     /*
  431      * Ensure that the CPU is not in idle state or in acpi_cpu_idle().
  432      * Note that this code depends on the fact that the rendezvous IPI
  433      * can not penetrate context where interrupts are disabled and acpi_cpu_idle
  434      * is called and executed in such a context with interrupts being re-enabled
  435      * right before return.
  436      */
  437     smp_rendezvous_cpus(cpuset, smp_no_rendevous_barrier, NULL,
  438         smp_no_rendevous_barrier, NULL);
  439 }
  440 
  441 static void
  442 enable_idle(struct acpi_cpu_softc *sc)
  443 {
  444 
  445     sc->cpu_disable_idle = FALSE;
  446 }
  447 
  448 static int
  449 is_idle_disabled(struct acpi_cpu_softc *sc)
  450 {
  451 
  452     return (sc->cpu_disable_idle);
  453 }
  454 
  455 /*
  456  * Disable any entry to the idle function during suspend and re-enable it
  457  * during resume.
  458  */
  459 static int
  460 acpi_cpu_suspend(device_t dev)
  461 {
  462     int error;
  463 
  464     error = bus_generic_suspend(dev);
  465     if (error)
  466         return (error);
  467     disable_idle(device_get_softc(dev));
  468     return (0);
  469 }
  470 
  471 static int
  472 acpi_cpu_resume(device_t dev)
  473 {
  474 
  475     enable_idle(device_get_softc(dev));
  476     return (bus_generic_resume(dev));
  477 }
  478 
  479 /*
  480  * Find the processor associated with a given ACPI ID.  By default,
  481  * use the MADT to map ACPI IDs to APIC IDs and use that to locate a
  482  * processor.  Some systems have inconsistent ASL and MADT however.
  483  * For these systems the cpu_unordered tunable can be set in which
  484  * case we assume that Processor objects are listed in the same order
  485  * in both the MADT and ASL.
  486  */
  487 static int
  488 acpi_pcpu_get_id(device_t dev, uint32_t *acpi_id, uint32_t *cpu_id)
  489 {
  490     struct pcpu *pc;
  491     uint32_t     i, idx;
  492 
  493     KASSERT(acpi_id != NULL, ("Null acpi_id"));
  494     KASSERT(cpu_id != NULL, ("Null cpu_id"));
  495     idx = device_get_unit(dev);
  496 
  497     /*
  498      * If pc_acpi_id for CPU 0 is not initialized (e.g. a non-APIC
  499      * UP box) use the ACPI ID from the first processor we find.
  500      */
  501     if (idx == 0 && mp_ncpus == 1) {
  502         pc = pcpu_find(0);
  503         if (pc->pc_acpi_id == 0xffffffff)
  504             pc->pc_acpi_id = *acpi_id;
  505         *cpu_id = 0;
  506         return (0);
  507     }
  508 
  509     CPU_FOREACH(i) {
  510         pc = pcpu_find(i);
  511         KASSERT(pc != NULL, ("no pcpu data for %d", i));
  512         if (cpu_unordered) {
  513             if (idx-- == 0) {
  514                 /*
  515                  * If pc_acpi_id doesn't match the ACPI ID from the
  516                  * ASL, prefer the MADT-derived value.
  517                  */
  518                 if (pc->pc_acpi_id != *acpi_id)
  519                     *acpi_id = pc->pc_acpi_id;
  520                 *cpu_id = pc->pc_cpuid;
  521                 return (0);
  522             }
  523         } else {
  524             if (pc->pc_acpi_id == *acpi_id) {
  525                 if (bootverbose)
  526                     device_printf(dev,
  527                         "Processor %s (ACPI ID %u) -> APIC ID %d\n",
  528                         acpi_name(acpi_get_handle(dev)), *acpi_id,
  529                         pc->pc_cpuid);
  530                 *cpu_id = pc->pc_cpuid;
  531                 return (0);
  532             }
  533         }
  534     }
  535 
  536     if (bootverbose)
  537         printf("ACPI: Processor %s (ACPI ID %u) ignored\n",
  538             acpi_name(acpi_get_handle(dev)), *acpi_id);
  539 
  540     return (ESRCH);
  541 }
  542 
  543 static struct resource_list *
  544 acpi_cpu_get_rlist(device_t dev, device_t child)
  545 {
  546     struct acpi_cpu_device *ad;
  547 
  548     ad = device_get_ivars(child);
  549     if (ad == NULL)
  550         return (NULL);
  551     return (&ad->ad_rl);
  552 }
  553 
  554 static device_t
  555 acpi_cpu_add_child(device_t dev, u_int order, const char *name, int unit)
  556 {
  557     struct acpi_cpu_device *ad;
  558     device_t child;
  559 
  560     if ((ad = malloc(sizeof(*ad), M_TEMP, M_NOWAIT | M_ZERO)) == NULL)
  561         return (NULL);
  562 
  563     resource_list_init(&ad->ad_rl);
  564     
  565     child = device_add_child_ordered(dev, order, name, unit);
  566     if (child != NULL)
  567         device_set_ivars(child, ad);
  568     else
  569         free(ad, M_TEMP);
  570     return (child);
  571 }
  572 
  573 static int
  574 acpi_cpu_read_ivar(device_t dev, device_t child, int index, uintptr_t *result)
  575 {
  576     struct acpi_cpu_softc *sc;
  577 
  578     sc = device_get_softc(dev);
  579     switch (index) {
  580     case ACPI_IVAR_HANDLE:
  581         *result = (uintptr_t)sc->cpu_handle;
  582         break;
  583     case CPU_IVAR_PCPU:
  584         *result = (uintptr_t)sc->cpu_pcpu;
  585         break;
  586 #if defined(__amd64__) || defined(__i386__)
  587     case CPU_IVAR_NOMINAL_MHZ:
  588         if (tsc_is_invariant) {
  589             *result = (uintptr_t)(atomic_load_acq_64(&tsc_freq) / 1000000);
  590             break;
  591         }
  592         /* FALLTHROUGH */
  593 #endif
  594     default:
  595         return (ENOENT);
  596     }
  597     return (0);
  598 }
  599 
  600 static int
  601 acpi_cpu_shutdown(device_t dev)
  602 {
  603     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
  604 
  605     /* Allow children to shutdown first. */
  606     bus_generic_shutdown(dev);
  607 
  608     /*
  609      * Disable any entry to the idle function.
  610      */
  611     disable_idle(device_get_softc(dev));
  612 
  613     /*
  614      * CPU devices are not truely detached and remain referenced,
  615      * so their resources are not freed.
  616      */
  617 
  618     return_VALUE (0);
  619 }
  620 
  621 static void
  622 acpi_cpu_cx_probe(struct acpi_cpu_softc *sc)
  623 {
  624     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
  625 
  626     /* Use initial sleep value of 1 sec. to start with lowest idle state. */
  627     sc->cpu_prev_sleep = 1000000;
  628     sc->cpu_cx_lowest = 0;
  629     sc->cpu_cx_lowest_lim = 0;
  630 
  631     /*
  632      * Check for the ACPI 2.0 _CST sleep states object. If we can't find
  633      * any, we'll revert to generic FADT/P_BLK Cx control method which will
  634      * be handled by acpi_cpu_startup. We need to defer to after having
  635      * probed all the cpus in the system before probing for generic Cx
  636      * states as we may already have found cpus with valid _CST packages
  637      */
  638     if (!cpu_cx_generic && acpi_cpu_cx_cst(sc) != 0) {
  639         /*
  640          * We were unable to find a _CST package for this cpu or there
  641          * was an error parsing it. Switch back to generic mode.
  642          */
  643         cpu_cx_generic = TRUE;
  644         if (bootverbose)
  645             device_printf(sc->cpu_dev, "switching to generic Cx mode\n");
  646     }
  647 
  648     /*
  649      * TODO: _CSD Package should be checked here.
  650      */
  651 }
  652 
  653 static void
  654 acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc)
  655 {
  656     ACPI_GENERIC_ADDRESS         gas;
  657     struct acpi_cx              *cx_ptr;
  658 
  659     sc->cpu_cx_count = 0;
  660     cx_ptr = sc->cpu_cx_states;
  661 
  662     /* Use initial sleep value of 1 sec. to start with lowest idle state. */
  663     sc->cpu_prev_sleep = 1000000;
  664 
  665     /* C1 has been required since just after ACPI 1.0 */
  666     cx_ptr->type = ACPI_STATE_C1;
  667     cx_ptr->trans_lat = 0;
  668     cx_ptr++;
  669     sc->cpu_non_c2 = sc->cpu_cx_count;
  670     sc->cpu_non_c3 = sc->cpu_cx_count;
  671     sc->cpu_cx_count++;
  672     cpu_deepest_sleep = 1;
  673 
  674     /* 
  675      * The spec says P_BLK must be 6 bytes long.  However, some systems
  676      * use it to indicate a fractional set of features present so we
  677      * take 5 as C2.  Some may also have a value of 7 to indicate
  678      * another C3 but most use _CST for this (as required) and having
  679      * "only" C1-C3 is not a hardship.
  680      */
  681     if (sc->cpu_p_blk_len < 5)
  682         return; 
  683 
  684     /* Validate and allocate resources for C2 (P_LVL2). */
  685     gas.SpaceId = ACPI_ADR_SPACE_SYSTEM_IO;
  686     gas.BitWidth = 8;
  687     if (AcpiGbl_FADT.C2Latency <= 100) {
  688         gas.Address = sc->cpu_p_blk + 4;
  689         cx_ptr->res_rid = 0;
  690         acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &cx_ptr->res_rid,
  691             &gas, &cx_ptr->p_lvlx, RF_SHAREABLE);
  692         if (cx_ptr->p_lvlx != NULL) {
  693             cx_ptr->type = ACPI_STATE_C2;
  694             cx_ptr->trans_lat = AcpiGbl_FADT.C2Latency;
  695             cx_ptr++;
  696             sc->cpu_non_c3 = sc->cpu_cx_count;
  697             sc->cpu_cx_count++;
  698             cpu_deepest_sleep = 2;
  699         }
  700     }
  701     if (sc->cpu_p_blk_len < 6)
  702         return;
  703 
  704     /* Validate and allocate resources for C3 (P_LVL3). */
  705     if (AcpiGbl_FADT.C3Latency <= 1000 && !(cpu_quirks & CPU_QUIRK_NO_C3)) {
  706         gas.Address = sc->cpu_p_blk + 5;
  707         cx_ptr->res_rid = 1;
  708         acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &cx_ptr->res_rid,
  709             &gas, &cx_ptr->p_lvlx, RF_SHAREABLE);
  710         if (cx_ptr->p_lvlx != NULL) {
  711             cx_ptr->type = ACPI_STATE_C3;
  712             cx_ptr->trans_lat = AcpiGbl_FADT.C3Latency;
  713             cx_ptr++;
  714             sc->cpu_cx_count++;
  715             cpu_deepest_sleep = 3;
  716         }
  717     }
  718 }
  719 
  720 /*
  721  * Parse a _CST package and set up its Cx states.  Since the _CST object
  722  * can change dynamically, our notify handler may call this function
  723  * to clean up and probe the new _CST package.
  724  */
  725 static int
  726 acpi_cpu_cx_cst(struct acpi_cpu_softc *sc)
  727 {
  728     struct       acpi_cx *cx_ptr;
  729     ACPI_STATUS  status;
  730     ACPI_BUFFER  buf;
  731     ACPI_OBJECT *top;
  732     ACPI_OBJECT *pkg;
  733     uint32_t     count;
  734     int          i;
  735 
  736     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
  737 
  738     buf.Pointer = NULL;
  739     buf.Length = ACPI_ALLOCATE_BUFFER;
  740     status = AcpiEvaluateObject(sc->cpu_handle, "_CST", NULL, &buf);
  741     if (ACPI_FAILURE(status))
  742         return (ENXIO);
  743 
  744     /* _CST is a package with a count and at least one Cx package. */
  745     top = (ACPI_OBJECT *)buf.Pointer;
  746     if (!ACPI_PKG_VALID(top, 2) || acpi_PkgInt32(top, 0, &count) != 0) {
  747         device_printf(sc->cpu_dev, "invalid _CST package\n");
  748         AcpiOsFree(buf.Pointer);
  749         return (ENXIO);
  750     }
  751     if (count != top->Package.Count - 1) {
  752         device_printf(sc->cpu_dev, "invalid _CST state count (%d != %d)\n",
  753                count, top->Package.Count - 1);
  754         count = top->Package.Count - 1;
  755     }
  756     if (count > MAX_CX_STATES) {
  757         device_printf(sc->cpu_dev, "_CST has too many states (%d)\n", count);
  758         count = MAX_CX_STATES;
  759     }
  760 
  761     sc->cpu_non_c2 = 0;
  762     sc->cpu_non_c3 = 0;
  763     sc->cpu_cx_count = 0;
  764     cx_ptr = sc->cpu_cx_states;
  765 
  766     /*
  767      * C1 has been required since just after ACPI 1.0.
  768      * Reserve the first slot for it.
  769      */
  770     cx_ptr->type = ACPI_STATE_C0;
  771     cx_ptr++;
  772     sc->cpu_cx_count++;
  773     cpu_deepest_sleep = 1;
  774 
  775     /* Set up all valid states. */
  776     for (i = 0; i < count; i++) {
  777         pkg = &top->Package.Elements[i + 1];
  778         if (!ACPI_PKG_VALID(pkg, 4) ||
  779             acpi_PkgInt32(pkg, 1, &cx_ptr->type) != 0 ||
  780             acpi_PkgInt32(pkg, 2, &cx_ptr->trans_lat) != 0 ||
  781             acpi_PkgInt32(pkg, 3, &cx_ptr->power) != 0) {
  782 
  783             device_printf(sc->cpu_dev, "skipping invalid Cx state package\n");
  784             continue;
  785         }
  786 
  787         /* Validate the state to see if we should use it. */
  788         switch (cx_ptr->type) {
  789         case ACPI_STATE_C1:
  790             if (sc->cpu_cx_states[0].type == ACPI_STATE_C0) {
  791                 /* This is the first C1 state.  Use the reserved slot. */
  792                 sc->cpu_cx_states[0] = *cx_ptr;
  793             } else {
  794                 sc->cpu_non_c2 = sc->cpu_cx_count;
  795                 sc->cpu_non_c3 = sc->cpu_cx_count;
  796                 cx_ptr++;
  797                 sc->cpu_cx_count++;
  798             }
  799             continue;
  800         case ACPI_STATE_C2:
  801             sc->cpu_non_c3 = sc->cpu_cx_count;
  802             if (cpu_deepest_sleep < 2)
  803                     cpu_deepest_sleep = 2;
  804             break;
  805         case ACPI_STATE_C3:
  806         default:
  807             if ((cpu_quirks & CPU_QUIRK_NO_C3) != 0) {
  808                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  809                                  "acpi_cpu%d: C3[%d] not available.\n",
  810                                  device_get_unit(sc->cpu_dev), i));
  811                 continue;
  812             } else
  813                 cpu_deepest_sleep = 3;
  814             break;
  815         }
  816 
  817         /* Free up any previous register. */
  818         if (cx_ptr->p_lvlx != NULL) {
  819             bus_release_resource(sc->cpu_dev, cx_ptr->res_type, cx_ptr->res_rid,
  820                 cx_ptr->p_lvlx);
  821             cx_ptr->p_lvlx = NULL;
  822         }
  823 
  824         /* Allocate the control register for C2 or C3. */
  825         cx_ptr->res_rid = sc->cpu_cx_count;
  826         acpi_PkgGas(sc->cpu_dev, pkg, 0, &cx_ptr->res_type, &cx_ptr->res_rid,
  827             &cx_ptr->p_lvlx, RF_SHAREABLE);
  828         if (cx_ptr->p_lvlx) {
  829             ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  830                              "acpi_cpu%d: Got C%d - %d latency\n",
  831                              device_get_unit(sc->cpu_dev), cx_ptr->type,
  832                              cx_ptr->trans_lat));
  833             cx_ptr++;
  834             sc->cpu_cx_count++;
  835         }
  836     }
  837     AcpiOsFree(buf.Pointer);
  838 
  839     /* If C1 state was not found, we need one now. */
  840     cx_ptr = sc->cpu_cx_states;
  841     if (cx_ptr->type == ACPI_STATE_C0) {
  842         cx_ptr->type = ACPI_STATE_C1;
  843         cx_ptr->trans_lat = 0;
  844     }
  845 
  846     return (0);
  847 }
  848 
  849 /*
  850  * Call this *after* all CPUs have been attached.
  851  */
  852 static void
  853 acpi_cpu_startup(void *arg)
  854 {
  855     struct acpi_cpu_softc *sc;
  856     int i;
  857 
  858     /* Get set of CPU devices */
  859     devclass_get_devices(acpi_cpu_devclass, &cpu_devices, &cpu_ndevices);
  860 
  861     /*
  862      * Setup any quirks that might necessary now that we have probed
  863      * all the CPUs
  864      */
  865     acpi_cpu_quirks();
  866 
  867     if (cpu_cx_generic) {
  868         /*
  869          * We are using generic Cx mode, probe for available Cx states
  870          * for all processors.
  871          */
  872         for (i = 0; i < cpu_ndevices; i++) {
  873             sc = device_get_softc(cpu_devices[i]);
  874             acpi_cpu_generic_cx_probe(sc);
  875         }
  876     } else {
  877         /*
  878          * We are using _CST mode, remove C3 state if necessary.
  879          * As we now know for sure that we will be using _CST mode
  880          * install our notify handler.
  881          */
  882         for (i = 0; i < cpu_ndevices; i++) {
  883             sc = device_get_softc(cpu_devices[i]);
  884             if (cpu_quirks & CPU_QUIRK_NO_C3) {
  885                 sc->cpu_cx_count = min(sc->cpu_cx_count, sc->cpu_non_c3 + 1);
  886             }
  887             AcpiInstallNotifyHandler(sc->cpu_handle, ACPI_DEVICE_NOTIFY,
  888                 acpi_cpu_notify, sc);
  889         }
  890     }
  891 
  892     /* Perform Cx final initialization. */
  893     for (i = 0; i < cpu_ndevices; i++) {
  894         sc = device_get_softc(cpu_devices[i]);
  895         acpi_cpu_startup_cx(sc);
  896     }
  897 
  898     /* Add a sysctl handler to handle global Cx lowest setting */
  899     SYSCTL_ADD_PROC(&cpu_sysctl_ctx, SYSCTL_CHILDREN(cpu_sysctl_tree),
  900         OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW,
  901         NULL, 0, acpi_cpu_global_cx_lowest_sysctl, "A",
  902         "Global lowest Cx sleep state to use");
  903 
  904     /* Take over idling from cpu_idle_default(). */
  905     cpu_cx_lowest_lim = 0;
  906     for (i = 0; i < cpu_ndevices; i++) {
  907         sc = device_get_softc(cpu_devices[i]);
  908         enable_idle(sc);
  909     }
  910     cpu_idle_hook = acpi_cpu_idle;
  911 }
  912 
  913 static void
  914 acpi_cpu_cx_list(struct acpi_cpu_softc *sc)
  915 {
  916     struct sbuf sb;
  917     int i;
  918 
  919     /*
  920      * Set up the list of Cx states
  921      */
  922     sbuf_new(&sb, sc->cpu_cx_supported, sizeof(sc->cpu_cx_supported),
  923         SBUF_FIXEDLEN);
  924     for (i = 0; i < sc->cpu_cx_count; i++)
  925         sbuf_printf(&sb, "C%d/%d/%d ", i + 1, sc->cpu_cx_states[i].type,
  926             sc->cpu_cx_states[i].trans_lat);
  927     sbuf_trim(&sb);
  928     sbuf_finish(&sb);
  929 }       
  930 
  931 static void
  932 acpi_cpu_startup_cx(struct acpi_cpu_softc *sc)
  933 {
  934     acpi_cpu_cx_list(sc);
  935     
  936     SYSCTL_ADD_STRING(&sc->cpu_sysctl_ctx,
  937                       SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
  938                       OID_AUTO, "cx_supported", CTLFLAG_RD,
  939                       sc->cpu_cx_supported, 0,
  940                       "Cx/microsecond values for supported Cx states");
  941     SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
  942                     SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
  943                     OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW,
  944                     (void *)sc, 0, acpi_cpu_cx_lowest_sysctl, "A",
  945                     "lowest Cx sleep state to use");
  946     SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
  947                     SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
  948                     OID_AUTO, "cx_usage", CTLTYPE_STRING | CTLFLAG_RD,
  949                     (void *)sc, 0, acpi_cpu_usage_sysctl, "A",
  950                     "percent usage for each Cx state");
  951 
  952     /* Signal platform that we can handle _CST notification. */
  953     if (!cpu_cx_generic && cpu_cst_cnt != 0) {
  954         ACPI_LOCK(acpi);
  955         AcpiOsWritePort(cpu_smi_cmd, cpu_cst_cnt, 8);
  956         ACPI_UNLOCK(acpi);
  957     }
  958 }
  959 
  960 /*
  961  * Idle the CPU in the lowest state possible.  This function is called with
  962  * interrupts disabled.  Note that once it re-enables interrupts, a task
  963  * switch can occur so do not access shared data (i.e. the softc) after
  964  * interrupts are re-enabled.
  965  */
  966 static void
  967 acpi_cpu_idle(sbintime_t sbt)
  968 {
  969     struct      acpi_cpu_softc *sc;
  970     struct      acpi_cx *cx_next;
  971     uint64_t    cputicks;
  972     uint32_t    start_time, end_time;
  973     int         bm_active, cx_next_idx, i, us;
  974 
  975     /*
  976      * Look up our CPU id to get our softc.  If it's NULL, we'll use C1
  977      * since there is no ACPI processor object for this CPU.  This occurs
  978      * for logical CPUs in the HTT case.
  979      */
  980     sc = cpu_softc[PCPU_GET(cpuid)];
  981     if (sc == NULL) {
  982         acpi_cpu_c1();
  983         return;
  984     }
  985 
  986     /* If disabled, take the safe path. */
  987     if (is_idle_disabled(sc)) {
  988         acpi_cpu_c1();
  989         return;
  990     }
  991 
  992     /* Find the lowest state that has small enough latency. */
  993     us = sc->cpu_prev_sleep;
  994     if (sbt >= 0 && us > (sbt >> 12))
  995         us = (sbt >> 12);
  996     cx_next_idx = 0;
  997     if (cpu_disable_c2_sleep)
  998         i = min(sc->cpu_cx_lowest, sc->cpu_non_c2);
  999     else if (cpu_disable_c3_sleep)
 1000         i = min(sc->cpu_cx_lowest, sc->cpu_non_c3);
 1001     else
 1002         i = sc->cpu_cx_lowest;
 1003     for (; i >= 0; i--) {
 1004         if (sc->cpu_cx_states[i].trans_lat * 3 <= us) {
 1005             cx_next_idx = i;
 1006             break;
 1007         }
 1008     }
 1009 
 1010     /*
 1011      * Check for bus master activity.  If there was activity, clear
 1012      * the bit and use the lowest non-C3 state.  Note that the USB
 1013      * driver polling for new devices keeps this bit set all the
 1014      * time if USB is loaded.
 1015      */
 1016     if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0 &&
 1017         cx_next_idx > sc->cpu_non_c3) {
 1018         AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, &bm_active);
 1019         if (bm_active != 0) {
 1020             AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, 1);
 1021             cx_next_idx = sc->cpu_non_c3;
 1022         }
 1023     }
 1024 
 1025     /* Select the next state and update statistics. */
 1026     cx_next = &sc->cpu_cx_states[cx_next_idx];
 1027     sc->cpu_cx_stats[cx_next_idx]++;
 1028     KASSERT(cx_next->type != ACPI_STATE_C0, ("acpi_cpu_idle: C0 sleep"));
 1029 
 1030     /*
 1031      * Execute HLT (or equivalent) and wait for an interrupt.  We can't
 1032      * precisely calculate the time spent in C1 since the place we wake up
 1033      * is an ISR.  Assume we slept no more then half of quantum, unless
 1034      * we are called inside critical section, delaying context switch.
 1035      */
 1036     if (cx_next->type == ACPI_STATE_C1) {
 1037         cputicks = cpu_ticks();
 1038         acpi_cpu_c1();
 1039         end_time = ((cpu_ticks() - cputicks) << 20) / cpu_tickrate();
 1040         if (curthread->td_critnest == 0)
 1041                 end_time = min(end_time, 500000 / hz);
 1042         sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + end_time) / 4;
 1043         return;
 1044     }
 1045 
 1046     /*
 1047      * For C3, disable bus master arbitration and enable bus master wake
 1048      * if BM control is available, otherwise flush the CPU cache.
 1049      */
 1050     if (cx_next->type == ACPI_STATE_C3) {
 1051         if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
 1052             AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 1);
 1053             AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 1);
 1054         } else
 1055             ACPI_FLUSH_CPU_CACHE();
 1056     }
 1057 
 1058     /*
 1059      * Read from P_LVLx to enter C2(+), checking time spent asleep.
 1060      * Use the ACPI timer for measuring sleep time.  Since we need to
 1061      * get the time very close to the CPU start/stop clock logic, this
 1062      * is the only reliable time source.
 1063      */
 1064     if (cx_next->type == ACPI_STATE_C3) {
 1065         AcpiHwRead(&start_time, &AcpiGbl_FADT.XPmTimerBlock);
 1066         cputicks = 0;
 1067     } else {
 1068         start_time = 0;
 1069         cputicks = cpu_ticks();
 1070     }
 1071     CPU_GET_REG(cx_next->p_lvlx, 1);
 1072 
 1073     /*
 1074      * Read the end time twice.  Since it may take an arbitrary time
 1075      * to enter the idle state, the first read may be executed before
 1076      * the processor has stopped.  Doing it again provides enough
 1077      * margin that we are certain to have a correct value.
 1078      */
 1079     AcpiHwRead(&end_time, &AcpiGbl_FADT.XPmTimerBlock);
 1080     if (cx_next->type == ACPI_STATE_C3) {
 1081         AcpiHwRead(&end_time, &AcpiGbl_FADT.XPmTimerBlock);
 1082         end_time = acpi_TimerDelta(end_time, start_time);
 1083     } else
 1084         end_time = ((cpu_ticks() - cputicks) << 20) / cpu_tickrate();
 1085 
 1086     /* Enable bus master arbitration and disable bus master wakeup. */
 1087     if (cx_next->type == ACPI_STATE_C3 &&
 1088         (cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
 1089         AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 0);
 1090         AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
 1091     }
 1092     ACPI_ENABLE_IRQS();
 1093 
 1094     sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + PM_USEC(end_time)) / 4;
 1095 }
 1096 
 1097 /*
 1098  * Re-evaluate the _CST object when we are notified that it changed.
 1099  */
 1100 static void
 1101 acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context)
 1102 {
 1103     struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)context;
 1104 
 1105     if (notify != ACPI_NOTIFY_CX_STATES)
 1106         return;
 1107 
 1108     /*
 1109      * C-state data for target CPU is going to be in flux while we execute
 1110      * acpi_cpu_cx_cst, so disable entering acpi_cpu_idle.
 1111      * Also, it may happen that multiple ACPI taskqueues may concurrently
 1112      * execute notifications for the same CPU.  ACPI_SERIAL is used to
 1113      * protect against that.
 1114      */
 1115     ACPI_SERIAL_BEGIN(cpu);
 1116     disable_idle(sc);
 1117 
 1118     /* Update the list of Cx states. */
 1119     acpi_cpu_cx_cst(sc);
 1120     acpi_cpu_cx_list(sc);
 1121     acpi_cpu_set_cx_lowest(sc);
 1122 
 1123     enable_idle(sc);
 1124     ACPI_SERIAL_END(cpu);
 1125 
 1126     acpi_UserNotify("PROCESSOR", sc->cpu_handle, notify);
 1127 }
 1128 
 1129 static void
 1130 acpi_cpu_quirks(void)
 1131 {
 1132     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
 1133 
 1134     /*
 1135      * Bus mastering arbitration control is needed to keep caches coherent
 1136      * while sleeping in C3.  If it's not present but a working flush cache
 1137      * instruction is present, flush the caches before entering C3 instead.
 1138      * Otherwise, just disable C3 completely.
 1139      */
 1140     if (AcpiGbl_FADT.Pm2ControlBlock == 0 ||
 1141         AcpiGbl_FADT.Pm2ControlLength == 0) {
 1142         if ((AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD) &&
 1143             (AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD_FLUSH) == 0) {
 1144             cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
 1145             ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1146                 "acpi_cpu: no BM control, using flush cache method\n"));
 1147         } else {
 1148             cpu_quirks |= CPU_QUIRK_NO_C3;
 1149             ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1150                 "acpi_cpu: no BM control, C3 not available\n"));
 1151         }
 1152     }
 1153 
 1154     /*
 1155      * If we are using generic Cx mode, C3 on multiple CPUs requires using
 1156      * the expensive flush cache instruction.
 1157      */
 1158     if (cpu_cx_generic && mp_ncpus > 1) {
 1159         cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
 1160         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1161             "acpi_cpu: SMP, using flush cache mode for C3\n"));
 1162     }
 1163 
 1164     /* Look for various quirks of the PIIX4 part. */
 1165     acpi_cpu_quirks_piix4();
 1166 }
 1167 
 1168 static void
 1169 acpi_cpu_quirks_piix4(void)
 1170 {
 1171 #ifdef __i386__
 1172     device_t acpi_dev;
 1173     uint32_t val;
 1174 
 1175     acpi_dev = pci_find_device(PCI_VENDOR_INTEL, PCI_DEVICE_82371AB_3);
 1176     if (acpi_dev != NULL) {
 1177         switch (pci_get_revid(acpi_dev)) {
 1178         /*
 1179          * Disable C3 support for all PIIX4 chipsets.  Some of these parts
 1180          * do not report the BMIDE status to the BM status register and
 1181          * others have a livelock bug if Type-F DMA is enabled.  Linux
 1182          * works around the BMIDE bug by reading the BM status directly
 1183          * but we take the simpler approach of disabling C3 for these
 1184          * parts.
 1185          *
 1186          * See erratum #18 ("C3 Power State/BMIDE and Type-F DMA
 1187          * Livelock") from the January 2002 PIIX4 specification update.
 1188          * Applies to all PIIX4 models.
 1189          *
 1190          * Also, make sure that all interrupts cause a "Stop Break"
 1191          * event to exit from C2 state.
 1192          * Also, BRLD_EN_BM (ACPI_BITREG_BUS_MASTER_RLD in ACPI-speak)
 1193          * should be set to zero, otherwise it causes C2 to short-sleep.
 1194          * PIIX4 doesn't properly support C3 and bus master activity
 1195          * need not break out of C2.
 1196          */
 1197         case PCI_REVISION_A_STEP:
 1198         case PCI_REVISION_B_STEP:
 1199         case PCI_REVISION_4E:
 1200         case PCI_REVISION_4M:
 1201             cpu_quirks |= CPU_QUIRK_NO_C3;
 1202             ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1203                 "acpi_cpu: working around PIIX4 bug, disabling C3\n"));
 1204 
 1205             val = pci_read_config(acpi_dev, PIIX4_DEVACTB_REG, 4);
 1206             if ((val & PIIX4_STOP_BREAK_MASK) != PIIX4_STOP_BREAK_MASK) {
 1207                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1208                     "acpi_cpu: PIIX4: enabling IRQs to generate Stop Break\n"));
 1209                 val |= PIIX4_STOP_BREAK_MASK;
 1210                 pci_write_config(acpi_dev, PIIX4_DEVACTB_REG, val, 4);
 1211             }
 1212             AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_RLD, &val);
 1213             if (val) {
 1214                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1215                     "acpi_cpu: PIIX4: reset BRLD_EN_BM\n"));
 1216                 AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
 1217             }
 1218             break;
 1219         default:
 1220             break;
 1221         }
 1222     }
 1223 #endif
 1224 }
 1225 
 1226 static int
 1227 acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS)
 1228 {
 1229     struct acpi_cpu_softc *sc;
 1230     struct sbuf  sb;
 1231     char         buf[128];
 1232     int          i;
 1233     uintmax_t    fract, sum, whole;
 1234 
 1235     sc = (struct acpi_cpu_softc *) arg1;
 1236     sum = 0;
 1237     for (i = 0; i < sc->cpu_cx_count; i++)
 1238         sum += sc->cpu_cx_stats[i];
 1239     sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
 1240     for (i = 0; i < sc->cpu_cx_count; i++) {
 1241         if (sum > 0) {
 1242             whole = (uintmax_t)sc->cpu_cx_stats[i] * 100;
 1243             fract = (whole % sum) * 100;
 1244             sbuf_printf(&sb, "%u.%02u%% ", (u_int)(whole / sum),
 1245                 (u_int)(fract / sum));
 1246         } else
 1247             sbuf_printf(&sb, "0.00%% ");
 1248     }
 1249     sbuf_printf(&sb, "last %dus", sc->cpu_prev_sleep);
 1250     sbuf_trim(&sb);
 1251     sbuf_finish(&sb);
 1252     sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
 1253     sbuf_delete(&sb);
 1254 
 1255     return (0);
 1256 }
 1257 
 1258 static int
 1259 acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc)
 1260 {
 1261     int i;
 1262 
 1263     ACPI_SERIAL_ASSERT(cpu);
 1264     sc->cpu_cx_lowest = min(sc->cpu_cx_lowest_lim, sc->cpu_cx_count - 1);
 1265 
 1266     /* If not disabling, cache the new lowest non-C3 state. */
 1267     sc->cpu_non_c3 = 0;
 1268     for (i = sc->cpu_cx_lowest; i >= 0; i--) {
 1269         if (sc->cpu_cx_states[i].type < ACPI_STATE_C3) {
 1270             sc->cpu_non_c3 = i;
 1271             break;
 1272         }
 1273     }
 1274 
 1275     /* Reset the statistics counters. */
 1276     bzero(sc->cpu_cx_stats, sizeof(sc->cpu_cx_stats));
 1277     return (0);
 1278 }
 1279 
 1280 static int
 1281 acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
 1282 {
 1283     struct       acpi_cpu_softc *sc;
 1284     char         state[8];
 1285     int          val, error;
 1286 
 1287     sc = (struct acpi_cpu_softc *) arg1;
 1288     snprintf(state, sizeof(state), "C%d", sc->cpu_cx_lowest_lim + 1);
 1289     error = sysctl_handle_string(oidp, state, sizeof(state), req);
 1290     if (error != 0 || req->newptr == NULL)
 1291         return (error);
 1292     if (strlen(state) < 2 || toupper(state[0]) != 'C')
 1293         return (EINVAL);
 1294     if (strcasecmp(state, "Cmax") == 0)
 1295         val = MAX_CX_STATES;
 1296     else {
 1297         val = (int) strtol(state + 1, NULL, 10);
 1298         if (val < 1 || val > MAX_CX_STATES)
 1299             return (EINVAL);
 1300     }
 1301 
 1302     ACPI_SERIAL_BEGIN(cpu);
 1303     sc->cpu_cx_lowest_lim = val - 1;
 1304     acpi_cpu_set_cx_lowest(sc);
 1305     ACPI_SERIAL_END(cpu);
 1306 
 1307     return (0);
 1308 }
 1309 
 1310 static int
 1311 acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
 1312 {
 1313     struct      acpi_cpu_softc *sc;
 1314     char        state[8];
 1315     int         val, error, i;
 1316 
 1317     snprintf(state, sizeof(state), "C%d", cpu_cx_lowest_lim + 1);
 1318     error = sysctl_handle_string(oidp, state, sizeof(state), req);
 1319     if (error != 0 || req->newptr == NULL)
 1320         return (error);
 1321     if (strlen(state) < 2 || toupper(state[0]) != 'C')
 1322         return (EINVAL);
 1323     if (strcasecmp(state, "Cmax") == 0)
 1324         val = MAX_CX_STATES;
 1325     else {
 1326         val = (int) strtol(state + 1, NULL, 10);
 1327         if (val < 1 || val > MAX_CX_STATES)
 1328             return (EINVAL);
 1329     }
 1330 
 1331     /* Update the new lowest useable Cx state for all CPUs. */
 1332     ACPI_SERIAL_BEGIN(cpu);
 1333     cpu_cx_lowest_lim = val - 1;
 1334     for (i = 0; i < cpu_ndevices; i++) {
 1335         sc = device_get_softc(cpu_devices[i]);
 1336         sc->cpu_cx_lowest_lim = cpu_cx_lowest_lim;
 1337         acpi_cpu_set_cx_lowest(sc);
 1338     }
 1339     ACPI_SERIAL_END(cpu);
 1340 
 1341     return (0);
 1342 }

Cache object: a3bf009163b1fdf6b87603f9fd6f19da


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.