The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/acpica/acpi_cpu.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2003-2005 Nate Lawson (SDG)
    3  * Copyright (c) 2001 Michael Smith
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   25  * SUCH DAMAGE.
   26  */
   27 
   28 #include <sys/cdefs.h>
   29 __FBSDID("$FreeBSD: releng/11.2/sys/dev/acpica/acpi_cpu.c 332830 2018-04-20 15:48:50Z jtl $");
   30 
   31 #include "opt_acpi.h"
   32 #include <sys/param.h>
   33 #include <sys/bus.h>
   34 #include <sys/cpu.h>
   35 #include <sys/kernel.h>
   36 #include <sys/malloc.h>
   37 #include <sys/module.h>
   38 #include <sys/pcpu.h>
   39 #include <sys/power.h>
   40 #include <sys/proc.h>
   41 #include <sys/sched.h>
   42 #include <sys/sbuf.h>
   43 #include <sys/smp.h>
   44 
   45 #include <dev/pci/pcivar.h>
   46 #include <machine/atomic.h>
   47 #include <machine/bus.h>
   48 #if defined(__amd64__) || defined(__i386__)
   49 #include <machine/clock.h>
   50 #include <machine/specialreg.h>
   51 #include <machine/md_var.h>
   52 #endif
   53 #include <sys/rman.h>
   54 
   55 #include <contrib/dev/acpica/include/acpi.h>
   56 #include <contrib/dev/acpica/include/accommon.h>
   57 
   58 #include <dev/acpica/acpivar.h>
   59 
   60 /*
   61  * Support for ACPI Processor devices, including C[1-3] sleep states.
   62  */
   63 
   64 /* Hooks for the ACPI CA debugging infrastructure */
   65 #define _COMPONENT      ACPI_PROCESSOR
   66 ACPI_MODULE_NAME("PROCESSOR")
   67 
   68 struct acpi_cx {
   69     struct resource     *p_lvlx;        /* Register to read to enter state. */
   70     uint32_t             type;          /* C1-3 (C4 and up treated as C3). */
   71     uint32_t             trans_lat;     /* Transition latency (usec). */
   72     uint32_t             power;         /* Power consumed (mW). */
   73     int                  res_type;      /* Resource type for p_lvlx. */
   74     int                  res_rid;       /* Resource ID for p_lvlx. */
   75     bool                 do_mwait;
   76     uint32_t             mwait_hint;
   77     bool                 mwait_hw_coord;
   78     bool                 mwait_bm_avoidance;
   79 };
   80 #define MAX_CX_STATES    8
   81 
   82 struct acpi_cpu_softc {
   83     device_t             cpu_dev;
   84     ACPI_HANDLE          cpu_handle;
   85     struct pcpu         *cpu_pcpu;
   86     uint32_t             cpu_acpi_id;   /* ACPI processor id */
   87     uint32_t             cpu_p_blk;     /* ACPI P_BLK location */
   88     uint32_t             cpu_p_blk_len; /* P_BLK length (must be 6). */
   89     struct acpi_cx       cpu_cx_states[MAX_CX_STATES];
   90     int                  cpu_cx_count;  /* Number of valid Cx states. */
   91     int                  cpu_prev_sleep;/* Last idle sleep duration. */
   92     int                  cpu_features;  /* Child driver supported features. */
   93     /* Runtime state. */
   94     int                  cpu_non_c2;    /* Index of lowest non-C2 state. */
   95     int                  cpu_non_c3;    /* Index of lowest non-C3 state. */
   96     u_int                cpu_cx_stats[MAX_CX_STATES];/* Cx usage history. */
   97     /* Values for sysctl. */
   98     struct sysctl_ctx_list cpu_sysctl_ctx;
   99     struct sysctl_oid   *cpu_sysctl_tree;
  100     int                  cpu_cx_lowest;
  101     int                  cpu_cx_lowest_lim;
  102     int                  cpu_disable_idle; /* Disable entry to idle function */
  103     char                 cpu_cx_supported[64];
  104 };
  105 
  106 struct acpi_cpu_device {
  107     struct resource_list        ad_rl;
  108 };
  109 
  110 #define CPU_GET_REG(reg, width)                                         \
  111     (bus_space_read_ ## width(rman_get_bustag((reg)),                   \
  112                       rman_get_bushandle((reg)), 0))
  113 #define CPU_SET_REG(reg, width, val)                                    \
  114     (bus_space_write_ ## width(rman_get_bustag((reg)),                  \
  115                        rman_get_bushandle((reg)), 0, (val)))
  116 
  117 #define PM_USEC(x)       ((x) >> 2)     /* ~4 clocks per usec (3.57955 Mhz) */
  118 
  119 #define ACPI_NOTIFY_CX_STATES   0x81    /* _CST changed. */
  120 
  121 #define CPU_QUIRK_NO_C3         (1<<0)  /* C3-type states are not usable. */
  122 #define CPU_QUIRK_NO_BM_CTRL    (1<<2)  /* No bus mastering control. */
  123 
  124 #define PCI_VENDOR_INTEL        0x8086
  125 #define PCI_DEVICE_82371AB_3    0x7113  /* PIIX4 chipset for quirks. */
  126 #define PCI_REVISION_A_STEP     0
  127 #define PCI_REVISION_B_STEP     1
  128 #define PCI_REVISION_4E         2
  129 #define PCI_REVISION_4M         3
  130 #define PIIX4_DEVACTB_REG       0x58
  131 #define PIIX4_BRLD_EN_IRQ0      (1<<0)
  132 #define PIIX4_BRLD_EN_IRQ       (1<<1)
  133 #define PIIX4_BRLD_EN_IRQ8      (1<<5)
  134 #define PIIX4_STOP_BREAK_MASK   (PIIX4_BRLD_EN_IRQ0 | PIIX4_BRLD_EN_IRQ | PIIX4_BRLD_EN_IRQ8)
  135 #define PIIX4_PCNTRL_BST_EN     (1<<10)
  136 
  137 #define CST_FFH_VENDOR_INTEL    1
  138 #define CST_FFH_INTEL_CL_C1IO   1
  139 #define CST_FFH_INTEL_CL_MWAIT  2
  140 #define CST_FFH_MWAIT_HW_COORD  0x0001
  141 #define CST_FFH_MWAIT_BM_AVOID  0x0002
  142 
  143 /* Allow users to ignore processor orders in MADT. */
  144 static int cpu_unordered;
  145 SYSCTL_INT(_debug_acpi, OID_AUTO, cpu_unordered, CTLFLAG_RDTUN,
  146     &cpu_unordered, 0,
  147     "Do not use the MADT to match ACPI Processor objects to CPUs.");
  148 
  149 /* Knob to disable acpi_cpu devices */
  150 bool acpi_cpu_disabled = false;
  151 
  152 /* Platform hardware resource information. */
  153 static uint32_t          cpu_smi_cmd;   /* Value to write to SMI_CMD. */
  154 static uint8_t           cpu_cst_cnt;   /* Indicate we are _CST aware. */
  155 static int               cpu_quirks;    /* Indicate any hardware bugs. */
  156 
  157 /* Values for sysctl. */
  158 static struct sysctl_ctx_list cpu_sysctl_ctx;
  159 static struct sysctl_oid *cpu_sysctl_tree;
  160 static int               cpu_cx_generic;
  161 static int               cpu_cx_lowest_lim;
  162 
  163 static device_t         *cpu_devices;
  164 static int               cpu_ndevices;
  165 static struct acpi_cpu_softc **cpu_softc;
  166 ACPI_SERIAL_DECL(cpu, "ACPI CPU");
  167 
  168 static int      acpi_cpu_probe(device_t dev);
  169 static int      acpi_cpu_attach(device_t dev);
  170 static int      acpi_cpu_suspend(device_t dev);
  171 static int      acpi_cpu_resume(device_t dev);
  172 static int      acpi_pcpu_get_id(device_t dev, uint32_t *acpi_id,
  173                     uint32_t *cpu_id);
  174 static struct resource_list *acpi_cpu_get_rlist(device_t dev, device_t child);
  175 static device_t acpi_cpu_add_child(device_t dev, u_int order, const char *name,
  176                     int unit);
  177 static int      acpi_cpu_read_ivar(device_t dev, device_t child, int index,
  178                     uintptr_t *result);
  179 static int      acpi_cpu_shutdown(device_t dev);
  180 static void     acpi_cpu_cx_probe(struct acpi_cpu_softc *sc);
  181 static void     acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc);
  182 static int      acpi_cpu_cx_cst(struct acpi_cpu_softc *sc);
  183 static void     acpi_cpu_startup(void *arg);
  184 static void     acpi_cpu_startup_cx(struct acpi_cpu_softc *sc);
  185 static void     acpi_cpu_cx_list(struct acpi_cpu_softc *sc);
  186 #if defined(__i386__) || defined(__amd64__)
  187 static void     acpi_cpu_idle(sbintime_t sbt);
  188 #endif
  189 static void     acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context);
  190 static void     acpi_cpu_quirks(void);
  191 static void     acpi_cpu_quirks_piix4(void);
  192 static int      acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS);
  193 static int      acpi_cpu_usage_counters_sysctl(SYSCTL_HANDLER_ARGS);
  194 static int      acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc);
  195 static int      acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
  196 static int      acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
  197 #if defined(__i386__) || defined(__amd64__)
  198 static int      acpi_cpu_method_sysctl(SYSCTL_HANDLER_ARGS);
  199 #endif
  200 
  201 static device_method_t acpi_cpu_methods[] = {
  202     /* Device interface */
  203     DEVMETHOD(device_probe,     acpi_cpu_probe),
  204     DEVMETHOD(device_attach,    acpi_cpu_attach),
  205     DEVMETHOD(device_detach,    bus_generic_detach),
  206     DEVMETHOD(device_shutdown,  acpi_cpu_shutdown),
  207     DEVMETHOD(device_suspend,   acpi_cpu_suspend),
  208     DEVMETHOD(device_resume,    acpi_cpu_resume),
  209 
  210     /* Bus interface */
  211     DEVMETHOD(bus_add_child,    acpi_cpu_add_child),
  212     DEVMETHOD(bus_read_ivar,    acpi_cpu_read_ivar),
  213     DEVMETHOD(bus_get_resource_list, acpi_cpu_get_rlist),
  214     DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource),
  215     DEVMETHOD(bus_set_resource, bus_generic_rl_set_resource),
  216     DEVMETHOD(bus_alloc_resource, bus_generic_rl_alloc_resource),
  217     DEVMETHOD(bus_release_resource, bus_generic_rl_release_resource),
  218     DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
  219     DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
  220     DEVMETHOD(bus_setup_intr,   bus_generic_setup_intr),
  221     DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr),
  222 
  223     DEVMETHOD_END
  224 };
  225 
  226 static driver_t acpi_cpu_driver = {
  227     "cpu",
  228     acpi_cpu_methods,
  229     sizeof(struct acpi_cpu_softc),
  230 };
  231 
  232 static devclass_t acpi_cpu_devclass;
  233 DRIVER_MODULE(cpu, acpi, acpi_cpu_driver, acpi_cpu_devclass, 0, 0);
  234 MODULE_DEPEND(cpu, acpi, 1, 1, 1);
  235 
  236 static int
  237 acpi_cpu_probe(device_t dev)
  238 {
  239     int                    acpi_id, cpu_id;
  240     ACPI_BUFFER            buf;
  241     ACPI_HANDLE            handle;
  242     ACPI_OBJECT            *obj;
  243     ACPI_STATUS            status;
  244 
  245     if (acpi_disabled("cpu") || acpi_get_type(dev) != ACPI_TYPE_PROCESSOR ||
  246             acpi_cpu_disabled)
  247         return (ENXIO);
  248 
  249     handle = acpi_get_handle(dev);
  250     if (cpu_softc == NULL)
  251         cpu_softc = malloc(sizeof(struct acpi_cpu_softc *) *
  252             (mp_maxid + 1), M_TEMP /* XXX */, M_WAITOK | M_ZERO);
  253 
  254     /* Get our Processor object. */
  255     buf.Pointer = NULL;
  256     buf.Length = ACPI_ALLOCATE_BUFFER;
  257     status = AcpiEvaluateObject(handle, NULL, NULL, &buf);
  258     if (ACPI_FAILURE(status)) {
  259         device_printf(dev, "probe failed to get Processor obj - %s\n",
  260                       AcpiFormatException(status));
  261         return (ENXIO);
  262     }
  263     obj = (ACPI_OBJECT *)buf.Pointer;
  264     if (obj->Type != ACPI_TYPE_PROCESSOR) {
  265         device_printf(dev, "Processor object has bad type %d\n", obj->Type);
  266         AcpiOsFree(obj);
  267         return (ENXIO);
  268     }
  269 
  270     /*
  271      * Find the processor associated with our unit.  We could use the
  272      * ProcId as a key, however, some boxes do not have the same values
  273      * in their Processor object as the ProcId values in the MADT.
  274      */
  275     acpi_id = obj->Processor.ProcId;
  276     AcpiOsFree(obj);
  277     if (acpi_pcpu_get_id(dev, &acpi_id, &cpu_id) != 0)
  278         return (ENXIO);
  279 
  280     /*
  281      * Check if we already probed this processor.  We scan the bus twice
  282      * so it's possible we've already seen this one.
  283      */
  284     if (cpu_softc[cpu_id] != NULL)
  285         return (ENXIO);
  286 
  287     /* Mark this processor as in-use and save our derived id for attach. */
  288     cpu_softc[cpu_id] = (void *)1;
  289     acpi_set_private(dev, (void*)(intptr_t)cpu_id);
  290     device_set_desc(dev, "ACPI CPU");
  291 
  292     return (0);
  293 }
  294 
  295 static int
  296 acpi_cpu_attach(device_t dev)
  297 {
  298     ACPI_BUFFER            buf;
  299     ACPI_OBJECT            arg, *obj;
  300     ACPI_OBJECT_LIST       arglist;
  301     struct pcpu            *pcpu_data;
  302     struct acpi_cpu_softc *sc;
  303     struct acpi_softc     *acpi_sc;
  304     ACPI_STATUS            status;
  305     u_int                  features;
  306     int                    cpu_id, drv_count, i;
  307     driver_t              **drivers;
  308     uint32_t               cap_set[3];
  309 
  310     /* UUID needed by _OSC evaluation */
  311     static uint8_t cpu_oscuuid[16] = { 0x16, 0xA6, 0x77, 0x40, 0x0C, 0x29,
  312                                        0xBE, 0x47, 0x9E, 0xBD, 0xD8, 0x70,
  313                                        0x58, 0x71, 0x39, 0x53 };
  314 
  315     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
  316 
  317     sc = device_get_softc(dev);
  318     sc->cpu_dev = dev;
  319     sc->cpu_handle = acpi_get_handle(dev);
  320     cpu_id = (int)(intptr_t)acpi_get_private(dev);
  321     cpu_softc[cpu_id] = sc;
  322     pcpu_data = pcpu_find(cpu_id);
  323     pcpu_data->pc_device = dev;
  324     sc->cpu_pcpu = pcpu_data;
  325     cpu_smi_cmd = AcpiGbl_FADT.SmiCommand;
  326     cpu_cst_cnt = AcpiGbl_FADT.CstControl;
  327 
  328     buf.Pointer = NULL;
  329     buf.Length = ACPI_ALLOCATE_BUFFER;
  330     status = AcpiEvaluateObject(sc->cpu_handle, NULL, NULL, &buf);
  331     if (ACPI_FAILURE(status)) {
  332         device_printf(dev, "attach failed to get Processor obj - %s\n",
  333                       AcpiFormatException(status));
  334         return (ENXIO);
  335     }
  336     obj = (ACPI_OBJECT *)buf.Pointer;
  337     sc->cpu_p_blk = obj->Processor.PblkAddress;
  338     sc->cpu_p_blk_len = obj->Processor.PblkLength;
  339     sc->cpu_acpi_id = obj->Processor.ProcId;
  340     AcpiOsFree(obj);
  341     ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: P_BLK at %#x/%d\n",
  342                      device_get_unit(dev), sc->cpu_p_blk, sc->cpu_p_blk_len));
  343 
  344     /*
  345      * If this is the first cpu we attach, create and initialize the generic
  346      * resources that will be used by all acpi cpu devices.
  347      */
  348     if (device_get_unit(dev) == 0) {
  349         /* Assume we won't be using generic Cx mode by default */
  350         cpu_cx_generic = FALSE;
  351 
  352         /* Install hw.acpi.cpu sysctl tree */
  353         acpi_sc = acpi_device_get_parent_softc(dev);
  354         sysctl_ctx_init(&cpu_sysctl_ctx);
  355         cpu_sysctl_tree = SYSCTL_ADD_NODE(&cpu_sysctl_ctx,
  356             SYSCTL_CHILDREN(acpi_sc->acpi_sysctl_tree), OID_AUTO, "cpu",
  357             CTLFLAG_RD, 0, "node for CPU children");
  358     }
  359 
  360     /*
  361      * Before calling any CPU methods, collect child driver feature hints
  362      * and notify ACPI of them.  We support unified SMP power control
  363      * so advertise this ourselves.  Note this is not the same as independent
  364      * SMP control where each CPU can have different settings.
  365      */
  366     sc->cpu_features = ACPI_CAP_SMP_SAME | ACPI_CAP_SMP_SAME_C3 |
  367       ACPI_CAP_C1_IO_HALT;
  368 
  369 #if defined(__i386__) || defined(__amd64__)
  370     /*
  371      * Ask for MWAIT modes if not disabled and interrupts work
  372      * reasonable with MWAIT.
  373      */
  374     if (!acpi_disabled("mwait") && cpu_mwait_usable())
  375         sc->cpu_features |= ACPI_CAP_SMP_C1_NATIVE | ACPI_CAP_SMP_C3_NATIVE;
  376 #endif
  377 
  378     if (devclass_get_drivers(acpi_cpu_devclass, &drivers, &drv_count) == 0) {
  379         for (i = 0; i < drv_count; i++) {
  380             if (ACPI_GET_FEATURES(drivers[i], &features) == 0)
  381                 sc->cpu_features |= features;
  382         }
  383         free(drivers, M_TEMP);
  384     }
  385 
  386     /*
  387      * CPU capabilities are specified in
  388      * Intel Processor Vendor-Specific ACPI Interface Specification.
  389      */
  390     if (sc->cpu_features) {
  391         cap_set[1] = sc->cpu_features;
  392         status = acpi_EvaluateOSC(sc->cpu_handle, cpu_oscuuid, 1, 2, cap_set,
  393             cap_set, false);
  394         if (ACPI_SUCCESS(status)) {
  395             if (cap_set[0] != 0)
  396                 device_printf(dev, "_OSC returned status %#x\n", cap_set[0]);
  397         }
  398         else {
  399             arglist.Pointer = &arg;
  400             arglist.Count = 1;
  401             arg.Type = ACPI_TYPE_BUFFER;
  402             arg.Buffer.Length = sizeof(cap_set);
  403             arg.Buffer.Pointer = (uint8_t *)cap_set;
  404             cap_set[0] = 1; /* revision */
  405             cap_set[1] = 1; /* number of capabilities integers */
  406             cap_set[2] = sc->cpu_features;
  407             AcpiEvaluateObject(sc->cpu_handle, "_PDC", &arglist, NULL);
  408         }
  409     }
  410 
  411     /* Probe for Cx state support. */
  412     acpi_cpu_cx_probe(sc);
  413 
  414     return (0);
  415 }
  416 
  417 static void
  418 acpi_cpu_postattach(void *unused __unused)
  419 {
  420     device_t *devices;
  421     int err;
  422     int i, n;
  423     int attached;
  424 
  425     err = devclass_get_devices(acpi_cpu_devclass, &devices, &n);
  426     if (err != 0) {
  427         printf("devclass_get_devices(acpi_cpu_devclass) failed\n");
  428         return;
  429     }
  430     attached = 0;
  431     for (i = 0; i < n; i++)
  432         if (device_is_attached(devices[i]) &&
  433             device_get_driver(devices[i]) == &acpi_cpu_driver)
  434             attached = 1;
  435     for (i = 0; i < n; i++)
  436         bus_generic_probe(devices[i]);
  437     for (i = 0; i < n; i++)
  438         bus_generic_attach(devices[i]);
  439     free(devices, M_TEMP);
  440 
  441     if (attached) {
  442 #ifdef EARLY_AP_STARTUP
  443         acpi_cpu_startup(NULL);
  444 #else
  445         /* Queue post cpu-probing task handler */
  446         AcpiOsExecute(OSL_NOTIFY_HANDLER, acpi_cpu_startup, NULL);
  447 #endif
  448     }
  449 }
  450 
  451 SYSINIT(acpi_cpu, SI_SUB_CONFIGURE, SI_ORDER_MIDDLE,
  452     acpi_cpu_postattach, NULL);
  453 
  454 static void
  455 disable_idle(struct acpi_cpu_softc *sc)
  456 {
  457     cpuset_t cpuset;
  458 
  459     CPU_SETOF(sc->cpu_pcpu->pc_cpuid, &cpuset);
  460     sc->cpu_disable_idle = TRUE;
  461 
  462     /*
  463      * Ensure that the CPU is not in idle state or in acpi_cpu_idle().
  464      * Note that this code depends on the fact that the rendezvous IPI
  465      * can not penetrate context where interrupts are disabled and acpi_cpu_idle
  466      * is called and executed in such a context with interrupts being re-enabled
  467      * right before return.
  468      */
  469     smp_rendezvous_cpus(cpuset, smp_no_rendezvous_barrier, NULL,
  470         smp_no_rendezvous_barrier, NULL);
  471 }
  472 
  473 static void
  474 enable_idle(struct acpi_cpu_softc *sc)
  475 {
  476 
  477     sc->cpu_disable_idle = FALSE;
  478 }
  479 
  480 #if defined(__i386__) || defined(__amd64__)
  481 static int
  482 is_idle_disabled(struct acpi_cpu_softc *sc)
  483 {
  484 
  485     return (sc->cpu_disable_idle);
  486 }
  487 #endif
  488 
  489 /*
  490  * Disable any entry to the idle function during suspend and re-enable it
  491  * during resume.
  492  */
  493 static int
  494 acpi_cpu_suspend(device_t dev)
  495 {
  496     int error;
  497 
  498     error = bus_generic_suspend(dev);
  499     if (error)
  500         return (error);
  501     disable_idle(device_get_softc(dev));
  502     return (0);
  503 }
  504 
  505 static int
  506 acpi_cpu_resume(device_t dev)
  507 {
  508 
  509     enable_idle(device_get_softc(dev));
  510     return (bus_generic_resume(dev));
  511 }
  512 
  513 /*
  514  * Find the processor associated with a given ACPI ID.  By default,
  515  * use the MADT to map ACPI IDs to APIC IDs and use that to locate a
  516  * processor.  Some systems have inconsistent ASL and MADT however.
  517  * For these systems the cpu_unordered tunable can be set in which
  518  * case we assume that Processor objects are listed in the same order
  519  * in both the MADT and ASL.
  520  */
  521 static int
  522 acpi_pcpu_get_id(device_t dev, uint32_t *acpi_id, uint32_t *cpu_id)
  523 {
  524     struct pcpu *pc;
  525     uint32_t     i, idx;
  526 
  527     KASSERT(acpi_id != NULL, ("Null acpi_id"));
  528     KASSERT(cpu_id != NULL, ("Null cpu_id"));
  529     idx = device_get_unit(dev);
  530 
  531     /*
  532      * If pc_acpi_id for CPU 0 is not initialized (e.g. a non-APIC
  533      * UP box) use the ACPI ID from the first processor we find.
  534      */
  535     if (idx == 0 && mp_ncpus == 1) {
  536         pc = pcpu_find(0);
  537         if (pc->pc_acpi_id == 0xffffffff)
  538             pc->pc_acpi_id = *acpi_id;
  539         *cpu_id = 0;
  540         return (0);
  541     }
  542 
  543     CPU_FOREACH(i) {
  544         pc = pcpu_find(i);
  545         KASSERT(pc != NULL, ("no pcpu data for %d", i));
  546         if (cpu_unordered) {
  547             if (idx-- == 0) {
  548                 /*
  549                  * If pc_acpi_id doesn't match the ACPI ID from the
  550                  * ASL, prefer the MADT-derived value.
  551                  */
  552                 if (pc->pc_acpi_id != *acpi_id)
  553                     *acpi_id = pc->pc_acpi_id;
  554                 *cpu_id = pc->pc_cpuid;
  555                 return (0);
  556             }
  557         } else {
  558             if (pc->pc_acpi_id == *acpi_id) {
  559                 if (bootverbose)
  560                     device_printf(dev,
  561                         "Processor %s (ACPI ID %u) -> APIC ID %d\n",
  562                         acpi_name(acpi_get_handle(dev)), *acpi_id,
  563                         pc->pc_cpuid);
  564                 *cpu_id = pc->pc_cpuid;
  565                 return (0);
  566             }
  567         }
  568     }
  569 
  570     if (bootverbose)
  571         printf("ACPI: Processor %s (ACPI ID %u) ignored\n",
  572             acpi_name(acpi_get_handle(dev)), *acpi_id);
  573 
  574     return (ESRCH);
  575 }
  576 
  577 static struct resource_list *
  578 acpi_cpu_get_rlist(device_t dev, device_t child)
  579 {
  580     struct acpi_cpu_device *ad;
  581 
  582     ad = device_get_ivars(child);
  583     if (ad == NULL)
  584         return (NULL);
  585     return (&ad->ad_rl);
  586 }
  587 
  588 static device_t
  589 acpi_cpu_add_child(device_t dev, u_int order, const char *name, int unit)
  590 {
  591     struct acpi_cpu_device *ad;
  592     device_t child;
  593 
  594     if ((ad = malloc(sizeof(*ad), M_TEMP, M_NOWAIT | M_ZERO)) == NULL)
  595         return (NULL);
  596 
  597     resource_list_init(&ad->ad_rl);
  598     
  599     child = device_add_child_ordered(dev, order, name, unit);
  600     if (child != NULL)
  601         device_set_ivars(child, ad);
  602     else
  603         free(ad, M_TEMP);
  604     return (child);
  605 }
  606 
  607 static int
  608 acpi_cpu_read_ivar(device_t dev, device_t child, int index, uintptr_t *result)
  609 {
  610     struct acpi_cpu_softc *sc;
  611 
  612     sc = device_get_softc(dev);
  613     switch (index) {
  614     case ACPI_IVAR_HANDLE:
  615         *result = (uintptr_t)sc->cpu_handle;
  616         break;
  617     case CPU_IVAR_PCPU:
  618         *result = (uintptr_t)sc->cpu_pcpu;
  619         break;
  620 #if defined(__amd64__) || defined(__i386__)
  621     case CPU_IVAR_NOMINAL_MHZ:
  622         if (tsc_is_invariant) {
  623             *result = (uintptr_t)(atomic_load_acq_64(&tsc_freq) / 1000000);
  624             break;
  625         }
  626         /* FALLTHROUGH */
  627 #endif
  628     default:
  629         return (ENOENT);
  630     }
  631     return (0);
  632 }
  633 
  634 static int
  635 acpi_cpu_shutdown(device_t dev)
  636 {
  637     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
  638 
  639     /* Allow children to shutdown first. */
  640     bus_generic_shutdown(dev);
  641 
  642     /*
  643      * Disable any entry to the idle function.
  644      */
  645     disable_idle(device_get_softc(dev));
  646 
  647     /*
  648      * CPU devices are not truly detached and remain referenced,
  649      * so their resources are not freed.
  650      */
  651 
  652     return_VALUE (0);
  653 }
  654 
  655 static void
  656 acpi_cpu_cx_probe(struct acpi_cpu_softc *sc)
  657 {
  658     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
  659 
  660     /* Use initial sleep value of 1 sec. to start with lowest idle state. */
  661     sc->cpu_prev_sleep = 1000000;
  662     sc->cpu_cx_lowest = 0;
  663     sc->cpu_cx_lowest_lim = 0;
  664 
  665     /*
  666      * Check for the ACPI 2.0 _CST sleep states object. If we can't find
  667      * any, we'll revert to generic FADT/P_BLK Cx control method which will
  668      * be handled by acpi_cpu_startup. We need to defer to after having
  669      * probed all the cpus in the system before probing for generic Cx
  670      * states as we may already have found cpus with valid _CST packages
  671      */
  672     if (!cpu_cx_generic && acpi_cpu_cx_cst(sc) != 0) {
  673         /*
  674          * We were unable to find a _CST package for this cpu or there
  675          * was an error parsing it. Switch back to generic mode.
  676          */
  677         cpu_cx_generic = TRUE;
  678         if (bootverbose)
  679             device_printf(sc->cpu_dev, "switching to generic Cx mode\n");
  680     }
  681 
  682     /*
  683      * TODO: _CSD Package should be checked here.
  684      */
  685 }
  686 
  687 static void
  688 acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc)
  689 {
  690     ACPI_GENERIC_ADDRESS         gas;
  691     struct acpi_cx              *cx_ptr;
  692 
  693     sc->cpu_cx_count = 0;
  694     cx_ptr = sc->cpu_cx_states;
  695 
  696     /* Use initial sleep value of 1 sec. to start with lowest idle state. */
  697     sc->cpu_prev_sleep = 1000000;
  698 
  699     /* C1 has been required since just after ACPI 1.0 */
  700     cx_ptr->type = ACPI_STATE_C1;
  701     cx_ptr->trans_lat = 0;
  702     cx_ptr++;
  703     sc->cpu_non_c2 = sc->cpu_cx_count;
  704     sc->cpu_non_c3 = sc->cpu_cx_count;
  705     sc->cpu_cx_count++;
  706 
  707     /* 
  708      * The spec says P_BLK must be 6 bytes long.  However, some systems
  709      * use it to indicate a fractional set of features present so we
  710      * take 5 as C2.  Some may also have a value of 7 to indicate
  711      * another C3 but most use _CST for this (as required) and having
  712      * "only" C1-C3 is not a hardship.
  713      */
  714     if (sc->cpu_p_blk_len < 5)
  715         return; 
  716 
  717     /* Validate and allocate resources for C2 (P_LVL2). */
  718     gas.SpaceId = ACPI_ADR_SPACE_SYSTEM_IO;
  719     gas.BitWidth = 8;
  720     if (AcpiGbl_FADT.C2Latency <= 100) {
  721         gas.Address = sc->cpu_p_blk + 4;
  722         cx_ptr->res_rid = 0;
  723         acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &cx_ptr->res_rid,
  724             &gas, &cx_ptr->p_lvlx, RF_SHAREABLE);
  725         if (cx_ptr->p_lvlx != NULL) {
  726             cx_ptr->type = ACPI_STATE_C2;
  727             cx_ptr->trans_lat = AcpiGbl_FADT.C2Latency;
  728             cx_ptr++;
  729             sc->cpu_non_c3 = sc->cpu_cx_count;
  730             sc->cpu_cx_count++;
  731         }
  732     }
  733     if (sc->cpu_p_blk_len < 6)
  734         return;
  735 
  736     /* Validate and allocate resources for C3 (P_LVL3). */
  737     if (AcpiGbl_FADT.C3Latency <= 1000 && !(cpu_quirks & CPU_QUIRK_NO_C3)) {
  738         gas.Address = sc->cpu_p_blk + 5;
  739         cx_ptr->res_rid = 1;
  740         acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &cx_ptr->res_rid,
  741             &gas, &cx_ptr->p_lvlx, RF_SHAREABLE);
  742         if (cx_ptr->p_lvlx != NULL) {
  743             cx_ptr->type = ACPI_STATE_C3;
  744             cx_ptr->trans_lat = AcpiGbl_FADT.C3Latency;
  745             cx_ptr++;
  746             sc->cpu_cx_count++;
  747         }
  748     }
  749 }
  750 
  751 #if defined(__i386__) || defined(__amd64__)
  752 static void
  753 acpi_cpu_cx_cst_mwait(struct acpi_cx *cx_ptr, uint64_t address, int accsize)
  754 {
  755 
  756         cx_ptr->do_mwait = true;
  757         cx_ptr->mwait_hint = address & 0xffffffff;
  758         cx_ptr->mwait_hw_coord = (accsize & CST_FFH_MWAIT_HW_COORD) != 0;
  759         cx_ptr->mwait_bm_avoidance = (accsize & CST_FFH_MWAIT_BM_AVOID) != 0;
  760 }
  761 #endif
  762 
  763 static void
  764 acpi_cpu_cx_cst_free_plvlx(device_t cpu_dev, struct acpi_cx *cx_ptr)
  765 {
  766 
  767         if (cx_ptr->p_lvlx == NULL)
  768                 return;
  769         bus_release_resource(cpu_dev, cx_ptr->res_type, cx_ptr->res_rid,
  770             cx_ptr->p_lvlx);
  771         cx_ptr->p_lvlx = NULL;
  772 }
  773 
  774 /*
  775  * Parse a _CST package and set up its Cx states.  Since the _CST object
  776  * can change dynamically, our notify handler may call this function
  777  * to clean up and probe the new _CST package.
  778  */
  779 static int
  780 acpi_cpu_cx_cst(struct acpi_cpu_softc *sc)
  781 {
  782     struct       acpi_cx *cx_ptr;
  783     ACPI_STATUS  status;
  784     ACPI_BUFFER  buf;
  785     ACPI_OBJECT *top;
  786     ACPI_OBJECT *pkg;
  787     uint32_t     count;
  788     int          i;
  789 #if defined(__i386__) || defined(__amd64__)
  790     uint64_t     address;
  791     int          vendor, class, accsize;
  792 #endif
  793 
  794     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
  795 
  796     buf.Pointer = NULL;
  797     buf.Length = ACPI_ALLOCATE_BUFFER;
  798     status = AcpiEvaluateObject(sc->cpu_handle, "_CST", NULL, &buf);
  799     if (ACPI_FAILURE(status))
  800         return (ENXIO);
  801 
  802     /* _CST is a package with a count and at least one Cx package. */
  803     top = (ACPI_OBJECT *)buf.Pointer;
  804     if (!ACPI_PKG_VALID(top, 2) || acpi_PkgInt32(top, 0, &count) != 0) {
  805         device_printf(sc->cpu_dev, "invalid _CST package\n");
  806         AcpiOsFree(buf.Pointer);
  807         return (ENXIO);
  808     }
  809     if (count != top->Package.Count - 1) {
  810         device_printf(sc->cpu_dev, "invalid _CST state count (%d != %d)\n",
  811                count, top->Package.Count - 1);
  812         count = top->Package.Count - 1;
  813     }
  814     if (count > MAX_CX_STATES) {
  815         device_printf(sc->cpu_dev, "_CST has too many states (%d)\n", count);
  816         count = MAX_CX_STATES;
  817     }
  818 
  819     sc->cpu_non_c2 = 0;
  820     sc->cpu_non_c3 = 0;
  821     sc->cpu_cx_count = 0;
  822     cx_ptr = sc->cpu_cx_states;
  823 
  824     /*
  825      * C1 has been required since just after ACPI 1.0.
  826      * Reserve the first slot for it.
  827      */
  828     cx_ptr->type = ACPI_STATE_C0;
  829     cx_ptr++;
  830     sc->cpu_cx_count++;
  831 
  832     /* Set up all valid states. */
  833     for (i = 0; i < count; i++) {
  834         pkg = &top->Package.Elements[i + 1];
  835         if (!ACPI_PKG_VALID(pkg, 4) ||
  836             acpi_PkgInt32(pkg, 1, &cx_ptr->type) != 0 ||
  837             acpi_PkgInt32(pkg, 2, &cx_ptr->trans_lat) != 0 ||
  838             acpi_PkgInt32(pkg, 3, &cx_ptr->power) != 0) {
  839 
  840             device_printf(sc->cpu_dev, "skipping invalid Cx state package\n");
  841             continue;
  842         }
  843 
  844         /* Validate the state to see if we should use it. */
  845         switch (cx_ptr->type) {
  846         case ACPI_STATE_C1:
  847             acpi_cpu_cx_cst_free_plvlx(sc->cpu_dev, cx_ptr);
  848 #if defined(__i386__) || defined(__amd64__)
  849             if (acpi_PkgFFH_IntelCpu(pkg, 0, &vendor, &class, &address,
  850               &accsize) == 0 && vendor == CST_FFH_VENDOR_INTEL) {
  851                 if (class == CST_FFH_INTEL_CL_C1IO) {
  852                     /* C1 I/O then Halt */
  853                     cx_ptr->res_rid = sc->cpu_cx_count;
  854                     bus_set_resource(sc->cpu_dev, SYS_RES_IOPORT,
  855                       cx_ptr->res_rid, address, 1);
  856                     cx_ptr->p_lvlx = bus_alloc_resource_any(sc->cpu_dev,
  857                       SYS_RES_IOPORT, &cx_ptr->res_rid, RF_ACTIVE |
  858                       RF_SHAREABLE);
  859                     if (cx_ptr->p_lvlx == NULL) {
  860                         bus_delete_resource(sc->cpu_dev, SYS_RES_IOPORT,
  861                           cx_ptr->res_rid);
  862                         device_printf(sc->cpu_dev,
  863                           "C1 I/O failed to allocate port %d, "
  864                           "degrading to C1 Halt", (int)address);
  865                     }
  866                 } else if (class == CST_FFH_INTEL_CL_MWAIT) {
  867                     acpi_cpu_cx_cst_mwait(cx_ptr, address, accsize);
  868                 }
  869             }
  870 #endif
  871             if (sc->cpu_cx_states[0].type == ACPI_STATE_C0) {
  872                 /* This is the first C1 state.  Use the reserved slot. */
  873                 sc->cpu_cx_states[0] = *cx_ptr;
  874             } else {
  875                 sc->cpu_non_c2 = sc->cpu_cx_count;
  876                 sc->cpu_non_c3 = sc->cpu_cx_count;
  877                 cx_ptr++;
  878                 sc->cpu_cx_count++;
  879             }
  880             continue;
  881         case ACPI_STATE_C2:
  882             sc->cpu_non_c3 = sc->cpu_cx_count;
  883             break;
  884         case ACPI_STATE_C3:
  885         default:
  886             if ((cpu_quirks & CPU_QUIRK_NO_C3) != 0) {
  887                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  888                                  "acpi_cpu%d: C3[%d] not available.\n",
  889                                  device_get_unit(sc->cpu_dev), i));
  890                 continue;
  891             }
  892             break;
  893         }
  894 
  895         /* Free up any previous register. */
  896         acpi_cpu_cx_cst_free_plvlx(sc->cpu_dev, cx_ptr);
  897 
  898         /* Allocate the control register for C2 or C3. */
  899 #if defined(__i386__) || defined(__amd64__)
  900         if (acpi_PkgFFH_IntelCpu(pkg, 0, &vendor, &class, &address,
  901           &accsize) == 0 && vendor == CST_FFH_VENDOR_INTEL &&
  902           class == CST_FFH_INTEL_CL_MWAIT) {
  903             /* Native C State Instruction use (mwait) */
  904             acpi_cpu_cx_cst_mwait(cx_ptr, address, accsize);
  905             ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  906               "acpi_cpu%d: Got C%d/mwait - %d latency\n",
  907               device_get_unit(sc->cpu_dev), cx_ptr->type, cx_ptr->trans_lat));
  908             cx_ptr++;
  909             sc->cpu_cx_count++;
  910         } else
  911 #endif
  912         {
  913             cx_ptr->res_rid = sc->cpu_cx_count;
  914             acpi_PkgGas(sc->cpu_dev, pkg, 0, &cx_ptr->res_type,
  915                 &cx_ptr->res_rid, &cx_ptr->p_lvlx, RF_SHAREABLE);
  916             if (cx_ptr->p_lvlx) {
  917                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  918                      "acpi_cpu%d: Got C%d - %d latency\n",
  919                      device_get_unit(sc->cpu_dev), cx_ptr->type,
  920                      cx_ptr->trans_lat));
  921                 cx_ptr++;
  922                 sc->cpu_cx_count++;
  923             }
  924         }
  925     }
  926     AcpiOsFree(buf.Pointer);
  927 
  928     /* If C1 state was not found, we need one now. */
  929     cx_ptr = sc->cpu_cx_states;
  930     if (cx_ptr->type == ACPI_STATE_C0) {
  931         cx_ptr->type = ACPI_STATE_C1;
  932         cx_ptr->trans_lat = 0;
  933     }
  934 
  935     return (0);
  936 }
  937 
  938 /*
  939  * Call this *after* all CPUs have been attached.
  940  */
  941 static void
  942 acpi_cpu_startup(void *arg)
  943 {
  944     struct acpi_cpu_softc *sc;
  945     int i;
  946 
  947     /* Get set of CPU devices */
  948     devclass_get_devices(acpi_cpu_devclass, &cpu_devices, &cpu_ndevices);
  949 
  950     /*
  951      * Setup any quirks that might necessary now that we have probed
  952      * all the CPUs
  953      */
  954     acpi_cpu_quirks();
  955 
  956     if (cpu_cx_generic) {
  957         /*
  958          * We are using generic Cx mode, probe for available Cx states
  959          * for all processors.
  960          */
  961         for (i = 0; i < cpu_ndevices; i++) {
  962             sc = device_get_softc(cpu_devices[i]);
  963             acpi_cpu_generic_cx_probe(sc);
  964         }
  965     } else {
  966         /*
  967          * We are using _CST mode, remove C3 state if necessary.
  968          * As we now know for sure that we will be using _CST mode
  969          * install our notify handler.
  970          */
  971         for (i = 0; i < cpu_ndevices; i++) {
  972             sc = device_get_softc(cpu_devices[i]);
  973             if (cpu_quirks & CPU_QUIRK_NO_C3) {
  974                 sc->cpu_cx_count = min(sc->cpu_cx_count, sc->cpu_non_c3 + 1);
  975             }
  976             AcpiInstallNotifyHandler(sc->cpu_handle, ACPI_DEVICE_NOTIFY,
  977                 acpi_cpu_notify, sc);
  978         }
  979     }
  980 
  981     /* Perform Cx final initialization. */
  982     for (i = 0; i < cpu_ndevices; i++) {
  983         sc = device_get_softc(cpu_devices[i]);
  984         acpi_cpu_startup_cx(sc);
  985     }
  986 
  987     /* Add a sysctl handler to handle global Cx lowest setting */
  988     SYSCTL_ADD_PROC(&cpu_sysctl_ctx, SYSCTL_CHILDREN(cpu_sysctl_tree),
  989         OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW,
  990         NULL, 0, acpi_cpu_global_cx_lowest_sysctl, "A",
  991         "Global lowest Cx sleep state to use");
  992 
  993     /* Take over idling from cpu_idle_default(). */
  994     cpu_cx_lowest_lim = 0;
  995     for (i = 0; i < cpu_ndevices; i++) {
  996         sc = device_get_softc(cpu_devices[i]);
  997         enable_idle(sc);
  998     }
  999 #if defined(__i386__) || defined(__amd64__)
 1000     cpu_idle_hook = acpi_cpu_idle;
 1001 #endif
 1002 }
 1003 
 1004 static void
 1005 acpi_cpu_cx_list(struct acpi_cpu_softc *sc)
 1006 {
 1007     struct sbuf sb;
 1008     int i;
 1009 
 1010     /*
 1011      * Set up the list of Cx states
 1012      */
 1013     sbuf_new(&sb, sc->cpu_cx_supported, sizeof(sc->cpu_cx_supported),
 1014         SBUF_FIXEDLEN);
 1015     for (i = 0; i < sc->cpu_cx_count; i++)
 1016         sbuf_printf(&sb, "C%d/%d/%d ", i + 1, sc->cpu_cx_states[i].type,
 1017             sc->cpu_cx_states[i].trans_lat);
 1018     sbuf_trim(&sb);
 1019     sbuf_finish(&sb);
 1020 }       
 1021 
 1022 static void
 1023 acpi_cpu_startup_cx(struct acpi_cpu_softc *sc)
 1024 {
 1025     acpi_cpu_cx_list(sc);
 1026     
 1027     SYSCTL_ADD_STRING(&sc->cpu_sysctl_ctx,
 1028                       SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
 1029                       OID_AUTO, "cx_supported", CTLFLAG_RD,
 1030                       sc->cpu_cx_supported, 0,
 1031                       "Cx/microsecond values for supported Cx states");
 1032     SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
 1033                     SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
 1034                     OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW,
 1035                     (void *)sc, 0, acpi_cpu_cx_lowest_sysctl, "A",
 1036                     "lowest Cx sleep state to use");
 1037     SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
 1038                     SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
 1039                     OID_AUTO, "cx_usage", CTLTYPE_STRING | CTLFLAG_RD,
 1040                     (void *)sc, 0, acpi_cpu_usage_sysctl, "A",
 1041                     "percent usage for each Cx state");
 1042     SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
 1043                     SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
 1044                     OID_AUTO, "cx_usage_counters", CTLTYPE_STRING | CTLFLAG_RD,
 1045                     (void *)sc, 0, acpi_cpu_usage_counters_sysctl, "A",
 1046                     "Cx sleep state counters");
 1047 #if defined(__i386__) || defined(__amd64__)
 1048     SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
 1049                     SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
 1050                     OID_AUTO, "cx_method", CTLTYPE_STRING | CTLFLAG_RD,
 1051                     (void *)sc, 0, acpi_cpu_method_sysctl, "A",
 1052                     "Cx entrance methods");
 1053 #endif
 1054 
 1055     /* Signal platform that we can handle _CST notification. */
 1056     if (!cpu_cx_generic && cpu_cst_cnt != 0) {
 1057         ACPI_LOCK(acpi);
 1058         AcpiOsWritePort(cpu_smi_cmd, cpu_cst_cnt, 8);
 1059         ACPI_UNLOCK(acpi);
 1060     }
 1061 }
 1062 
 1063 #if defined(__i386__) || defined(__amd64__)
 1064 /*
 1065  * Idle the CPU in the lowest state possible.  This function is called with
 1066  * interrupts disabled.  Note that once it re-enables interrupts, a task
 1067  * switch can occur so do not access shared data (i.e. the softc) after
 1068  * interrupts are re-enabled.
 1069  */
 1070 static void
 1071 acpi_cpu_idle(sbintime_t sbt)
 1072 {
 1073     struct      acpi_cpu_softc *sc;
 1074     struct      acpi_cx *cx_next;
 1075     uint64_t    cputicks;
 1076     uint32_t    start_time, end_time;
 1077     ACPI_STATUS status;
 1078     int         bm_active, cx_next_idx, i, us;
 1079 
 1080     /*
 1081      * Look up our CPU id to get our softc.  If it's NULL, we'll use C1
 1082      * since there is no ACPI processor object for this CPU.  This occurs
 1083      * for logical CPUs in the HTT case.
 1084      */
 1085     sc = cpu_softc[PCPU_GET(cpuid)];
 1086     if (sc == NULL) {
 1087         acpi_cpu_c1();
 1088         return;
 1089     }
 1090 
 1091     /* If disabled, take the safe path. */
 1092     if (is_idle_disabled(sc)) {
 1093         acpi_cpu_c1();
 1094         return;
 1095     }
 1096 
 1097     /* Find the lowest state that has small enough latency. */
 1098     us = sc->cpu_prev_sleep;
 1099     if (sbt >= 0 && us > (sbt >> 12))
 1100         us = (sbt >> 12);
 1101     cx_next_idx = 0;
 1102     if (cpu_disable_c2_sleep)
 1103         i = min(sc->cpu_cx_lowest, sc->cpu_non_c2);
 1104     else if (cpu_disable_c3_sleep)
 1105         i = min(sc->cpu_cx_lowest, sc->cpu_non_c3);
 1106     else
 1107         i = sc->cpu_cx_lowest;
 1108     for (; i >= 0; i--) {
 1109         if (sc->cpu_cx_states[i].trans_lat * 3 <= us) {
 1110             cx_next_idx = i;
 1111             break;
 1112         }
 1113     }
 1114 
 1115     /*
 1116      * Check for bus master activity.  If there was activity, clear
 1117      * the bit and use the lowest non-C3 state.  Note that the USB
 1118      * driver polling for new devices keeps this bit set all the
 1119      * time if USB is loaded.
 1120      */
 1121     if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0 &&
 1122         cx_next_idx > sc->cpu_non_c3) {
 1123         status = AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, &bm_active);
 1124         if (ACPI_SUCCESS(status) && bm_active != 0) {
 1125             AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, 1);
 1126             cx_next_idx = sc->cpu_non_c3;
 1127         }
 1128     }
 1129 
 1130     /* Select the next state and update statistics. */
 1131     cx_next = &sc->cpu_cx_states[cx_next_idx];
 1132     sc->cpu_cx_stats[cx_next_idx]++;
 1133     KASSERT(cx_next->type != ACPI_STATE_C0, ("acpi_cpu_idle: C0 sleep"));
 1134 
 1135     /*
 1136      * Execute HLT (or equivalent) and wait for an interrupt.  We can't
 1137      * precisely calculate the time spent in C1 since the place we wake up
 1138      * is an ISR.  Assume we slept no more then half of quantum, unless
 1139      * we are called inside critical section, delaying context switch.
 1140      */
 1141     if (cx_next->type == ACPI_STATE_C1) {
 1142         cputicks = cpu_ticks();
 1143         if (cx_next->p_lvlx != NULL) {
 1144             /* C1 I/O then Halt */
 1145             CPU_GET_REG(cx_next->p_lvlx, 1);
 1146         }
 1147         if (cx_next->do_mwait)
 1148             acpi_cpu_idle_mwait(cx_next->mwait_hint);
 1149         else
 1150             acpi_cpu_c1();
 1151         end_time = ((cpu_ticks() - cputicks) << 20) / cpu_tickrate();
 1152         if (curthread->td_critnest == 0)
 1153                 end_time = min(end_time, 500000 / hz);
 1154         /* acpi_cpu_c1() returns with interrupts enabled. */
 1155         if (cx_next->do_mwait)
 1156             ACPI_ENABLE_IRQS();
 1157         sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + end_time) / 4;
 1158         return;
 1159     }
 1160 
 1161     /*
 1162      * For C3, disable bus master arbitration and enable bus master wake
 1163      * if BM control is available, otherwise flush the CPU cache.
 1164      */
 1165     if (cx_next->type == ACPI_STATE_C3 || cx_next->mwait_bm_avoidance) {
 1166         if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
 1167             AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 1);
 1168             AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 1);
 1169         } else
 1170             ACPI_FLUSH_CPU_CACHE();
 1171     }
 1172 
 1173     /*
 1174      * Read from P_LVLx to enter C2(+), checking time spent asleep.
 1175      * Use the ACPI timer for measuring sleep time.  Since we need to
 1176      * get the time very close to the CPU start/stop clock logic, this
 1177      * is the only reliable time source.
 1178      */
 1179     if (cx_next->type == ACPI_STATE_C3) {
 1180         AcpiGetTimer(&start_time);
 1181         cputicks = 0;
 1182     } else {
 1183         start_time = 0;
 1184         cputicks = cpu_ticks();
 1185     }
 1186     if (cx_next->do_mwait)
 1187         acpi_cpu_idle_mwait(cx_next->mwait_hint);
 1188     else
 1189         CPU_GET_REG(cx_next->p_lvlx, 1);
 1190 
 1191     /*
 1192      * Read the end time twice.  Since it may take an arbitrary time
 1193      * to enter the idle state, the first read may be executed before
 1194      * the processor has stopped.  Doing it again provides enough
 1195      * margin that we are certain to have a correct value.
 1196      */
 1197     AcpiGetTimer(&end_time);
 1198     if (cx_next->type == ACPI_STATE_C3) {
 1199         AcpiGetTimer(&end_time);
 1200         AcpiGetTimerDuration(start_time, end_time, &end_time);
 1201     } else
 1202         end_time = ((cpu_ticks() - cputicks) << 20) / cpu_tickrate();
 1203 
 1204     /* Enable bus master arbitration and disable bus master wakeup. */
 1205     if ((cx_next->type == ACPI_STATE_C3 || cx_next->mwait_bm_avoidance) &&
 1206       (cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
 1207         AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 0);
 1208         AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
 1209     }
 1210     ACPI_ENABLE_IRQS();
 1211 
 1212     sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + PM_USEC(end_time)) / 4;
 1213 }
 1214 #endif
 1215 
 1216 /*
 1217  * Re-evaluate the _CST object when we are notified that it changed.
 1218  */
 1219 static void
 1220 acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context)
 1221 {
 1222     struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)context;
 1223 
 1224     if (notify != ACPI_NOTIFY_CX_STATES)
 1225         return;
 1226 
 1227     /*
 1228      * C-state data for target CPU is going to be in flux while we execute
 1229      * acpi_cpu_cx_cst, so disable entering acpi_cpu_idle.
 1230      * Also, it may happen that multiple ACPI taskqueues may concurrently
 1231      * execute notifications for the same CPU.  ACPI_SERIAL is used to
 1232      * protect against that.
 1233      */
 1234     ACPI_SERIAL_BEGIN(cpu);
 1235     disable_idle(sc);
 1236 
 1237     /* Update the list of Cx states. */
 1238     acpi_cpu_cx_cst(sc);
 1239     acpi_cpu_cx_list(sc);
 1240     acpi_cpu_set_cx_lowest(sc);
 1241 
 1242     enable_idle(sc);
 1243     ACPI_SERIAL_END(cpu);
 1244 
 1245     acpi_UserNotify("PROCESSOR", sc->cpu_handle, notify);
 1246 }
 1247 
 1248 static void
 1249 acpi_cpu_quirks(void)
 1250 {
 1251     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
 1252 
 1253     /*
 1254      * Bus mastering arbitration control is needed to keep caches coherent
 1255      * while sleeping in C3.  If it's not present but a working flush cache
 1256      * instruction is present, flush the caches before entering C3 instead.
 1257      * Otherwise, just disable C3 completely.
 1258      */
 1259     if (AcpiGbl_FADT.Pm2ControlBlock == 0 ||
 1260         AcpiGbl_FADT.Pm2ControlLength == 0) {
 1261         if ((AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD) &&
 1262             (AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD_FLUSH) == 0) {
 1263             cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
 1264             ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1265                 "acpi_cpu: no BM control, using flush cache method\n"));
 1266         } else {
 1267             cpu_quirks |= CPU_QUIRK_NO_C3;
 1268             ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1269                 "acpi_cpu: no BM control, C3 not available\n"));
 1270         }
 1271     }
 1272 
 1273     /*
 1274      * If we are using generic Cx mode, C3 on multiple CPUs requires using
 1275      * the expensive flush cache instruction.
 1276      */
 1277     if (cpu_cx_generic && mp_ncpus > 1) {
 1278         cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
 1279         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1280             "acpi_cpu: SMP, using flush cache mode for C3\n"));
 1281     }
 1282 
 1283     /* Look for various quirks of the PIIX4 part. */
 1284     acpi_cpu_quirks_piix4();
 1285 }
 1286 
 1287 static void
 1288 acpi_cpu_quirks_piix4(void)
 1289 {
 1290 #ifdef __i386__
 1291     device_t acpi_dev;
 1292     uint32_t val;
 1293     ACPI_STATUS status;
 1294 
 1295     acpi_dev = pci_find_device(PCI_VENDOR_INTEL, PCI_DEVICE_82371AB_3);
 1296     if (acpi_dev != NULL) {
 1297         switch (pci_get_revid(acpi_dev)) {
 1298         /*
 1299          * Disable C3 support for all PIIX4 chipsets.  Some of these parts
 1300          * do not report the BMIDE status to the BM status register and
 1301          * others have a livelock bug if Type-F DMA is enabled.  Linux
 1302          * works around the BMIDE bug by reading the BM status directly
 1303          * but we take the simpler approach of disabling C3 for these
 1304          * parts.
 1305          *
 1306          * See erratum #18 ("C3 Power State/BMIDE and Type-F DMA
 1307          * Livelock") from the January 2002 PIIX4 specification update.
 1308          * Applies to all PIIX4 models.
 1309          *
 1310          * Also, make sure that all interrupts cause a "Stop Break"
 1311          * event to exit from C2 state.
 1312          * Also, BRLD_EN_BM (ACPI_BITREG_BUS_MASTER_RLD in ACPI-speak)
 1313          * should be set to zero, otherwise it causes C2 to short-sleep.
 1314          * PIIX4 doesn't properly support C3 and bus master activity
 1315          * need not break out of C2.
 1316          */
 1317         case PCI_REVISION_A_STEP:
 1318         case PCI_REVISION_B_STEP:
 1319         case PCI_REVISION_4E:
 1320         case PCI_REVISION_4M:
 1321             cpu_quirks |= CPU_QUIRK_NO_C3;
 1322             ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1323                 "acpi_cpu: working around PIIX4 bug, disabling C3\n"));
 1324 
 1325             val = pci_read_config(acpi_dev, PIIX4_DEVACTB_REG, 4);
 1326             if ((val & PIIX4_STOP_BREAK_MASK) != PIIX4_STOP_BREAK_MASK) {
 1327                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1328                     "acpi_cpu: PIIX4: enabling IRQs to generate Stop Break\n"));
 1329                 val |= PIIX4_STOP_BREAK_MASK;
 1330                 pci_write_config(acpi_dev, PIIX4_DEVACTB_REG, val, 4);
 1331             }
 1332             status = AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_RLD, &val);
 1333             if (ACPI_SUCCESS(status) && val != 0) {
 1334                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1335                     "acpi_cpu: PIIX4: reset BRLD_EN_BM\n"));
 1336                 AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
 1337             }
 1338             break;
 1339         default:
 1340             break;
 1341         }
 1342     }
 1343 #endif
 1344 }
 1345 
 1346 static int
 1347 acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS)
 1348 {
 1349     struct acpi_cpu_softc *sc;
 1350     struct sbuf  sb;
 1351     char         buf[128];
 1352     int          i;
 1353     uintmax_t    fract, sum, whole;
 1354 
 1355     sc = (struct acpi_cpu_softc *) arg1;
 1356     sum = 0;
 1357     for (i = 0; i < sc->cpu_cx_count; i++)
 1358         sum += sc->cpu_cx_stats[i];
 1359     sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
 1360     for (i = 0; i < sc->cpu_cx_count; i++) {
 1361         if (sum > 0) {
 1362             whole = (uintmax_t)sc->cpu_cx_stats[i] * 100;
 1363             fract = (whole % sum) * 100;
 1364             sbuf_printf(&sb, "%u.%02u%% ", (u_int)(whole / sum),
 1365                 (u_int)(fract / sum));
 1366         } else
 1367             sbuf_printf(&sb, "0.00%% ");
 1368     }
 1369     sbuf_printf(&sb, "last %dus", sc->cpu_prev_sleep);
 1370     sbuf_trim(&sb);
 1371     sbuf_finish(&sb);
 1372     sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
 1373     sbuf_delete(&sb);
 1374 
 1375     return (0);
 1376 }
 1377 
 1378 /*
 1379  * XXX TODO: actually add support to count each entry/exit
 1380  * from the Cx states.
 1381  */
 1382 static int
 1383 acpi_cpu_usage_counters_sysctl(SYSCTL_HANDLER_ARGS)
 1384 {
 1385     struct acpi_cpu_softc *sc;
 1386     struct sbuf  sb;
 1387     char         buf[128];
 1388     int          i;
 1389 
 1390     sc = (struct acpi_cpu_softc *) arg1;
 1391 
 1392     /* Print out the raw counters */
 1393     sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
 1394 
 1395     for (i = 0; i < sc->cpu_cx_count; i++) {
 1396         sbuf_printf(&sb, "%u ", sc->cpu_cx_stats[i]);
 1397     }
 1398 
 1399     sbuf_trim(&sb);
 1400     sbuf_finish(&sb);
 1401     sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
 1402     sbuf_delete(&sb);
 1403 
 1404     return (0);
 1405 }
 1406 
 1407 #if defined(__i386__) || defined(__amd64__)
 1408 static int
 1409 acpi_cpu_method_sysctl(SYSCTL_HANDLER_ARGS)
 1410 {
 1411         struct acpi_cpu_softc *sc;
 1412         struct acpi_cx *cx;
 1413         struct sbuf sb;
 1414         char buf[128];
 1415         int i;
 1416 
 1417         sc = (struct acpi_cpu_softc *)arg1;
 1418         sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
 1419         for (i = 0; i < sc->cpu_cx_count; i++) {
 1420                 cx = &sc->cpu_cx_states[i];
 1421                 sbuf_printf(&sb, "C%d/", i + 1);
 1422                 if (cx->do_mwait) {
 1423                         sbuf_cat(&sb, "mwait");
 1424                         if (cx->mwait_hw_coord)
 1425                                 sbuf_cat(&sb, "/hwc");
 1426                         if (cx->mwait_bm_avoidance)
 1427                                 sbuf_cat(&sb, "/bma");
 1428                 } else if (cx->type == ACPI_STATE_C1) {
 1429                         sbuf_cat(&sb, "hlt");
 1430                 } else {
 1431                         sbuf_cat(&sb, "io");
 1432                 }
 1433                 if (cx->type == ACPI_STATE_C1 && cx->p_lvlx != NULL)
 1434                         sbuf_cat(&sb, "/iohlt");
 1435                 sbuf_putc(&sb, ' ');
 1436         }
 1437         sbuf_trim(&sb);
 1438         sbuf_finish(&sb);
 1439         sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
 1440         sbuf_delete(&sb);
 1441         return (0);
 1442 }
 1443 #endif
 1444 
 1445 static int
 1446 acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc)
 1447 {
 1448     int i;
 1449 
 1450     ACPI_SERIAL_ASSERT(cpu);
 1451     sc->cpu_cx_lowest = min(sc->cpu_cx_lowest_lim, sc->cpu_cx_count - 1);
 1452 
 1453     /* If not disabling, cache the new lowest non-C3 state. */
 1454     sc->cpu_non_c3 = 0;
 1455     for (i = sc->cpu_cx_lowest; i >= 0; i--) {
 1456         if (sc->cpu_cx_states[i].type < ACPI_STATE_C3) {
 1457             sc->cpu_non_c3 = i;
 1458             break;
 1459         }
 1460     }
 1461 
 1462     /* Reset the statistics counters. */
 1463     bzero(sc->cpu_cx_stats, sizeof(sc->cpu_cx_stats));
 1464     return (0);
 1465 }
 1466 
 1467 static int
 1468 acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
 1469 {
 1470     struct       acpi_cpu_softc *sc;
 1471     char         state[8];
 1472     int          val, error;
 1473 
 1474     sc = (struct acpi_cpu_softc *) arg1;
 1475     snprintf(state, sizeof(state), "C%d", sc->cpu_cx_lowest_lim + 1);
 1476     error = sysctl_handle_string(oidp, state, sizeof(state), req);
 1477     if (error != 0 || req->newptr == NULL)
 1478         return (error);
 1479     if (strlen(state) < 2 || toupper(state[0]) != 'C')
 1480         return (EINVAL);
 1481     if (strcasecmp(state, "Cmax") == 0)
 1482         val = MAX_CX_STATES;
 1483     else {
 1484         val = (int) strtol(state + 1, NULL, 10);
 1485         if (val < 1 || val > MAX_CX_STATES)
 1486             return (EINVAL);
 1487     }
 1488 
 1489     ACPI_SERIAL_BEGIN(cpu);
 1490     sc->cpu_cx_lowest_lim = val - 1;
 1491     acpi_cpu_set_cx_lowest(sc);
 1492     ACPI_SERIAL_END(cpu);
 1493 
 1494     return (0);
 1495 }
 1496 
 1497 static int
 1498 acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
 1499 {
 1500     struct      acpi_cpu_softc *sc;
 1501     char        state[8];
 1502     int         val, error, i;
 1503 
 1504     snprintf(state, sizeof(state), "C%d", cpu_cx_lowest_lim + 1);
 1505     error = sysctl_handle_string(oidp, state, sizeof(state), req);
 1506     if (error != 0 || req->newptr == NULL)
 1507         return (error);
 1508     if (strlen(state) < 2 || toupper(state[0]) != 'C')
 1509         return (EINVAL);
 1510     if (strcasecmp(state, "Cmax") == 0)
 1511         val = MAX_CX_STATES;
 1512     else {
 1513         val = (int) strtol(state + 1, NULL, 10);
 1514         if (val < 1 || val > MAX_CX_STATES)
 1515             return (EINVAL);
 1516     }
 1517 
 1518     /* Update the new lowest useable Cx state for all CPUs. */
 1519     ACPI_SERIAL_BEGIN(cpu);
 1520     cpu_cx_lowest_lim = val - 1;
 1521     for (i = 0; i < cpu_ndevices; i++) {
 1522         sc = device_get_softc(cpu_devices[i]);
 1523         sc->cpu_cx_lowest_lim = cpu_cx_lowest_lim;
 1524         acpi_cpu_set_cx_lowest(sc);
 1525     }
 1526     ACPI_SERIAL_END(cpu);
 1527 
 1528     return (0);
 1529 }

Cache object: b8659e31305f9f29383693664f4a4009


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.