The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/acpica/acpi_cpu.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2003-2005 Nate Lawson (SDG)
    3  * Copyright (c) 2001 Michael Smith
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   25  * SUCH DAMAGE.
   26  */
   27 
   28 #include <sys/cdefs.h>
   29 __FBSDID("$FreeBSD: releng/12.0/sys/dev/acpica/acpi_cpu.c 333334 2018-05-07 21:09:17Z imp $");
   30 
   31 #include "opt_acpi.h"
   32 #include <sys/param.h>
   33 #include <sys/bus.h>
   34 #include <sys/cpu.h>
   35 #include <sys/kernel.h>
   36 #include <sys/malloc.h>
   37 #include <sys/module.h>
   38 #include <sys/pcpu.h>
   39 #include <sys/power.h>
   40 #include <sys/proc.h>
   41 #include <sys/sched.h>
   42 #include <sys/sbuf.h>
   43 #include <sys/smp.h>
   44 
   45 #include <dev/pci/pcivar.h>
   46 #include <machine/atomic.h>
   47 #include <machine/bus.h>
   48 #if defined(__amd64__) || defined(__i386__)
   49 #include <machine/clock.h>
   50 #include <machine/specialreg.h>
   51 #include <machine/md_var.h>
   52 #endif
   53 #include <sys/rman.h>
   54 
   55 #include <contrib/dev/acpica/include/acpi.h>
   56 #include <contrib/dev/acpica/include/accommon.h>
   57 
   58 #include <dev/acpica/acpivar.h>
   59 
   60 /*
   61  * Support for ACPI Processor devices, including C[1-3] sleep states.
   62  */
   63 
   64 /* Hooks for the ACPI CA debugging infrastructure */
   65 #define _COMPONENT      ACPI_PROCESSOR
   66 ACPI_MODULE_NAME("PROCESSOR")
   67 
   68 struct acpi_cx {
   69     struct resource     *p_lvlx;        /* Register to read to enter state. */
   70     uint32_t             type;          /* C1-3 (C4 and up treated as C3). */
   71     uint32_t             trans_lat;     /* Transition latency (usec). */
   72     uint32_t             power;         /* Power consumed (mW). */
   73     int                  res_type;      /* Resource type for p_lvlx. */
   74     int                  res_rid;       /* Resource ID for p_lvlx. */
   75     bool                 do_mwait;
   76     uint32_t             mwait_hint;
   77     bool                 mwait_hw_coord;
   78     bool                 mwait_bm_avoidance;
   79 };
   80 #define MAX_CX_STATES    8
   81 
   82 struct acpi_cpu_softc {
   83     device_t             cpu_dev;
   84     ACPI_HANDLE          cpu_handle;
   85     struct pcpu         *cpu_pcpu;
   86     uint32_t             cpu_acpi_id;   /* ACPI processor id */
   87     uint32_t             cpu_p_blk;     /* ACPI P_BLK location */
   88     uint32_t             cpu_p_blk_len; /* P_BLK length (must be 6). */
   89     struct acpi_cx       cpu_cx_states[MAX_CX_STATES];
   90     int                  cpu_cx_count;  /* Number of valid Cx states. */
   91     int                  cpu_prev_sleep;/* Last idle sleep duration. */
   92     int                  cpu_features;  /* Child driver supported features. */
   93     /* Runtime state. */
   94     int                  cpu_non_c2;    /* Index of lowest non-C2 state. */
   95     int                  cpu_non_c3;    /* Index of lowest non-C3 state. */
   96     u_int                cpu_cx_stats[MAX_CX_STATES];/* Cx usage history. */
   97     /* Values for sysctl. */
   98     struct sysctl_ctx_list cpu_sysctl_ctx;
   99     struct sysctl_oid   *cpu_sysctl_tree;
  100     int                  cpu_cx_lowest;
  101     int                  cpu_cx_lowest_lim;
  102     int                  cpu_disable_idle; /* Disable entry to idle function */
  103     char                 cpu_cx_supported[64];
  104 };
  105 
  106 struct acpi_cpu_device {
  107     struct resource_list        ad_rl;
  108 };
  109 
  110 #define CPU_GET_REG(reg, width)                                         \
  111     (bus_space_read_ ## width(rman_get_bustag((reg)),                   \
  112                       rman_get_bushandle((reg)), 0))
  113 #define CPU_SET_REG(reg, width, val)                                    \
  114     (bus_space_write_ ## width(rman_get_bustag((reg)),                  \
  115                        rman_get_bushandle((reg)), 0, (val)))
  116 
  117 #define PM_USEC(x)       ((x) >> 2)     /* ~4 clocks per usec (3.57955 Mhz) */
  118 
  119 #define ACPI_NOTIFY_CX_STATES   0x81    /* _CST changed. */
  120 
  121 #define CPU_QUIRK_NO_C3         (1<<0)  /* C3-type states are not usable. */
  122 #define CPU_QUIRK_NO_BM_CTRL    (1<<2)  /* No bus mastering control. */
  123 
  124 #define PCI_VENDOR_INTEL        0x8086
  125 #define PCI_DEVICE_82371AB_3    0x7113  /* PIIX4 chipset for quirks. */
  126 #define PCI_REVISION_A_STEP     0
  127 #define PCI_REVISION_B_STEP     1
  128 #define PCI_REVISION_4E         2
  129 #define PCI_REVISION_4M         3
  130 #define PIIX4_DEVACTB_REG       0x58
  131 #define PIIX4_BRLD_EN_IRQ0      (1<<0)
  132 #define PIIX4_BRLD_EN_IRQ       (1<<1)
  133 #define PIIX4_BRLD_EN_IRQ8      (1<<5)
  134 #define PIIX4_STOP_BREAK_MASK   (PIIX4_BRLD_EN_IRQ0 | PIIX4_BRLD_EN_IRQ | PIIX4_BRLD_EN_IRQ8)
  135 #define PIIX4_PCNTRL_BST_EN     (1<<10)
  136 
  137 #define CST_FFH_VENDOR_INTEL    1
  138 #define CST_FFH_INTEL_CL_C1IO   1
  139 #define CST_FFH_INTEL_CL_MWAIT  2
  140 #define CST_FFH_MWAIT_HW_COORD  0x0001
  141 #define CST_FFH_MWAIT_BM_AVOID  0x0002
  142 
  143 #define CPUDEV_DEVICE_ID        "ACPI0007"
  144 
  145 /* Allow users to ignore processor orders in MADT. */
  146 static int cpu_unordered;
  147 SYSCTL_INT(_debug_acpi, OID_AUTO, cpu_unordered, CTLFLAG_RDTUN,
  148     &cpu_unordered, 0,
  149     "Do not use the MADT to match ACPI Processor objects to CPUs.");
  150 
  151 /* Knob to disable acpi_cpu devices */
  152 bool acpi_cpu_disabled = false;
  153 
  154 /* Platform hardware resource information. */
  155 static uint32_t          cpu_smi_cmd;   /* Value to write to SMI_CMD. */
  156 static uint8_t           cpu_cst_cnt;   /* Indicate we are _CST aware. */
  157 static int               cpu_quirks;    /* Indicate any hardware bugs. */
  158 
  159 /* Values for sysctl. */
  160 static struct sysctl_ctx_list cpu_sysctl_ctx;
  161 static struct sysctl_oid *cpu_sysctl_tree;
  162 static int               cpu_cx_generic;
  163 static int               cpu_cx_lowest_lim;
  164 
  165 static device_t         *cpu_devices;
  166 static int               cpu_ndevices;
  167 static struct acpi_cpu_softc **cpu_softc;
  168 ACPI_SERIAL_DECL(cpu, "ACPI CPU");
  169 
  170 static int      acpi_cpu_probe(device_t dev);
  171 static int      acpi_cpu_attach(device_t dev);
  172 static int      acpi_cpu_suspend(device_t dev);
  173 static int      acpi_cpu_resume(device_t dev);
  174 static int      acpi_pcpu_get_id(device_t dev, uint32_t *acpi_id,
  175                     uint32_t *cpu_id);
  176 static struct resource_list *acpi_cpu_get_rlist(device_t dev, device_t child);
  177 static device_t acpi_cpu_add_child(device_t dev, u_int order, const char *name,
  178                     int unit);
  179 static int      acpi_cpu_read_ivar(device_t dev, device_t child, int index,
  180                     uintptr_t *result);
  181 static int      acpi_cpu_shutdown(device_t dev);
  182 static void     acpi_cpu_cx_probe(struct acpi_cpu_softc *sc);
  183 static void     acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc);
  184 static int      acpi_cpu_cx_cst(struct acpi_cpu_softc *sc);
  185 static void     acpi_cpu_startup(void *arg);
  186 static void     acpi_cpu_startup_cx(struct acpi_cpu_softc *sc);
  187 static void     acpi_cpu_cx_list(struct acpi_cpu_softc *sc);
  188 #if defined(__i386__) || defined(__amd64__)
  189 static void     acpi_cpu_idle(sbintime_t sbt);
  190 #endif
  191 static void     acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context);
  192 static void     acpi_cpu_quirks(void);
  193 static void     acpi_cpu_quirks_piix4(void);
  194 static int      acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS);
  195 static int      acpi_cpu_usage_counters_sysctl(SYSCTL_HANDLER_ARGS);
  196 static int      acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc);
  197 static int      acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
  198 static int      acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
  199 #if defined(__i386__) || defined(__amd64__)
  200 static int      acpi_cpu_method_sysctl(SYSCTL_HANDLER_ARGS);
  201 #endif
  202 
  203 static device_method_t acpi_cpu_methods[] = {
  204     /* Device interface */
  205     DEVMETHOD(device_probe,     acpi_cpu_probe),
  206     DEVMETHOD(device_attach,    acpi_cpu_attach),
  207     DEVMETHOD(device_detach,    bus_generic_detach),
  208     DEVMETHOD(device_shutdown,  acpi_cpu_shutdown),
  209     DEVMETHOD(device_suspend,   acpi_cpu_suspend),
  210     DEVMETHOD(device_resume,    acpi_cpu_resume),
  211 
  212     /* Bus interface */
  213     DEVMETHOD(bus_add_child,    acpi_cpu_add_child),
  214     DEVMETHOD(bus_read_ivar,    acpi_cpu_read_ivar),
  215     DEVMETHOD(bus_get_resource_list, acpi_cpu_get_rlist),
  216     DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource),
  217     DEVMETHOD(bus_set_resource, bus_generic_rl_set_resource),
  218     DEVMETHOD(bus_alloc_resource, bus_generic_rl_alloc_resource),
  219     DEVMETHOD(bus_release_resource, bus_generic_rl_release_resource),
  220     DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
  221     DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
  222     DEVMETHOD(bus_setup_intr,   bus_generic_setup_intr),
  223     DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr),
  224 
  225     DEVMETHOD_END
  226 };
  227 
  228 static driver_t acpi_cpu_driver = {
  229     "cpu",
  230     acpi_cpu_methods,
  231     sizeof(struct acpi_cpu_softc),
  232 };
  233 
  234 static devclass_t acpi_cpu_devclass;
  235 DRIVER_MODULE(cpu, acpi, acpi_cpu_driver, acpi_cpu_devclass, 0, 0);
  236 MODULE_DEPEND(cpu, acpi, 1, 1, 1);
  237 
  238 static int
  239 acpi_cpu_probe(device_t dev)
  240 {
  241     static char            *cpudev_ids[] = { CPUDEV_DEVICE_ID, NULL };
  242     int                    acpi_id, cpu_id;
  243     ACPI_BUFFER            buf;
  244     ACPI_HANDLE            handle;
  245     ACPI_OBJECT            *obj;
  246     ACPI_STATUS            status;
  247     ACPI_OBJECT_TYPE       type;
  248 
  249     if (acpi_disabled("cpu") || acpi_cpu_disabled)
  250         return (ENXIO);
  251     type = acpi_get_type(dev);
  252     if (type != ACPI_TYPE_PROCESSOR && type != ACPI_TYPE_DEVICE)
  253         return (ENXIO);
  254     if (type == ACPI_TYPE_DEVICE &&
  255         ACPI_ID_PROBE(device_get_parent(dev), dev, cpudev_ids) == NULL)
  256         return (ENXIO);
  257 
  258     handle = acpi_get_handle(dev);
  259     if (cpu_softc == NULL)
  260         cpu_softc = malloc(sizeof(struct acpi_cpu_softc *) *
  261             (mp_maxid + 1), M_TEMP /* XXX */, M_WAITOK | M_ZERO);
  262 
  263     if (type == ACPI_TYPE_PROCESSOR) {
  264         /* Get our Processor object. */
  265         buf.Pointer = NULL;
  266         buf.Length = ACPI_ALLOCATE_BUFFER;
  267         status = AcpiEvaluateObject(handle, NULL, NULL, &buf);
  268         if (ACPI_FAILURE(status)) {
  269             device_printf(dev, "probe failed to get Processor obj - %s\n",
  270                 AcpiFormatException(status));
  271             return (ENXIO);
  272         }
  273         obj = (ACPI_OBJECT *)buf.Pointer;
  274         if (obj->Type != ACPI_TYPE_PROCESSOR) {
  275             device_printf(dev, "Processor object has bad type %d\n",
  276                 obj->Type);
  277             AcpiOsFree(obj);
  278             return (ENXIO);
  279         }
  280 
  281         /*
  282          * Find the processor associated with our unit.  We could use the
  283          * ProcId as a key, however, some boxes do not have the same values
  284          * in their Processor object as the ProcId values in the MADT.
  285          */
  286         acpi_id = obj->Processor.ProcId;
  287         AcpiOsFree(obj);
  288     } else {
  289         status = acpi_GetInteger(handle, "_UID", &acpi_id);
  290         if (ACPI_FAILURE(status)) {
  291             device_printf(dev, "Device object has bad value - %s\n",
  292                 AcpiFormatException(status));
  293             return (ENXIO);
  294         }
  295     }
  296     if (acpi_pcpu_get_id(dev, &acpi_id, &cpu_id) != 0)
  297         return (ENXIO);
  298 
  299     /*
  300      * Check if we already probed this processor.  We scan the bus twice
  301      * so it's possible we've already seen this one.
  302      */
  303     if (cpu_softc[cpu_id] != NULL)
  304         return (ENXIO);
  305 
  306     /* Mark this processor as in-use and save our derived id for attach. */
  307     cpu_softc[cpu_id] = (void *)1;
  308     acpi_set_private(dev, (void*)(intptr_t)cpu_id);
  309     device_set_desc(dev, "ACPI CPU");
  310 
  311     if (!bootverbose && device_get_unit(dev) != 0) {
  312             device_quiet(dev);
  313             device_quiet_children(dev);
  314     }
  315 
  316     return (0);
  317 }
  318 
  319 static int
  320 acpi_cpu_attach(device_t dev)
  321 {
  322     ACPI_BUFFER            buf;
  323     ACPI_OBJECT            arg, *obj;
  324     ACPI_OBJECT_LIST       arglist;
  325     struct pcpu            *pcpu_data;
  326     struct acpi_cpu_softc *sc;
  327     struct acpi_softc     *acpi_sc;
  328     ACPI_STATUS            status;
  329     u_int                  features;
  330     int                    cpu_id, drv_count, i;
  331     driver_t              **drivers;
  332     uint32_t               cap_set[3];
  333 
  334     /* UUID needed by _OSC evaluation */
  335     static uint8_t cpu_oscuuid[16] = { 0x16, 0xA6, 0x77, 0x40, 0x0C, 0x29,
  336                                        0xBE, 0x47, 0x9E, 0xBD, 0xD8, 0x70,
  337                                        0x58, 0x71, 0x39, 0x53 };
  338 
  339     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
  340 
  341     sc = device_get_softc(dev);
  342     sc->cpu_dev = dev;
  343     sc->cpu_handle = acpi_get_handle(dev);
  344     cpu_id = (int)(intptr_t)acpi_get_private(dev);
  345     cpu_softc[cpu_id] = sc;
  346     pcpu_data = pcpu_find(cpu_id);
  347     pcpu_data->pc_device = dev;
  348     sc->cpu_pcpu = pcpu_data;
  349     cpu_smi_cmd = AcpiGbl_FADT.SmiCommand;
  350     cpu_cst_cnt = AcpiGbl_FADT.CstControl;
  351 
  352     if (acpi_get_type(dev) == ACPI_TYPE_PROCESSOR) {
  353         buf.Pointer = NULL;
  354         buf.Length = ACPI_ALLOCATE_BUFFER;
  355         status = AcpiEvaluateObject(sc->cpu_handle, NULL, NULL, &buf);
  356         if (ACPI_FAILURE(status)) {
  357             device_printf(dev, "attach failed to get Processor obj - %s\n",
  358                 AcpiFormatException(status));
  359             return (ENXIO);
  360         }
  361         obj = (ACPI_OBJECT *)buf.Pointer;
  362         sc->cpu_p_blk = obj->Processor.PblkAddress;
  363         sc->cpu_p_blk_len = obj->Processor.PblkLength;
  364         sc->cpu_acpi_id = obj->Processor.ProcId;
  365         AcpiOsFree(obj);
  366     } else {
  367         KASSERT(acpi_get_type(dev) == ACPI_TYPE_DEVICE,
  368             ("Unexpected ACPI object"));
  369         status = acpi_GetInteger(sc->cpu_handle, "_UID", &sc->cpu_acpi_id);
  370         if (ACPI_FAILURE(status)) {
  371             device_printf(dev, "Device object has bad value - %s\n",
  372                 AcpiFormatException(status));
  373             return (ENXIO);
  374         }
  375         sc->cpu_p_blk = 0;
  376         sc->cpu_p_blk_len = 0;
  377     }
  378     ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: P_BLK at %#x/%d\n",
  379                      device_get_unit(dev), sc->cpu_p_blk, sc->cpu_p_blk_len));
  380 
  381     /*
  382      * If this is the first cpu we attach, create and initialize the generic
  383      * resources that will be used by all acpi cpu devices.
  384      */
  385     if (device_get_unit(dev) == 0) {
  386         /* Assume we won't be using generic Cx mode by default */
  387         cpu_cx_generic = FALSE;
  388 
  389         /* Install hw.acpi.cpu sysctl tree */
  390         acpi_sc = acpi_device_get_parent_softc(dev);
  391         sysctl_ctx_init(&cpu_sysctl_ctx);
  392         cpu_sysctl_tree = SYSCTL_ADD_NODE(&cpu_sysctl_ctx,
  393             SYSCTL_CHILDREN(acpi_sc->acpi_sysctl_tree), OID_AUTO, "cpu",
  394             CTLFLAG_RD, 0, "node for CPU children");
  395     }
  396 
  397     /*
  398      * Before calling any CPU methods, collect child driver feature hints
  399      * and notify ACPI of them.  We support unified SMP power control
  400      * so advertise this ourselves.  Note this is not the same as independent
  401      * SMP control where each CPU can have different settings.
  402      */
  403     sc->cpu_features = ACPI_CAP_SMP_SAME | ACPI_CAP_SMP_SAME_C3 |
  404       ACPI_CAP_C1_IO_HALT;
  405 
  406 #if defined(__i386__) || defined(__amd64__)
  407     /*
  408      * Ask for MWAIT modes if not disabled and interrupts work
  409      * reasonable with MWAIT.
  410      */
  411     if (!acpi_disabled("mwait") && cpu_mwait_usable())
  412         sc->cpu_features |= ACPI_CAP_SMP_C1_NATIVE | ACPI_CAP_SMP_C3_NATIVE;
  413 #endif
  414 
  415     if (devclass_get_drivers(acpi_cpu_devclass, &drivers, &drv_count) == 0) {
  416         for (i = 0; i < drv_count; i++) {
  417             if (ACPI_GET_FEATURES(drivers[i], &features) == 0)
  418                 sc->cpu_features |= features;
  419         }
  420         free(drivers, M_TEMP);
  421     }
  422 
  423     /*
  424      * CPU capabilities are specified in
  425      * Intel Processor Vendor-Specific ACPI Interface Specification.
  426      */
  427     if (sc->cpu_features) {
  428         cap_set[1] = sc->cpu_features;
  429         status = acpi_EvaluateOSC(sc->cpu_handle, cpu_oscuuid, 1, 2, cap_set,
  430             cap_set, false);
  431         if (ACPI_SUCCESS(status)) {
  432             if (cap_set[0] != 0)
  433                 device_printf(dev, "_OSC returned status %#x\n", cap_set[0]);
  434         }
  435         else {
  436             arglist.Pointer = &arg;
  437             arglist.Count = 1;
  438             arg.Type = ACPI_TYPE_BUFFER;
  439             arg.Buffer.Length = sizeof(cap_set);
  440             arg.Buffer.Pointer = (uint8_t *)cap_set;
  441             cap_set[0] = 1; /* revision */
  442             cap_set[1] = 1; /* number of capabilities integers */
  443             cap_set[2] = sc->cpu_features;
  444             AcpiEvaluateObject(sc->cpu_handle, "_PDC", &arglist, NULL);
  445         }
  446     }
  447 
  448     /* Probe for Cx state support. */
  449     acpi_cpu_cx_probe(sc);
  450 
  451     return (0);
  452 }
  453 
  454 static void
  455 acpi_cpu_postattach(void *unused __unused)
  456 {
  457     device_t *devices;
  458     int err;
  459     int i, n;
  460     int attached;
  461 
  462     err = devclass_get_devices(acpi_cpu_devclass, &devices, &n);
  463     if (err != 0) {
  464         printf("devclass_get_devices(acpi_cpu_devclass) failed\n");
  465         return;
  466     }
  467     attached = 0;
  468     for (i = 0; i < n; i++)
  469         if (device_is_attached(devices[i]) &&
  470             device_get_driver(devices[i]) == &acpi_cpu_driver)
  471             attached = 1;
  472     for (i = 0; i < n; i++)
  473         bus_generic_probe(devices[i]);
  474     for (i = 0; i < n; i++)
  475         bus_generic_attach(devices[i]);
  476     free(devices, M_TEMP);
  477 
  478     if (attached) {
  479 #ifdef EARLY_AP_STARTUP
  480         acpi_cpu_startup(NULL);
  481 #else
  482         /* Queue post cpu-probing task handler */
  483         AcpiOsExecute(OSL_NOTIFY_HANDLER, acpi_cpu_startup, NULL);
  484 #endif
  485     }
  486 }
  487 
  488 SYSINIT(acpi_cpu, SI_SUB_CONFIGURE, SI_ORDER_MIDDLE,
  489     acpi_cpu_postattach, NULL);
  490 
  491 static void
  492 disable_idle(struct acpi_cpu_softc *sc)
  493 {
  494     cpuset_t cpuset;
  495 
  496     CPU_SETOF(sc->cpu_pcpu->pc_cpuid, &cpuset);
  497     sc->cpu_disable_idle = TRUE;
  498 
  499     /*
  500      * Ensure that the CPU is not in idle state or in acpi_cpu_idle().
  501      * Note that this code depends on the fact that the rendezvous IPI
  502      * can not penetrate context where interrupts are disabled and acpi_cpu_idle
  503      * is called and executed in such a context with interrupts being re-enabled
  504      * right before return.
  505      */
  506     smp_rendezvous_cpus(cpuset, smp_no_rendezvous_barrier, NULL,
  507         smp_no_rendezvous_barrier, NULL);
  508 }
  509 
  510 static void
  511 enable_idle(struct acpi_cpu_softc *sc)
  512 {
  513 
  514     sc->cpu_disable_idle = FALSE;
  515 }
  516 
  517 #if defined(__i386__) || defined(__amd64__)
  518 static int
  519 is_idle_disabled(struct acpi_cpu_softc *sc)
  520 {
  521 
  522     return (sc->cpu_disable_idle);
  523 }
  524 #endif
  525 
  526 /*
  527  * Disable any entry to the idle function during suspend and re-enable it
  528  * during resume.
  529  */
  530 static int
  531 acpi_cpu_suspend(device_t dev)
  532 {
  533     int error;
  534 
  535     error = bus_generic_suspend(dev);
  536     if (error)
  537         return (error);
  538     disable_idle(device_get_softc(dev));
  539     return (0);
  540 }
  541 
  542 static int
  543 acpi_cpu_resume(device_t dev)
  544 {
  545 
  546     enable_idle(device_get_softc(dev));
  547     return (bus_generic_resume(dev));
  548 }
  549 
  550 /*
  551  * Find the processor associated with a given ACPI ID.  By default,
  552  * use the MADT to map ACPI IDs to APIC IDs and use that to locate a
  553  * processor.  Some systems have inconsistent ASL and MADT however.
  554  * For these systems the cpu_unordered tunable can be set in which
  555  * case we assume that Processor objects are listed in the same order
  556  * in both the MADT and ASL.
  557  */
  558 static int
  559 acpi_pcpu_get_id(device_t dev, uint32_t *acpi_id, uint32_t *cpu_id)
  560 {
  561     struct pcpu *pc;
  562     uint32_t     i, idx;
  563 
  564     KASSERT(acpi_id != NULL, ("Null acpi_id"));
  565     KASSERT(cpu_id != NULL, ("Null cpu_id"));
  566     idx = device_get_unit(dev);
  567 
  568     /*
  569      * If pc_acpi_id for CPU 0 is not initialized (e.g. a non-APIC
  570      * UP box) use the ACPI ID from the first processor we find.
  571      */
  572     if (idx == 0 && mp_ncpus == 1) {
  573         pc = pcpu_find(0);
  574         if (pc->pc_acpi_id == 0xffffffff)
  575             pc->pc_acpi_id = *acpi_id;
  576         *cpu_id = 0;
  577         return (0);
  578     }
  579 
  580     CPU_FOREACH(i) {
  581         pc = pcpu_find(i);
  582         KASSERT(pc != NULL, ("no pcpu data for %d", i));
  583         if (cpu_unordered) {
  584             if (idx-- == 0) {
  585                 /*
  586                  * If pc_acpi_id doesn't match the ACPI ID from the
  587                  * ASL, prefer the MADT-derived value.
  588                  */
  589                 if (pc->pc_acpi_id != *acpi_id)
  590                     *acpi_id = pc->pc_acpi_id;
  591                 *cpu_id = pc->pc_cpuid;
  592                 return (0);
  593             }
  594         } else {
  595             if (pc->pc_acpi_id == *acpi_id) {
  596                 if (bootverbose)
  597                     device_printf(dev,
  598                         "Processor %s (ACPI ID %u) -> APIC ID %d\n",
  599                         acpi_name(acpi_get_handle(dev)), *acpi_id,
  600                         pc->pc_cpuid);
  601                 *cpu_id = pc->pc_cpuid;
  602                 return (0);
  603             }
  604         }
  605     }
  606 
  607     if (bootverbose)
  608         printf("ACPI: Processor %s (ACPI ID %u) ignored\n",
  609             acpi_name(acpi_get_handle(dev)), *acpi_id);
  610 
  611     return (ESRCH);
  612 }
  613 
  614 static struct resource_list *
  615 acpi_cpu_get_rlist(device_t dev, device_t child)
  616 {
  617     struct acpi_cpu_device *ad;
  618 
  619     ad = device_get_ivars(child);
  620     if (ad == NULL)
  621         return (NULL);
  622     return (&ad->ad_rl);
  623 }
  624 
  625 static device_t
  626 acpi_cpu_add_child(device_t dev, u_int order, const char *name, int unit)
  627 {
  628     struct acpi_cpu_device *ad;
  629     device_t child;
  630 
  631     if ((ad = malloc(sizeof(*ad), M_TEMP, M_NOWAIT | M_ZERO)) == NULL)
  632         return (NULL);
  633 
  634     resource_list_init(&ad->ad_rl);
  635     
  636     child = device_add_child_ordered(dev, order, name, unit);
  637     if (child != NULL)
  638         device_set_ivars(child, ad);
  639     else
  640         free(ad, M_TEMP);
  641     return (child);
  642 }
  643 
  644 static int
  645 acpi_cpu_read_ivar(device_t dev, device_t child, int index, uintptr_t *result)
  646 {
  647     struct acpi_cpu_softc *sc;
  648 
  649     sc = device_get_softc(dev);
  650     switch (index) {
  651     case ACPI_IVAR_HANDLE:
  652         *result = (uintptr_t)sc->cpu_handle;
  653         break;
  654     case CPU_IVAR_PCPU:
  655         *result = (uintptr_t)sc->cpu_pcpu;
  656         break;
  657 #if defined(__amd64__) || defined(__i386__)
  658     case CPU_IVAR_NOMINAL_MHZ:
  659         if (tsc_is_invariant) {
  660             *result = (uintptr_t)(atomic_load_acq_64(&tsc_freq) / 1000000);
  661             break;
  662         }
  663         /* FALLTHROUGH */
  664 #endif
  665     default:
  666         return (ENOENT);
  667     }
  668     return (0);
  669 }
  670 
  671 static int
  672 acpi_cpu_shutdown(device_t dev)
  673 {
  674     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
  675 
  676     /* Allow children to shutdown first. */
  677     bus_generic_shutdown(dev);
  678 
  679     /*
  680      * Disable any entry to the idle function.
  681      */
  682     disable_idle(device_get_softc(dev));
  683 
  684     /*
  685      * CPU devices are not truly detached and remain referenced,
  686      * so their resources are not freed.
  687      */
  688 
  689     return_VALUE (0);
  690 }
  691 
  692 static void
  693 acpi_cpu_cx_probe(struct acpi_cpu_softc *sc)
  694 {
  695     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
  696 
  697     /* Use initial sleep value of 1 sec. to start with lowest idle state. */
  698     sc->cpu_prev_sleep = 1000000;
  699     sc->cpu_cx_lowest = 0;
  700     sc->cpu_cx_lowest_lim = 0;
  701 
  702     /*
  703      * Check for the ACPI 2.0 _CST sleep states object. If we can't find
  704      * any, we'll revert to generic FADT/P_BLK Cx control method which will
  705      * be handled by acpi_cpu_startup. We need to defer to after having
  706      * probed all the cpus in the system before probing for generic Cx
  707      * states as we may already have found cpus with valid _CST packages
  708      */
  709     if (!cpu_cx_generic && acpi_cpu_cx_cst(sc) != 0) {
  710         /*
  711          * We were unable to find a _CST package for this cpu or there
  712          * was an error parsing it. Switch back to generic mode.
  713          */
  714         cpu_cx_generic = TRUE;
  715         if (bootverbose)
  716             device_printf(sc->cpu_dev, "switching to generic Cx mode\n");
  717     }
  718 
  719     /*
  720      * TODO: _CSD Package should be checked here.
  721      */
  722 }
  723 
  724 static void
  725 acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc)
  726 {
  727     ACPI_GENERIC_ADDRESS         gas;
  728     struct acpi_cx              *cx_ptr;
  729 
  730     sc->cpu_cx_count = 0;
  731     cx_ptr = sc->cpu_cx_states;
  732 
  733     /* Use initial sleep value of 1 sec. to start with lowest idle state. */
  734     sc->cpu_prev_sleep = 1000000;
  735 
  736     /* C1 has been required since just after ACPI 1.0 */
  737     cx_ptr->type = ACPI_STATE_C1;
  738     cx_ptr->trans_lat = 0;
  739     cx_ptr++;
  740     sc->cpu_non_c2 = sc->cpu_cx_count;
  741     sc->cpu_non_c3 = sc->cpu_cx_count;
  742     sc->cpu_cx_count++;
  743 
  744     /* 
  745      * The spec says P_BLK must be 6 bytes long.  However, some systems
  746      * use it to indicate a fractional set of features present so we
  747      * take 5 as C2.  Some may also have a value of 7 to indicate
  748      * another C3 but most use _CST for this (as required) and having
  749      * "only" C1-C3 is not a hardship.
  750      */
  751     if (sc->cpu_p_blk_len < 5)
  752         return; 
  753 
  754     /* Validate and allocate resources for C2 (P_LVL2). */
  755     gas.SpaceId = ACPI_ADR_SPACE_SYSTEM_IO;
  756     gas.BitWidth = 8;
  757     if (AcpiGbl_FADT.C2Latency <= 100) {
  758         gas.Address = sc->cpu_p_blk + 4;
  759         cx_ptr->res_rid = 0;
  760         acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &cx_ptr->res_rid,
  761             &gas, &cx_ptr->p_lvlx, RF_SHAREABLE);
  762         if (cx_ptr->p_lvlx != NULL) {
  763             cx_ptr->type = ACPI_STATE_C2;
  764             cx_ptr->trans_lat = AcpiGbl_FADT.C2Latency;
  765             cx_ptr++;
  766             sc->cpu_non_c3 = sc->cpu_cx_count;
  767             sc->cpu_cx_count++;
  768         }
  769     }
  770     if (sc->cpu_p_blk_len < 6)
  771         return;
  772 
  773     /* Validate and allocate resources for C3 (P_LVL3). */
  774     if (AcpiGbl_FADT.C3Latency <= 1000 && !(cpu_quirks & CPU_QUIRK_NO_C3)) {
  775         gas.Address = sc->cpu_p_blk + 5;
  776         cx_ptr->res_rid = 1;
  777         acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &cx_ptr->res_rid,
  778             &gas, &cx_ptr->p_lvlx, RF_SHAREABLE);
  779         if (cx_ptr->p_lvlx != NULL) {
  780             cx_ptr->type = ACPI_STATE_C3;
  781             cx_ptr->trans_lat = AcpiGbl_FADT.C3Latency;
  782             cx_ptr++;
  783             sc->cpu_cx_count++;
  784         }
  785     }
  786 }
  787 
  788 #if defined(__i386__) || defined(__amd64__)
  789 static void
  790 acpi_cpu_cx_cst_mwait(struct acpi_cx *cx_ptr, uint64_t address, int accsize)
  791 {
  792 
  793         cx_ptr->do_mwait = true;
  794         cx_ptr->mwait_hint = address & 0xffffffff;
  795         cx_ptr->mwait_hw_coord = (accsize & CST_FFH_MWAIT_HW_COORD) != 0;
  796         cx_ptr->mwait_bm_avoidance = (accsize & CST_FFH_MWAIT_BM_AVOID) != 0;
  797 }
  798 #endif
  799 
  800 static void
  801 acpi_cpu_cx_cst_free_plvlx(device_t cpu_dev, struct acpi_cx *cx_ptr)
  802 {
  803 
  804         if (cx_ptr->p_lvlx == NULL)
  805                 return;
  806         bus_release_resource(cpu_dev, cx_ptr->res_type, cx_ptr->res_rid,
  807             cx_ptr->p_lvlx);
  808         cx_ptr->p_lvlx = NULL;
  809 }
  810 
  811 /*
  812  * Parse a _CST package and set up its Cx states.  Since the _CST object
  813  * can change dynamically, our notify handler may call this function
  814  * to clean up and probe the new _CST package.
  815  */
  816 static int
  817 acpi_cpu_cx_cst(struct acpi_cpu_softc *sc)
  818 {
  819     struct       acpi_cx *cx_ptr;
  820     ACPI_STATUS  status;
  821     ACPI_BUFFER  buf;
  822     ACPI_OBJECT *top;
  823     ACPI_OBJECT *pkg;
  824     uint32_t     count;
  825     int          i;
  826 #if defined(__i386__) || defined(__amd64__)
  827     uint64_t     address;
  828     int          vendor, class, accsize;
  829 #endif
  830 
  831     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
  832 
  833     buf.Pointer = NULL;
  834     buf.Length = ACPI_ALLOCATE_BUFFER;
  835     status = AcpiEvaluateObject(sc->cpu_handle, "_CST", NULL, &buf);
  836     if (ACPI_FAILURE(status))
  837         return (ENXIO);
  838 
  839     /* _CST is a package with a count and at least one Cx package. */
  840     top = (ACPI_OBJECT *)buf.Pointer;
  841     if (!ACPI_PKG_VALID(top, 2) || acpi_PkgInt32(top, 0, &count) != 0) {
  842         device_printf(sc->cpu_dev, "invalid _CST package\n");
  843         AcpiOsFree(buf.Pointer);
  844         return (ENXIO);
  845     }
  846     if (count != top->Package.Count - 1) {
  847         device_printf(sc->cpu_dev, "invalid _CST state count (%d != %d)\n",
  848                count, top->Package.Count - 1);
  849         count = top->Package.Count - 1;
  850     }
  851     if (count > MAX_CX_STATES) {
  852         device_printf(sc->cpu_dev, "_CST has too many states (%d)\n", count);
  853         count = MAX_CX_STATES;
  854     }
  855 
  856     sc->cpu_non_c2 = 0;
  857     sc->cpu_non_c3 = 0;
  858     sc->cpu_cx_count = 0;
  859     cx_ptr = sc->cpu_cx_states;
  860 
  861     /*
  862      * C1 has been required since just after ACPI 1.0.
  863      * Reserve the first slot for it.
  864      */
  865     cx_ptr->type = ACPI_STATE_C0;
  866     cx_ptr++;
  867     sc->cpu_cx_count++;
  868 
  869     /* Set up all valid states. */
  870     for (i = 0; i < count; i++) {
  871         pkg = &top->Package.Elements[i + 1];
  872         if (!ACPI_PKG_VALID(pkg, 4) ||
  873             acpi_PkgInt32(pkg, 1, &cx_ptr->type) != 0 ||
  874             acpi_PkgInt32(pkg, 2, &cx_ptr->trans_lat) != 0 ||
  875             acpi_PkgInt32(pkg, 3, &cx_ptr->power) != 0) {
  876 
  877             device_printf(sc->cpu_dev, "skipping invalid Cx state package\n");
  878             continue;
  879         }
  880 
  881         /* Validate the state to see if we should use it. */
  882         switch (cx_ptr->type) {
  883         case ACPI_STATE_C1:
  884             acpi_cpu_cx_cst_free_plvlx(sc->cpu_dev, cx_ptr);
  885 #if defined(__i386__) || defined(__amd64__)
  886             if (acpi_PkgFFH_IntelCpu(pkg, 0, &vendor, &class, &address,
  887               &accsize) == 0 && vendor == CST_FFH_VENDOR_INTEL) {
  888                 if (class == CST_FFH_INTEL_CL_C1IO) {
  889                     /* C1 I/O then Halt */
  890                     cx_ptr->res_rid = sc->cpu_cx_count;
  891                     bus_set_resource(sc->cpu_dev, SYS_RES_IOPORT,
  892                       cx_ptr->res_rid, address, 1);
  893                     cx_ptr->p_lvlx = bus_alloc_resource_any(sc->cpu_dev,
  894                       SYS_RES_IOPORT, &cx_ptr->res_rid, RF_ACTIVE |
  895                       RF_SHAREABLE);
  896                     if (cx_ptr->p_lvlx == NULL) {
  897                         bus_delete_resource(sc->cpu_dev, SYS_RES_IOPORT,
  898                           cx_ptr->res_rid);
  899                         device_printf(sc->cpu_dev,
  900                           "C1 I/O failed to allocate port %d, "
  901                           "degrading to C1 Halt", (int)address);
  902                     }
  903                 } else if (class == CST_FFH_INTEL_CL_MWAIT) {
  904                     acpi_cpu_cx_cst_mwait(cx_ptr, address, accsize);
  905                 }
  906             }
  907 #endif
  908             if (sc->cpu_cx_states[0].type == ACPI_STATE_C0) {
  909                 /* This is the first C1 state.  Use the reserved slot. */
  910                 sc->cpu_cx_states[0] = *cx_ptr;
  911             } else {
  912                 sc->cpu_non_c2 = sc->cpu_cx_count;
  913                 sc->cpu_non_c3 = sc->cpu_cx_count;
  914                 cx_ptr++;
  915                 sc->cpu_cx_count++;
  916             }
  917             continue;
  918         case ACPI_STATE_C2:
  919             sc->cpu_non_c3 = sc->cpu_cx_count;
  920             break;
  921         case ACPI_STATE_C3:
  922         default:
  923             if ((cpu_quirks & CPU_QUIRK_NO_C3) != 0) {
  924                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  925                                  "acpi_cpu%d: C3[%d] not available.\n",
  926                                  device_get_unit(sc->cpu_dev), i));
  927                 continue;
  928             }
  929             break;
  930         }
  931 
  932         /* Free up any previous register. */
  933         acpi_cpu_cx_cst_free_plvlx(sc->cpu_dev, cx_ptr);
  934 
  935         /* Allocate the control register for C2 or C3. */
  936 #if defined(__i386__) || defined(__amd64__)
  937         if (acpi_PkgFFH_IntelCpu(pkg, 0, &vendor, &class, &address,
  938           &accsize) == 0 && vendor == CST_FFH_VENDOR_INTEL &&
  939           class == CST_FFH_INTEL_CL_MWAIT) {
  940             /* Native C State Instruction use (mwait) */
  941             acpi_cpu_cx_cst_mwait(cx_ptr, address, accsize);
  942             ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  943               "acpi_cpu%d: Got C%d/mwait - %d latency\n",
  944               device_get_unit(sc->cpu_dev), cx_ptr->type, cx_ptr->trans_lat));
  945             cx_ptr++;
  946             sc->cpu_cx_count++;
  947         } else
  948 #endif
  949         {
  950             cx_ptr->res_rid = sc->cpu_cx_count;
  951             acpi_PkgGas(sc->cpu_dev, pkg, 0, &cx_ptr->res_type,
  952                 &cx_ptr->res_rid, &cx_ptr->p_lvlx, RF_SHAREABLE);
  953             if (cx_ptr->p_lvlx) {
  954                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  955                      "acpi_cpu%d: Got C%d - %d latency\n",
  956                      device_get_unit(sc->cpu_dev), cx_ptr->type,
  957                      cx_ptr->trans_lat));
  958                 cx_ptr++;
  959                 sc->cpu_cx_count++;
  960             }
  961         }
  962     }
  963     AcpiOsFree(buf.Pointer);
  964 
  965     /* If C1 state was not found, we need one now. */
  966     cx_ptr = sc->cpu_cx_states;
  967     if (cx_ptr->type == ACPI_STATE_C0) {
  968         cx_ptr->type = ACPI_STATE_C1;
  969         cx_ptr->trans_lat = 0;
  970     }
  971 
  972     return (0);
  973 }
  974 
  975 /*
  976  * Call this *after* all CPUs have been attached.
  977  */
  978 static void
  979 acpi_cpu_startup(void *arg)
  980 {
  981     struct acpi_cpu_softc *sc;
  982     int i;
  983 
  984     /* Get set of CPU devices */
  985     devclass_get_devices(acpi_cpu_devclass, &cpu_devices, &cpu_ndevices);
  986 
  987     /*
  988      * Setup any quirks that might necessary now that we have probed
  989      * all the CPUs
  990      */
  991     acpi_cpu_quirks();
  992 
  993     if (cpu_cx_generic) {
  994         /*
  995          * We are using generic Cx mode, probe for available Cx states
  996          * for all processors.
  997          */
  998         for (i = 0; i < cpu_ndevices; i++) {
  999             sc = device_get_softc(cpu_devices[i]);
 1000             acpi_cpu_generic_cx_probe(sc);
 1001         }
 1002     } else {
 1003         /*
 1004          * We are using _CST mode, remove C3 state if necessary.
 1005          * As we now know for sure that we will be using _CST mode
 1006          * install our notify handler.
 1007          */
 1008         for (i = 0; i < cpu_ndevices; i++) {
 1009             sc = device_get_softc(cpu_devices[i]);
 1010             if (cpu_quirks & CPU_QUIRK_NO_C3) {
 1011                 sc->cpu_cx_count = min(sc->cpu_cx_count, sc->cpu_non_c3 + 1);
 1012             }
 1013             AcpiInstallNotifyHandler(sc->cpu_handle, ACPI_DEVICE_NOTIFY,
 1014                 acpi_cpu_notify, sc);
 1015         }
 1016     }
 1017 
 1018     /* Perform Cx final initialization. */
 1019     for (i = 0; i < cpu_ndevices; i++) {
 1020         sc = device_get_softc(cpu_devices[i]);
 1021         acpi_cpu_startup_cx(sc);
 1022     }
 1023 
 1024     /* Add a sysctl handler to handle global Cx lowest setting */
 1025     SYSCTL_ADD_PROC(&cpu_sysctl_ctx, SYSCTL_CHILDREN(cpu_sysctl_tree),
 1026         OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW,
 1027         NULL, 0, acpi_cpu_global_cx_lowest_sysctl, "A",
 1028         "Global lowest Cx sleep state to use");
 1029 
 1030     /* Take over idling from cpu_idle_default(). */
 1031     cpu_cx_lowest_lim = 0;
 1032     for (i = 0; i < cpu_ndevices; i++) {
 1033         sc = device_get_softc(cpu_devices[i]);
 1034         enable_idle(sc);
 1035     }
 1036 #if defined(__i386__) || defined(__amd64__)
 1037     cpu_idle_hook = acpi_cpu_idle;
 1038 #endif
 1039 }
 1040 
 1041 static void
 1042 acpi_cpu_cx_list(struct acpi_cpu_softc *sc)
 1043 {
 1044     struct sbuf sb;
 1045     int i;
 1046 
 1047     /*
 1048      * Set up the list of Cx states
 1049      */
 1050     sbuf_new(&sb, sc->cpu_cx_supported, sizeof(sc->cpu_cx_supported),
 1051         SBUF_FIXEDLEN);
 1052     for (i = 0; i < sc->cpu_cx_count; i++)
 1053         sbuf_printf(&sb, "C%d/%d/%d ", i + 1, sc->cpu_cx_states[i].type,
 1054             sc->cpu_cx_states[i].trans_lat);
 1055     sbuf_trim(&sb);
 1056     sbuf_finish(&sb);
 1057 }       
 1058 
 1059 static void
 1060 acpi_cpu_startup_cx(struct acpi_cpu_softc *sc)
 1061 {
 1062     acpi_cpu_cx_list(sc);
 1063     
 1064     SYSCTL_ADD_STRING(&sc->cpu_sysctl_ctx,
 1065                       SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
 1066                       OID_AUTO, "cx_supported", CTLFLAG_RD,
 1067                       sc->cpu_cx_supported, 0,
 1068                       "Cx/microsecond values for supported Cx states");
 1069     SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
 1070                     SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
 1071                     OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW,
 1072                     (void *)sc, 0, acpi_cpu_cx_lowest_sysctl, "A",
 1073                     "lowest Cx sleep state to use");
 1074     SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
 1075                     SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
 1076                     OID_AUTO, "cx_usage", CTLTYPE_STRING | CTLFLAG_RD,
 1077                     (void *)sc, 0, acpi_cpu_usage_sysctl, "A",
 1078                     "percent usage for each Cx state");
 1079     SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
 1080                     SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
 1081                     OID_AUTO, "cx_usage_counters", CTLTYPE_STRING | CTLFLAG_RD,
 1082                     (void *)sc, 0, acpi_cpu_usage_counters_sysctl, "A",
 1083                     "Cx sleep state counters");
 1084 #if defined(__i386__) || defined(__amd64__)
 1085     SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
 1086                     SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
 1087                     OID_AUTO, "cx_method", CTLTYPE_STRING | CTLFLAG_RD,
 1088                     (void *)sc, 0, acpi_cpu_method_sysctl, "A",
 1089                     "Cx entrance methods");
 1090 #endif
 1091 
 1092     /* Signal platform that we can handle _CST notification. */
 1093     if (!cpu_cx_generic && cpu_cst_cnt != 0) {
 1094         ACPI_LOCK(acpi);
 1095         AcpiOsWritePort(cpu_smi_cmd, cpu_cst_cnt, 8);
 1096         ACPI_UNLOCK(acpi);
 1097     }
 1098 }
 1099 
 1100 #if defined(__i386__) || defined(__amd64__)
 1101 /*
 1102  * Idle the CPU in the lowest state possible.  This function is called with
 1103  * interrupts disabled.  Note that once it re-enables interrupts, a task
 1104  * switch can occur so do not access shared data (i.e. the softc) after
 1105  * interrupts are re-enabled.
 1106  */
 1107 static void
 1108 acpi_cpu_idle(sbintime_t sbt)
 1109 {
 1110     struct      acpi_cpu_softc *sc;
 1111     struct      acpi_cx *cx_next;
 1112     uint64_t    cputicks;
 1113     uint32_t    start_time, end_time;
 1114     ACPI_STATUS status;
 1115     int         bm_active, cx_next_idx, i, us;
 1116 
 1117     /*
 1118      * Look up our CPU id to get our softc.  If it's NULL, we'll use C1
 1119      * since there is no ACPI processor object for this CPU.  This occurs
 1120      * for logical CPUs in the HTT case.
 1121      */
 1122     sc = cpu_softc[PCPU_GET(cpuid)];
 1123     if (sc == NULL) {
 1124         acpi_cpu_c1();
 1125         return;
 1126     }
 1127 
 1128     /* If disabled, take the safe path. */
 1129     if (is_idle_disabled(sc)) {
 1130         acpi_cpu_c1();
 1131         return;
 1132     }
 1133 
 1134     /* Find the lowest state that has small enough latency. */
 1135     us = sc->cpu_prev_sleep;
 1136     if (sbt >= 0 && us > (sbt >> 12))
 1137         us = (sbt >> 12);
 1138     cx_next_idx = 0;
 1139     if (cpu_disable_c2_sleep)
 1140         i = min(sc->cpu_cx_lowest, sc->cpu_non_c2);
 1141     else if (cpu_disable_c3_sleep)
 1142         i = min(sc->cpu_cx_lowest, sc->cpu_non_c3);
 1143     else
 1144         i = sc->cpu_cx_lowest;
 1145     for (; i >= 0; i--) {
 1146         if (sc->cpu_cx_states[i].trans_lat * 3 <= us) {
 1147             cx_next_idx = i;
 1148             break;
 1149         }
 1150     }
 1151 
 1152     /*
 1153      * Check for bus master activity.  If there was activity, clear
 1154      * the bit and use the lowest non-C3 state.  Note that the USB
 1155      * driver polling for new devices keeps this bit set all the
 1156      * time if USB is loaded.
 1157      */
 1158     if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0 &&
 1159         cx_next_idx > sc->cpu_non_c3) {
 1160         status = AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, &bm_active);
 1161         if (ACPI_SUCCESS(status) && bm_active != 0) {
 1162             AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, 1);
 1163             cx_next_idx = sc->cpu_non_c3;
 1164         }
 1165     }
 1166 
 1167     /* Select the next state and update statistics. */
 1168     cx_next = &sc->cpu_cx_states[cx_next_idx];
 1169     sc->cpu_cx_stats[cx_next_idx]++;
 1170     KASSERT(cx_next->type != ACPI_STATE_C0, ("acpi_cpu_idle: C0 sleep"));
 1171 
 1172     /*
 1173      * Execute HLT (or equivalent) and wait for an interrupt.  We can't
 1174      * precisely calculate the time spent in C1 since the place we wake up
 1175      * is an ISR.  Assume we slept no more then half of quantum, unless
 1176      * we are called inside critical section, delaying context switch.
 1177      */
 1178     if (cx_next->type == ACPI_STATE_C1) {
 1179         cputicks = cpu_ticks();
 1180         if (cx_next->p_lvlx != NULL) {
 1181             /* C1 I/O then Halt */
 1182             CPU_GET_REG(cx_next->p_lvlx, 1);
 1183         }
 1184         if (cx_next->do_mwait)
 1185             acpi_cpu_idle_mwait(cx_next->mwait_hint);
 1186         else
 1187             acpi_cpu_c1();
 1188         end_time = ((cpu_ticks() - cputicks) << 20) / cpu_tickrate();
 1189         if (curthread->td_critnest == 0)
 1190                 end_time = min(end_time, 500000 / hz);
 1191         /* acpi_cpu_c1() returns with interrupts enabled. */
 1192         if (cx_next->do_mwait)
 1193             ACPI_ENABLE_IRQS();
 1194         sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + end_time) / 4;
 1195         return;
 1196     }
 1197 
 1198     /*
 1199      * For C3, disable bus master arbitration and enable bus master wake
 1200      * if BM control is available, otherwise flush the CPU cache.
 1201      */
 1202     if (cx_next->type == ACPI_STATE_C3 || cx_next->mwait_bm_avoidance) {
 1203         if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
 1204             AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 1);
 1205             AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 1);
 1206         } else
 1207             ACPI_FLUSH_CPU_CACHE();
 1208     }
 1209 
 1210     /*
 1211      * Read from P_LVLx to enter C2(+), checking time spent asleep.
 1212      * Use the ACPI timer for measuring sleep time.  Since we need to
 1213      * get the time very close to the CPU start/stop clock logic, this
 1214      * is the only reliable time source.
 1215      */
 1216     if (cx_next->type == ACPI_STATE_C3) {
 1217         AcpiGetTimer(&start_time);
 1218         cputicks = 0;
 1219     } else {
 1220         start_time = 0;
 1221         cputicks = cpu_ticks();
 1222     }
 1223     if (cx_next->do_mwait)
 1224         acpi_cpu_idle_mwait(cx_next->mwait_hint);
 1225     else
 1226         CPU_GET_REG(cx_next->p_lvlx, 1);
 1227 
 1228     /*
 1229      * Read the end time twice.  Since it may take an arbitrary time
 1230      * to enter the idle state, the first read may be executed before
 1231      * the processor has stopped.  Doing it again provides enough
 1232      * margin that we are certain to have a correct value.
 1233      */
 1234     AcpiGetTimer(&end_time);
 1235     if (cx_next->type == ACPI_STATE_C3) {
 1236         AcpiGetTimer(&end_time);
 1237         AcpiGetTimerDuration(start_time, end_time, &end_time);
 1238     } else
 1239         end_time = ((cpu_ticks() - cputicks) << 20) / cpu_tickrate();
 1240 
 1241     /* Enable bus master arbitration and disable bus master wakeup. */
 1242     if ((cx_next->type == ACPI_STATE_C3 || cx_next->mwait_bm_avoidance) &&
 1243       (cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
 1244         AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 0);
 1245         AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
 1246     }
 1247     ACPI_ENABLE_IRQS();
 1248 
 1249     sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + PM_USEC(end_time)) / 4;
 1250 }
 1251 #endif
 1252 
 1253 /*
 1254  * Re-evaluate the _CST object when we are notified that it changed.
 1255  */
 1256 static void
 1257 acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context)
 1258 {
 1259     struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)context;
 1260 
 1261     if (notify != ACPI_NOTIFY_CX_STATES)
 1262         return;
 1263 
 1264     /*
 1265      * C-state data for target CPU is going to be in flux while we execute
 1266      * acpi_cpu_cx_cst, so disable entering acpi_cpu_idle.
 1267      * Also, it may happen that multiple ACPI taskqueues may concurrently
 1268      * execute notifications for the same CPU.  ACPI_SERIAL is used to
 1269      * protect against that.
 1270      */
 1271     ACPI_SERIAL_BEGIN(cpu);
 1272     disable_idle(sc);
 1273 
 1274     /* Update the list of Cx states. */
 1275     acpi_cpu_cx_cst(sc);
 1276     acpi_cpu_cx_list(sc);
 1277     acpi_cpu_set_cx_lowest(sc);
 1278 
 1279     enable_idle(sc);
 1280     ACPI_SERIAL_END(cpu);
 1281 
 1282     acpi_UserNotify("PROCESSOR", sc->cpu_handle, notify);
 1283 }
 1284 
 1285 static void
 1286 acpi_cpu_quirks(void)
 1287 {
 1288     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
 1289 
 1290     /*
 1291      * Bus mastering arbitration control is needed to keep caches coherent
 1292      * while sleeping in C3.  If it's not present but a working flush cache
 1293      * instruction is present, flush the caches before entering C3 instead.
 1294      * Otherwise, just disable C3 completely.
 1295      */
 1296     if (AcpiGbl_FADT.Pm2ControlBlock == 0 ||
 1297         AcpiGbl_FADT.Pm2ControlLength == 0) {
 1298         if ((AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD) &&
 1299             (AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD_FLUSH) == 0) {
 1300             cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
 1301             ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1302                 "acpi_cpu: no BM control, using flush cache method\n"));
 1303         } else {
 1304             cpu_quirks |= CPU_QUIRK_NO_C3;
 1305             ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1306                 "acpi_cpu: no BM control, C3 not available\n"));
 1307         }
 1308     }
 1309 
 1310     /*
 1311      * If we are using generic Cx mode, C3 on multiple CPUs requires using
 1312      * the expensive flush cache instruction.
 1313      */
 1314     if (cpu_cx_generic && mp_ncpus > 1) {
 1315         cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
 1316         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1317             "acpi_cpu: SMP, using flush cache mode for C3\n"));
 1318     }
 1319 
 1320     /* Look for various quirks of the PIIX4 part. */
 1321     acpi_cpu_quirks_piix4();
 1322 }
 1323 
 1324 static void
 1325 acpi_cpu_quirks_piix4(void)
 1326 {
 1327 #ifdef __i386__
 1328     device_t acpi_dev;
 1329     uint32_t val;
 1330     ACPI_STATUS status;
 1331 
 1332     acpi_dev = pci_find_device(PCI_VENDOR_INTEL, PCI_DEVICE_82371AB_3);
 1333     if (acpi_dev != NULL) {
 1334         switch (pci_get_revid(acpi_dev)) {
 1335         /*
 1336          * Disable C3 support for all PIIX4 chipsets.  Some of these parts
 1337          * do not report the BMIDE status to the BM status register and
 1338          * others have a livelock bug if Type-F DMA is enabled.  Linux
 1339          * works around the BMIDE bug by reading the BM status directly
 1340          * but we take the simpler approach of disabling C3 for these
 1341          * parts.
 1342          *
 1343          * See erratum #18 ("C3 Power State/BMIDE and Type-F DMA
 1344          * Livelock") from the January 2002 PIIX4 specification update.
 1345          * Applies to all PIIX4 models.
 1346          *
 1347          * Also, make sure that all interrupts cause a "Stop Break"
 1348          * event to exit from C2 state.
 1349          * Also, BRLD_EN_BM (ACPI_BITREG_BUS_MASTER_RLD in ACPI-speak)
 1350          * should be set to zero, otherwise it causes C2 to short-sleep.
 1351          * PIIX4 doesn't properly support C3 and bus master activity
 1352          * need not break out of C2.
 1353          */
 1354         case PCI_REVISION_A_STEP:
 1355         case PCI_REVISION_B_STEP:
 1356         case PCI_REVISION_4E:
 1357         case PCI_REVISION_4M:
 1358             cpu_quirks |= CPU_QUIRK_NO_C3;
 1359             ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1360                 "acpi_cpu: working around PIIX4 bug, disabling C3\n"));
 1361 
 1362             val = pci_read_config(acpi_dev, PIIX4_DEVACTB_REG, 4);
 1363             if ((val & PIIX4_STOP_BREAK_MASK) != PIIX4_STOP_BREAK_MASK) {
 1364                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1365                     "acpi_cpu: PIIX4: enabling IRQs to generate Stop Break\n"));
 1366                 val |= PIIX4_STOP_BREAK_MASK;
 1367                 pci_write_config(acpi_dev, PIIX4_DEVACTB_REG, val, 4);
 1368             }
 1369             status = AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_RLD, &val);
 1370             if (ACPI_SUCCESS(status) && val != 0) {
 1371                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1372                     "acpi_cpu: PIIX4: reset BRLD_EN_BM\n"));
 1373                 AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
 1374             }
 1375             break;
 1376         default:
 1377             break;
 1378         }
 1379     }
 1380 #endif
 1381 }
 1382 
 1383 static int
 1384 acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS)
 1385 {
 1386     struct acpi_cpu_softc *sc;
 1387     struct sbuf  sb;
 1388     char         buf[128];
 1389     int          i;
 1390     uintmax_t    fract, sum, whole;
 1391 
 1392     sc = (struct acpi_cpu_softc *) arg1;
 1393     sum = 0;
 1394     for (i = 0; i < sc->cpu_cx_count; i++)
 1395         sum += sc->cpu_cx_stats[i];
 1396     sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
 1397     for (i = 0; i < sc->cpu_cx_count; i++) {
 1398         if (sum > 0) {
 1399             whole = (uintmax_t)sc->cpu_cx_stats[i] * 100;
 1400             fract = (whole % sum) * 100;
 1401             sbuf_printf(&sb, "%u.%02u%% ", (u_int)(whole / sum),
 1402                 (u_int)(fract / sum));
 1403         } else
 1404             sbuf_printf(&sb, "0.00%% ");
 1405     }
 1406     sbuf_printf(&sb, "last %dus", sc->cpu_prev_sleep);
 1407     sbuf_trim(&sb);
 1408     sbuf_finish(&sb);
 1409     sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
 1410     sbuf_delete(&sb);
 1411 
 1412     return (0);
 1413 }
 1414 
 1415 /*
 1416  * XXX TODO: actually add support to count each entry/exit
 1417  * from the Cx states.
 1418  */
 1419 static int
 1420 acpi_cpu_usage_counters_sysctl(SYSCTL_HANDLER_ARGS)
 1421 {
 1422     struct acpi_cpu_softc *sc;
 1423     struct sbuf  sb;
 1424     char         buf[128];
 1425     int          i;
 1426 
 1427     sc = (struct acpi_cpu_softc *) arg1;
 1428 
 1429     /* Print out the raw counters */
 1430     sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
 1431 
 1432     for (i = 0; i < sc->cpu_cx_count; i++) {
 1433         sbuf_printf(&sb, "%u ", sc->cpu_cx_stats[i]);
 1434     }
 1435 
 1436     sbuf_trim(&sb);
 1437     sbuf_finish(&sb);
 1438     sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
 1439     sbuf_delete(&sb);
 1440 
 1441     return (0);
 1442 }
 1443 
 1444 #if defined(__i386__) || defined(__amd64__)
 1445 static int
 1446 acpi_cpu_method_sysctl(SYSCTL_HANDLER_ARGS)
 1447 {
 1448         struct acpi_cpu_softc *sc;
 1449         struct acpi_cx *cx;
 1450         struct sbuf sb;
 1451         char buf[128];
 1452         int i;
 1453 
 1454         sc = (struct acpi_cpu_softc *)arg1;
 1455         sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
 1456         for (i = 0; i < sc->cpu_cx_count; i++) {
 1457                 cx = &sc->cpu_cx_states[i];
 1458                 sbuf_printf(&sb, "C%d/", i + 1);
 1459                 if (cx->do_mwait) {
 1460                         sbuf_cat(&sb, "mwait");
 1461                         if (cx->mwait_hw_coord)
 1462                                 sbuf_cat(&sb, "/hwc");
 1463                         if (cx->mwait_bm_avoidance)
 1464                                 sbuf_cat(&sb, "/bma");
 1465                 } else if (cx->type == ACPI_STATE_C1) {
 1466                         sbuf_cat(&sb, "hlt");
 1467                 } else {
 1468                         sbuf_cat(&sb, "io");
 1469                 }
 1470                 if (cx->type == ACPI_STATE_C1 && cx->p_lvlx != NULL)
 1471                         sbuf_cat(&sb, "/iohlt");
 1472                 sbuf_putc(&sb, ' ');
 1473         }
 1474         sbuf_trim(&sb);
 1475         sbuf_finish(&sb);
 1476         sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
 1477         sbuf_delete(&sb);
 1478         return (0);
 1479 }
 1480 #endif
 1481 
 1482 static int
 1483 acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc)
 1484 {
 1485     int i;
 1486 
 1487     ACPI_SERIAL_ASSERT(cpu);
 1488     sc->cpu_cx_lowest = min(sc->cpu_cx_lowest_lim, sc->cpu_cx_count - 1);
 1489 
 1490     /* If not disabling, cache the new lowest non-C3 state. */
 1491     sc->cpu_non_c3 = 0;
 1492     for (i = sc->cpu_cx_lowest; i >= 0; i--) {
 1493         if (sc->cpu_cx_states[i].type < ACPI_STATE_C3) {
 1494             sc->cpu_non_c3 = i;
 1495             break;
 1496         }
 1497     }
 1498 
 1499     /* Reset the statistics counters. */
 1500     bzero(sc->cpu_cx_stats, sizeof(sc->cpu_cx_stats));
 1501     return (0);
 1502 }
 1503 
 1504 static int
 1505 acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
 1506 {
 1507     struct       acpi_cpu_softc *sc;
 1508     char         state[8];
 1509     int          val, error;
 1510 
 1511     sc = (struct acpi_cpu_softc *) arg1;
 1512     snprintf(state, sizeof(state), "C%d", sc->cpu_cx_lowest_lim + 1);
 1513     error = sysctl_handle_string(oidp, state, sizeof(state), req);
 1514     if (error != 0 || req->newptr == NULL)
 1515         return (error);
 1516     if (strlen(state) < 2 || toupper(state[0]) != 'C')
 1517         return (EINVAL);
 1518     if (strcasecmp(state, "Cmax") == 0)
 1519         val = MAX_CX_STATES;
 1520     else {
 1521         val = (int) strtol(state + 1, NULL, 10);
 1522         if (val < 1 || val > MAX_CX_STATES)
 1523             return (EINVAL);
 1524     }
 1525 
 1526     ACPI_SERIAL_BEGIN(cpu);
 1527     sc->cpu_cx_lowest_lim = val - 1;
 1528     acpi_cpu_set_cx_lowest(sc);
 1529     ACPI_SERIAL_END(cpu);
 1530 
 1531     return (0);
 1532 }
 1533 
 1534 static int
 1535 acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
 1536 {
 1537     struct      acpi_cpu_softc *sc;
 1538     char        state[8];
 1539     int         val, error, i;
 1540 
 1541     snprintf(state, sizeof(state), "C%d", cpu_cx_lowest_lim + 1);
 1542     error = sysctl_handle_string(oidp, state, sizeof(state), req);
 1543     if (error != 0 || req->newptr == NULL)
 1544         return (error);
 1545     if (strlen(state) < 2 || toupper(state[0]) != 'C')
 1546         return (EINVAL);
 1547     if (strcasecmp(state, "Cmax") == 0)
 1548         val = MAX_CX_STATES;
 1549     else {
 1550         val = (int) strtol(state + 1, NULL, 10);
 1551         if (val < 1 || val > MAX_CX_STATES)
 1552             return (EINVAL);
 1553     }
 1554 
 1555     /* Update the new lowest useable Cx state for all CPUs. */
 1556     ACPI_SERIAL_BEGIN(cpu);
 1557     cpu_cx_lowest_lim = val - 1;
 1558     for (i = 0; i < cpu_ndevices; i++) {
 1559         sc = device_get_softc(cpu_devices[i]);
 1560         sc->cpu_cx_lowest_lim = cpu_cx_lowest_lim;
 1561         acpi_cpu_set_cx_lowest(sc);
 1562     }
 1563     ACPI_SERIAL_END(cpu);
 1564 
 1565     return (0);
 1566 }

Cache object: f37eccde91e5c8122f07520956d8c922


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.