The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/acpica/acpi_cpu.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2003-2005 Nate Lawson (SDG)
    3  * Copyright (c) 2001 Michael Smith
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   25  * SUCH DAMAGE.
   26  */
   27 
   28 #include <sys/cdefs.h>
   29 __FBSDID("$FreeBSD$");
   30 
   31 #include "opt_acpi.h"
   32 #include <sys/param.h>
   33 #include <sys/bus.h>
   34 #include <sys/cpu.h>
   35 #include <sys/kernel.h>
   36 #include <sys/malloc.h>
   37 #include <sys/module.h>
   38 #include <sys/pcpu.h>
   39 #include <sys/power.h>
   40 #include <sys/proc.h>
   41 #include <sys/sched.h>
   42 #include <sys/sbuf.h>
   43 #include <sys/smp.h>
   44 
   45 #include <dev/pci/pcivar.h>
   46 #include <machine/atomic.h>
   47 #include <machine/bus.h>
   48 #if defined(__amd64__) || defined(__i386__)
   49 #include <machine/clock.h>
   50 #include <machine/specialreg.h>
   51 #include <machine/md_var.h>
   52 #endif
   53 #include <sys/rman.h>
   54 
   55 #include <contrib/dev/acpica/include/acpi.h>
   56 #include <contrib/dev/acpica/include/accommon.h>
   57 
   58 #include <dev/acpica/acpivar.h>
   59 
   60 /*
   61  * Support for ACPI Processor devices, including C[1-3] sleep states.
   62  */
   63 
   64 /* Hooks for the ACPI CA debugging infrastructure */
   65 #define _COMPONENT      ACPI_PROCESSOR
   66 ACPI_MODULE_NAME("PROCESSOR")
   67 
   68 struct acpi_cx {
   69     struct resource     *p_lvlx;        /* Register to read to enter state. */
   70     uint32_t             type;          /* C1-3 (C4 and up treated as C3). */
   71     uint32_t             trans_lat;     /* Transition latency (usec). */
   72     uint32_t             power;         /* Power consumed (mW). */
   73     int                  res_type;      /* Resource type for p_lvlx. */
   74     int                  res_rid;       /* Resource ID for p_lvlx. */
   75     bool                 do_mwait;
   76     uint32_t             mwait_hint;
   77     bool                 mwait_hw_coord;
   78     bool                 mwait_bm_avoidance;
   79 };
   80 #define MAX_CX_STATES    8
   81 
   82 struct acpi_cpu_softc {
   83     device_t             cpu_dev;
   84     ACPI_HANDLE          cpu_handle;
   85     struct pcpu         *cpu_pcpu;
   86     uint32_t             cpu_acpi_id;   /* ACPI processor id */
   87     uint32_t             cpu_p_blk;     /* ACPI P_BLK location */
   88     uint32_t             cpu_p_blk_len; /* P_BLK length (must be 6). */
   89     struct acpi_cx       cpu_cx_states[MAX_CX_STATES];
   90     int                  cpu_cx_count;  /* Number of valid Cx states. */
   91     int                  cpu_prev_sleep;/* Last idle sleep duration. */
   92     int                  cpu_features;  /* Child driver supported features. */
   93     /* Runtime state. */
   94     int                  cpu_non_c2;    /* Index of lowest non-C2 state. */
   95     int                  cpu_non_c3;    /* Index of lowest non-C3 state. */
   96     u_int                cpu_cx_stats[MAX_CX_STATES];/* Cx usage history. */
   97     /* Values for sysctl. */
   98     struct sysctl_ctx_list cpu_sysctl_ctx;
   99     struct sysctl_oid   *cpu_sysctl_tree;
  100     int                  cpu_cx_lowest;
  101     int                  cpu_cx_lowest_lim;
  102     int                  cpu_disable_idle; /* Disable entry to idle function */
  103     char                 cpu_cx_supported[64];
  104 };
  105 
  106 struct acpi_cpu_device {
  107     struct resource_list        ad_rl;
  108 };
  109 
  110 #define CPU_GET_REG(reg, width)                                         \
  111     (bus_space_read_ ## width(rman_get_bustag((reg)),                   \
  112                       rman_get_bushandle((reg)), 0))
  113 #define CPU_SET_REG(reg, width, val)                                    \
  114     (bus_space_write_ ## width(rman_get_bustag((reg)),                  \
  115                        rman_get_bushandle((reg)), 0, (val)))
  116 
  117 #define ACPI_NOTIFY_CX_STATES   0x81    /* _CST changed. */
  118 
  119 #define CPU_QUIRK_NO_C3         (1<<0)  /* C3-type states are not usable. */
  120 #define CPU_QUIRK_NO_BM_CTRL    (1<<2)  /* No bus mastering control. */
  121 
  122 #define PCI_VENDOR_INTEL        0x8086
  123 #define PCI_DEVICE_82371AB_3    0x7113  /* PIIX4 chipset for quirks. */
  124 #define PCI_REVISION_A_STEP     0
  125 #define PCI_REVISION_B_STEP     1
  126 #define PCI_REVISION_4E         2
  127 #define PCI_REVISION_4M         3
  128 #define PIIX4_DEVACTB_REG       0x58
  129 #define PIIX4_BRLD_EN_IRQ0      (1<<0)
  130 #define PIIX4_BRLD_EN_IRQ       (1<<1)
  131 #define PIIX4_BRLD_EN_IRQ8      (1<<5)
  132 #define PIIX4_STOP_BREAK_MASK   (PIIX4_BRLD_EN_IRQ0 | PIIX4_BRLD_EN_IRQ | PIIX4_BRLD_EN_IRQ8)
  133 #define PIIX4_PCNTRL_BST_EN     (1<<10)
  134 
  135 #define CST_FFH_VENDOR_INTEL    1
  136 #define CST_FFH_INTEL_CL_C1IO   1
  137 #define CST_FFH_INTEL_CL_MWAIT  2
  138 #define CST_FFH_MWAIT_HW_COORD  0x0001
  139 #define CST_FFH_MWAIT_BM_AVOID  0x0002
  140 
  141 #define CPUDEV_DEVICE_ID        "ACPI0007"
  142 
  143 /* Allow users to ignore processor orders in MADT. */
  144 static int cpu_unordered;
  145 SYSCTL_INT(_debug_acpi, OID_AUTO, cpu_unordered, CTLFLAG_RDTUN,
  146     &cpu_unordered, 0,
  147     "Do not use the MADT to match ACPI Processor objects to CPUs.");
  148 
  149 /* Knob to disable acpi_cpu devices */
  150 bool acpi_cpu_disabled = false;
  151 
  152 /* Platform hardware resource information. */
  153 static uint32_t          cpu_smi_cmd;   /* Value to write to SMI_CMD. */
  154 static uint8_t           cpu_cst_cnt;   /* Indicate we are _CST aware. */
  155 static int               cpu_quirks;    /* Indicate any hardware bugs. */
  156 
  157 /* Values for sysctl. */
  158 static struct sysctl_ctx_list cpu_sysctl_ctx;
  159 static struct sysctl_oid *cpu_sysctl_tree;
  160 static int               cpu_cx_generic;
  161 static int               cpu_cx_lowest_lim;
  162 
  163 static device_t         *cpu_devices;
  164 static int               cpu_ndevices;
  165 static struct acpi_cpu_softc **cpu_softc;
  166 ACPI_SERIAL_DECL(cpu, "ACPI CPU");
  167 
  168 static int      acpi_cpu_probe(device_t dev);
  169 static int      acpi_cpu_attach(device_t dev);
  170 static int      acpi_cpu_suspend(device_t dev);
  171 static int      acpi_cpu_resume(device_t dev);
  172 static int      acpi_pcpu_get_id(device_t dev, uint32_t *acpi_id,
  173                     uint32_t *cpu_id);
  174 static struct resource_list *acpi_cpu_get_rlist(device_t dev, device_t child);
  175 static device_t acpi_cpu_add_child(device_t dev, u_int order, const char *name,
  176                     int unit);
  177 static int      acpi_cpu_read_ivar(device_t dev, device_t child, int index,
  178                     uintptr_t *result);
  179 static int      acpi_cpu_shutdown(device_t dev);
  180 static void     acpi_cpu_cx_probe(struct acpi_cpu_softc *sc);
  181 static void     acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc);
  182 static int      acpi_cpu_cx_cst(struct acpi_cpu_softc *sc);
  183 static void     acpi_cpu_startup(void *arg);
  184 static void     acpi_cpu_startup_cx(struct acpi_cpu_softc *sc);
  185 static void     acpi_cpu_cx_list(struct acpi_cpu_softc *sc);
  186 #if defined(__i386__) || defined(__amd64__)
  187 static void     acpi_cpu_idle(sbintime_t sbt);
  188 #endif
  189 static void     acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context);
  190 static void     acpi_cpu_quirks(void);
  191 static void     acpi_cpu_quirks_piix4(void);
  192 static int      acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS);
  193 static int      acpi_cpu_usage_counters_sysctl(SYSCTL_HANDLER_ARGS);
  194 static int      acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc);
  195 static int      acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
  196 static int      acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
  197 #if defined(__i386__) || defined(__amd64__)
  198 static int      acpi_cpu_method_sysctl(SYSCTL_HANDLER_ARGS);
  199 #endif
  200 
  201 static device_method_t acpi_cpu_methods[] = {
  202     /* Device interface */
  203     DEVMETHOD(device_probe,     acpi_cpu_probe),
  204     DEVMETHOD(device_attach,    acpi_cpu_attach),
  205     DEVMETHOD(device_detach,    bus_generic_detach),
  206     DEVMETHOD(device_shutdown,  acpi_cpu_shutdown),
  207     DEVMETHOD(device_suspend,   acpi_cpu_suspend),
  208     DEVMETHOD(device_resume,    acpi_cpu_resume),
  209 
  210     /* Bus interface */
  211     DEVMETHOD(bus_add_child,    acpi_cpu_add_child),
  212     DEVMETHOD(bus_read_ivar,    acpi_cpu_read_ivar),
  213     DEVMETHOD(bus_get_resource_list, acpi_cpu_get_rlist),
  214     DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource),
  215     DEVMETHOD(bus_set_resource, bus_generic_rl_set_resource),
  216     DEVMETHOD(bus_alloc_resource, bus_generic_rl_alloc_resource),
  217     DEVMETHOD(bus_release_resource, bus_generic_rl_release_resource),
  218     DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
  219     DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
  220     DEVMETHOD(bus_setup_intr,   bus_generic_setup_intr),
  221     DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr),
  222 
  223     DEVMETHOD_END
  224 };
  225 
  226 static driver_t acpi_cpu_driver = {
  227     "cpu",
  228     acpi_cpu_methods,
  229     sizeof(struct acpi_cpu_softc),
  230 };
  231 
  232 static devclass_t acpi_cpu_devclass;
  233 DRIVER_MODULE(cpu, acpi, acpi_cpu_driver, acpi_cpu_devclass, 0, 0);
  234 MODULE_DEPEND(cpu, acpi, 1, 1, 1);
  235 
  236 static int
  237 acpi_cpu_probe(device_t dev)
  238 {
  239     static char            *cpudev_ids[] = { CPUDEV_DEVICE_ID, NULL };
  240     int                    acpi_id, cpu_id;
  241     ACPI_BUFFER            buf;
  242     ACPI_HANDLE            handle;
  243     ACPI_OBJECT            *obj;
  244     ACPI_STATUS            status;
  245     ACPI_OBJECT_TYPE       type;
  246 
  247     if (acpi_disabled("cpu") || acpi_cpu_disabled)
  248         return (ENXIO);
  249     type = acpi_get_type(dev);
  250     if (type != ACPI_TYPE_PROCESSOR && type != ACPI_TYPE_DEVICE)
  251         return (ENXIO);
  252     if (type == ACPI_TYPE_DEVICE &&
  253         ACPI_ID_PROBE(device_get_parent(dev), dev, cpudev_ids) == NULL)
  254         return (ENXIO);
  255 
  256     handle = acpi_get_handle(dev);
  257     if (cpu_softc == NULL)
  258         cpu_softc = malloc(sizeof(struct acpi_cpu_softc *) *
  259             (mp_maxid + 1), M_TEMP /* XXX */, M_WAITOK | M_ZERO);
  260 
  261     if (type == ACPI_TYPE_PROCESSOR) {
  262         /* Get our Processor object. */
  263         buf.Pointer = NULL;
  264         buf.Length = ACPI_ALLOCATE_BUFFER;
  265         status = AcpiEvaluateObject(handle, NULL, NULL, &buf);
  266         if (ACPI_FAILURE(status)) {
  267             device_printf(dev, "probe failed to get Processor obj - %s\n",
  268                 AcpiFormatException(status));
  269             return (ENXIO);
  270         }
  271         obj = (ACPI_OBJECT *)buf.Pointer;
  272         if (obj->Type != ACPI_TYPE_PROCESSOR) {
  273             device_printf(dev, "Processor object has bad type %d\n",
  274                 obj->Type);
  275             AcpiOsFree(obj);
  276             return (ENXIO);
  277         }
  278 
  279         /*
  280          * Find the processor associated with our unit.  We could use the
  281          * ProcId as a key, however, some boxes do not have the same values
  282          * in their Processor object as the ProcId values in the MADT.
  283          */
  284         acpi_id = obj->Processor.ProcId;
  285         AcpiOsFree(obj);
  286     } else {
  287         status = acpi_GetInteger(handle, "_UID", &acpi_id);
  288         if (ACPI_FAILURE(status)) {
  289             device_printf(dev, "Device object has bad value - %s\n",
  290                 AcpiFormatException(status));
  291             return (ENXIO);
  292         }
  293     }
  294     if (acpi_pcpu_get_id(dev, &acpi_id, &cpu_id) != 0)
  295         return (ENXIO);
  296 
  297     /*
  298      * Check if we already probed this processor.  We scan the bus twice
  299      * so it's possible we've already seen this one.
  300      */
  301     if (cpu_softc[cpu_id] != NULL)
  302         return (ENXIO);
  303 
  304     /* Mark this processor as in-use and save our derived id for attach. */
  305     cpu_softc[cpu_id] = (void *)1;
  306     acpi_set_private(dev, (void*)(intptr_t)cpu_id);
  307     device_set_desc(dev, "ACPI CPU");
  308 
  309     if (!bootverbose && device_get_unit(dev) != 0) {
  310             device_quiet(dev);
  311             device_quiet_children(dev);
  312     }
  313 
  314     return (0);
  315 }
  316 
  317 static int
  318 acpi_cpu_attach(device_t dev)
  319 {
  320     ACPI_BUFFER            buf;
  321     ACPI_OBJECT            arg, *obj;
  322     ACPI_OBJECT_LIST       arglist;
  323     struct pcpu            *pcpu_data;
  324     struct acpi_cpu_softc *sc;
  325     struct acpi_softc     *acpi_sc;
  326     ACPI_STATUS            status;
  327     u_int                  features;
  328     int                    cpu_id, drv_count, i;
  329     driver_t              **drivers;
  330     uint32_t               cap_set[3];
  331 
  332     /* UUID needed by _OSC evaluation */
  333     static uint8_t cpu_oscuuid[16] = { 0x16, 0xA6, 0x77, 0x40, 0x0C, 0x29,
  334                                        0xBE, 0x47, 0x9E, 0xBD, 0xD8, 0x70,
  335                                        0x58, 0x71, 0x39, 0x53 };
  336 
  337     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
  338 
  339     sc = device_get_softc(dev);
  340     sc->cpu_dev = dev;
  341     sc->cpu_handle = acpi_get_handle(dev);
  342     cpu_id = (int)(intptr_t)acpi_get_private(dev);
  343     cpu_softc[cpu_id] = sc;
  344     pcpu_data = pcpu_find(cpu_id);
  345     pcpu_data->pc_device = dev;
  346     sc->cpu_pcpu = pcpu_data;
  347     cpu_smi_cmd = AcpiGbl_FADT.SmiCommand;
  348     cpu_cst_cnt = AcpiGbl_FADT.CstControl;
  349 
  350     if (acpi_get_type(dev) == ACPI_TYPE_PROCESSOR) {
  351         buf.Pointer = NULL;
  352         buf.Length = ACPI_ALLOCATE_BUFFER;
  353         status = AcpiEvaluateObject(sc->cpu_handle, NULL, NULL, &buf);
  354         if (ACPI_FAILURE(status)) {
  355             device_printf(dev, "attach failed to get Processor obj - %s\n",
  356                 AcpiFormatException(status));
  357             return (ENXIO);
  358         }
  359         obj = (ACPI_OBJECT *)buf.Pointer;
  360         sc->cpu_p_blk = obj->Processor.PblkAddress;
  361         sc->cpu_p_blk_len = obj->Processor.PblkLength;
  362         sc->cpu_acpi_id = obj->Processor.ProcId;
  363         AcpiOsFree(obj);
  364     } else {
  365         KASSERT(acpi_get_type(dev) == ACPI_TYPE_DEVICE,
  366             ("Unexpected ACPI object"));
  367         status = acpi_GetInteger(sc->cpu_handle, "_UID", &sc->cpu_acpi_id);
  368         if (ACPI_FAILURE(status)) {
  369             device_printf(dev, "Device object has bad value - %s\n",
  370                 AcpiFormatException(status));
  371             return (ENXIO);
  372         }
  373         sc->cpu_p_blk = 0;
  374         sc->cpu_p_blk_len = 0;
  375     }
  376     ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: P_BLK at %#x/%d\n",
  377                      device_get_unit(dev), sc->cpu_p_blk, sc->cpu_p_blk_len));
  378 
  379     /*
  380      * If this is the first cpu we attach, create and initialize the generic
  381      * resources that will be used by all acpi cpu devices.
  382      */
  383     if (device_get_unit(dev) == 0) {
  384         /* Assume we won't be using generic Cx mode by default */
  385         cpu_cx_generic = FALSE;
  386 
  387         /* Install hw.acpi.cpu sysctl tree */
  388         acpi_sc = acpi_device_get_parent_softc(dev);
  389         sysctl_ctx_init(&cpu_sysctl_ctx);
  390         cpu_sysctl_tree = SYSCTL_ADD_NODE(&cpu_sysctl_ctx,
  391             SYSCTL_CHILDREN(acpi_sc->acpi_sysctl_tree), OID_AUTO, "cpu",
  392             CTLFLAG_RD, 0, "node for CPU children");
  393     }
  394 
  395     /*
  396      * Before calling any CPU methods, collect child driver feature hints
  397      * and notify ACPI of them.  We support unified SMP power control
  398      * so advertise this ourselves.  Note this is not the same as independent
  399      * SMP control where each CPU can have different settings.
  400      */
  401     sc->cpu_features = ACPI_CAP_SMP_SAME | ACPI_CAP_SMP_SAME_C3 |
  402       ACPI_CAP_C1_IO_HALT;
  403 
  404 #if defined(__i386__) || defined(__amd64__)
  405     /*
  406      * Ask for MWAIT modes if not disabled and interrupts work
  407      * reasonable with MWAIT.
  408      */
  409     if (!acpi_disabled("mwait") && cpu_mwait_usable())
  410         sc->cpu_features |= ACPI_CAP_SMP_C1_NATIVE | ACPI_CAP_SMP_C3_NATIVE;
  411 #endif
  412 
  413     if (devclass_get_drivers(acpi_cpu_devclass, &drivers, &drv_count) == 0) {
  414         for (i = 0; i < drv_count; i++) {
  415             if (ACPI_GET_FEATURES(drivers[i], &features) == 0)
  416                 sc->cpu_features |= features;
  417         }
  418         free(drivers, M_TEMP);
  419     }
  420 
  421     /*
  422      * CPU capabilities are specified in
  423      * Intel Processor Vendor-Specific ACPI Interface Specification.
  424      */
  425     if (sc->cpu_features) {
  426         cap_set[1] = sc->cpu_features;
  427         status = acpi_EvaluateOSC(sc->cpu_handle, cpu_oscuuid, 1, 2, cap_set,
  428             cap_set, false);
  429         if (ACPI_SUCCESS(status)) {
  430             if (cap_set[0] != 0)
  431                 device_printf(dev, "_OSC returned status %#x\n", cap_set[0]);
  432         }
  433         else {
  434             arglist.Pointer = &arg;
  435             arglist.Count = 1;
  436             arg.Type = ACPI_TYPE_BUFFER;
  437             arg.Buffer.Length = sizeof(cap_set);
  438             arg.Buffer.Pointer = (uint8_t *)cap_set;
  439             cap_set[0] = 1; /* revision */
  440             cap_set[1] = 1; /* number of capabilities integers */
  441             cap_set[2] = sc->cpu_features;
  442             AcpiEvaluateObject(sc->cpu_handle, "_PDC", &arglist, NULL);
  443         }
  444     }
  445 
  446     /* Probe for Cx state support. */
  447     acpi_cpu_cx_probe(sc);
  448 
  449     return (0);
  450 }
  451 
  452 static void
  453 acpi_cpu_postattach(void *unused __unused)
  454 {
  455     device_t *devices;
  456     int err;
  457     int i, n;
  458     int attached;
  459 
  460     err = devclass_get_devices(acpi_cpu_devclass, &devices, &n);
  461     if (err != 0) {
  462         printf("devclass_get_devices(acpi_cpu_devclass) failed\n");
  463         return;
  464     }
  465     attached = 0;
  466     for (i = 0; i < n; i++)
  467         if (device_is_attached(devices[i]) &&
  468             device_get_driver(devices[i]) == &acpi_cpu_driver)
  469             attached = 1;
  470     for (i = 0; i < n; i++)
  471         bus_generic_probe(devices[i]);
  472     for (i = 0; i < n; i++)
  473         bus_generic_attach(devices[i]);
  474     free(devices, M_TEMP);
  475 
  476     if (attached) {
  477 #ifdef EARLY_AP_STARTUP
  478         acpi_cpu_startup(NULL);
  479 #else
  480         /* Queue post cpu-probing task handler */
  481         AcpiOsExecute(OSL_NOTIFY_HANDLER, acpi_cpu_startup, NULL);
  482 #endif
  483     }
  484 }
  485 
  486 SYSINIT(acpi_cpu, SI_SUB_CONFIGURE, SI_ORDER_MIDDLE,
  487     acpi_cpu_postattach, NULL);
  488 
  489 static void
  490 disable_idle(struct acpi_cpu_softc *sc)
  491 {
  492     cpuset_t cpuset;
  493 
  494     CPU_SETOF(sc->cpu_pcpu->pc_cpuid, &cpuset);
  495     sc->cpu_disable_idle = TRUE;
  496 
  497     /*
  498      * Ensure that the CPU is not in idle state or in acpi_cpu_idle().
  499      * Note that this code depends on the fact that the rendezvous IPI
  500      * can not penetrate context where interrupts are disabled and acpi_cpu_idle
  501      * is called and executed in such a context with interrupts being re-enabled
  502      * right before return.
  503      */
  504     smp_rendezvous_cpus(cpuset, smp_no_rendezvous_barrier, NULL,
  505         smp_no_rendezvous_barrier, NULL);
  506 }
  507 
  508 static void
  509 enable_idle(struct acpi_cpu_softc *sc)
  510 {
  511 
  512     sc->cpu_disable_idle = FALSE;
  513 }
  514 
  515 #if defined(__i386__) || defined(__amd64__)
  516 static int
  517 is_idle_disabled(struct acpi_cpu_softc *sc)
  518 {
  519 
  520     return (sc->cpu_disable_idle);
  521 }
  522 #endif
  523 
  524 /*
  525  * Disable any entry to the idle function during suspend and re-enable it
  526  * during resume.
  527  */
  528 static int
  529 acpi_cpu_suspend(device_t dev)
  530 {
  531     int error;
  532 
  533     error = bus_generic_suspend(dev);
  534     if (error)
  535         return (error);
  536     disable_idle(device_get_softc(dev));
  537     return (0);
  538 }
  539 
  540 static int
  541 acpi_cpu_resume(device_t dev)
  542 {
  543 
  544     enable_idle(device_get_softc(dev));
  545     return (bus_generic_resume(dev));
  546 }
  547 
  548 /*
  549  * Find the processor associated with a given ACPI ID.  By default,
  550  * use the MADT to map ACPI IDs to APIC IDs and use that to locate a
  551  * processor.  Some systems have inconsistent ASL and MADT however.
  552  * For these systems the cpu_unordered tunable can be set in which
  553  * case we assume that Processor objects are listed in the same order
  554  * in both the MADT and ASL.
  555  */
  556 static int
  557 acpi_pcpu_get_id(device_t dev, uint32_t *acpi_id, uint32_t *cpu_id)
  558 {
  559     struct pcpu *pc;
  560     uint32_t     i, idx;
  561 
  562     KASSERT(acpi_id != NULL, ("Null acpi_id"));
  563     KASSERT(cpu_id != NULL, ("Null cpu_id"));
  564     idx = device_get_unit(dev);
  565 
  566     /*
  567      * If pc_acpi_id for CPU 0 is not initialized (e.g. a non-APIC
  568      * UP box) use the ACPI ID from the first processor we find.
  569      */
  570     if (idx == 0 && mp_ncpus == 1) {
  571         pc = pcpu_find(0);
  572         if (pc->pc_acpi_id == 0xffffffff)
  573             pc->pc_acpi_id = *acpi_id;
  574         *cpu_id = 0;
  575         return (0);
  576     }
  577 
  578     CPU_FOREACH(i) {
  579         pc = pcpu_find(i);
  580         KASSERT(pc != NULL, ("no pcpu data for %d", i));
  581         if (cpu_unordered) {
  582             if (idx-- == 0) {
  583                 /*
  584                  * If pc_acpi_id doesn't match the ACPI ID from the
  585                  * ASL, prefer the MADT-derived value.
  586                  */
  587                 if (pc->pc_acpi_id != *acpi_id)
  588                     *acpi_id = pc->pc_acpi_id;
  589                 *cpu_id = pc->pc_cpuid;
  590                 return (0);
  591             }
  592         } else {
  593             if (pc->pc_acpi_id == *acpi_id) {
  594                 if (bootverbose)
  595                     device_printf(dev,
  596                         "Processor %s (ACPI ID %u) -> APIC ID %d\n",
  597                         acpi_name(acpi_get_handle(dev)), *acpi_id,
  598                         pc->pc_cpuid);
  599                 *cpu_id = pc->pc_cpuid;
  600                 return (0);
  601             }
  602         }
  603     }
  604 
  605     if (bootverbose)
  606         printf("ACPI: Processor %s (ACPI ID %u) ignored\n",
  607             acpi_name(acpi_get_handle(dev)), *acpi_id);
  608 
  609     return (ESRCH);
  610 }
  611 
  612 static struct resource_list *
  613 acpi_cpu_get_rlist(device_t dev, device_t child)
  614 {
  615     struct acpi_cpu_device *ad;
  616 
  617     ad = device_get_ivars(child);
  618     if (ad == NULL)
  619         return (NULL);
  620     return (&ad->ad_rl);
  621 }
  622 
  623 static device_t
  624 acpi_cpu_add_child(device_t dev, u_int order, const char *name, int unit)
  625 {
  626     struct acpi_cpu_device *ad;
  627     device_t child;
  628 
  629     if ((ad = malloc(sizeof(*ad), M_TEMP, M_NOWAIT | M_ZERO)) == NULL)
  630         return (NULL);
  631 
  632     resource_list_init(&ad->ad_rl);
  633     
  634     child = device_add_child_ordered(dev, order, name, unit);
  635     if (child != NULL)
  636         device_set_ivars(child, ad);
  637     else
  638         free(ad, M_TEMP);
  639     return (child);
  640 }
  641 
  642 static int
  643 acpi_cpu_read_ivar(device_t dev, device_t child, int index, uintptr_t *result)
  644 {
  645     struct acpi_cpu_softc *sc;
  646 
  647     sc = device_get_softc(dev);
  648     switch (index) {
  649     case ACPI_IVAR_HANDLE:
  650         *result = (uintptr_t)sc->cpu_handle;
  651         break;
  652     case CPU_IVAR_PCPU:
  653         *result = (uintptr_t)sc->cpu_pcpu;
  654         break;
  655 #if defined(__amd64__) || defined(__i386__)
  656     case CPU_IVAR_NOMINAL_MHZ:
  657         if (tsc_is_invariant) {
  658             *result = (uintptr_t)(atomic_load_acq_64(&tsc_freq) / 1000000);
  659             break;
  660         }
  661         /* FALLTHROUGH */
  662 #endif
  663     default:
  664         return (ENOENT);
  665     }
  666     return (0);
  667 }
  668 
  669 static int
  670 acpi_cpu_shutdown(device_t dev)
  671 {
  672     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
  673 
  674     /* Allow children to shutdown first. */
  675     bus_generic_shutdown(dev);
  676 
  677     /*
  678      * Disable any entry to the idle function.
  679      */
  680     disable_idle(device_get_softc(dev));
  681 
  682     /*
  683      * CPU devices are not truly detached and remain referenced,
  684      * so their resources are not freed.
  685      */
  686 
  687     return_VALUE (0);
  688 }
  689 
  690 static void
  691 acpi_cpu_cx_probe(struct acpi_cpu_softc *sc)
  692 {
  693     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
  694 
  695     /* Use initial sleep value of 1 sec. to start with lowest idle state. */
  696     sc->cpu_prev_sleep = 1000000;
  697     sc->cpu_cx_lowest = 0;
  698     sc->cpu_cx_lowest_lim = 0;
  699 
  700     /*
  701      * Check for the ACPI 2.0 _CST sleep states object. If we can't find
  702      * any, we'll revert to generic FADT/P_BLK Cx control method which will
  703      * be handled by acpi_cpu_startup. We need to defer to after having
  704      * probed all the cpus in the system before probing for generic Cx
  705      * states as we may already have found cpus with valid _CST packages
  706      */
  707     if (!cpu_cx_generic && acpi_cpu_cx_cst(sc) != 0) {
  708         /*
  709          * We were unable to find a _CST package for this cpu or there
  710          * was an error parsing it. Switch back to generic mode.
  711          */
  712         cpu_cx_generic = TRUE;
  713         if (bootverbose)
  714             device_printf(sc->cpu_dev, "switching to generic Cx mode\n");
  715     }
  716 
  717     /*
  718      * TODO: _CSD Package should be checked here.
  719      */
  720 }
  721 
  722 static void
  723 acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc)
  724 {
  725     ACPI_GENERIC_ADDRESS         gas;
  726     struct acpi_cx              *cx_ptr;
  727 
  728     sc->cpu_cx_count = 0;
  729     cx_ptr = sc->cpu_cx_states;
  730 
  731     /* Use initial sleep value of 1 sec. to start with lowest idle state. */
  732     sc->cpu_prev_sleep = 1000000;
  733 
  734     /* C1 has been required since just after ACPI 1.0 */
  735     cx_ptr->type = ACPI_STATE_C1;
  736     cx_ptr->trans_lat = 0;
  737     cx_ptr++;
  738     sc->cpu_non_c2 = sc->cpu_cx_count;
  739     sc->cpu_non_c3 = sc->cpu_cx_count;
  740     sc->cpu_cx_count++;
  741 
  742     /* 
  743      * The spec says P_BLK must be 6 bytes long.  However, some systems
  744      * use it to indicate a fractional set of features present so we
  745      * take 5 as C2.  Some may also have a value of 7 to indicate
  746      * another C3 but most use _CST for this (as required) and having
  747      * "only" C1-C3 is not a hardship.
  748      */
  749     if (sc->cpu_p_blk_len < 5)
  750         return; 
  751 
  752     /* Validate and allocate resources for C2 (P_LVL2). */
  753     gas.SpaceId = ACPI_ADR_SPACE_SYSTEM_IO;
  754     gas.BitWidth = 8;
  755     if (AcpiGbl_FADT.C2Latency <= 100) {
  756         gas.Address = sc->cpu_p_blk + 4;
  757         cx_ptr->res_rid = 0;
  758         acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &cx_ptr->res_rid,
  759             &gas, &cx_ptr->p_lvlx, RF_SHAREABLE);
  760         if (cx_ptr->p_lvlx != NULL) {
  761             cx_ptr->type = ACPI_STATE_C2;
  762             cx_ptr->trans_lat = AcpiGbl_FADT.C2Latency;
  763             cx_ptr++;
  764             sc->cpu_non_c3 = sc->cpu_cx_count;
  765             sc->cpu_cx_count++;
  766         }
  767     }
  768     if (sc->cpu_p_blk_len < 6)
  769         return;
  770 
  771     /* Validate and allocate resources for C3 (P_LVL3). */
  772     if (AcpiGbl_FADT.C3Latency <= 1000 && !(cpu_quirks & CPU_QUIRK_NO_C3)) {
  773         gas.Address = sc->cpu_p_blk + 5;
  774         cx_ptr->res_rid = 1;
  775         acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &cx_ptr->res_rid,
  776             &gas, &cx_ptr->p_lvlx, RF_SHAREABLE);
  777         if (cx_ptr->p_lvlx != NULL) {
  778             cx_ptr->type = ACPI_STATE_C3;
  779             cx_ptr->trans_lat = AcpiGbl_FADT.C3Latency;
  780             cx_ptr++;
  781             sc->cpu_cx_count++;
  782         }
  783     }
  784 }
  785 
  786 #if defined(__i386__) || defined(__amd64__)
  787 static void
  788 acpi_cpu_cx_cst_mwait(struct acpi_cx *cx_ptr, uint64_t address, int accsize)
  789 {
  790 
  791         cx_ptr->do_mwait = true;
  792         cx_ptr->mwait_hint = address & 0xffffffff;
  793         cx_ptr->mwait_hw_coord = (accsize & CST_FFH_MWAIT_HW_COORD) != 0;
  794         cx_ptr->mwait_bm_avoidance = (accsize & CST_FFH_MWAIT_BM_AVOID) != 0;
  795 }
  796 #endif
  797 
  798 static void
  799 acpi_cpu_cx_cst_free_plvlx(device_t cpu_dev, struct acpi_cx *cx_ptr)
  800 {
  801 
  802         if (cx_ptr->p_lvlx == NULL)
  803                 return;
  804         bus_release_resource(cpu_dev, cx_ptr->res_type, cx_ptr->res_rid,
  805             cx_ptr->p_lvlx);
  806         cx_ptr->p_lvlx = NULL;
  807 }
  808 
  809 /*
  810  * Parse a _CST package and set up its Cx states.  Since the _CST object
  811  * can change dynamically, our notify handler may call this function
  812  * to clean up and probe the new _CST package.
  813  */
  814 static int
  815 acpi_cpu_cx_cst(struct acpi_cpu_softc *sc)
  816 {
  817     struct       acpi_cx *cx_ptr;
  818     ACPI_STATUS  status;
  819     ACPI_BUFFER  buf;
  820     ACPI_OBJECT *top;
  821     ACPI_OBJECT *pkg;
  822     uint32_t     count;
  823     int          i;
  824 #if defined(__i386__) || defined(__amd64__)
  825     uint64_t     address;
  826     int          vendor, class, accsize;
  827 #endif
  828 
  829     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
  830 
  831     buf.Pointer = NULL;
  832     buf.Length = ACPI_ALLOCATE_BUFFER;
  833     status = AcpiEvaluateObject(sc->cpu_handle, "_CST", NULL, &buf);
  834     if (ACPI_FAILURE(status))
  835         return (ENXIO);
  836 
  837     /* _CST is a package with a count and at least one Cx package. */
  838     top = (ACPI_OBJECT *)buf.Pointer;
  839     if (!ACPI_PKG_VALID(top, 2) || acpi_PkgInt32(top, 0, &count) != 0) {
  840         device_printf(sc->cpu_dev, "invalid _CST package\n");
  841         AcpiOsFree(buf.Pointer);
  842         return (ENXIO);
  843     }
  844     if (count != top->Package.Count - 1) {
  845         device_printf(sc->cpu_dev, "invalid _CST state count (%d != %d)\n",
  846                count, top->Package.Count - 1);
  847         count = top->Package.Count - 1;
  848     }
  849     if (count > MAX_CX_STATES) {
  850         device_printf(sc->cpu_dev, "_CST has too many states (%d)\n", count);
  851         count = MAX_CX_STATES;
  852     }
  853 
  854     sc->cpu_non_c2 = 0;
  855     sc->cpu_non_c3 = 0;
  856     sc->cpu_cx_count = 0;
  857     cx_ptr = sc->cpu_cx_states;
  858 
  859     /*
  860      * C1 has been required since just after ACPI 1.0.
  861      * Reserve the first slot for it.
  862      */
  863     cx_ptr->type = ACPI_STATE_C0;
  864     cx_ptr++;
  865     sc->cpu_cx_count++;
  866 
  867     /* Set up all valid states. */
  868     for (i = 0; i < count; i++) {
  869         pkg = &top->Package.Elements[i + 1];
  870         if (!ACPI_PKG_VALID(pkg, 4) ||
  871             acpi_PkgInt32(pkg, 1, &cx_ptr->type) != 0 ||
  872             acpi_PkgInt32(pkg, 2, &cx_ptr->trans_lat) != 0 ||
  873             acpi_PkgInt32(pkg, 3, &cx_ptr->power) != 0) {
  874 
  875             device_printf(sc->cpu_dev, "skipping invalid Cx state package\n");
  876             continue;
  877         }
  878 
  879         /* Validate the state to see if we should use it. */
  880         switch (cx_ptr->type) {
  881         case ACPI_STATE_C1:
  882             acpi_cpu_cx_cst_free_plvlx(sc->cpu_dev, cx_ptr);
  883 #if defined(__i386__) || defined(__amd64__)
  884             if (acpi_PkgFFH_IntelCpu(pkg, 0, &vendor, &class, &address,
  885               &accsize) == 0 && vendor == CST_FFH_VENDOR_INTEL) {
  886                 if (class == CST_FFH_INTEL_CL_C1IO) {
  887                     /* C1 I/O then Halt */
  888                     cx_ptr->res_rid = sc->cpu_cx_count;
  889                     bus_set_resource(sc->cpu_dev, SYS_RES_IOPORT,
  890                       cx_ptr->res_rid, address, 1);
  891                     cx_ptr->p_lvlx = bus_alloc_resource_any(sc->cpu_dev,
  892                       SYS_RES_IOPORT, &cx_ptr->res_rid, RF_ACTIVE |
  893                       RF_SHAREABLE);
  894                     if (cx_ptr->p_lvlx == NULL) {
  895                         bus_delete_resource(sc->cpu_dev, SYS_RES_IOPORT,
  896                           cx_ptr->res_rid);
  897                         device_printf(sc->cpu_dev,
  898                           "C1 I/O failed to allocate port %d, "
  899                           "degrading to C1 Halt", (int)address);
  900                     }
  901                 } else if (class == CST_FFH_INTEL_CL_MWAIT) {
  902                     acpi_cpu_cx_cst_mwait(cx_ptr, address, accsize);
  903                 }
  904             }
  905 #endif
  906             if (sc->cpu_cx_states[0].type == ACPI_STATE_C0) {
  907                 /* This is the first C1 state.  Use the reserved slot. */
  908                 sc->cpu_cx_states[0] = *cx_ptr;
  909             } else {
  910                 sc->cpu_non_c2 = sc->cpu_cx_count;
  911                 sc->cpu_non_c3 = sc->cpu_cx_count;
  912                 cx_ptr++;
  913                 sc->cpu_cx_count++;
  914             }
  915             continue;
  916         case ACPI_STATE_C2:
  917             sc->cpu_non_c3 = sc->cpu_cx_count;
  918             break;
  919         case ACPI_STATE_C3:
  920         default:
  921             if ((cpu_quirks & CPU_QUIRK_NO_C3) != 0) {
  922                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  923                                  "acpi_cpu%d: C3[%d] not available.\n",
  924                                  device_get_unit(sc->cpu_dev), i));
  925                 continue;
  926             }
  927             break;
  928         }
  929 
  930         /* Free up any previous register. */
  931         acpi_cpu_cx_cst_free_plvlx(sc->cpu_dev, cx_ptr);
  932 
  933         /* Allocate the control register for C2 or C3. */
  934 #if defined(__i386__) || defined(__amd64__)
  935         if (acpi_PkgFFH_IntelCpu(pkg, 0, &vendor, &class, &address,
  936           &accsize) == 0 && vendor == CST_FFH_VENDOR_INTEL &&
  937           class == CST_FFH_INTEL_CL_MWAIT) {
  938             /* Native C State Instruction use (mwait) */
  939             acpi_cpu_cx_cst_mwait(cx_ptr, address, accsize);
  940             ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  941               "acpi_cpu%d: Got C%d/mwait - %d latency\n",
  942               device_get_unit(sc->cpu_dev), cx_ptr->type, cx_ptr->trans_lat));
  943             cx_ptr++;
  944             sc->cpu_cx_count++;
  945         } else
  946 #endif
  947         {
  948             cx_ptr->res_rid = sc->cpu_cx_count;
  949             acpi_PkgGas(sc->cpu_dev, pkg, 0, &cx_ptr->res_type,
  950                 &cx_ptr->res_rid, &cx_ptr->p_lvlx, RF_SHAREABLE);
  951             if (cx_ptr->p_lvlx) {
  952                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  953                      "acpi_cpu%d: Got C%d - %d latency\n",
  954                      device_get_unit(sc->cpu_dev), cx_ptr->type,
  955                      cx_ptr->trans_lat));
  956                 cx_ptr++;
  957                 sc->cpu_cx_count++;
  958             }
  959         }
  960     }
  961     AcpiOsFree(buf.Pointer);
  962 
  963     /* If C1 state was not found, we need one now. */
  964     cx_ptr = sc->cpu_cx_states;
  965     if (cx_ptr->type == ACPI_STATE_C0) {
  966         cx_ptr->type = ACPI_STATE_C1;
  967         cx_ptr->trans_lat = 0;
  968     }
  969 
  970     return (0);
  971 }
  972 
  973 /*
  974  * Call this *after* all CPUs have been attached.
  975  */
  976 static void
  977 acpi_cpu_startup(void *arg)
  978 {
  979     struct acpi_cpu_softc *sc;
  980     int i;
  981 
  982     /* Get set of CPU devices */
  983     devclass_get_devices(acpi_cpu_devclass, &cpu_devices, &cpu_ndevices);
  984 
  985     /*
  986      * Setup any quirks that might necessary now that we have probed
  987      * all the CPUs
  988      */
  989     acpi_cpu_quirks();
  990 
  991     if (cpu_cx_generic) {
  992         /*
  993          * We are using generic Cx mode, probe for available Cx states
  994          * for all processors.
  995          */
  996         for (i = 0; i < cpu_ndevices; i++) {
  997             sc = device_get_softc(cpu_devices[i]);
  998             acpi_cpu_generic_cx_probe(sc);
  999         }
 1000     } else {
 1001         /*
 1002          * We are using _CST mode, remove C3 state if necessary.
 1003          * As we now know for sure that we will be using _CST mode
 1004          * install our notify handler.
 1005          */
 1006         for (i = 0; i < cpu_ndevices; i++) {
 1007             sc = device_get_softc(cpu_devices[i]);
 1008             if (cpu_quirks & CPU_QUIRK_NO_C3) {
 1009                 sc->cpu_cx_count = min(sc->cpu_cx_count, sc->cpu_non_c3 + 1);
 1010             }
 1011             AcpiInstallNotifyHandler(sc->cpu_handle, ACPI_DEVICE_NOTIFY,
 1012                 acpi_cpu_notify, sc);
 1013         }
 1014     }
 1015 
 1016     /* Perform Cx final initialization. */
 1017     for (i = 0; i < cpu_ndevices; i++) {
 1018         sc = device_get_softc(cpu_devices[i]);
 1019         acpi_cpu_startup_cx(sc);
 1020     }
 1021 
 1022     /* Add a sysctl handler to handle global Cx lowest setting */
 1023     SYSCTL_ADD_PROC(&cpu_sysctl_ctx, SYSCTL_CHILDREN(cpu_sysctl_tree),
 1024         OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW,
 1025         NULL, 0, acpi_cpu_global_cx_lowest_sysctl, "A",
 1026         "Global lowest Cx sleep state to use");
 1027 
 1028     /* Take over idling from cpu_idle_default(). */
 1029     cpu_cx_lowest_lim = 0;
 1030     for (i = 0; i < cpu_ndevices; i++) {
 1031         sc = device_get_softc(cpu_devices[i]);
 1032         enable_idle(sc);
 1033     }
 1034 #if defined(__i386__) || defined(__amd64__)
 1035     cpu_idle_hook = acpi_cpu_idle;
 1036 #endif
 1037 }
 1038 
 1039 static void
 1040 acpi_cpu_cx_list(struct acpi_cpu_softc *sc)
 1041 {
 1042     struct sbuf sb;
 1043     int i;
 1044 
 1045     /*
 1046      * Set up the list of Cx states
 1047      */
 1048     sbuf_new(&sb, sc->cpu_cx_supported, sizeof(sc->cpu_cx_supported),
 1049         SBUF_FIXEDLEN);
 1050     for (i = 0; i < sc->cpu_cx_count; i++)
 1051         sbuf_printf(&sb, "C%d/%d/%d ", i + 1, sc->cpu_cx_states[i].type,
 1052             sc->cpu_cx_states[i].trans_lat);
 1053     sbuf_trim(&sb);
 1054     sbuf_finish(&sb);
 1055 }       
 1056 
 1057 static void
 1058 acpi_cpu_startup_cx(struct acpi_cpu_softc *sc)
 1059 {
 1060     acpi_cpu_cx_list(sc);
 1061     
 1062     SYSCTL_ADD_STRING(&sc->cpu_sysctl_ctx,
 1063                       SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
 1064                       OID_AUTO, "cx_supported", CTLFLAG_RD,
 1065                       sc->cpu_cx_supported, 0,
 1066                       "Cx/microsecond values for supported Cx states");
 1067     SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
 1068                     SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
 1069                     OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW,
 1070                     (void *)sc, 0, acpi_cpu_cx_lowest_sysctl, "A",
 1071                     "lowest Cx sleep state to use");
 1072     SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
 1073                     SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
 1074                     OID_AUTO, "cx_usage", CTLTYPE_STRING | CTLFLAG_RD,
 1075                     (void *)sc, 0, acpi_cpu_usage_sysctl, "A",
 1076                     "percent usage for each Cx state");
 1077     SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
 1078                     SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
 1079                     OID_AUTO, "cx_usage_counters", CTLTYPE_STRING | CTLFLAG_RD,
 1080                     (void *)sc, 0, acpi_cpu_usage_counters_sysctl, "A",
 1081                     "Cx sleep state counters");
 1082 #if defined(__i386__) || defined(__amd64__)
 1083     SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
 1084                     SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
 1085                     OID_AUTO, "cx_method", CTLTYPE_STRING | CTLFLAG_RD,
 1086                     (void *)sc, 0, acpi_cpu_method_sysctl, "A",
 1087                     "Cx entrance methods");
 1088 #endif
 1089 
 1090     /* Signal platform that we can handle _CST notification. */
 1091     if (!cpu_cx_generic && cpu_cst_cnt != 0) {
 1092         ACPI_LOCK(acpi);
 1093         AcpiOsWritePort(cpu_smi_cmd, cpu_cst_cnt, 8);
 1094         ACPI_UNLOCK(acpi);
 1095     }
 1096 }
 1097 
 1098 #if defined(__i386__) || defined(__amd64__)
 1099 /*
 1100  * Idle the CPU in the lowest state possible.  This function is called with
 1101  * interrupts disabled.  Note that once it re-enables interrupts, a task
 1102  * switch can occur so do not access shared data (i.e. the softc) after
 1103  * interrupts are re-enabled.
 1104  */
 1105 static void
 1106 acpi_cpu_idle(sbintime_t sbt)
 1107 {
 1108     struct      acpi_cpu_softc *sc;
 1109     struct      acpi_cx *cx_next;
 1110     uint64_t    start_ticks, end_ticks;
 1111     uint32_t    start_time, end_time;
 1112     ACPI_STATUS status;
 1113     int         bm_active, cx_next_idx, i, us;
 1114 
 1115     /*
 1116      * Look up our CPU id to get our softc.  If it's NULL, we'll use C1
 1117      * since there is no ACPI processor object for this CPU.  This occurs
 1118      * for logical CPUs in the HTT case.
 1119      */
 1120     sc = cpu_softc[PCPU_GET(cpuid)];
 1121     if (sc == NULL) {
 1122         acpi_cpu_c1();
 1123         return;
 1124     }
 1125 
 1126     /* If disabled, take the safe path. */
 1127     if (is_idle_disabled(sc)) {
 1128         acpi_cpu_c1();
 1129         return;
 1130     }
 1131 
 1132     /* Find the lowest state that has small enough latency. */
 1133     us = sc->cpu_prev_sleep;
 1134     if (sbt >= 0 && us > (sbt >> 12))
 1135         us = (sbt >> 12);
 1136     cx_next_idx = 0;
 1137     if (cpu_disable_c2_sleep)
 1138         i = min(sc->cpu_cx_lowest, sc->cpu_non_c2);
 1139     else if (cpu_disable_c3_sleep)
 1140         i = min(sc->cpu_cx_lowest, sc->cpu_non_c3);
 1141     else
 1142         i = sc->cpu_cx_lowest;
 1143     for (; i >= 0; i--) {
 1144         if (sc->cpu_cx_states[i].trans_lat * 3 <= us) {
 1145             cx_next_idx = i;
 1146             break;
 1147         }
 1148     }
 1149 
 1150     /*
 1151      * Check for bus master activity.  If there was activity, clear
 1152      * the bit and use the lowest non-C3 state.  Note that the USB
 1153      * driver polling for new devices keeps this bit set all the
 1154      * time if USB is loaded.
 1155      */
 1156     cx_next = &sc->cpu_cx_states[cx_next_idx];
 1157     if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0 &&
 1158         cx_next_idx > sc->cpu_non_c3 &&
 1159         (!cx_next->do_mwait || cx_next->mwait_bm_avoidance)) {
 1160         status = AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, &bm_active);
 1161         if (ACPI_SUCCESS(status) && bm_active != 0) {
 1162             AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, 1);
 1163             cx_next_idx = sc->cpu_non_c3;
 1164             cx_next = &sc->cpu_cx_states[cx_next_idx];
 1165         }
 1166     }
 1167 
 1168     /* Select the next state and update statistics. */
 1169     sc->cpu_cx_stats[cx_next_idx]++;
 1170     KASSERT(cx_next->type != ACPI_STATE_C0, ("acpi_cpu_idle: C0 sleep"));
 1171 
 1172     /*
 1173      * Execute HLT (or equivalent) and wait for an interrupt.  We can't
 1174      * precisely calculate the time spent in C1 since the place we wake up
 1175      * is an ISR.  Assume we slept no more then half of quantum, unless
 1176      * we are called inside critical section, delaying context switch.
 1177      */
 1178     if (cx_next->type == ACPI_STATE_C1) {
 1179         start_ticks = cpu_ticks();
 1180         if (cx_next->p_lvlx != NULL) {
 1181             /* C1 I/O then Halt */
 1182             CPU_GET_REG(cx_next->p_lvlx, 1);
 1183         }
 1184         if (cx_next->do_mwait)
 1185             acpi_cpu_idle_mwait(cx_next->mwait_hint);
 1186         else
 1187             acpi_cpu_c1();
 1188         end_ticks = cpu_ticks();
 1189         /* acpi_cpu_c1() returns with interrupts enabled. */
 1190         if (cx_next->do_mwait)
 1191             ACPI_ENABLE_IRQS();
 1192         end_time = ((end_ticks - start_ticks) << 20) / cpu_tickrate();
 1193         if (!cx_next->do_mwait && curthread->td_critnest == 0)
 1194                 end_time = min(end_time, 500000 / hz);
 1195         sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + end_time) / 4;
 1196         return;
 1197     }
 1198 
 1199     /*
 1200      * For C3, disable bus master arbitration and enable bus master wake
 1201      * if BM control is available, otherwise flush the CPU cache.
 1202      */
 1203     if (cx_next->type == ACPI_STATE_C3) {
 1204         if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
 1205             AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 1);
 1206             AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 1);
 1207         } else
 1208             ACPI_FLUSH_CPU_CACHE();
 1209     }
 1210 
 1211     /*
 1212      * Read from P_LVLx to enter C2(+), checking time spent asleep.
 1213      * Use the ACPI timer for measuring sleep time.  Since we need to
 1214      * get the time very close to the CPU start/stop clock logic, this
 1215      * is the only reliable time source.
 1216      */
 1217     if (cx_next->type == ACPI_STATE_C3) {
 1218         AcpiGetTimer(&start_time);
 1219         start_ticks = 0;
 1220     } else {
 1221         start_time = 0;
 1222         start_ticks = cpu_ticks();
 1223     }
 1224     if (cx_next->do_mwait) {
 1225         acpi_cpu_idle_mwait(cx_next->mwait_hint);
 1226     } else {
 1227         CPU_GET_REG(cx_next->p_lvlx, 1);
 1228         /*
 1229          * Read the end time twice.  Since it may take an arbitrary time
 1230          * to enter the idle state, the first read may be executed before
 1231          * the processor has stopped.  Doing it again provides enough
 1232          * margin that we are certain to have a correct value.
 1233          */
 1234         AcpiGetTimer(&end_time);
 1235     }
 1236 
 1237     if (cx_next->type == ACPI_STATE_C3)
 1238         AcpiGetTimer(&end_time);
 1239     else
 1240         end_ticks = cpu_ticks();
 1241 
 1242     /* Enable bus master arbitration and disable bus master wakeup. */
 1243     if (cx_next->type == ACPI_STATE_C3 &&
 1244       (cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
 1245         AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 0);
 1246         AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
 1247     }
 1248     ACPI_ENABLE_IRQS();
 1249 
 1250     if (cx_next->type == ACPI_STATE_C3)
 1251         AcpiGetTimerDuration(start_time, end_time, &end_time);
 1252     else
 1253         end_time = ((end_ticks - start_ticks) << 20) / cpu_tickrate();
 1254     sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + end_time) / 4;
 1255 }
 1256 #endif
 1257 
 1258 /*
 1259  * Re-evaluate the _CST object when we are notified that it changed.
 1260  */
 1261 static void
 1262 acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context)
 1263 {
 1264     struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)context;
 1265 
 1266     if (notify != ACPI_NOTIFY_CX_STATES)
 1267         return;
 1268 
 1269     /*
 1270      * C-state data for target CPU is going to be in flux while we execute
 1271      * acpi_cpu_cx_cst, so disable entering acpi_cpu_idle.
 1272      * Also, it may happen that multiple ACPI taskqueues may concurrently
 1273      * execute notifications for the same CPU.  ACPI_SERIAL is used to
 1274      * protect against that.
 1275      */
 1276     ACPI_SERIAL_BEGIN(cpu);
 1277     disable_idle(sc);
 1278 
 1279     /* Update the list of Cx states. */
 1280     acpi_cpu_cx_cst(sc);
 1281     acpi_cpu_cx_list(sc);
 1282     acpi_cpu_set_cx_lowest(sc);
 1283 
 1284     enable_idle(sc);
 1285     ACPI_SERIAL_END(cpu);
 1286 
 1287     acpi_UserNotify("PROCESSOR", sc->cpu_handle, notify);
 1288 }
 1289 
 1290 static void
 1291 acpi_cpu_quirks(void)
 1292 {
 1293     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
 1294 
 1295     /*
 1296      * Bus mastering arbitration control is needed to keep caches coherent
 1297      * while sleeping in C3.  If it's not present but a working flush cache
 1298      * instruction is present, flush the caches before entering C3 instead.
 1299      * Otherwise, just disable C3 completely.
 1300      */
 1301     if (AcpiGbl_FADT.Pm2ControlBlock == 0 ||
 1302         AcpiGbl_FADT.Pm2ControlLength == 0) {
 1303         if ((AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD) &&
 1304             (AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD_FLUSH) == 0) {
 1305             cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
 1306             ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1307                 "acpi_cpu: no BM control, using flush cache method\n"));
 1308         } else {
 1309             cpu_quirks |= CPU_QUIRK_NO_C3;
 1310             ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1311                 "acpi_cpu: no BM control, C3 not available\n"));
 1312         }
 1313     }
 1314 
 1315     /*
 1316      * If we are using generic Cx mode, C3 on multiple CPUs requires using
 1317      * the expensive flush cache instruction.
 1318      */
 1319     if (cpu_cx_generic && mp_ncpus > 1) {
 1320         cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
 1321         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1322             "acpi_cpu: SMP, using flush cache mode for C3\n"));
 1323     }
 1324 
 1325     /* Look for various quirks of the PIIX4 part. */
 1326     acpi_cpu_quirks_piix4();
 1327 }
 1328 
 1329 static void
 1330 acpi_cpu_quirks_piix4(void)
 1331 {
 1332 #ifdef __i386__
 1333     device_t acpi_dev;
 1334     uint32_t val;
 1335     ACPI_STATUS status;
 1336 
 1337     acpi_dev = pci_find_device(PCI_VENDOR_INTEL, PCI_DEVICE_82371AB_3);
 1338     if (acpi_dev != NULL) {
 1339         switch (pci_get_revid(acpi_dev)) {
 1340         /*
 1341          * Disable C3 support for all PIIX4 chipsets.  Some of these parts
 1342          * do not report the BMIDE status to the BM status register and
 1343          * others have a livelock bug if Type-F DMA is enabled.  Linux
 1344          * works around the BMIDE bug by reading the BM status directly
 1345          * but we take the simpler approach of disabling C3 for these
 1346          * parts.
 1347          *
 1348          * See erratum #18 ("C3 Power State/BMIDE and Type-F DMA
 1349          * Livelock") from the January 2002 PIIX4 specification update.
 1350          * Applies to all PIIX4 models.
 1351          *
 1352          * Also, make sure that all interrupts cause a "Stop Break"
 1353          * event to exit from C2 state.
 1354          * Also, BRLD_EN_BM (ACPI_BITREG_BUS_MASTER_RLD in ACPI-speak)
 1355          * should be set to zero, otherwise it causes C2 to short-sleep.
 1356          * PIIX4 doesn't properly support C3 and bus master activity
 1357          * need not break out of C2.
 1358          */
 1359         case PCI_REVISION_A_STEP:
 1360         case PCI_REVISION_B_STEP:
 1361         case PCI_REVISION_4E:
 1362         case PCI_REVISION_4M:
 1363             cpu_quirks |= CPU_QUIRK_NO_C3;
 1364             ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1365                 "acpi_cpu: working around PIIX4 bug, disabling C3\n"));
 1366 
 1367             val = pci_read_config(acpi_dev, PIIX4_DEVACTB_REG, 4);
 1368             if ((val & PIIX4_STOP_BREAK_MASK) != PIIX4_STOP_BREAK_MASK) {
 1369                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1370                     "acpi_cpu: PIIX4: enabling IRQs to generate Stop Break\n"));
 1371                 val |= PIIX4_STOP_BREAK_MASK;
 1372                 pci_write_config(acpi_dev, PIIX4_DEVACTB_REG, val, 4);
 1373             }
 1374             status = AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_RLD, &val);
 1375             if (ACPI_SUCCESS(status) && val != 0) {
 1376                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1377                     "acpi_cpu: PIIX4: reset BRLD_EN_BM\n"));
 1378                 AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
 1379             }
 1380             break;
 1381         default:
 1382             break;
 1383         }
 1384     }
 1385 #endif
 1386 }
 1387 
 1388 static int
 1389 acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS)
 1390 {
 1391     struct acpi_cpu_softc *sc;
 1392     struct sbuf  sb;
 1393     char         buf[128];
 1394     int          i;
 1395     uintmax_t    fract, sum, whole;
 1396 
 1397     sc = (struct acpi_cpu_softc *) arg1;
 1398     sum = 0;
 1399     for (i = 0; i < sc->cpu_cx_count; i++)
 1400         sum += sc->cpu_cx_stats[i];
 1401     sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
 1402     for (i = 0; i < sc->cpu_cx_count; i++) {
 1403         if (sum > 0) {
 1404             whole = (uintmax_t)sc->cpu_cx_stats[i] * 100;
 1405             fract = (whole % sum) * 100;
 1406             sbuf_printf(&sb, "%u.%02u%% ", (u_int)(whole / sum),
 1407                 (u_int)(fract / sum));
 1408         } else
 1409             sbuf_printf(&sb, "0.00%% ");
 1410     }
 1411     sbuf_printf(&sb, "last %dus", sc->cpu_prev_sleep);
 1412     sbuf_trim(&sb);
 1413     sbuf_finish(&sb);
 1414     sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
 1415     sbuf_delete(&sb);
 1416 
 1417     return (0);
 1418 }
 1419 
 1420 /*
 1421  * XXX TODO: actually add support to count each entry/exit
 1422  * from the Cx states.
 1423  */
 1424 static int
 1425 acpi_cpu_usage_counters_sysctl(SYSCTL_HANDLER_ARGS)
 1426 {
 1427     struct acpi_cpu_softc *sc;
 1428     struct sbuf  sb;
 1429     char         buf[128];
 1430     int          i;
 1431 
 1432     sc = (struct acpi_cpu_softc *) arg1;
 1433 
 1434     /* Print out the raw counters */
 1435     sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
 1436 
 1437     for (i = 0; i < sc->cpu_cx_count; i++) {
 1438         sbuf_printf(&sb, "%u ", sc->cpu_cx_stats[i]);
 1439     }
 1440 
 1441     sbuf_trim(&sb);
 1442     sbuf_finish(&sb);
 1443     sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
 1444     sbuf_delete(&sb);
 1445 
 1446     return (0);
 1447 }
 1448 
 1449 #if defined(__i386__) || defined(__amd64__)
 1450 static int
 1451 acpi_cpu_method_sysctl(SYSCTL_HANDLER_ARGS)
 1452 {
 1453         struct acpi_cpu_softc *sc;
 1454         struct acpi_cx *cx;
 1455         struct sbuf sb;
 1456         char buf[128];
 1457         int i;
 1458 
 1459         sc = (struct acpi_cpu_softc *)arg1;
 1460         sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
 1461         for (i = 0; i < sc->cpu_cx_count; i++) {
 1462                 cx = &sc->cpu_cx_states[i];
 1463                 sbuf_printf(&sb, "C%d/", i + 1);
 1464                 if (cx->do_mwait) {
 1465                         sbuf_cat(&sb, "mwait");
 1466                         if (cx->mwait_hw_coord)
 1467                                 sbuf_cat(&sb, "/hwc");
 1468                         if (cx->mwait_bm_avoidance)
 1469                                 sbuf_cat(&sb, "/bma");
 1470                 } else if (cx->type == ACPI_STATE_C1) {
 1471                         sbuf_cat(&sb, "hlt");
 1472                 } else {
 1473                         sbuf_cat(&sb, "io");
 1474                 }
 1475                 if (cx->type == ACPI_STATE_C1 && cx->p_lvlx != NULL)
 1476                         sbuf_cat(&sb, "/iohlt");
 1477                 sbuf_putc(&sb, ' ');
 1478         }
 1479         sbuf_trim(&sb);
 1480         sbuf_finish(&sb);
 1481         sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
 1482         sbuf_delete(&sb);
 1483         return (0);
 1484 }
 1485 #endif
 1486 
 1487 static int
 1488 acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc)
 1489 {
 1490     int i;
 1491 
 1492     ACPI_SERIAL_ASSERT(cpu);
 1493     sc->cpu_cx_lowest = min(sc->cpu_cx_lowest_lim, sc->cpu_cx_count - 1);
 1494 
 1495     /* If not disabling, cache the new lowest non-C3 state. */
 1496     sc->cpu_non_c3 = 0;
 1497     for (i = sc->cpu_cx_lowest; i >= 0; i--) {
 1498         if (sc->cpu_cx_states[i].type < ACPI_STATE_C3) {
 1499             sc->cpu_non_c3 = i;
 1500             break;
 1501         }
 1502     }
 1503 
 1504     /* Reset the statistics counters. */
 1505     bzero(sc->cpu_cx_stats, sizeof(sc->cpu_cx_stats));
 1506     return (0);
 1507 }
 1508 
 1509 static int
 1510 acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
 1511 {
 1512     struct       acpi_cpu_softc *sc;
 1513     char         state[8];
 1514     int          val, error;
 1515 
 1516     sc = (struct acpi_cpu_softc *) arg1;
 1517     snprintf(state, sizeof(state), "C%d", sc->cpu_cx_lowest_lim + 1);
 1518     error = sysctl_handle_string(oidp, state, sizeof(state), req);
 1519     if (error != 0 || req->newptr == NULL)
 1520         return (error);
 1521     if (strlen(state) < 2 || toupper(state[0]) != 'C')
 1522         return (EINVAL);
 1523     if (strcasecmp(state, "Cmax") == 0)
 1524         val = MAX_CX_STATES;
 1525     else {
 1526         val = (int) strtol(state + 1, NULL, 10);
 1527         if (val < 1 || val > MAX_CX_STATES)
 1528             return (EINVAL);
 1529     }
 1530 
 1531     ACPI_SERIAL_BEGIN(cpu);
 1532     sc->cpu_cx_lowest_lim = val - 1;
 1533     acpi_cpu_set_cx_lowest(sc);
 1534     ACPI_SERIAL_END(cpu);
 1535 
 1536     return (0);
 1537 }
 1538 
 1539 static int
 1540 acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
 1541 {
 1542     struct      acpi_cpu_softc *sc;
 1543     char        state[8];
 1544     int         val, error, i;
 1545 
 1546     snprintf(state, sizeof(state), "C%d", cpu_cx_lowest_lim + 1);
 1547     error = sysctl_handle_string(oidp, state, sizeof(state), req);
 1548     if (error != 0 || req->newptr == NULL)
 1549         return (error);
 1550     if (strlen(state) < 2 || toupper(state[0]) != 'C')
 1551         return (EINVAL);
 1552     if (strcasecmp(state, "Cmax") == 0)
 1553         val = MAX_CX_STATES;
 1554     else {
 1555         val = (int) strtol(state + 1, NULL, 10);
 1556         if (val < 1 || val > MAX_CX_STATES)
 1557             return (EINVAL);
 1558     }
 1559 
 1560     /* Update the new lowest useable Cx state for all CPUs. */
 1561     ACPI_SERIAL_BEGIN(cpu);
 1562     cpu_cx_lowest_lim = val - 1;
 1563     for (i = 0; i < cpu_ndevices; i++) {
 1564         sc = device_get_softc(cpu_devices[i]);
 1565         sc->cpu_cx_lowest_lim = cpu_cx_lowest_lim;
 1566         acpi_cpu_set_cx_lowest(sc);
 1567     }
 1568     ACPI_SERIAL_END(cpu);
 1569 
 1570     return (0);
 1571 }

Cache object: 498135d159cdb2aee4592e621c6353c9


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.