The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/acpica/acpi_cpu.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2003-2005 Nate Lawson (SDG)
    3  * Copyright (c) 2001 Michael Smith
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   25  * SUCH DAMAGE.
   26  */
   27 
   28 #include <sys/cdefs.h>
   29 __FBSDID("$FreeBSD$");
   30 
   31 #include "opt_acpi.h"
   32 #include <sys/param.h>
   33 #include <sys/bus.h>
   34 #include <sys/cpu.h>
   35 #include <sys/kernel.h>
   36 #include <sys/malloc.h>
   37 #include <sys/module.h>
   38 #include <sys/pcpu.h>
   39 #include <sys/power.h>
   40 #include <sys/proc.h>
   41 #include <sys/sbuf.h>
   42 #include <sys/smp.h>
   43 
   44 #include <dev/pci/pcivar.h>
   45 #include <machine/atomic.h>
   46 #include <machine/bus.h>
   47 #include <sys/rman.h>
   48 
   49 #include "acpi.h"
   50 #include <dev/acpica/acpivar.h>
   51 
   52 /*
   53  * Support for ACPI Processor devices, including C[1-3] sleep states.
   54  *
   55  * TODO: implement scans of all CPUs to be sure all Cx states are
   56  * equivalent.
   57  */
   58 
   59 /* Hooks for the ACPI CA debugging infrastructure */
   60 #define _COMPONENT      ACPI_PROCESSOR
   61 ACPI_MODULE_NAME("PROCESSOR")
   62 
   63 struct acpi_cx {
   64     struct resource     *p_lvlx;        /* Register to read to enter state. */
   65     uint32_t             type;          /* C1-3 (C4 and up treated as C3). */
   66     uint32_t             trans_lat;     /* Transition latency (usec). */
   67     uint32_t             power;         /* Power consumed (mW). */
   68     int                  res_type;      /* Resource type for p_lvlx. */
   69 };
   70 #define MAX_CX_STATES    8
   71 
   72 struct acpi_cpu_softc {
   73     device_t             cpu_dev;
   74     ACPI_HANDLE          cpu_handle;
   75     struct pcpu         *cpu_pcpu;
   76     uint32_t             cpu_acpi_id;   /* ACPI processor id */
   77     uint32_t             cpu_p_blk;     /* ACPI P_BLK location */
   78     uint32_t             cpu_p_blk_len; /* P_BLK length (must be 6). */
   79     struct acpi_cx       cpu_cx_states[MAX_CX_STATES];
   80     int                  cpu_cx_count;  /* Number of valid Cx states. */
   81     int                  cpu_prev_sleep;/* Last idle sleep duration. */
   82     int                  cpu_features;  /* Child driver supported features. */
   83 };
   84 
   85 struct acpi_cpu_device {
   86     struct resource_list        ad_rl;
   87 };
   88 
   89 #define CPU_GET_REG(reg, width)                                         \
   90     (bus_space_read_ ## width(rman_get_bustag((reg)),                   \
   91                       rman_get_bushandle((reg)), 0))
   92 #define CPU_SET_REG(reg, width, val)                                    \
   93     (bus_space_write_ ## width(rman_get_bustag((reg)),                  \
   94                        rman_get_bushandle((reg)), 0, (val)))
   95 
   96 #define PM_USEC(x)       ((x) >> 2)     /* ~4 clocks per usec (3.57955 Mhz) */
   97 
   98 #define ACPI_NOTIFY_CX_STATES   0x81    /* _CST changed. */
   99 
  100 #define CPU_QUIRK_NO_C3         (1<<0)  /* C3-type states are not usable. */
  101 #define CPU_QUIRK_NO_BM_CTRL    (1<<2)  /* No bus mastering control. */
  102 
  103 #define PCI_VENDOR_INTEL        0x8086
  104 #define PCI_DEVICE_82371AB_3    0x7113  /* PIIX4 chipset for quirks. */
  105 #define PCI_REVISION_A_STEP     0
  106 #define PCI_REVISION_B_STEP     1
  107 #define PCI_REVISION_4E         2
  108 #define PCI_REVISION_4M         3
  109 
  110 /* Platform hardware resource information. */
  111 static uint32_t          cpu_smi_cmd;   /* Value to write to SMI_CMD. */
  112 static uint8_t           cpu_cst_cnt;   /* Indicate we are _CST aware. */
  113 static int               cpu_rid;       /* Driver-wide resource id. */
  114 static int               cpu_quirks;    /* Indicate any hardware bugs. */
  115 
  116 /* Runtime state. */
  117 static int               cpu_cx_count;  /* Number of valid states */
  118 static int               cpu_non_c3;    /* Index of lowest non-C3 state. */
  119 static u_int             cpu_cx_stats[MAX_CX_STATES];/* Cx usage history. */
  120 
  121 /* Values for sysctl. */
  122 static struct sysctl_ctx_list acpi_cpu_sysctl_ctx;
  123 static struct sysctl_oid *acpi_cpu_sysctl_tree;
  124 static int               cpu_cx_lowest;
  125 static char              cpu_cx_supported[64];
  126 
  127 static device_t         *cpu_devices;
  128 static int               cpu_ndevices;
  129 static struct acpi_cpu_softc **cpu_softc;
  130 ACPI_SERIAL_DECL(cpu, "ACPI CPU");
  131 
  132 static int      acpi_cpu_probe(device_t dev);
  133 static int      acpi_cpu_attach(device_t dev);
  134 static int      acpi_pcpu_get_id(uint32_t idx, uint32_t *acpi_id,
  135                     uint32_t *cpu_id);
  136 static struct resource_list *acpi_cpu_get_rlist(device_t dev, device_t child);
  137 static device_t acpi_cpu_add_child(device_t dev, int order, const char *name,
  138                     int unit);
  139 static int      acpi_cpu_read_ivar(device_t dev, device_t child, int index,
  140                     uintptr_t *result);
  141 static int      acpi_cpu_shutdown(device_t dev);
  142 static int      acpi_cpu_cx_probe(struct acpi_cpu_softc *sc);
  143 static int      acpi_cpu_cx_cst(struct acpi_cpu_softc *sc);
  144 static void     acpi_cpu_startup(void *arg);
  145 static void     acpi_cpu_startup_cx(void);
  146 static void     acpi_cpu_idle(void);
  147 static void     acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context);
  148 static int      acpi_cpu_quirks(struct acpi_cpu_softc *sc);
  149 static int      acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS);
  150 static int      acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
  151 
  152 static device_method_t acpi_cpu_methods[] = {
  153     /* Device interface */
  154     DEVMETHOD(device_probe,     acpi_cpu_probe),
  155     DEVMETHOD(device_attach,    acpi_cpu_attach),
  156     DEVMETHOD(device_detach,    bus_generic_detach),
  157     DEVMETHOD(device_shutdown,  acpi_cpu_shutdown),
  158     DEVMETHOD(device_suspend,   bus_generic_suspend),
  159     DEVMETHOD(device_resume,    bus_generic_resume),
  160 
  161     /* Bus interface */
  162     DEVMETHOD(bus_add_child,    acpi_cpu_add_child),
  163     DEVMETHOD(bus_read_ivar,    acpi_cpu_read_ivar),
  164     DEVMETHOD(bus_get_resource_list, acpi_cpu_get_rlist),
  165     DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource),
  166     DEVMETHOD(bus_set_resource, bus_generic_rl_set_resource),
  167     DEVMETHOD(bus_alloc_resource, bus_generic_rl_alloc_resource),
  168     DEVMETHOD(bus_release_resource, bus_generic_rl_release_resource),
  169     DEVMETHOD(bus_driver_added, bus_generic_driver_added),
  170     DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
  171     DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
  172     DEVMETHOD(bus_setup_intr,   bus_generic_setup_intr),
  173     DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr),
  174 
  175     {0, 0}
  176 };
  177 
  178 static driver_t acpi_cpu_driver = {
  179     "cpu",
  180     acpi_cpu_methods,
  181     sizeof(struct acpi_cpu_softc),
  182 };
  183 
  184 static devclass_t acpi_cpu_devclass;
  185 DRIVER_MODULE(cpu, acpi, acpi_cpu_driver, acpi_cpu_devclass, 0, 0);
  186 MODULE_DEPEND(cpu, acpi, 1, 1, 1);
  187 
  188 static int
  189 acpi_cpu_probe(device_t dev)
  190 {
  191     int                    acpi_id, cpu_id, cx_count;
  192     ACPI_BUFFER            buf;
  193     ACPI_HANDLE            handle;
  194     char                   msg[32];
  195     ACPI_OBJECT            *obj;
  196     ACPI_STATUS            status;
  197 
  198     if (acpi_disabled("cpu") || acpi_get_type(dev) != ACPI_TYPE_PROCESSOR)
  199         return (ENXIO);
  200 
  201     handle = acpi_get_handle(dev);
  202     if (cpu_softc == NULL)
  203         cpu_softc = malloc(sizeof(struct acpi_cpu_softc *) *
  204             (mp_maxid + 1), M_TEMP /* XXX */, M_WAITOK | M_ZERO);
  205 
  206     /* Get our Processor object. */
  207     buf.Pointer = NULL;
  208     buf.Length = ACPI_ALLOCATE_BUFFER;
  209     status = AcpiEvaluateObject(handle, NULL, NULL, &buf);
  210     if (ACPI_FAILURE(status)) {
  211         device_printf(dev, "probe failed to get Processor obj - %s\n",
  212                       AcpiFormatException(status));
  213         return (ENXIO);
  214     }
  215     obj = (ACPI_OBJECT *)buf.Pointer;
  216     if (obj->Type != ACPI_TYPE_PROCESSOR) {
  217         device_printf(dev, "Processor object has bad type %d\n", obj->Type);
  218         AcpiOsFree(obj);
  219         return (ENXIO);
  220     }
  221 
  222     /*
  223      * Find the processor associated with our unit.  We could use the
  224      * ProcId as a key, however, some boxes do not have the same values
  225      * in their Processor object as the ProcId values in the MADT.
  226      */
  227     acpi_id = obj->Processor.ProcId;
  228     AcpiOsFree(obj);
  229     if (acpi_pcpu_get_id(device_get_unit(dev), &acpi_id, &cpu_id) != 0)
  230         return (ENXIO);
  231 
  232     /*
  233      * Check if we already probed this processor.  We scan the bus twice
  234      * so it's possible we've already seen this one.
  235      */
  236     if (cpu_softc[cpu_id] != NULL)
  237         return (ENXIO);
  238 
  239     /* Get a count of Cx states for our device string. */
  240     cx_count = 0;
  241     buf.Pointer = NULL;
  242     buf.Length = ACPI_ALLOCATE_BUFFER;
  243     status = AcpiEvaluateObject(handle, "_CST", NULL, &buf);
  244     if (ACPI_SUCCESS(status)) {
  245         obj = (ACPI_OBJECT *)buf.Pointer;
  246         if (ACPI_PKG_VALID(obj, 2))
  247             acpi_PkgInt32(obj, 0, &cx_count);
  248         AcpiOsFree(obj);
  249     } else {
  250         if (AcpiGbl_FADT->Plvl2Lat <= 100)
  251             cx_count++;
  252         if (AcpiGbl_FADT->Plvl3Lat <= 1000)
  253             cx_count++;
  254         if (cx_count > 0)
  255             cx_count++;
  256     }
  257     if (cx_count > 0)
  258         snprintf(msg, sizeof(msg), "ACPI CPU (%d Cx states)", cx_count);
  259     else
  260         strlcpy(msg, "ACPI CPU", sizeof(msg));
  261     device_set_desc_copy(dev, msg);
  262 
  263     /* Mark this processor as in-use and save our derived id for attach. */
  264     cpu_softc[cpu_id] = (void *)1;
  265     acpi_set_magic(dev, cpu_id);
  266 
  267     return (0);
  268 }
  269 
  270 static int
  271 acpi_cpu_attach(device_t dev)
  272 {
  273     ACPI_BUFFER            buf;
  274     ACPI_OBJECT            arg, *obj;
  275     ACPI_OBJECT_LIST       arglist;
  276     struct pcpu            *pcpu_data;
  277     struct acpi_cpu_softc *sc;
  278     struct acpi_softc     *acpi_sc;
  279     ACPI_STATUS            status;
  280     u_int                  features;
  281     int                    cpu_id, drv_count, i;
  282     driver_t              **drivers;
  283     uint32_t               cap_set[3];
  284 
  285     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
  286 
  287     sc = device_get_softc(dev);
  288     sc->cpu_dev = dev;
  289     sc->cpu_handle = acpi_get_handle(dev);
  290     cpu_id = acpi_get_magic(dev);
  291     cpu_softc[cpu_id] = sc;
  292     pcpu_data = pcpu_find(cpu_id);
  293     pcpu_data->pc_device = dev;
  294     sc->cpu_pcpu = pcpu_data;
  295     cpu_smi_cmd = AcpiGbl_FADT->SmiCmd;
  296     cpu_cst_cnt = AcpiGbl_FADT->CstCnt;
  297 
  298     buf.Pointer = NULL;
  299     buf.Length = ACPI_ALLOCATE_BUFFER;
  300     status = AcpiEvaluateObject(sc->cpu_handle, NULL, NULL, &buf);
  301     if (ACPI_FAILURE(status)) {
  302         device_printf(dev, "attach failed to get Processor obj - %s\n",
  303                       AcpiFormatException(status));
  304         return (ENXIO);
  305     }
  306     obj = (ACPI_OBJECT *)buf.Pointer;
  307     sc->cpu_p_blk = obj->Processor.PblkAddress;
  308     sc->cpu_p_blk_len = obj->Processor.PblkLength;
  309     sc->cpu_acpi_id = obj->Processor.ProcId;
  310     AcpiOsFree(obj);
  311     ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: P_BLK at %#x/%d\n",
  312                      device_get_unit(dev), sc->cpu_p_blk, sc->cpu_p_blk_len));
  313 
  314     acpi_sc = acpi_device_get_parent_softc(dev);
  315     sysctl_ctx_init(&acpi_cpu_sysctl_ctx);
  316     acpi_cpu_sysctl_tree = SYSCTL_ADD_NODE(&acpi_cpu_sysctl_ctx,
  317         SYSCTL_CHILDREN(acpi_sc->acpi_sysctl_tree), OID_AUTO, "cpu",
  318         CTLFLAG_RD, 0, "");
  319 
  320     /*
  321      * Before calling any CPU methods, collect child driver feature hints
  322      * and notify ACPI of them.
  323      */
  324     sc->cpu_features = 0;
  325     if (devclass_get_drivers(acpi_cpu_devclass, &drivers, &drv_count) == 0) {
  326         for (i = 0; i < drv_count; i++) {
  327             if (ACPI_GET_FEATURES(drivers[i], &features) == 0)
  328                 sc->cpu_features |= features;
  329         }
  330         free(drivers, M_TEMP);
  331     }
  332 
  333     /*
  334      * CPU capabilities are specified as a buffer of 32-bit integers:
  335      * revision, count, and one or more capabilities.  The revision of
  336      * "1" is not specified anywhere but seems to match Linux.  We should
  337      * also support _OSC here.
  338      */
  339     if (sc->cpu_features) {
  340         arglist.Pointer = &arg;
  341         arglist.Count = 1;
  342         arg.Type = ACPI_TYPE_BUFFER;
  343         arg.Buffer.Length = sizeof(cap_set);
  344         arg.Buffer.Pointer = (uint8_t *)cap_set;
  345         cap_set[0] = 1; /* revision */
  346         cap_set[1] = 1; /* number of capabilities integers */
  347         cap_set[2] = sc->cpu_features;
  348         AcpiEvaluateObject(sc->cpu_handle, "_PDC", &arglist, NULL);
  349     }
  350 
  351     /*
  352      * Probe for Cx state support.  If it isn't present, free up unused
  353      * resources.
  354      */
  355     if (acpi_cpu_cx_probe(sc) == 0) {
  356         status = AcpiInstallNotifyHandler(sc->cpu_handle, ACPI_DEVICE_NOTIFY,
  357                                           acpi_cpu_notify, sc);
  358         if (device_get_unit(dev) == 0)
  359             AcpiOsQueueForExecution(OSD_PRIORITY_LO, acpi_cpu_startup, NULL);
  360     } else
  361         sysctl_ctx_free(&acpi_cpu_sysctl_ctx);
  362 
  363     /* Finally,  call identify and probe/attach for child devices. */
  364     bus_generic_probe(dev);
  365     bus_generic_attach(dev);
  366 
  367     return (0);
  368 }
  369 
  370 /*
  371  * Find the nth present CPU and return its pc_cpuid as well as set the
  372  * pc_acpi_id from the most reliable source.
  373  */
  374 static int
  375 acpi_pcpu_get_id(uint32_t idx, uint32_t *acpi_id, uint32_t *cpu_id)
  376 {
  377     struct pcpu *pcpu_data;
  378     uint32_t     i;
  379 
  380     KASSERT(acpi_id != NULL, ("Null acpi_id"));
  381     KASSERT(cpu_id != NULL, ("Null cpu_id"));
  382     for (i = 0; i <= mp_maxid; i++) {
  383         if (CPU_ABSENT(i))
  384             continue;
  385         pcpu_data = pcpu_find(i);
  386         KASSERT(pcpu_data != NULL, ("no pcpu data for %d", i));
  387         if (idx-- == 0) {
  388             /*
  389              * If pc_acpi_id was not initialized (e.g., a non-APIC UP box)
  390              * override it with the value from the ASL.  Otherwise, if the
  391              * two don't match, prefer the MADT-derived value.  Finally,
  392              * return the pc_cpuid to reference this processor.
  393              */
  394             if (pcpu_data->pc_acpi_id == 0xffffffff)
  395                  pcpu_data->pc_acpi_id = *acpi_id;
  396             else if (pcpu_data->pc_acpi_id != *acpi_id)
  397                 *acpi_id = pcpu_data->pc_acpi_id;
  398             *cpu_id = pcpu_data->pc_cpuid;
  399             return (0);
  400         }
  401     }
  402 
  403     return (ESRCH);
  404 }
  405 
  406 static struct resource_list *
  407 acpi_cpu_get_rlist(device_t dev, device_t child)
  408 {
  409     struct acpi_cpu_device *ad;
  410 
  411     ad = device_get_ivars(child);
  412     if (ad == NULL)
  413         return (NULL);
  414     return (&ad->ad_rl);
  415 }
  416 
  417 static device_t
  418 acpi_cpu_add_child(device_t dev, int order, const char *name, int unit)
  419 {
  420     struct acpi_cpu_device  *ad;
  421     device_t            child;
  422 
  423     if ((ad = malloc(sizeof(*ad), M_TEMP, M_NOWAIT | M_ZERO)) == NULL)
  424         return (NULL);
  425 
  426     resource_list_init(&ad->ad_rl);
  427     
  428     child = device_add_child_ordered(dev, order, name, unit);
  429     if (child != NULL)
  430         device_set_ivars(child, ad);
  431     return (child);
  432 }
  433 
  434 static int
  435 acpi_cpu_read_ivar(device_t dev, device_t child, int index, uintptr_t *result)
  436 {
  437     struct acpi_cpu_softc *sc;
  438 
  439     sc = device_get_softc(dev);
  440     switch (index) {
  441     case ACPI_IVAR_HANDLE:
  442         *result = (uintptr_t)sc->cpu_handle;
  443         break;
  444     case CPU_IVAR_PCPU:
  445         *result = (uintptr_t)sc->cpu_pcpu;
  446         break;
  447     default:
  448         return (ENOENT);
  449     }
  450     return (0);
  451 }
  452 
  453 static int
  454 acpi_cpu_shutdown(device_t dev)
  455 {
  456     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
  457 
  458     /* Allow children to shutdown first. */
  459     bus_generic_shutdown(dev);
  460 
  461     /* Disable any entry to the idle function. */
  462     cpu_cx_count = 0;
  463 
  464     /* Signal and wait for all processors to exit acpi_cpu_idle(). */
  465     smp_rendezvous(NULL, NULL, NULL, NULL);
  466 
  467     return_VALUE (0);
  468 }
  469 
  470 static int
  471 acpi_cpu_cx_probe(struct acpi_cpu_softc *sc)
  472 {
  473     ACPI_GENERIC_ADDRESS gas;
  474     struct acpi_cx      *cx_ptr;
  475     int                  error;
  476 
  477     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
  478 
  479     /*
  480      * Bus mastering arbitration control is needed to keep caches coherent
  481      * while sleeping in C3.  If it's not present but a working flush cache
  482      * instruction is present, flush the caches before entering C3 instead.
  483      * Otherwise, just disable C3 completely.
  484      */
  485     if (AcpiGbl_FADT->V1_Pm2CntBlk == 0 || AcpiGbl_FADT->Pm2CntLen == 0) {
  486         if (AcpiGbl_FADT->WbInvd && AcpiGbl_FADT->WbInvdFlush == 0) {
  487             cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
  488             ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  489                 "acpi_cpu%d: no BM control, using flush cache method\n",
  490                 device_get_unit(sc->cpu_dev)));
  491         } else {
  492             cpu_quirks |= CPU_QUIRK_NO_C3;
  493             ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  494                 "acpi_cpu%d: no BM control, C3 not available\n",
  495                 device_get_unit(sc->cpu_dev)));
  496         }
  497     }
  498 
  499     /*
  500      * First, check for the ACPI 2.0 _CST sleep states object.
  501      * If not usable, fall back to the P_BLK's P_LVL2 and P_LVL3.
  502      */
  503     sc->cpu_cx_count = 0;
  504     error = acpi_cpu_cx_cst(sc);
  505     if (error != 0) {
  506         cx_ptr = sc->cpu_cx_states;
  507 
  508         /* C1 has been required since just after ACPI 1.0 */
  509         cx_ptr->type = ACPI_STATE_C1;
  510         cx_ptr->trans_lat = 0;
  511         cpu_non_c3 = 0;
  512         cx_ptr++;
  513         sc->cpu_cx_count++;
  514 
  515         /* 
  516          * The spec says P_BLK must be 6 bytes long.  However, some systems
  517          * use it to indicate a fractional set of features present so we
  518          * take 5 as C2.  Some may also have a value of 7 to indicate
  519          * another C3 but most use _CST for this (as required) and having
  520          * "only" C1-C3 is not a hardship.
  521          */
  522         if (sc->cpu_p_blk_len < 5)
  523             goto done;
  524 
  525         /* Validate and allocate resources for C2 (P_LVL2). */
  526         gas.AddressSpaceId = ACPI_ADR_SPACE_SYSTEM_IO;
  527         gas.RegisterBitWidth = 8;
  528         if (AcpiGbl_FADT->Plvl2Lat <= 100) {
  529             gas.Address = sc->cpu_p_blk + 4;
  530             acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &cpu_rid, &gas,
  531                 &cx_ptr->p_lvlx);
  532             if (cx_ptr->p_lvlx != NULL) {
  533                 cpu_rid++;
  534                 cx_ptr->type = ACPI_STATE_C2;
  535                 cx_ptr->trans_lat = AcpiGbl_FADT->Plvl2Lat;
  536                 cpu_non_c3 = 1;
  537                 cx_ptr++;
  538                 sc->cpu_cx_count++;
  539             }
  540         }
  541         if (sc->cpu_p_blk_len < 6)
  542             goto done;
  543 
  544         /* Validate and allocate resources for C3 (P_LVL3). */
  545         if (AcpiGbl_FADT->Plvl3Lat <= 1000 &&
  546             (cpu_quirks & CPU_QUIRK_NO_C3) == 0) {
  547             gas.Address = sc->cpu_p_blk + 5;
  548             acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &cpu_rid, &gas,
  549                 &cx_ptr->p_lvlx);
  550             if (cx_ptr->p_lvlx != NULL) {
  551                 cpu_rid++;
  552                 cx_ptr->type = ACPI_STATE_C3;
  553                 cx_ptr->trans_lat = AcpiGbl_FADT->Plvl3Lat;
  554                 cx_ptr++;
  555                 sc->cpu_cx_count++;
  556             }
  557         }
  558     }
  559 
  560 done:
  561     /* If no valid registers were found, don't attach. */
  562     if (sc->cpu_cx_count == 0)
  563         return (ENXIO);
  564 
  565     /* Use initial sleep value of 1 sec. to start with lowest idle state. */
  566     sc->cpu_prev_sleep = 1000000;
  567 
  568     return (0);
  569 }
  570 
  571 /*
  572  * Parse a _CST package and set up its Cx states.  Since the _CST object
  573  * can change dynamically, our notify handler may call this function
  574  * to clean up and probe the new _CST package.
  575  */
  576 static int
  577 acpi_cpu_cx_cst(struct acpi_cpu_softc *sc)
  578 {
  579     struct       acpi_cx *cx_ptr;
  580     ACPI_STATUS  status;
  581     ACPI_BUFFER  buf;
  582     ACPI_OBJECT *top;
  583     ACPI_OBJECT *pkg;
  584     uint32_t     count;
  585     int          i;
  586 
  587     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
  588 
  589     buf.Pointer = NULL;
  590     buf.Length = ACPI_ALLOCATE_BUFFER;
  591     status = AcpiEvaluateObject(sc->cpu_handle, "_CST", NULL, &buf);
  592     if (ACPI_FAILURE(status))
  593         return (ENXIO);
  594 
  595     /* _CST is a package with a count and at least one Cx package. */
  596     top = (ACPI_OBJECT *)buf.Pointer;
  597     if (!ACPI_PKG_VALID(top, 2) || acpi_PkgInt32(top, 0, &count) != 0) {
  598         device_printf(sc->cpu_dev, "Invalid _CST package\n");
  599         AcpiOsFree(buf.Pointer);
  600         return (ENXIO);
  601     }
  602     if (count != top->Package.Count - 1) {
  603         device_printf(sc->cpu_dev, "Invalid _CST state count (%d != %d)\n",
  604                count, top->Package.Count - 1);
  605         count = top->Package.Count - 1;
  606     }
  607     if (count > MAX_CX_STATES) {
  608         device_printf(sc->cpu_dev, "_CST has too many states (%d)\n", count);
  609         count = MAX_CX_STATES;
  610     }
  611 
  612     /* Set up all valid states. */
  613     sc->cpu_cx_count = 0;
  614     cx_ptr = sc->cpu_cx_states;
  615     for (i = 0; i < count; i++) {
  616         pkg = &top->Package.Elements[i + 1];
  617         if (!ACPI_PKG_VALID(pkg, 4) ||
  618             acpi_PkgInt32(pkg, 1, &cx_ptr->type) != 0 ||
  619             acpi_PkgInt32(pkg, 2, &cx_ptr->trans_lat) != 0 ||
  620             acpi_PkgInt32(pkg, 3, &cx_ptr->power) != 0) {
  621 
  622             device_printf(sc->cpu_dev, "Skipping invalid Cx state package\n");
  623             continue;
  624         }
  625 
  626         /* Validate the state to see if we should use it. */
  627         switch (cx_ptr->type) {
  628         case ACPI_STATE_C1:
  629             cpu_non_c3 = i;
  630             cx_ptr++;
  631             sc->cpu_cx_count++;
  632             continue;
  633         case ACPI_STATE_C2:
  634             if (cx_ptr->trans_lat > 100) {
  635                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  636                                  "acpi_cpu%d: C2[%d] not available.\n",
  637                                  device_get_unit(sc->cpu_dev), i));
  638                 continue;
  639             }
  640             cpu_non_c3 = i;
  641             break;
  642         case ACPI_STATE_C3:
  643         default:
  644             if (cx_ptr->trans_lat > 1000 ||
  645                 (cpu_quirks & CPU_QUIRK_NO_C3) != 0) {
  646 
  647                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  648                                  "acpi_cpu%d: C3[%d] not available.\n",
  649                                  device_get_unit(sc->cpu_dev), i));
  650                 continue;
  651             }
  652             break;
  653         }
  654 
  655 #ifdef notyet
  656         /* Free up any previous register. */
  657         if (cx_ptr->p_lvlx != NULL) {
  658             bus_release_resource(sc->cpu_dev, 0, 0, cx_ptr->p_lvlx);
  659             cx_ptr->p_lvlx = NULL;
  660         }
  661 #endif
  662 
  663         /* Allocate the control register for C2 or C3. */
  664         acpi_PkgGas(sc->cpu_dev, pkg, 0, &cx_ptr->res_type, &cpu_rid,
  665             &cx_ptr->p_lvlx);
  666         if (cx_ptr->p_lvlx) {
  667             cpu_rid++;
  668             ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  669                              "acpi_cpu%d: Got C%d - %d latency\n",
  670                              device_get_unit(sc->cpu_dev), cx_ptr->type,
  671                              cx_ptr->trans_lat));
  672             cx_ptr++;
  673             sc->cpu_cx_count++;
  674         }
  675     }
  676     AcpiOsFree(buf.Pointer);
  677 
  678     return (0);
  679 }
  680 
  681 /*
  682  * Call this *after* all CPUs have been attached.
  683  */
  684 static void
  685 acpi_cpu_startup(void *arg)
  686 {
  687     struct acpi_cpu_softc *sc;
  688     int count, i;
  689 
  690     /* Get set of CPU devices */
  691     devclass_get_devices(acpi_cpu_devclass, &cpu_devices, &cpu_ndevices);
  692 
  693     /* Check for quirks via the first CPU device. */
  694     sc = device_get_softc(cpu_devices[0]);
  695     acpi_cpu_quirks(sc);
  696 
  697     /*
  698      * Make sure all the processors' Cx counts match.  We should probably
  699      * also check the contents of each.  However, no known systems have
  700      * non-matching Cx counts so we'll deal with this later.
  701      */
  702     count = MAX_CX_STATES;
  703     for (i = 0; i < cpu_ndevices; i++) {
  704         sc = device_get_softc(cpu_devices[i]);
  705         count = min(sc->cpu_cx_count, count);
  706     }
  707     cpu_cx_count = count;
  708 
  709     /* Perform Cx final initialization. */
  710     sc = device_get_softc(cpu_devices[0]);
  711     if (cpu_cx_count > 0)
  712         acpi_cpu_startup_cx();
  713 }
  714 
  715 static void
  716 acpi_cpu_startup_cx()
  717 {
  718     struct acpi_cpu_softc *sc;
  719     struct sbuf sb;
  720     int i;
  721 
  722     /*
  723      * Set up the list of Cx states, eliminating C3 states by truncating
  724      * cpu_cx_count if quirks indicate C3 is not usable.
  725      */
  726     sc = device_get_softc(cpu_devices[0]);
  727     sbuf_new(&sb, cpu_cx_supported, sizeof(cpu_cx_supported), SBUF_FIXEDLEN);
  728     for (i = 0; i < cpu_cx_count; i++) {
  729         if ((cpu_quirks & CPU_QUIRK_NO_C3) == 0 ||
  730             sc->cpu_cx_states[i].type != ACPI_STATE_C3)
  731             sbuf_printf(&sb, "C%d/%d ", i + 1, sc->cpu_cx_states[i].trans_lat);
  732         else
  733             cpu_cx_count = i;
  734     }
  735     sbuf_trim(&sb);
  736     sbuf_finish(&sb);
  737     SYSCTL_ADD_STRING(&acpi_cpu_sysctl_ctx,
  738                       SYSCTL_CHILDREN(acpi_cpu_sysctl_tree),
  739                       OID_AUTO, "cx_supported", CTLFLAG_RD, cpu_cx_supported,
  740                       0, "Cx/microsecond values for supported Cx states");
  741     SYSCTL_ADD_PROC(&acpi_cpu_sysctl_ctx,
  742                     SYSCTL_CHILDREN(acpi_cpu_sysctl_tree),
  743                     OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW,
  744                     NULL, 0, acpi_cpu_cx_lowest_sysctl, "A",
  745                     "lowest Cx sleep state to use");
  746     SYSCTL_ADD_PROC(&acpi_cpu_sysctl_ctx,
  747                     SYSCTL_CHILDREN(acpi_cpu_sysctl_tree),
  748                     OID_AUTO, "cx_usage", CTLTYPE_STRING | CTLFLAG_RD,
  749                     NULL, 0, acpi_cpu_usage_sysctl, "A",
  750                     "percent usage for each Cx state");
  751 
  752 #ifdef notyet
  753     /* Signal platform that we can handle _CST notification. */
  754     if (cpu_cst_cnt != 0) {
  755         ACPI_LOCK(acpi);
  756         AcpiOsWritePort(cpu_smi_cmd, cpu_cst_cnt, 8);
  757         ACPI_UNLOCK(acpi);
  758     }
  759 #endif
  760 
  761     /* Take over idling from cpu_idle_default(). */
  762     cpu_idle_hook = acpi_cpu_idle;
  763 }
  764 
  765 /*
  766  * Idle the CPU in the lowest state possible.  This function is called with
  767  * interrupts disabled.  Note that once it re-enables interrupts, a task
  768  * switch can occur so do not access shared data (i.e. the softc) after
  769  * interrupts are re-enabled.
  770  */
  771 static void
  772 acpi_cpu_idle()
  773 {
  774     struct      acpi_cpu_softc *sc;
  775     struct      acpi_cx *cx_next;
  776     uint32_t    start_time, end_time;
  777     int         bm_active, cx_next_idx, i;
  778 
  779     /* If disabled, return immediately. */
  780     if (cpu_cx_count == 0) {
  781         ACPI_ENABLE_IRQS();
  782         return;
  783     }
  784 
  785     /*
  786      * Look up our CPU id to get our softc.  If it's NULL, we'll use C1
  787      * since there is no ACPI processor object for this CPU.  This occurs
  788      * for logical CPUs in the HTT case.
  789      */
  790     sc = cpu_softc[PCPU_GET(cpuid)];
  791     if (sc == NULL) {
  792         acpi_cpu_c1();
  793         return;
  794     }
  795 
  796     /*
  797      * If we slept 100 us or more, use the lowest Cx state.  Otherwise,
  798      * find the lowest state that has a latency less than or equal to
  799      * the length of our last sleep.
  800      */
  801     cx_next_idx = cpu_cx_lowest;
  802     if (sc->cpu_prev_sleep < 100)
  803         for (i = cpu_cx_lowest; i >= 0; i--)
  804             if (sc->cpu_cx_states[i].trans_lat <= sc->cpu_prev_sleep) {
  805                 cx_next_idx = i;
  806                 break;
  807             }
  808 
  809     /*
  810      * Check for bus master activity.  If there was activity, clear
  811      * the bit and use the lowest non-C3 state.  Note that the USB
  812      * driver polling for new devices keeps this bit set all the
  813      * time if USB is loaded.
  814      */
  815     if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
  816         AcpiGetRegister(ACPI_BITREG_BUS_MASTER_STATUS, &bm_active,
  817             ACPI_MTX_DO_NOT_LOCK);
  818         if (bm_active != 0) {
  819             AcpiSetRegister(ACPI_BITREG_BUS_MASTER_STATUS, 1,
  820                 ACPI_MTX_DO_NOT_LOCK);
  821             cx_next_idx = min(cx_next_idx, cpu_non_c3);
  822         }
  823     }
  824 
  825     /* Select the next state and update statistics. */
  826     cx_next = &sc->cpu_cx_states[cx_next_idx];
  827     cpu_cx_stats[cx_next_idx]++;
  828     KASSERT(cx_next->type != ACPI_STATE_C0, ("acpi_cpu_idle: C0 sleep"));
  829 
  830     /*
  831      * Execute HLT (or equivalent) and wait for an interrupt.  We can't
  832      * calculate the time spent in C1 since the place we wake up is an
  833      * ISR.  Assume we slept one quantum and return.
  834      */
  835     if (cx_next->type == ACPI_STATE_C1) {
  836         sc->cpu_prev_sleep = 1000000 / hz;
  837         acpi_cpu_c1();
  838         return;
  839     }
  840 
  841     /*
  842      * For C3, disable bus master arbitration and enable bus master wake
  843      * if BM control is available, otherwise flush the CPU cache.
  844      */
  845     if (cx_next->type == ACPI_STATE_C3) {
  846         if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
  847             AcpiSetRegister(ACPI_BITREG_ARB_DISABLE, 1, ACPI_MTX_DO_NOT_LOCK);
  848             AcpiSetRegister(ACPI_BITREG_BUS_MASTER_RLD, 1,
  849                 ACPI_MTX_DO_NOT_LOCK);
  850         } else
  851             ACPI_FLUSH_CPU_CACHE();
  852     }
  853 
  854     /*
  855      * Read from P_LVLx to enter C2(+), checking time spent asleep.
  856      * Use the ACPI timer for measuring sleep time.  Since we need to
  857      * get the time very close to the CPU start/stop clock logic, this
  858      * is the only reliable time source.
  859      */
  860     AcpiHwLowLevelRead(32, &start_time, &AcpiGbl_FADT->XPmTmrBlk);
  861     CPU_GET_REG(cx_next->p_lvlx, 1);
  862 
  863     /*
  864      * Read the end time twice.  Since it may take an arbitrary time
  865      * to enter the idle state, the first read may be executed before
  866      * the processor has stopped.  Doing it again provides enough
  867      * margin that we are certain to have a correct value.
  868      */
  869     AcpiHwLowLevelRead(32, &end_time, &AcpiGbl_FADT->XPmTmrBlk);
  870     AcpiHwLowLevelRead(32, &end_time, &AcpiGbl_FADT->XPmTmrBlk);
  871 
  872     /* Enable bus master arbitration and disable bus master wakeup. */
  873     if (cx_next->type == ACPI_STATE_C3 &&
  874         (cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
  875         AcpiSetRegister(ACPI_BITREG_ARB_DISABLE, 0, ACPI_MTX_DO_NOT_LOCK);
  876         AcpiSetRegister(ACPI_BITREG_BUS_MASTER_RLD, 0, ACPI_MTX_DO_NOT_LOCK);
  877     }
  878 
  879     /* Find the actual time asleep in microseconds, minus overhead. */
  880     end_time = acpi_TimerDelta(end_time, start_time);
  881     sc->cpu_prev_sleep = PM_USEC(end_time) - cx_next->trans_lat;
  882     ACPI_ENABLE_IRQS();
  883 }
  884 
  885 /*
  886  * Re-evaluate the _CST object when we are notified that it changed.
  887  *
  888  * XXX Re-evaluation disabled until locking is done.
  889  */
  890 static void
  891 acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context)
  892 {
  893     struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)context;
  894 
  895     if (notify != ACPI_NOTIFY_CX_STATES)
  896         return;
  897 
  898     device_printf(sc->cpu_dev, "Cx states changed\n");
  899     /* acpi_cpu_cx_cst(sc); */
  900 }
  901 
  902 static int
  903 acpi_cpu_quirks(struct acpi_cpu_softc *sc)
  904 {
  905     device_t acpi_dev;
  906 
  907     /*
  908      * C3 on multiple CPUs requires using the expensive flush cache
  909      * instruction.
  910      */
  911     if (mp_ncpus > 1)
  912         cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
  913 
  914     /* Look for various quirks of the PIIX4 part. */
  915     acpi_dev = pci_find_device(PCI_VENDOR_INTEL, PCI_DEVICE_82371AB_3);
  916     if (acpi_dev != NULL) {
  917         switch (pci_get_revid(acpi_dev)) {
  918         /*
  919          * Disable C3 support for all PIIX4 chipsets.  Some of these parts
  920          * do not report the BMIDE status to the BM status register and
  921          * others have a livelock bug if Type-F DMA is enabled.  Linux
  922          * works around the BMIDE bug by reading the BM status directly
  923          * but we take the simpler approach of disabling C3 for these
  924          * parts.
  925          *
  926          * See erratum #18 ("C3 Power State/BMIDE and Type-F DMA
  927          * Livelock") from the January 2002 PIIX4 specification update.
  928          * Applies to all PIIX4 models.
  929          */
  930         case PCI_REVISION_4E:
  931         case PCI_REVISION_4M:
  932             cpu_quirks |= CPU_QUIRK_NO_C3;
  933             break;
  934         default:
  935             break;
  936         }
  937     }
  938 
  939     return (0);
  940 }
  941 
  942 static int
  943 acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS)
  944 {
  945     struct sbuf  sb;
  946     char         buf[128];
  947     int          i;
  948     uintmax_t    fract, sum, whole;
  949 
  950     sum = 0;
  951     for (i = 0; i < cpu_cx_count; i++)
  952         sum += cpu_cx_stats[i];
  953     sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
  954     for (i = 0; i < cpu_cx_count; i++) {
  955         if (sum > 0) {
  956             whole = (uintmax_t)cpu_cx_stats[i] * 100;
  957             fract = (whole % sum) * 100;
  958             sbuf_printf(&sb, "%u.%02u%% ", (u_int)(whole / sum),
  959                 (u_int)(fract / sum));
  960         } else
  961             sbuf_printf(&sb, "0%% ");
  962     }
  963     sbuf_trim(&sb);
  964     sbuf_finish(&sb);
  965     sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
  966     sbuf_delete(&sb);
  967 
  968     return (0);
  969 }
  970 
  971 static int
  972 acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
  973 {
  974     struct       acpi_cpu_softc *sc;
  975     char         state[8];
  976     int          val, error, i;
  977 
  978     sc = device_get_softc(cpu_devices[0]);
  979     snprintf(state, sizeof(state), "C%d", cpu_cx_lowest + 1);
  980     error = sysctl_handle_string(oidp, state, sizeof(state), req);
  981     if (error != 0 || req->newptr == NULL)
  982         return (error);
  983     if (strlen(state) < 2 || toupper(state[0]) != 'C')
  984         return (EINVAL);
  985     val = (int) strtol(state + 1, NULL, 10) - 1;
  986     if (val < 0 || val > cpu_cx_count - 1)
  987         return (EINVAL);
  988 
  989     ACPI_SERIAL_BEGIN(cpu);
  990     cpu_cx_lowest = val;
  991 
  992     /* If not disabling, cache the new lowest non-C3 state. */
  993     cpu_non_c3 = 0;
  994     for (i = cpu_cx_lowest; i >= 0; i--) {
  995         if (sc->cpu_cx_states[i].type < ACPI_STATE_C3) {
  996             cpu_non_c3 = i;
  997             break;
  998         }
  999     }
 1000 
 1001     /* Reset the statistics counters. */
 1002     bzero(cpu_cx_stats, sizeof(cpu_cx_stats));
 1003     ACPI_SERIAL_END(cpu);
 1004 
 1005     return (0);
 1006 }

Cache object: 98557d5f89fe51720e93378a5715a4a3


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.