The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/acpica/acpi_cpu.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2003-2005 Nate Lawson (SDG)
    3  * Copyright (c) 2001 Michael Smith
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   25  * SUCH DAMAGE.
   26  */
   27 
   28 #include <sys/cdefs.h>
   29 __FBSDID("$FreeBSD: releng/6.0/sys/dev/acpica/acpi_cpu.c 144878 2005-04-10 19:21:42Z njl $");
   30 
   31 #include "opt_acpi.h"
   32 #include <sys/param.h>
   33 #include <sys/bus.h>
   34 #include <sys/cpu.h>
   35 #include <sys/kernel.h>
   36 #include <sys/malloc.h>
   37 #include <sys/module.h>
   38 #include <sys/pcpu.h>
   39 #include <sys/power.h>
   40 #include <sys/proc.h>
   41 #include <sys/sbuf.h>
   42 #include <sys/smp.h>
   43 
   44 #include <dev/pci/pcivar.h>
   45 #include <machine/atomic.h>
   46 #include <machine/bus.h>
   47 #include <sys/rman.h>
   48 
   49 #include "acpi.h"
   50 #include <dev/acpica/acpivar.h>
   51 
   52 /*
   53  * Support for ACPI Processor devices, including C[1-3] sleep states.
   54  *
   55  * TODO: implement scans of all CPUs to be sure all Cx states are
   56  * equivalent.
   57  */
   58 
   59 /* Hooks for the ACPI CA debugging infrastructure */
   60 #define _COMPONENT      ACPI_PROCESSOR
   61 ACPI_MODULE_NAME("PROCESSOR")
   62 
   63 struct acpi_cx {
   64     struct resource     *p_lvlx;        /* Register to read to enter state. */
   65     uint32_t             type;          /* C1-3 (C4 and up treated as C3). */
   66     uint32_t             trans_lat;     /* Transition latency (usec). */
   67     uint32_t             power;         /* Power consumed (mW). */
   68     int                  res_type;      /* Resource type for p_lvlx. */
   69 };
   70 #define MAX_CX_STATES    8
   71 
   72 struct acpi_cpu_softc {
   73     device_t             cpu_dev;
   74     ACPI_HANDLE          cpu_handle;
   75     struct pcpu         *cpu_pcpu;
   76     uint32_t             cpu_acpi_id;   /* ACPI processor id */
   77     uint32_t             cpu_p_blk;     /* ACPI P_BLK location */
   78     uint32_t             cpu_p_blk_len; /* P_BLK length (must be 6). */
   79     struct acpi_cx       cpu_cx_states[MAX_CX_STATES];
   80     int                  cpu_cx_count;  /* Number of valid Cx states. */
   81     int                  cpu_prev_sleep;/* Last idle sleep duration. */
   82     int                  cpu_features;  /* Child driver supported features. */
   83 };
   84 
   85 struct acpi_cpu_device {
   86     struct resource_list        ad_rl;
   87 };
   88 
   89 #define CPU_GET_REG(reg, width)                                         \
   90     (bus_space_read_ ## width(rman_get_bustag((reg)),                   \
   91                       rman_get_bushandle((reg)), 0))
   92 #define CPU_SET_REG(reg, width, val)                                    \
   93     (bus_space_write_ ## width(rman_get_bustag((reg)),                  \
   94                        rman_get_bushandle((reg)), 0, (val)))
   95 
   96 #define PM_USEC(x)       ((x) >> 2)     /* ~4 clocks per usec (3.57955 Mhz) */
   97 
   98 #define ACPI_NOTIFY_CX_STATES   0x81    /* _CST changed. */
   99 
  100 #define CPU_QUIRK_NO_C3         (1<<0)  /* C3-type states are not usable. */
  101 #define CPU_QUIRK_NO_BM_CTRL    (1<<2)  /* No bus mastering control. */
  102 
  103 #define PCI_VENDOR_INTEL        0x8086
  104 #define PCI_DEVICE_82371AB_3    0x7113  /* PIIX4 chipset for quirks. */
  105 #define PCI_REVISION_A_STEP     0
  106 #define PCI_REVISION_B_STEP     1
  107 #define PCI_REVISION_4E         2
  108 #define PCI_REVISION_4M         3
  109 
  110 /* Platform hardware resource information. */
  111 static uint32_t          cpu_smi_cmd;   /* Value to write to SMI_CMD. */
  112 static uint8_t           cpu_cst_cnt;   /* Indicate we are _CST aware. */
  113 static int               cpu_rid;       /* Driver-wide resource id. */
  114 static int               cpu_quirks;    /* Indicate any hardware bugs. */
  115 
  116 /* Runtime state. */
  117 static int               cpu_cx_count;  /* Number of valid states */
  118 static int               cpu_non_c3;    /* Index of lowest non-C3 state. */
  119 static u_int             cpu_cx_stats[MAX_CX_STATES];/* Cx usage history. */
  120 
  121 /* Values for sysctl. */
  122 static struct sysctl_ctx_list acpi_cpu_sysctl_ctx;
  123 static struct sysctl_oid *acpi_cpu_sysctl_tree;
  124 static int               cpu_cx_lowest;
  125 static char              cpu_cx_supported[64];
  126 
  127 static device_t         *cpu_devices;
  128 static int               cpu_ndevices;
  129 static struct acpi_cpu_softc **cpu_softc;
  130 ACPI_SERIAL_DECL(cpu, "ACPI CPU");
  131 
  132 static int      acpi_cpu_probe(device_t dev);
  133 static int      acpi_cpu_attach(device_t dev);
  134 static int      acpi_pcpu_get_id(uint32_t idx, uint32_t *acpi_id,
  135                     uint32_t *cpu_id);
  136 static struct resource_list *acpi_cpu_get_rlist(device_t dev, device_t child);
  137 static device_t acpi_cpu_add_child(device_t dev, int order, const char *name,
  138                     int unit);
  139 static int      acpi_cpu_read_ivar(device_t dev, device_t child, int index,
  140                     uintptr_t *result);
  141 static int      acpi_cpu_shutdown(device_t dev);
  142 static int      acpi_cpu_cx_probe(struct acpi_cpu_softc *sc);
  143 static int      acpi_cpu_cx_cst(struct acpi_cpu_softc *sc);
  144 static void     acpi_cpu_startup(void *arg);
  145 static void     acpi_cpu_startup_cx(void);
  146 static void     acpi_cpu_idle(void);
  147 static void     acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context);
  148 static int      acpi_cpu_quirks(struct acpi_cpu_softc *sc);
  149 static int      acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS);
  150 static int      acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
  151 
  152 static device_method_t acpi_cpu_methods[] = {
  153     /* Device interface */
  154     DEVMETHOD(device_probe,     acpi_cpu_probe),
  155     DEVMETHOD(device_attach,    acpi_cpu_attach),
  156     DEVMETHOD(device_detach,    bus_generic_detach),
  157     DEVMETHOD(device_shutdown,  acpi_cpu_shutdown),
  158     DEVMETHOD(device_suspend,   bus_generic_suspend),
  159     DEVMETHOD(device_resume,    bus_generic_resume),
  160 
  161     /* Bus interface */
  162     DEVMETHOD(bus_add_child,    acpi_cpu_add_child),
  163     DEVMETHOD(bus_read_ivar,    acpi_cpu_read_ivar),
  164     DEVMETHOD(bus_get_resource_list, acpi_cpu_get_rlist),
  165     DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource),
  166     DEVMETHOD(bus_set_resource, bus_generic_rl_set_resource),
  167     DEVMETHOD(bus_alloc_resource, bus_generic_rl_alloc_resource),
  168     DEVMETHOD(bus_release_resource, bus_generic_rl_release_resource),
  169     DEVMETHOD(bus_driver_added, bus_generic_driver_added),
  170     DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
  171     DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
  172     DEVMETHOD(bus_setup_intr,   bus_generic_setup_intr),
  173     DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr),
  174 
  175     {0, 0}
  176 };
  177 
  178 static driver_t acpi_cpu_driver = {
  179     "cpu",
  180     acpi_cpu_methods,
  181     sizeof(struct acpi_cpu_softc),
  182 };
  183 
  184 static devclass_t acpi_cpu_devclass;
  185 DRIVER_MODULE(cpu, acpi, acpi_cpu_driver, acpi_cpu_devclass, 0, 0);
  186 MODULE_DEPEND(cpu, acpi, 1, 1, 1);
  187 
  188 static int
  189 acpi_cpu_probe(device_t dev)
  190 {
  191     int                    acpi_id, cpu_id;
  192     ACPI_BUFFER            buf;
  193     ACPI_HANDLE            handle;
  194     ACPI_OBJECT            *obj;
  195     ACPI_STATUS            status;
  196 
  197     if (acpi_disabled("cpu") || acpi_get_type(dev) != ACPI_TYPE_PROCESSOR)
  198         return (ENXIO);
  199 
  200     handle = acpi_get_handle(dev);
  201     if (cpu_softc == NULL)
  202         cpu_softc = malloc(sizeof(struct acpi_cpu_softc *) *
  203             (mp_maxid + 1), M_TEMP /* XXX */, M_WAITOK | M_ZERO);
  204 
  205     /* Get our Processor object. */
  206     buf.Pointer = NULL;
  207     buf.Length = ACPI_ALLOCATE_BUFFER;
  208     status = AcpiEvaluateObject(handle, NULL, NULL, &buf);
  209     if (ACPI_FAILURE(status)) {
  210         device_printf(dev, "probe failed to get Processor obj - %s\n",
  211                       AcpiFormatException(status));
  212         return (ENXIO);
  213     }
  214     obj = (ACPI_OBJECT *)buf.Pointer;
  215     if (obj->Type != ACPI_TYPE_PROCESSOR) {
  216         device_printf(dev, "Processor object has bad type %d\n", obj->Type);
  217         AcpiOsFree(obj);
  218         return (ENXIO);
  219     }
  220 
  221     /*
  222      * Find the processor associated with our unit.  We could use the
  223      * ProcId as a key, however, some boxes do not have the same values
  224      * in their Processor object as the ProcId values in the MADT.
  225      */
  226     acpi_id = obj->Processor.ProcId;
  227     AcpiOsFree(obj);
  228     if (acpi_pcpu_get_id(device_get_unit(dev), &acpi_id, &cpu_id) != 0)
  229         return (ENXIO);
  230 
  231     /*
  232      * Check if we already probed this processor.  We scan the bus twice
  233      * so it's possible we've already seen this one.
  234      */
  235     if (cpu_softc[cpu_id] != NULL)
  236         return (ENXIO);
  237 
  238     /* Mark this processor as in-use and save our derived id for attach. */
  239     cpu_softc[cpu_id] = (void *)1;
  240     acpi_set_magic(dev, cpu_id);
  241     device_set_desc(dev, "ACPI CPU");
  242 
  243     return (0);
  244 }
  245 
  246 static int
  247 acpi_cpu_attach(device_t dev)
  248 {
  249     ACPI_BUFFER            buf;
  250     ACPI_OBJECT            arg, *obj;
  251     ACPI_OBJECT_LIST       arglist;
  252     struct pcpu            *pcpu_data;
  253     struct acpi_cpu_softc *sc;
  254     struct acpi_softc     *acpi_sc;
  255     ACPI_STATUS            status;
  256     u_int                  features;
  257     int                    cpu_id, drv_count, i;
  258     driver_t              **drivers;
  259     uint32_t               cap_set[3];
  260 
  261     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
  262 
  263     sc = device_get_softc(dev);
  264     sc->cpu_dev = dev;
  265     sc->cpu_handle = acpi_get_handle(dev);
  266     cpu_id = acpi_get_magic(dev);
  267     cpu_softc[cpu_id] = sc;
  268     pcpu_data = pcpu_find(cpu_id);
  269     pcpu_data->pc_device = dev;
  270     sc->cpu_pcpu = pcpu_data;
  271     cpu_smi_cmd = AcpiGbl_FADT->SmiCmd;
  272     cpu_cst_cnt = AcpiGbl_FADT->CstCnt;
  273 
  274     buf.Pointer = NULL;
  275     buf.Length = ACPI_ALLOCATE_BUFFER;
  276     status = AcpiEvaluateObject(sc->cpu_handle, NULL, NULL, &buf);
  277     if (ACPI_FAILURE(status)) {
  278         device_printf(dev, "attach failed to get Processor obj - %s\n",
  279                       AcpiFormatException(status));
  280         return (ENXIO);
  281     }
  282     obj = (ACPI_OBJECT *)buf.Pointer;
  283     sc->cpu_p_blk = obj->Processor.PblkAddress;
  284     sc->cpu_p_blk_len = obj->Processor.PblkLength;
  285     sc->cpu_acpi_id = obj->Processor.ProcId;
  286     AcpiOsFree(obj);
  287     ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: P_BLK at %#x/%d\n",
  288                      device_get_unit(dev), sc->cpu_p_blk, sc->cpu_p_blk_len));
  289 
  290     acpi_sc = acpi_device_get_parent_softc(dev);
  291     sysctl_ctx_init(&acpi_cpu_sysctl_ctx);
  292     acpi_cpu_sysctl_tree = SYSCTL_ADD_NODE(&acpi_cpu_sysctl_ctx,
  293         SYSCTL_CHILDREN(acpi_sc->acpi_sysctl_tree), OID_AUTO, "cpu",
  294         CTLFLAG_RD, 0, "");
  295 
  296     /*
  297      * Before calling any CPU methods, collect child driver feature hints
  298      * and notify ACPI of them.  We support unified SMP power control
  299      * so advertise this ourselves.  Note this is not the same as independent
  300      * SMP control where each CPU can have different settings.
  301      */
  302     sc->cpu_features = ACPI_CAP_SMP_SAME | ACPI_CAP_SMP_SAME_C3;
  303     if (devclass_get_drivers(acpi_cpu_devclass, &drivers, &drv_count) == 0) {
  304         for (i = 0; i < drv_count; i++) {
  305             if (ACPI_GET_FEATURES(drivers[i], &features) == 0)
  306                 sc->cpu_features |= features;
  307         }
  308         free(drivers, M_TEMP);
  309     }
  310 
  311     /*
  312      * CPU capabilities are specified as a buffer of 32-bit integers:
  313      * revision, count, and one or more capabilities.  The revision of
  314      * "1" is not specified anywhere but seems to match Linux.  We should
  315      * also support _OSC here.
  316      */
  317     if (sc->cpu_features) {
  318         arglist.Pointer = &arg;
  319         arglist.Count = 1;
  320         arg.Type = ACPI_TYPE_BUFFER;
  321         arg.Buffer.Length = sizeof(cap_set);
  322         arg.Buffer.Pointer = (uint8_t *)cap_set;
  323         cap_set[0] = 1; /* revision */
  324         cap_set[1] = 1; /* number of capabilities integers */
  325         cap_set[2] = sc->cpu_features;
  326         AcpiEvaluateObject(sc->cpu_handle, "_PDC", &arglist, NULL);
  327     }
  328 
  329     /*
  330      * Probe for Cx state support.  If it isn't present, free up unused
  331      * resources.
  332      */
  333     if (acpi_cpu_cx_probe(sc) == 0) {
  334         status = AcpiInstallNotifyHandler(sc->cpu_handle, ACPI_DEVICE_NOTIFY,
  335                                           acpi_cpu_notify, sc);
  336         if (device_get_unit(dev) == 0)
  337             AcpiOsQueueForExecution(OSD_PRIORITY_LO, acpi_cpu_startup, NULL);
  338     } else
  339         sysctl_ctx_free(&acpi_cpu_sysctl_ctx);
  340 
  341     /* Finally,  call identify and probe/attach for child devices. */
  342     bus_generic_probe(dev);
  343     bus_generic_attach(dev);
  344 
  345     return (0);
  346 }
  347 
  348 /*
  349  * Find the nth present CPU and return its pc_cpuid as well as set the
  350  * pc_acpi_id from the most reliable source.
  351  */
  352 static int
  353 acpi_pcpu_get_id(uint32_t idx, uint32_t *acpi_id, uint32_t *cpu_id)
  354 {
  355     struct pcpu *pcpu_data;
  356     uint32_t     i;
  357 
  358     KASSERT(acpi_id != NULL, ("Null acpi_id"));
  359     KASSERT(cpu_id != NULL, ("Null cpu_id"));
  360     for (i = 0; i <= mp_maxid; i++) {
  361         if (CPU_ABSENT(i))
  362             continue;
  363         pcpu_data = pcpu_find(i);
  364         KASSERT(pcpu_data != NULL, ("no pcpu data for %d", i));
  365         if (idx-- == 0) {
  366             /*
  367              * If pc_acpi_id was not initialized (e.g., a non-APIC UP box)
  368              * override it with the value from the ASL.  Otherwise, if the
  369              * two don't match, prefer the MADT-derived value.  Finally,
  370              * return the pc_cpuid to reference this processor.
  371              */
  372             if (pcpu_data->pc_acpi_id == 0xffffffff)
  373                  pcpu_data->pc_acpi_id = *acpi_id;
  374             else if (pcpu_data->pc_acpi_id != *acpi_id)
  375                 *acpi_id = pcpu_data->pc_acpi_id;
  376             *cpu_id = pcpu_data->pc_cpuid;
  377             return (0);
  378         }
  379     }
  380 
  381     return (ESRCH);
  382 }
  383 
  384 static struct resource_list *
  385 acpi_cpu_get_rlist(device_t dev, device_t child)
  386 {
  387     struct acpi_cpu_device *ad;
  388 
  389     ad = device_get_ivars(child);
  390     if (ad == NULL)
  391         return (NULL);
  392     return (&ad->ad_rl);
  393 }
  394 
  395 static device_t
  396 acpi_cpu_add_child(device_t dev, int order, const char *name, int unit)
  397 {
  398     struct acpi_cpu_device  *ad;
  399     device_t            child;
  400 
  401     if ((ad = malloc(sizeof(*ad), M_TEMP, M_NOWAIT | M_ZERO)) == NULL)
  402         return (NULL);
  403 
  404     resource_list_init(&ad->ad_rl);
  405     
  406     child = device_add_child_ordered(dev, order, name, unit);
  407     if (child != NULL)
  408         device_set_ivars(child, ad);
  409     else
  410         free(ad, M_TEMP);
  411     return (child);
  412 }
  413 
  414 static int
  415 acpi_cpu_read_ivar(device_t dev, device_t child, int index, uintptr_t *result)
  416 {
  417     struct acpi_cpu_softc *sc;
  418 
  419     sc = device_get_softc(dev);
  420     switch (index) {
  421     case ACPI_IVAR_HANDLE:
  422         *result = (uintptr_t)sc->cpu_handle;
  423         break;
  424     case CPU_IVAR_PCPU:
  425         *result = (uintptr_t)sc->cpu_pcpu;
  426         break;
  427     default:
  428         return (ENOENT);
  429     }
  430     return (0);
  431 }
  432 
  433 static int
  434 acpi_cpu_shutdown(device_t dev)
  435 {
  436     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
  437 
  438     /* Allow children to shutdown first. */
  439     bus_generic_shutdown(dev);
  440 
  441     /* Disable any entry to the idle function. */
  442     cpu_cx_count = 0;
  443 
  444     /* Signal and wait for all processors to exit acpi_cpu_idle(). */
  445     smp_rendezvous(NULL, NULL, NULL, NULL);
  446 
  447     return_VALUE (0);
  448 }
  449 
  450 static int
  451 acpi_cpu_cx_probe(struct acpi_cpu_softc *sc)
  452 {
  453     ACPI_GENERIC_ADDRESS gas;
  454     struct acpi_cx      *cx_ptr;
  455     int                  error;
  456 
  457     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
  458 
  459     /*
  460      * Bus mastering arbitration control is needed to keep caches coherent
  461      * while sleeping in C3.  If it's not present but a working flush cache
  462      * instruction is present, flush the caches before entering C3 instead.
  463      * Otherwise, just disable C3 completely.
  464      */
  465     if (AcpiGbl_FADT->V1_Pm2CntBlk == 0 || AcpiGbl_FADT->Pm2CntLen == 0) {
  466         if (AcpiGbl_FADT->WbInvd && AcpiGbl_FADT->WbInvdFlush == 0) {
  467             cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
  468             ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  469                 "acpi_cpu%d: no BM control, using flush cache method\n",
  470                 device_get_unit(sc->cpu_dev)));
  471         } else {
  472             cpu_quirks |= CPU_QUIRK_NO_C3;
  473             ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  474                 "acpi_cpu%d: no BM control, C3 not available\n",
  475                 device_get_unit(sc->cpu_dev)));
  476         }
  477     }
  478 
  479     /*
  480      * First, check for the ACPI 2.0 _CST sleep states object.
  481      * If not usable, fall back to the P_BLK's P_LVL2 and P_LVL3.
  482      */
  483     sc->cpu_cx_count = 0;
  484     error = acpi_cpu_cx_cst(sc);
  485     if (error != 0) {
  486         cx_ptr = sc->cpu_cx_states;
  487 
  488         /* C1 has been required since just after ACPI 1.0 */
  489         cx_ptr->type = ACPI_STATE_C1;
  490         cx_ptr->trans_lat = 0;
  491         cpu_non_c3 = 0;
  492         cx_ptr++;
  493         sc->cpu_cx_count++;
  494 
  495         /* 
  496          * The spec says P_BLK must be 6 bytes long.  However, some systems
  497          * use it to indicate a fractional set of features present so we
  498          * take 5 as C2.  Some may also have a value of 7 to indicate
  499          * another C3 but most use _CST for this (as required) and having
  500          * "only" C1-C3 is not a hardship.
  501          */
  502         if (sc->cpu_p_blk_len < 5)
  503             goto done;
  504 
  505         /* Validate and allocate resources for C2 (P_LVL2). */
  506         gas.AddressSpaceId = ACPI_ADR_SPACE_SYSTEM_IO;
  507         gas.RegisterBitWidth = 8;
  508         if (AcpiGbl_FADT->Plvl2Lat <= 100) {
  509             gas.Address = sc->cpu_p_blk + 4;
  510             acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &cpu_rid, &gas,
  511                 &cx_ptr->p_lvlx);
  512             if (cx_ptr->p_lvlx != NULL) {
  513                 cpu_rid++;
  514                 cx_ptr->type = ACPI_STATE_C2;
  515                 cx_ptr->trans_lat = AcpiGbl_FADT->Plvl2Lat;
  516                 cpu_non_c3 = 1;
  517                 cx_ptr++;
  518                 sc->cpu_cx_count++;
  519             }
  520         }
  521         if (sc->cpu_p_blk_len < 6)
  522             goto done;
  523 
  524         /* Validate and allocate resources for C3 (P_LVL3). */
  525         if (AcpiGbl_FADT->Plvl3Lat <= 1000 &&
  526             (cpu_quirks & CPU_QUIRK_NO_C3) == 0) {
  527             gas.Address = sc->cpu_p_blk + 5;
  528             acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &cpu_rid, &gas,
  529                 &cx_ptr->p_lvlx);
  530             if (cx_ptr->p_lvlx != NULL) {
  531                 cpu_rid++;
  532                 cx_ptr->type = ACPI_STATE_C3;
  533                 cx_ptr->trans_lat = AcpiGbl_FADT->Plvl3Lat;
  534                 cx_ptr++;
  535                 sc->cpu_cx_count++;
  536             }
  537         }
  538     }
  539 
  540 done:
  541     /* If no valid registers were found, don't attach. */
  542     if (sc->cpu_cx_count == 0)
  543         return (ENXIO);
  544 
  545     /* Use initial sleep value of 1 sec. to start with lowest idle state. */
  546     sc->cpu_prev_sleep = 1000000;
  547 
  548     return (0);
  549 }
  550 
  551 /*
  552  * Parse a _CST package and set up its Cx states.  Since the _CST object
  553  * can change dynamically, our notify handler may call this function
  554  * to clean up and probe the new _CST package.
  555  */
  556 static int
  557 acpi_cpu_cx_cst(struct acpi_cpu_softc *sc)
  558 {
  559     struct       acpi_cx *cx_ptr;
  560     ACPI_STATUS  status;
  561     ACPI_BUFFER  buf;
  562     ACPI_OBJECT *top;
  563     ACPI_OBJECT *pkg;
  564     uint32_t     count;
  565     int          i;
  566 
  567     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
  568 
  569     buf.Pointer = NULL;
  570     buf.Length = ACPI_ALLOCATE_BUFFER;
  571     status = AcpiEvaluateObject(sc->cpu_handle, "_CST", NULL, &buf);
  572     if (ACPI_FAILURE(status))
  573         return (ENXIO);
  574 
  575     /* _CST is a package with a count and at least one Cx package. */
  576     top = (ACPI_OBJECT *)buf.Pointer;
  577     if (!ACPI_PKG_VALID(top, 2) || acpi_PkgInt32(top, 0, &count) != 0) {
  578         device_printf(sc->cpu_dev, "Invalid _CST package\n");
  579         AcpiOsFree(buf.Pointer);
  580         return (ENXIO);
  581     }
  582     if (count != top->Package.Count - 1) {
  583         device_printf(sc->cpu_dev, "Invalid _CST state count (%d != %d)\n",
  584                count, top->Package.Count - 1);
  585         count = top->Package.Count - 1;
  586     }
  587     if (count > MAX_CX_STATES) {
  588         device_printf(sc->cpu_dev, "_CST has too many states (%d)\n", count);
  589         count = MAX_CX_STATES;
  590     }
  591 
  592     /* Set up all valid states. */
  593     sc->cpu_cx_count = 0;
  594     cx_ptr = sc->cpu_cx_states;
  595     for (i = 0; i < count; i++) {
  596         pkg = &top->Package.Elements[i + 1];
  597         if (!ACPI_PKG_VALID(pkg, 4) ||
  598             acpi_PkgInt32(pkg, 1, &cx_ptr->type) != 0 ||
  599             acpi_PkgInt32(pkg, 2, &cx_ptr->trans_lat) != 0 ||
  600             acpi_PkgInt32(pkg, 3, &cx_ptr->power) != 0) {
  601 
  602             device_printf(sc->cpu_dev, "Skipping invalid Cx state package\n");
  603             continue;
  604         }
  605 
  606         /* Validate the state to see if we should use it. */
  607         switch (cx_ptr->type) {
  608         case ACPI_STATE_C1:
  609             cpu_non_c3 = i;
  610             cx_ptr++;
  611             sc->cpu_cx_count++;
  612             continue;
  613         case ACPI_STATE_C2:
  614             if (cx_ptr->trans_lat > 100) {
  615                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  616                                  "acpi_cpu%d: C2[%d] not available.\n",
  617                                  device_get_unit(sc->cpu_dev), i));
  618                 continue;
  619             }
  620             cpu_non_c3 = i;
  621             break;
  622         case ACPI_STATE_C3:
  623         default:
  624             if (cx_ptr->trans_lat > 1000 ||
  625                 (cpu_quirks & CPU_QUIRK_NO_C3) != 0) {
  626 
  627                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  628                                  "acpi_cpu%d: C3[%d] not available.\n",
  629                                  device_get_unit(sc->cpu_dev), i));
  630                 continue;
  631             }
  632             break;
  633         }
  634 
  635 #ifdef notyet
  636         /* Free up any previous register. */
  637         if (cx_ptr->p_lvlx != NULL) {
  638             bus_release_resource(sc->cpu_dev, 0, 0, cx_ptr->p_lvlx);
  639             cx_ptr->p_lvlx = NULL;
  640         }
  641 #endif
  642 
  643         /* Allocate the control register for C2 or C3. */
  644         acpi_PkgGas(sc->cpu_dev, pkg, 0, &cx_ptr->res_type, &cpu_rid,
  645             &cx_ptr->p_lvlx);
  646         if (cx_ptr->p_lvlx) {
  647             cpu_rid++;
  648             ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  649                              "acpi_cpu%d: Got C%d - %d latency\n",
  650                              device_get_unit(sc->cpu_dev), cx_ptr->type,
  651                              cx_ptr->trans_lat));
  652             cx_ptr++;
  653             sc->cpu_cx_count++;
  654         }
  655     }
  656     AcpiOsFree(buf.Pointer);
  657 
  658     return (0);
  659 }
  660 
  661 /*
  662  * Call this *after* all CPUs have been attached.
  663  */
  664 static void
  665 acpi_cpu_startup(void *arg)
  666 {
  667     struct acpi_cpu_softc *sc;
  668     int count, i;
  669 
  670     /* Get set of CPU devices */
  671     devclass_get_devices(acpi_cpu_devclass, &cpu_devices, &cpu_ndevices);
  672 
  673     /* Check for quirks via the first CPU device. */
  674     sc = device_get_softc(cpu_devices[0]);
  675     acpi_cpu_quirks(sc);
  676 
  677     /*
  678      * Make sure all the processors' Cx counts match.  We should probably
  679      * also check the contents of each.  However, no known systems have
  680      * non-matching Cx counts so we'll deal with this later.
  681      */
  682     count = MAX_CX_STATES;
  683     for (i = 0; i < cpu_ndevices; i++) {
  684         sc = device_get_softc(cpu_devices[i]);
  685         count = min(sc->cpu_cx_count, count);
  686     }
  687     cpu_cx_count = count;
  688 
  689     /* Perform Cx final initialization. */
  690     sc = device_get_softc(cpu_devices[0]);
  691     if (cpu_cx_count > 0)
  692         acpi_cpu_startup_cx();
  693 }
  694 
  695 static void
  696 acpi_cpu_startup_cx()
  697 {
  698     struct acpi_cpu_softc *sc;
  699     struct sbuf sb;
  700     int i;
  701 
  702     /*
  703      * Set up the list of Cx states, eliminating C3 states by truncating
  704      * cpu_cx_count if quirks indicate C3 is not usable.
  705      */
  706     sc = device_get_softc(cpu_devices[0]);
  707     sbuf_new(&sb, cpu_cx_supported, sizeof(cpu_cx_supported), SBUF_FIXEDLEN);
  708     for (i = 0; i < cpu_cx_count; i++) {
  709         if ((cpu_quirks & CPU_QUIRK_NO_C3) == 0 ||
  710             sc->cpu_cx_states[i].type != ACPI_STATE_C3)
  711             sbuf_printf(&sb, "C%d/%d ", i + 1, sc->cpu_cx_states[i].trans_lat);
  712         else
  713             cpu_cx_count = i;
  714     }
  715     sbuf_trim(&sb);
  716     sbuf_finish(&sb);
  717     SYSCTL_ADD_STRING(&acpi_cpu_sysctl_ctx,
  718                       SYSCTL_CHILDREN(acpi_cpu_sysctl_tree),
  719                       OID_AUTO, "cx_supported", CTLFLAG_RD, cpu_cx_supported,
  720                       0, "Cx/microsecond values for supported Cx states");
  721     SYSCTL_ADD_PROC(&acpi_cpu_sysctl_ctx,
  722                     SYSCTL_CHILDREN(acpi_cpu_sysctl_tree),
  723                     OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW,
  724                     NULL, 0, acpi_cpu_cx_lowest_sysctl, "A",
  725                     "lowest Cx sleep state to use");
  726     SYSCTL_ADD_PROC(&acpi_cpu_sysctl_ctx,
  727                     SYSCTL_CHILDREN(acpi_cpu_sysctl_tree),
  728                     OID_AUTO, "cx_usage", CTLTYPE_STRING | CTLFLAG_RD,
  729                     NULL, 0, acpi_cpu_usage_sysctl, "A",
  730                     "percent usage for each Cx state");
  731 
  732 #ifdef notyet
  733     /* Signal platform that we can handle _CST notification. */
  734     if (cpu_cst_cnt != 0) {
  735         ACPI_LOCK(acpi);
  736         AcpiOsWritePort(cpu_smi_cmd, cpu_cst_cnt, 8);
  737         ACPI_UNLOCK(acpi);
  738     }
  739 #endif
  740 
  741     /* Take over idling from cpu_idle_default(). */
  742     cpu_idle_hook = acpi_cpu_idle;
  743 }
  744 
  745 /*
  746  * Idle the CPU in the lowest state possible.  This function is called with
  747  * interrupts disabled.  Note that once it re-enables interrupts, a task
  748  * switch can occur so do not access shared data (i.e. the softc) after
  749  * interrupts are re-enabled.
  750  */
  751 static void
  752 acpi_cpu_idle()
  753 {
  754     struct      acpi_cpu_softc *sc;
  755     struct      acpi_cx *cx_next;
  756     uint32_t    start_time, end_time;
  757     int         bm_active, cx_next_idx, i;
  758 
  759     /* If disabled, return immediately. */
  760     if (cpu_cx_count == 0) {
  761         ACPI_ENABLE_IRQS();
  762         return;
  763     }
  764 
  765     /*
  766      * Look up our CPU id to get our softc.  If it's NULL, we'll use C1
  767      * since there is no ACPI processor object for this CPU.  This occurs
  768      * for logical CPUs in the HTT case.
  769      */
  770     sc = cpu_softc[PCPU_GET(cpuid)];
  771     if (sc == NULL) {
  772         acpi_cpu_c1();
  773         return;
  774     }
  775 
  776     /*
  777      * If we slept 100 us or more, use the lowest Cx state.  Otherwise,
  778      * find the lowest state that has a latency less than or equal to
  779      * the length of our last sleep.
  780      */
  781     cx_next_idx = cpu_cx_lowest;
  782     if (sc->cpu_prev_sleep < 100)
  783         for (i = cpu_cx_lowest; i >= 0; i--)
  784             if (sc->cpu_cx_states[i].trans_lat <= sc->cpu_prev_sleep) {
  785                 cx_next_idx = i;
  786                 break;
  787             }
  788 
  789     /*
  790      * Check for bus master activity.  If there was activity, clear
  791      * the bit and use the lowest non-C3 state.  Note that the USB
  792      * driver polling for new devices keeps this bit set all the
  793      * time if USB is loaded.
  794      */
  795     if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
  796         AcpiGetRegister(ACPI_BITREG_BUS_MASTER_STATUS, &bm_active,
  797             ACPI_MTX_DO_NOT_LOCK);
  798         if (bm_active != 0) {
  799             AcpiSetRegister(ACPI_BITREG_BUS_MASTER_STATUS, 1,
  800                 ACPI_MTX_DO_NOT_LOCK);
  801             cx_next_idx = min(cx_next_idx, cpu_non_c3);
  802         }
  803     }
  804 
  805     /* Select the next state and update statistics. */
  806     cx_next = &sc->cpu_cx_states[cx_next_idx];
  807     cpu_cx_stats[cx_next_idx]++;
  808     KASSERT(cx_next->type != ACPI_STATE_C0, ("acpi_cpu_idle: C0 sleep"));
  809 
  810     /*
  811      * Execute HLT (or equivalent) and wait for an interrupt.  We can't
  812      * calculate the time spent in C1 since the place we wake up is an
  813      * ISR.  Assume we slept one quantum and return.
  814      */
  815     if (cx_next->type == ACPI_STATE_C1) {
  816         sc->cpu_prev_sleep = 1000000 / hz;
  817         acpi_cpu_c1();
  818         return;
  819     }
  820 
  821     /*
  822      * For C3, disable bus master arbitration and enable bus master wake
  823      * if BM control is available, otherwise flush the CPU cache.
  824      */
  825     if (cx_next->type == ACPI_STATE_C3) {
  826         if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
  827             AcpiSetRegister(ACPI_BITREG_ARB_DISABLE, 1, ACPI_MTX_DO_NOT_LOCK);
  828             AcpiSetRegister(ACPI_BITREG_BUS_MASTER_RLD, 1,
  829                 ACPI_MTX_DO_NOT_LOCK);
  830         } else
  831             ACPI_FLUSH_CPU_CACHE();
  832     }
  833 
  834     /*
  835      * Read from P_LVLx to enter C2(+), checking time spent asleep.
  836      * Use the ACPI timer for measuring sleep time.  Since we need to
  837      * get the time very close to the CPU start/stop clock logic, this
  838      * is the only reliable time source.
  839      */
  840     AcpiHwLowLevelRead(32, &start_time, &AcpiGbl_FADT->XPmTmrBlk);
  841     CPU_GET_REG(cx_next->p_lvlx, 1);
  842 
  843     /*
  844      * Read the end time twice.  Since it may take an arbitrary time
  845      * to enter the idle state, the first read may be executed before
  846      * the processor has stopped.  Doing it again provides enough
  847      * margin that we are certain to have a correct value.
  848      */
  849     AcpiHwLowLevelRead(32, &end_time, &AcpiGbl_FADT->XPmTmrBlk);
  850     AcpiHwLowLevelRead(32, &end_time, &AcpiGbl_FADT->XPmTmrBlk);
  851 
  852     /* Enable bus master arbitration and disable bus master wakeup. */
  853     if (cx_next->type == ACPI_STATE_C3 &&
  854         (cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
  855         AcpiSetRegister(ACPI_BITREG_ARB_DISABLE, 0, ACPI_MTX_DO_NOT_LOCK);
  856         AcpiSetRegister(ACPI_BITREG_BUS_MASTER_RLD, 0, ACPI_MTX_DO_NOT_LOCK);
  857     }
  858 
  859     /* Find the actual time asleep in microseconds, minus overhead. */
  860     end_time = acpi_TimerDelta(end_time, start_time);
  861     sc->cpu_prev_sleep = PM_USEC(end_time) - cx_next->trans_lat;
  862     ACPI_ENABLE_IRQS();
  863 }
  864 
  865 /*
  866  * Re-evaluate the _CST object when we are notified that it changed.
  867  *
  868  * XXX Re-evaluation disabled until locking is done.
  869  */
  870 static void
  871 acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context)
  872 {
  873     struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)context;
  874 
  875     if (notify != ACPI_NOTIFY_CX_STATES)
  876         return;
  877 
  878     device_printf(sc->cpu_dev, "Cx states changed\n");
  879     /* acpi_cpu_cx_cst(sc); */
  880 }
  881 
  882 static int
  883 acpi_cpu_quirks(struct acpi_cpu_softc *sc)
  884 {
  885     device_t acpi_dev;
  886 
  887     /*
  888      * C3 on multiple CPUs requires using the expensive flush cache
  889      * instruction.
  890      */
  891     if (mp_ncpus > 1)
  892         cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
  893 
  894     /* Look for various quirks of the PIIX4 part. */
  895     acpi_dev = pci_find_device(PCI_VENDOR_INTEL, PCI_DEVICE_82371AB_3);
  896     if (acpi_dev != NULL) {
  897         switch (pci_get_revid(acpi_dev)) {
  898         /*
  899          * Disable C3 support for all PIIX4 chipsets.  Some of these parts
  900          * do not report the BMIDE status to the BM status register and
  901          * others have a livelock bug if Type-F DMA is enabled.  Linux
  902          * works around the BMIDE bug by reading the BM status directly
  903          * but we take the simpler approach of disabling C3 for these
  904          * parts.
  905          *
  906          * See erratum #18 ("C3 Power State/BMIDE and Type-F DMA
  907          * Livelock") from the January 2002 PIIX4 specification update.
  908          * Applies to all PIIX4 models.
  909          */
  910         case PCI_REVISION_4E:
  911         case PCI_REVISION_4M:
  912             cpu_quirks |= CPU_QUIRK_NO_C3;
  913             break;
  914         default:
  915             break;
  916         }
  917     }
  918 
  919     return (0);
  920 }
  921 
  922 static int
  923 acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS)
  924 {
  925     struct sbuf  sb;
  926     char         buf[128];
  927     int          i;
  928     uintmax_t    fract, sum, whole;
  929 
  930     sum = 0;
  931     for (i = 0; i < cpu_cx_count; i++)
  932         sum += cpu_cx_stats[i];
  933     sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
  934     for (i = 0; i < cpu_cx_count; i++) {
  935         if (sum > 0) {
  936             whole = (uintmax_t)cpu_cx_stats[i] * 100;
  937             fract = (whole % sum) * 100;
  938             sbuf_printf(&sb, "%u.%02u%% ", (u_int)(whole / sum),
  939                 (u_int)(fract / sum));
  940         } else
  941             sbuf_printf(&sb, "0%% ");
  942     }
  943     sbuf_trim(&sb);
  944     sbuf_finish(&sb);
  945     sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
  946     sbuf_delete(&sb);
  947 
  948     return (0);
  949 }
  950 
  951 static int
  952 acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
  953 {
  954     struct       acpi_cpu_softc *sc;
  955     char         state[8];
  956     int          val, error, i;
  957 
  958     sc = device_get_softc(cpu_devices[0]);
  959     snprintf(state, sizeof(state), "C%d", cpu_cx_lowest + 1);
  960     error = sysctl_handle_string(oidp, state, sizeof(state), req);
  961     if (error != 0 || req->newptr == NULL)
  962         return (error);
  963     if (strlen(state) < 2 || toupper(state[0]) != 'C')
  964         return (EINVAL);
  965     val = (int) strtol(state + 1, NULL, 10) - 1;
  966     if (val < 0 || val > cpu_cx_count - 1)
  967         return (EINVAL);
  968 
  969     ACPI_SERIAL_BEGIN(cpu);
  970     cpu_cx_lowest = val;
  971 
  972     /* If not disabling, cache the new lowest non-C3 state. */
  973     cpu_non_c3 = 0;
  974     for (i = cpu_cx_lowest; i >= 0; i--) {
  975         if (sc->cpu_cx_states[i].type < ACPI_STATE_C3) {
  976             cpu_non_c3 = i;
  977             break;
  978         }
  979     }
  980 
  981     /* Reset the statistics counters. */
  982     bzero(cpu_cx_stats, sizeof(cpu_cx_stats));
  983     ACPI_SERIAL_END(cpu);
  984 
  985     return (0);
  986 }

Cache object: 4b5edfe000bf6e42932c7b5483fa21c1


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.