The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/acpica/acpi_cpu.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2003-2005 Nate Lawson (SDG)
    3  * Copyright (c) 2001 Michael Smith
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   25  * SUCH DAMAGE.
   26  */
   27 
   28 #include <sys/cdefs.h>
   29 __FBSDID("$FreeBSD$");
   30 
   31 #include "opt_acpi.h"
   32 #include <sys/param.h>
   33 #include <sys/bus.h>
   34 #include <sys/cpu.h>
   35 #include <sys/kernel.h>
   36 #include <sys/malloc.h>
   37 #include <sys/module.h>
   38 #include <sys/pcpu.h>
   39 #include <sys/power.h>
   40 #include <sys/proc.h>
   41 #include <sys/sbuf.h>
   42 #include <sys/smp.h>
   43 
   44 #include <dev/pci/pcivar.h>
   45 #include <machine/atomic.h>
   46 #include <machine/bus.h>
   47 #include <sys/rman.h>
   48 
   49 #include <contrib/dev/acpica/acpi.h>
   50 #include <dev/acpica/acpivar.h>
   51 
   52 /*
   53  * Support for ACPI Processor devices, including C[1-3] sleep states.
   54  */
   55 
   56 /* Hooks for the ACPI CA debugging infrastructure */
   57 #define _COMPONENT      ACPI_PROCESSOR
   58 ACPI_MODULE_NAME("PROCESSOR")
   59 
   60 struct acpi_cx {
   61     struct resource     *p_lvlx;        /* Register to read to enter state. */
   62     uint32_t             type;          /* C1-3 (C4 and up treated as C3). */
   63     uint32_t             trans_lat;     /* Transition latency (usec). */
   64     uint32_t             power;         /* Power consumed (mW). */
   65     int                  res_type;      /* Resource type for p_lvlx. */
   66 };
   67 #define MAX_CX_STATES    8
   68 
   69 struct acpi_cpu_softc {
   70     device_t             cpu_dev;
   71     ACPI_HANDLE          cpu_handle;
   72     struct pcpu         *cpu_pcpu;
   73     uint32_t             cpu_acpi_id;   /* ACPI processor id */
   74     uint32_t             cpu_p_blk;     /* ACPI P_BLK location */
   75     uint32_t             cpu_p_blk_len; /* P_BLK length (must be 6). */
   76     struct acpi_cx       cpu_cx_states[MAX_CX_STATES];
   77     int                  cpu_cx_count;  /* Number of valid Cx states. */
   78     int                  cpu_prev_sleep;/* Last idle sleep duration. */
   79     int                  cpu_features;  /* Child driver supported features. */
   80     /* Runtime state. */
   81     int                  cpu_non_c3;    /* Index of lowest non-C3 state. */
   82     int                  cpu_short_slp; /* Count of < 1us sleeps. */
   83     u_int                cpu_cx_stats[MAX_CX_STATES];/* Cx usage history. */
   84     /* Values for sysctl. */
   85     struct sysctl_ctx_list cpu_sysctl_ctx;
   86     struct sysctl_oid   *cpu_sysctl_tree;
   87     int                  cpu_cx_lowest;
   88     char                 cpu_cx_supported[64];
   89     int                  cpu_rid;
   90 };
   91 
   92 struct acpi_cpu_device {
   93     struct resource_list        ad_rl;
   94 };
   95 
   96 #define CPU_GET_REG(reg, width)                                         \
   97     (bus_space_read_ ## width(rman_get_bustag((reg)),                   \
   98                       rman_get_bushandle((reg)), 0))
   99 #define CPU_SET_REG(reg, width, val)                                    \
  100     (bus_space_write_ ## width(rman_get_bustag((reg)),                  \
  101                        rman_get_bushandle((reg)), 0, (val)))
  102 
  103 #define PM_USEC(x)       ((x) >> 2)     /* ~4 clocks per usec (3.57955 Mhz) */
  104 
  105 #define ACPI_NOTIFY_CX_STATES   0x81    /* _CST changed. */
  106 
  107 #define CPU_QUIRK_NO_C3         (1<<0)  /* C3-type states are not usable. */
  108 #define CPU_QUIRK_NO_BM_CTRL    (1<<2)  /* No bus mastering control. */
  109 
  110 #define PCI_VENDOR_INTEL        0x8086
  111 #define PCI_DEVICE_82371AB_3    0x7113  /* PIIX4 chipset for quirks. */
  112 #define PCI_REVISION_A_STEP     0
  113 #define PCI_REVISION_B_STEP     1
  114 #define PCI_REVISION_4E         2
  115 #define PCI_REVISION_4M         3
  116 
  117 /* Platform hardware resource information. */
  118 static uint32_t          cpu_smi_cmd;   /* Value to write to SMI_CMD. */
  119 static uint8_t           cpu_cst_cnt;   /* Indicate we are _CST aware. */
  120 static int               cpu_quirks;    /* Indicate any hardware bugs. */
  121 
  122 /* Runtime state. */
  123 static int               cpu_disable_idle; /* Disable entry to idle function */
  124 static int               cpu_cx_count;  /* Number of valid Cx states */
  125 
  126 /* Values for sysctl. */
  127 static struct sysctl_ctx_list cpu_sysctl_ctx;
  128 static struct sysctl_oid *cpu_sysctl_tree;
  129 static int               cpu_cx_generic;
  130 static int               cpu_cx_lowest;
  131 
  132 static device_t         *cpu_devices;
  133 static int               cpu_ndevices;
  134 static struct acpi_cpu_softc **cpu_softc;
  135 ACPI_SERIAL_DECL(cpu, "ACPI CPU");
  136 
  137 static int      acpi_cpu_probe(device_t dev);
  138 static int      acpi_cpu_attach(device_t dev);
  139 static int      acpi_cpu_suspend(device_t dev);
  140 static int      acpi_cpu_resume(device_t dev);
  141 static int      acpi_pcpu_get_id(uint32_t idx, uint32_t *acpi_id,
  142                     uint32_t *cpu_id);
  143 static struct resource_list *acpi_cpu_get_rlist(device_t dev, device_t child);
  144 static device_t acpi_cpu_add_child(device_t dev, int order, const char *name,
  145                     int unit);
  146 static int      acpi_cpu_read_ivar(device_t dev, device_t child, int index,
  147                     uintptr_t *result);
  148 static int      acpi_cpu_shutdown(device_t dev);
  149 static void     acpi_cpu_cx_probe(struct acpi_cpu_softc *sc);
  150 static void     acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc);
  151 static int      acpi_cpu_cx_cst(struct acpi_cpu_softc *sc);
  152 static void     acpi_cpu_startup(void *arg);
  153 static void     acpi_cpu_startup_cx(struct acpi_cpu_softc *sc);
  154 static void     acpi_cpu_idle(void);
  155 static void     acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context);
  156 static int      acpi_cpu_quirks(void);
  157 static int      acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS);
  158 static int      acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc, int val);
  159 static int      acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
  160 static int      acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
  161 
  162 static device_method_t acpi_cpu_methods[] = {
  163     /* Device interface */
  164     DEVMETHOD(device_probe,     acpi_cpu_probe),
  165     DEVMETHOD(device_attach,    acpi_cpu_attach),
  166     DEVMETHOD(device_detach,    bus_generic_detach),
  167     DEVMETHOD(device_shutdown,  acpi_cpu_shutdown),
  168     DEVMETHOD(device_suspend,   acpi_cpu_suspend),
  169     DEVMETHOD(device_resume,    acpi_cpu_resume),
  170 
  171     /* Bus interface */
  172     DEVMETHOD(bus_add_child,    acpi_cpu_add_child),
  173     DEVMETHOD(bus_read_ivar,    acpi_cpu_read_ivar),
  174     DEVMETHOD(bus_get_resource_list, acpi_cpu_get_rlist),
  175     DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource),
  176     DEVMETHOD(bus_set_resource, bus_generic_rl_set_resource),
  177     DEVMETHOD(bus_alloc_resource, bus_generic_rl_alloc_resource),
  178     DEVMETHOD(bus_release_resource, bus_generic_rl_release_resource),
  179     DEVMETHOD(bus_driver_added, bus_generic_driver_added),
  180     DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
  181     DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
  182     DEVMETHOD(bus_setup_intr,   bus_generic_setup_intr),
  183     DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr),
  184 
  185     {0, 0}
  186 };
  187 
  188 static driver_t acpi_cpu_driver = {
  189     "cpu",
  190     acpi_cpu_methods,
  191     sizeof(struct acpi_cpu_softc),
  192 };
  193 
  194 static devclass_t acpi_cpu_devclass;
  195 DRIVER_MODULE(cpu, acpi, acpi_cpu_driver, acpi_cpu_devclass, 0, 0);
  196 MODULE_DEPEND(cpu, acpi, 1, 1, 1);
  197 
  198 static int
  199 acpi_cpu_probe(device_t dev)
  200 {
  201     int                    acpi_id, cpu_id;
  202     ACPI_BUFFER            buf;
  203     ACPI_HANDLE            handle;
  204     ACPI_OBJECT            *obj;
  205     ACPI_STATUS            status;
  206 
  207     if (acpi_disabled("cpu") || acpi_get_type(dev) != ACPI_TYPE_PROCESSOR)
  208         return (ENXIO);
  209 
  210     handle = acpi_get_handle(dev);
  211     if (cpu_softc == NULL)
  212         cpu_softc = malloc(sizeof(struct acpi_cpu_softc *) *
  213             (mp_maxid + 1), M_TEMP /* XXX */, M_WAITOK | M_ZERO);
  214 
  215     /* Get our Processor object. */
  216     buf.Pointer = NULL;
  217     buf.Length = ACPI_ALLOCATE_BUFFER;
  218     status = AcpiEvaluateObject(handle, NULL, NULL, &buf);
  219     if (ACPI_FAILURE(status)) {
  220         device_printf(dev, "probe failed to get Processor obj - %s\n",
  221                       AcpiFormatException(status));
  222         return (ENXIO);
  223     }
  224     obj = (ACPI_OBJECT *)buf.Pointer;
  225     if (obj->Type != ACPI_TYPE_PROCESSOR) {
  226         device_printf(dev, "Processor object has bad type %d\n", obj->Type);
  227         AcpiOsFree(obj);
  228         return (ENXIO);
  229     }
  230 
  231     /*
  232      * Find the processor associated with our unit.  We could use the
  233      * ProcId as a key, however, some boxes do not have the same values
  234      * in their Processor object as the ProcId values in the MADT.
  235      */
  236     acpi_id = obj->Processor.ProcId;
  237     AcpiOsFree(obj);
  238     if (acpi_pcpu_get_id(device_get_unit(dev), &acpi_id, &cpu_id) != 0)
  239         return (ENXIO);
  240 
  241     /*
  242      * Check if we already probed this processor.  We scan the bus twice
  243      * so it's possible we've already seen this one.
  244      */
  245     if (cpu_softc[cpu_id] != NULL)
  246         return (ENXIO);
  247 
  248     /* Mark this processor as in-use and save our derived id for attach. */
  249     cpu_softc[cpu_id] = (void *)1;
  250     acpi_set_magic(dev, cpu_id);
  251     device_set_desc(dev, "ACPI CPU");
  252 
  253     return (0);
  254 }
  255 
  256 static int
  257 acpi_cpu_attach(device_t dev)
  258 {
  259     ACPI_BUFFER            buf;
  260     ACPI_OBJECT            arg[4], *obj;
  261     ACPI_OBJECT_LIST       arglist;
  262     struct pcpu            *pcpu_data;
  263     struct acpi_cpu_softc *sc;
  264     struct acpi_softc     *acpi_sc;
  265     ACPI_STATUS            status;
  266     u_int                  features;
  267     int                    cpu_id, drv_count, i;
  268     driver_t              **drivers;
  269     uint32_t               cap_set[3];
  270 
  271     /* UUID needed by _OSC evaluation */
  272     static uint8_t cpu_oscuuid[16] = { 0x16, 0xA6, 0x77, 0x40, 0x0C, 0x29,
  273                                        0xBE, 0x47, 0x9E, 0xBD, 0xD8, 0x70,
  274                                        0x58, 0x71, 0x39, 0x53 };
  275 
  276     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
  277 
  278     sc = device_get_softc(dev);
  279     sc->cpu_dev = dev;
  280     sc->cpu_handle = acpi_get_handle(dev);
  281     cpu_id = acpi_get_magic(dev);
  282     cpu_softc[cpu_id] = sc;
  283     pcpu_data = pcpu_find(cpu_id);
  284     pcpu_data->pc_device = dev;
  285     sc->cpu_pcpu = pcpu_data;
  286     cpu_smi_cmd = AcpiGbl_FADT.SmiCommand;
  287     cpu_cst_cnt = AcpiGbl_FADT.CstControl;
  288 
  289     buf.Pointer = NULL;
  290     buf.Length = ACPI_ALLOCATE_BUFFER;
  291     status = AcpiEvaluateObject(sc->cpu_handle, NULL, NULL, &buf);
  292     if (ACPI_FAILURE(status)) {
  293         device_printf(dev, "attach failed to get Processor obj - %s\n",
  294                       AcpiFormatException(status));
  295         return (ENXIO);
  296     }
  297     obj = (ACPI_OBJECT *)buf.Pointer;
  298     sc->cpu_p_blk = obj->Processor.PblkAddress;
  299     sc->cpu_p_blk_len = obj->Processor.PblkLength;
  300     sc->cpu_acpi_id = obj->Processor.ProcId;
  301     AcpiOsFree(obj);
  302     ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: P_BLK at %#x/%d\n",
  303                      device_get_unit(dev), sc->cpu_p_blk, sc->cpu_p_blk_len));
  304 
  305     /*
  306      * If this is the first cpu we attach, create and initialize the generic
  307      * resources that will be used by all acpi cpu devices.
  308      */
  309     if (device_get_unit(dev) == 0) {
  310         /* Assume we won't be using generic Cx mode by default */
  311         cpu_cx_generic = FALSE;
  312 
  313         /* Install hw.acpi.cpu sysctl tree */
  314         acpi_sc = acpi_device_get_parent_softc(dev);
  315         sysctl_ctx_init(&cpu_sysctl_ctx);
  316         cpu_sysctl_tree = SYSCTL_ADD_NODE(&cpu_sysctl_ctx,
  317             SYSCTL_CHILDREN(acpi_sc->acpi_sysctl_tree), OID_AUTO, "cpu",
  318             CTLFLAG_RD, 0, "node for CPU children");
  319 
  320         /* Queue post cpu-probing task handler */
  321         AcpiOsExecute(OSL_NOTIFY_HANDLER, acpi_cpu_startup, NULL);
  322     }
  323 
  324     /*
  325      * Before calling any CPU methods, collect child driver feature hints
  326      * and notify ACPI of them.  We support unified SMP power control
  327      * so advertise this ourselves.  Note this is not the same as independent
  328      * SMP control where each CPU can have different settings.
  329      */
  330     sc->cpu_features = ACPI_CAP_SMP_SAME | ACPI_CAP_SMP_SAME_C3;
  331     if (devclass_get_drivers(acpi_cpu_devclass, &drivers, &drv_count) == 0) {
  332         for (i = 0; i < drv_count; i++) {
  333             if (ACPI_GET_FEATURES(drivers[i], &features) == 0)
  334                 sc->cpu_features |= features;
  335         }
  336         free(drivers, M_TEMP);
  337     }
  338 
  339     /*
  340      * CPU capabilities are specified as a buffer of 32-bit integers:
  341      * revision, count, and one or more capabilities.  The revision of
  342      * "1" is not specified anywhere but seems to match Linux.
  343      */
  344     if (sc->cpu_features) {
  345         arglist.Pointer = arg;
  346         arglist.Count = 1;
  347         arg[0].Type = ACPI_TYPE_BUFFER;
  348         arg[0].Buffer.Length = sizeof(cap_set);
  349         arg[0].Buffer.Pointer = (uint8_t *)cap_set;
  350         cap_set[0] = 1; /* revision */
  351         cap_set[1] = 1; /* number of capabilities integers */
  352         cap_set[2] = sc->cpu_features;
  353         AcpiEvaluateObject(sc->cpu_handle, "_PDC", &arglist, NULL);
  354 
  355         /*
  356          * On some systems we need to evaluate _OSC so that the ASL
  357          * loads the _PSS and/or _PDC methods at runtime.
  358          *
  359          * TODO: evaluate failure of _OSC.
  360          */
  361         arglist.Pointer = arg;
  362         arglist.Count = 4;
  363         arg[0].Type = ACPI_TYPE_BUFFER;
  364         arg[0].Buffer.Length = sizeof(cpu_oscuuid);
  365         arg[0].Buffer.Pointer = cpu_oscuuid;    /* UUID */
  366         arg[1].Type = ACPI_TYPE_INTEGER;
  367         arg[1].Integer.Value = 1;               /* revision */
  368         arg[2].Type = ACPI_TYPE_INTEGER;
  369         arg[2].Integer.Value = 1;               /* count */
  370         arg[3].Type = ACPI_TYPE_BUFFER;
  371         arg[3].Buffer.Length = sizeof(cap_set); /* Capabilities buffer */
  372         arg[3].Buffer.Pointer = (uint8_t *)cap_set;
  373         cap_set[0] = 0;
  374         AcpiEvaluateObject(sc->cpu_handle, "_OSC", &arglist, NULL);
  375     }
  376 
  377     /* Probe for Cx state support. */
  378     acpi_cpu_cx_probe(sc);
  379 
  380     /* Finally,  call identify and probe/attach for child devices. */
  381     bus_generic_probe(dev);
  382     bus_generic_attach(dev);
  383 
  384     return (0);
  385 }
  386 
  387 /*
  388  * Disable any entry to the idle function during suspend and re-enable it
  389  * during resume.
  390  */
  391 static int
  392 acpi_cpu_suspend(device_t dev)
  393 {
  394     int error;
  395 
  396     error = bus_generic_suspend(dev);
  397     if (error)
  398         return (error);
  399     cpu_disable_idle = TRUE;
  400     return (0);
  401 }
  402 
  403 static int
  404 acpi_cpu_resume(device_t dev)
  405 {
  406 
  407     cpu_disable_idle = FALSE;
  408     return (bus_generic_resume(dev));
  409 }
  410 
  411 /*
  412  * Find the nth present CPU and return its pc_cpuid as well as set the
  413  * pc_acpi_id from the most reliable source.
  414  */
  415 static int
  416 acpi_pcpu_get_id(uint32_t idx, uint32_t *acpi_id, uint32_t *cpu_id)
  417 {
  418     struct pcpu *pcpu_data;
  419     uint32_t     i;
  420 
  421     KASSERT(acpi_id != NULL, ("Null acpi_id"));
  422     KASSERT(cpu_id != NULL, ("Null cpu_id"));
  423     for (i = 0; i <= mp_maxid; i++) {
  424         if (CPU_ABSENT(i))
  425             continue;
  426         pcpu_data = pcpu_find(i);
  427         KASSERT(pcpu_data != NULL, ("no pcpu data for %d", i));
  428         if (idx-- == 0) {
  429             /*
  430              * If pc_acpi_id was not initialized (e.g., a non-APIC UP box)
  431              * override it with the value from the ASL.  Otherwise, if the
  432              * two don't match, prefer the MADT-derived value.  Finally,
  433              * return the pc_cpuid to reference this processor.
  434              */
  435             if (pcpu_data->pc_acpi_id == 0xffffffff)
  436                 pcpu_data->pc_acpi_id = *acpi_id;
  437             else if (pcpu_data->pc_acpi_id != *acpi_id)
  438                 *acpi_id = pcpu_data->pc_acpi_id;
  439             *cpu_id = pcpu_data->pc_cpuid;
  440             return (0);
  441         }
  442     }
  443 
  444     return (ESRCH);
  445 }
  446 
  447 static struct resource_list *
  448 acpi_cpu_get_rlist(device_t dev, device_t child)
  449 {
  450     struct acpi_cpu_device *ad;
  451 
  452     ad = device_get_ivars(child);
  453     if (ad == NULL)
  454         return (NULL);
  455     return (&ad->ad_rl);
  456 }
  457 
  458 static device_t
  459 acpi_cpu_add_child(device_t dev, int order, const char *name, int unit)
  460 {
  461     struct acpi_cpu_device *ad;
  462     device_t child;
  463 
  464     if ((ad = malloc(sizeof(*ad), M_TEMP, M_NOWAIT | M_ZERO)) == NULL)
  465         return (NULL);
  466 
  467     resource_list_init(&ad->ad_rl);
  468     
  469     child = device_add_child_ordered(dev, order, name, unit);
  470     if (child != NULL)
  471         device_set_ivars(child, ad);
  472     else
  473         free(ad, M_TEMP);
  474     return (child);
  475 }
  476 
  477 static int
  478 acpi_cpu_read_ivar(device_t dev, device_t child, int index, uintptr_t *result)
  479 {
  480     struct acpi_cpu_softc *sc;
  481 
  482     sc = device_get_softc(dev);
  483     switch (index) {
  484     case ACPI_IVAR_HANDLE:
  485         *result = (uintptr_t)sc->cpu_handle;
  486         break;
  487     case CPU_IVAR_PCPU:
  488         *result = (uintptr_t)sc->cpu_pcpu;
  489         break;
  490     default:
  491         return (ENOENT);
  492     }
  493     return (0);
  494 }
  495 
  496 static int
  497 acpi_cpu_shutdown(device_t dev)
  498 {
  499     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
  500 
  501     /* Allow children to shutdown first. */
  502     bus_generic_shutdown(dev);
  503 
  504     /*
  505      * Disable any entry to the idle function.  There is a small race where
  506      * an idle thread have passed this check but not gone to sleep.  This
  507      * is ok since device_shutdown() does not free the softc, otherwise
  508      * we'd have to be sure all threads were evicted before returning.
  509      */
  510     cpu_disable_idle = TRUE;
  511 
  512     return_VALUE (0);
  513 }
  514 
  515 static void
  516 acpi_cpu_cx_probe(struct acpi_cpu_softc *sc)
  517 {
  518     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
  519 
  520     /* Use initial sleep value of 1 sec. to start with lowest idle state. */
  521     sc->cpu_prev_sleep = 1000000;
  522     sc->cpu_cx_lowest = 0;
  523 
  524     /*
  525      * Check for the ACPI 2.0 _CST sleep states object. If we can't find
  526      * any, we'll revert to generic FADT/P_BLK Cx control method which will
  527      * be handled by acpi_cpu_startup. We need to defer to after having
  528      * probed all the cpus in the system before probing for generic Cx
  529      * states as we may already have found cpus with valid _CST packages
  530      */
  531     if (!cpu_cx_generic && acpi_cpu_cx_cst(sc) != 0) {
  532         /*
  533          * We were unable to find a _CST package for this cpu or there
  534          * was an error parsing it. Switch back to generic mode.
  535          */
  536         cpu_cx_generic = TRUE;
  537         if (bootverbose)
  538             device_printf(sc->cpu_dev, "switching to generic Cx mode\n");
  539     }
  540 
  541     /*
  542      * TODO: _CSD Package should be checked here.
  543      */
  544 }
  545 
  546 static void
  547 acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc)
  548 {
  549     ACPI_GENERIC_ADDRESS         gas;
  550     struct acpi_cx              *cx_ptr;
  551 
  552     sc->cpu_cx_count = 0;
  553     cx_ptr = sc->cpu_cx_states;
  554 
  555     /* Use initial sleep value of 1 sec. to start with lowest idle state. */
  556     sc->cpu_prev_sleep = 1000000;
  557 
  558     /* C1 has been required since just after ACPI 1.0 */
  559     cx_ptr->type = ACPI_STATE_C1;
  560     cx_ptr->trans_lat = 0;
  561     cx_ptr++;
  562     sc->cpu_cx_count++;
  563 
  564     /* 
  565      * The spec says P_BLK must be 6 bytes long.  However, some systems
  566      * use it to indicate a fractional set of features present so we
  567      * take 5 as C2.  Some may also have a value of 7 to indicate
  568      * another C3 but most use _CST for this (as required) and having
  569      * "only" C1-C3 is not a hardship.
  570      */
  571     if (sc->cpu_p_blk_len < 5)
  572         return; 
  573 
  574     /* Validate and allocate resources for C2 (P_LVL2). */
  575     gas.SpaceId = ACPI_ADR_SPACE_SYSTEM_IO;
  576     gas.BitWidth = 8;
  577     if (AcpiGbl_FADT.C2Latency <= 100) {
  578         gas.Address = sc->cpu_p_blk + 4;
  579         acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &sc->cpu_rid,
  580             &gas, &cx_ptr->p_lvlx, RF_SHAREABLE);
  581         if (cx_ptr->p_lvlx != NULL) {
  582             sc->cpu_rid++;
  583             cx_ptr->type = ACPI_STATE_C2;
  584             cx_ptr->trans_lat = AcpiGbl_FADT.C2Latency;
  585             cx_ptr++;
  586             sc->cpu_cx_count++;
  587         }
  588     }
  589     if (sc->cpu_p_blk_len < 6)
  590         return;
  591 
  592     /* Validate and allocate resources for C3 (P_LVL3). */
  593     if (AcpiGbl_FADT.C3Latency <= 1000) {
  594         gas.Address = sc->cpu_p_blk + 5;
  595         acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &sc->cpu_rid, &gas,
  596             &cx_ptr->p_lvlx, RF_SHAREABLE);
  597         if (cx_ptr->p_lvlx != NULL) {
  598             sc->cpu_rid++;
  599             cx_ptr->type = ACPI_STATE_C3;
  600             cx_ptr->trans_lat = AcpiGbl_FADT.C3Latency;
  601             cx_ptr++;
  602             sc->cpu_cx_count++;
  603         }
  604     }
  605 
  606     /* Update the largest cx_count seen so far */
  607     if (sc->cpu_cx_count > cpu_cx_count)
  608         cpu_cx_count = sc->cpu_cx_count;
  609 }
  610 
  611 /*
  612  * Parse a _CST package and set up its Cx states.  Since the _CST object
  613  * can change dynamically, our notify handler may call this function
  614  * to clean up and probe the new _CST package.
  615  */
  616 static int
  617 acpi_cpu_cx_cst(struct acpi_cpu_softc *sc)
  618 {
  619     struct       acpi_cx *cx_ptr;
  620     ACPI_STATUS  status;
  621     ACPI_BUFFER  buf;
  622     ACPI_OBJECT *top;
  623     ACPI_OBJECT *pkg;
  624     uint32_t     count;
  625     int          i;
  626 
  627     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
  628 
  629     buf.Pointer = NULL;
  630     buf.Length = ACPI_ALLOCATE_BUFFER;
  631     status = AcpiEvaluateObject(sc->cpu_handle, "_CST", NULL, &buf);
  632     if (ACPI_FAILURE(status))
  633         return (ENXIO);
  634 
  635     /* _CST is a package with a count and at least one Cx package. */
  636     top = (ACPI_OBJECT *)buf.Pointer;
  637     if (!ACPI_PKG_VALID(top, 2) || acpi_PkgInt32(top, 0, &count) != 0) {
  638         device_printf(sc->cpu_dev, "invalid _CST package\n");
  639         AcpiOsFree(buf.Pointer);
  640         return (ENXIO);
  641     }
  642     if (count != top->Package.Count - 1) {
  643         device_printf(sc->cpu_dev, "invalid _CST state count (%d != %d)\n",
  644                count, top->Package.Count - 1);
  645         count = top->Package.Count - 1;
  646     }
  647     if (count > MAX_CX_STATES) {
  648         device_printf(sc->cpu_dev, "_CST has too many states (%d)\n", count);
  649         count = MAX_CX_STATES;
  650     }
  651 
  652     /* Set up all valid states. */
  653     sc->cpu_cx_count = 0;
  654     cx_ptr = sc->cpu_cx_states;
  655     for (i = 0; i < count; i++) {
  656         pkg = &top->Package.Elements[i + 1];
  657         if (!ACPI_PKG_VALID(pkg, 4) ||
  658             acpi_PkgInt32(pkg, 1, &cx_ptr->type) != 0 ||
  659             acpi_PkgInt32(pkg, 2, &cx_ptr->trans_lat) != 0 ||
  660             acpi_PkgInt32(pkg, 3, &cx_ptr->power) != 0) {
  661 
  662             device_printf(sc->cpu_dev, "skipping invalid Cx state package\n");
  663             continue;
  664         }
  665 
  666         /* Validate the state to see if we should use it. */
  667         switch (cx_ptr->type) {
  668         case ACPI_STATE_C1:
  669             sc->cpu_non_c3 = i;
  670             cx_ptr++;
  671             sc->cpu_cx_count++;
  672             continue;
  673         case ACPI_STATE_C2:
  674             if (cx_ptr->trans_lat > 100) {
  675                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  676                                  "acpi_cpu%d: C2[%d] not available.\n",
  677                                  device_get_unit(sc->cpu_dev), i));
  678                 continue;
  679             }
  680             sc->cpu_non_c3 = i;
  681             break;
  682         case ACPI_STATE_C3:
  683         default:
  684             if (cx_ptr->trans_lat > 1000 ||
  685                 (cpu_quirks & CPU_QUIRK_NO_C3) != 0) {
  686 
  687                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  688                                  "acpi_cpu%d: C3[%d] not available.\n",
  689                                  device_get_unit(sc->cpu_dev), i));
  690                 continue;
  691             }
  692             break;
  693         }
  694 
  695 #ifdef notyet
  696         /* Free up any previous register. */
  697         if (cx_ptr->p_lvlx != NULL) {
  698             bus_release_resource(sc->cpu_dev, 0, 0, cx_ptr->p_lvlx);
  699             cx_ptr->p_lvlx = NULL;
  700         }
  701 #endif
  702 
  703         /* Allocate the control register for C2 or C3. */
  704         acpi_PkgGas(sc->cpu_dev, pkg, 0, &cx_ptr->res_type, &sc->cpu_rid,
  705             &cx_ptr->p_lvlx, RF_SHAREABLE);
  706         if (cx_ptr->p_lvlx) {
  707             sc->cpu_rid++;
  708             ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  709                              "acpi_cpu%d: Got C%d - %d latency\n",
  710                              device_get_unit(sc->cpu_dev), cx_ptr->type,
  711                              cx_ptr->trans_lat));
  712             cx_ptr++;
  713             sc->cpu_cx_count++;
  714         }
  715     }
  716     AcpiOsFree(buf.Pointer);
  717 
  718     return (0);
  719 }
  720 
  721 /*
  722  * Call this *after* all CPUs have been attached.
  723  */
  724 static void
  725 acpi_cpu_startup(void *arg)
  726 {
  727     struct acpi_cpu_softc *sc;
  728     int i;
  729 
  730     /* Get set of CPU devices */
  731     devclass_get_devices(acpi_cpu_devclass, &cpu_devices, &cpu_ndevices);
  732 
  733     /*
  734      * Setup any quirks that might necessary now that we have probed
  735      * all the CPUs
  736      */
  737     acpi_cpu_quirks();
  738 
  739     cpu_cx_count = 0;
  740     if (cpu_cx_generic) {
  741         /*
  742          * We are using generic Cx mode, probe for available Cx states
  743          * for all processors.
  744          */
  745         for (i = 0; i < cpu_ndevices; i++) {
  746             sc = device_get_softc(cpu_devices[i]);
  747             acpi_cpu_generic_cx_probe(sc);
  748         }
  749 
  750         /*
  751          * Find the highest Cx state common to all CPUs
  752          * in the system, taking quirks into account.
  753          */
  754         for (i = 0; i < cpu_ndevices; i++) {
  755             sc = device_get_softc(cpu_devices[i]);
  756             if (sc->cpu_cx_count < cpu_cx_count)
  757                 cpu_cx_count = sc->cpu_cx_count;
  758         }
  759     } else {
  760         /*
  761          * We are using _CST mode, remove C3 state if necessary.
  762          * Update the largest Cx state supported in the global cpu_cx_count.
  763          * It will be used in the global Cx sysctl handler.
  764          * As we now know for sure that we will be using _CST mode
  765          * install our notify handler.
  766          */
  767         for (i = 0; i < cpu_ndevices; i++) {
  768             sc = device_get_softc(cpu_devices[i]);
  769             if (cpu_quirks && CPU_QUIRK_NO_C3) {
  770                 sc->cpu_cx_count = sc->cpu_non_c3 + 1;
  771             }
  772             if (sc->cpu_cx_count > cpu_cx_count)
  773                 cpu_cx_count = sc->cpu_cx_count;
  774             AcpiInstallNotifyHandler(sc->cpu_handle, ACPI_DEVICE_NOTIFY,
  775                 acpi_cpu_notify, sc);
  776         }
  777     }
  778 
  779     /* Perform Cx final initialization. */
  780     for (i = 0; i < cpu_ndevices; i++) {
  781         sc = device_get_softc(cpu_devices[i]);
  782         acpi_cpu_startup_cx(sc);
  783     }
  784 
  785     /* Add a sysctl handler to handle global Cx lowest setting */
  786     SYSCTL_ADD_PROC(&cpu_sysctl_ctx, SYSCTL_CHILDREN(cpu_sysctl_tree),
  787         OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW,
  788         NULL, 0, acpi_cpu_global_cx_lowest_sysctl, "A",
  789         "Global lowest Cx sleep state to use");
  790 
  791     /* Take over idling from cpu_idle_default(). */
  792     cpu_cx_lowest = 0;
  793     cpu_disable_idle = FALSE;
  794     cpu_idle_hook = acpi_cpu_idle;
  795 }
  796 
  797 static void
  798 acpi_cpu_startup_cx(struct acpi_cpu_softc *sc)
  799 {
  800     struct sbuf sb;
  801     int i;
  802 
  803     /*
  804      * Set up the list of Cx states
  805      */
  806     sc->cpu_non_c3 = 0;
  807     sbuf_new(&sb, sc->cpu_cx_supported, sizeof(sc->cpu_cx_supported),
  808         SBUF_FIXEDLEN);
  809     for (i = 0; i < sc->cpu_cx_count; i++) {
  810         sbuf_printf(&sb, "C%d/%d ", i + 1, sc->cpu_cx_states[i].trans_lat);
  811         if (sc->cpu_cx_states[i].type < ACPI_STATE_C3)
  812             sc->cpu_non_c3 = i;
  813     }
  814     sbuf_trim(&sb);
  815     sbuf_finish(&sb);
  816 
  817     SYSCTL_ADD_STRING(&sc->cpu_sysctl_ctx,
  818                       SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
  819                       OID_AUTO, "cx_supported", CTLFLAG_RD,
  820                       sc->cpu_cx_supported, 0,
  821                       "Cx/microsecond values for supported Cx states");
  822     SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
  823                     SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
  824                     OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW,
  825                     (void *)sc, 0, acpi_cpu_cx_lowest_sysctl, "A",
  826                     "lowest Cx sleep state to use");
  827     SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
  828                     SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
  829                     OID_AUTO, "cx_usage", CTLTYPE_STRING | CTLFLAG_RD,
  830                     (void *)sc, 0, acpi_cpu_usage_sysctl, "A",
  831                     "percent usage for each Cx state");
  832 
  833 #ifdef notyet
  834     /* Signal platform that we can handle _CST notification. */
  835     if (!cpu_cx_generic && cpu_cst_cnt != 0) {
  836         ACPI_LOCK(acpi);
  837         AcpiOsWritePort(cpu_smi_cmd, cpu_cst_cnt, 8);
  838         ACPI_UNLOCK(acpi);
  839     }
  840 #endif
  841 }
  842 
  843 /*
  844  * Idle the CPU in the lowest state possible.  This function is called with
  845  * interrupts disabled.  Note that once it re-enables interrupts, a task
  846  * switch can occur so do not access shared data (i.e. the softc) after
  847  * interrupts are re-enabled.
  848  */
  849 static void
  850 acpi_cpu_idle()
  851 {
  852     struct      acpi_cpu_softc *sc;
  853     struct      acpi_cx *cx_next;
  854     uint32_t    start_time, end_time;
  855     int         bm_active, cx_next_idx, i;
  856 
  857     /* If disabled, return immediately. */
  858     if (cpu_disable_idle) {
  859         ACPI_ENABLE_IRQS();
  860         return;
  861     }
  862 
  863     /*
  864      * Look up our CPU id to get our softc.  If it's NULL, we'll use C1
  865      * since there is no ACPI processor object for this CPU.  This occurs
  866      * for logical CPUs in the HTT case.
  867      */
  868     sc = cpu_softc[PCPU_GET(cpuid)];
  869     if (sc == NULL) {
  870         acpi_cpu_c1();
  871         return;
  872     }
  873 
  874     /*
  875      * If we slept 100 us or more, use the lowest Cx state.  Otherwise,
  876      * find the lowest state that has a latency less than or equal to
  877      * the length of our last sleep.
  878      */
  879     cx_next_idx = sc->cpu_cx_lowest;
  880     if (sc->cpu_prev_sleep < 100) {
  881         /*
  882          * If we sleep too short all the time, this system may not implement
  883          * C2/3 correctly (i.e. reads return immediately).  In this case,
  884          * back off and use the next higher level.
  885          * It seems that when you have a dual core cpu (like the Intel Core Duo)
  886          * that both cores will get out of C3 state as soon as one of them
  887          * requires it. This breaks the sleep detection logic as the sleep
  888          * counter is local to each cpu. Disable the sleep logic for now as a
  889          * workaround if there's more than one CPU. The right fix would probably
  890          * be to add quirks for system that don't really support C3 state.
  891          */
  892         if (mp_ncpus < 2 && sc->cpu_prev_sleep <= 1) {
  893             sc->cpu_short_slp++;
  894             if (sc->cpu_short_slp == 1000 && sc->cpu_cx_lowest != 0) {
  895                 if (sc->cpu_non_c3 == sc->cpu_cx_lowest && sc->cpu_non_c3 != 0)
  896                     sc->cpu_non_c3--;
  897                 sc->cpu_cx_lowest--;
  898                 sc->cpu_short_slp = 0;
  899                 device_printf(sc->cpu_dev,
  900                     "too many short sleeps, backing off to C%d\n",
  901                     sc->cpu_cx_lowest + 1);
  902             }
  903         } else
  904             sc->cpu_short_slp = 0;
  905 
  906         for (i = sc->cpu_cx_lowest; i >= 0; i--)
  907             if (sc->cpu_cx_states[i].trans_lat <= sc->cpu_prev_sleep) {
  908                 cx_next_idx = i;
  909                 break;
  910             }
  911     }
  912 
  913     /*
  914      * Check for bus master activity.  If there was activity, clear
  915      * the bit and use the lowest non-C3 state.  Note that the USB
  916      * driver polling for new devices keeps this bit set all the
  917      * time if USB is loaded.
  918      */
  919     if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
  920         AcpiGetRegister(ACPI_BITREG_BUS_MASTER_STATUS, &bm_active);
  921         if (bm_active != 0) {
  922             AcpiSetRegister(ACPI_BITREG_BUS_MASTER_STATUS, 1);
  923             cx_next_idx = min(cx_next_idx, sc->cpu_non_c3);
  924         }
  925     }
  926 
  927     /* Select the next state and update statistics. */
  928     cx_next = &sc->cpu_cx_states[cx_next_idx];
  929     sc->cpu_cx_stats[cx_next_idx]++;
  930     KASSERT(cx_next->type != ACPI_STATE_C0, ("acpi_cpu_idle: C0 sleep"));
  931 
  932     /*
  933      * Execute HLT (or equivalent) and wait for an interrupt.  We can't
  934      * calculate the time spent in C1 since the place we wake up is an
  935      * ISR.  Assume we slept one quantum and return.
  936      */
  937     if (cx_next->type == ACPI_STATE_C1) {
  938         sc->cpu_prev_sleep = 1000000 / hz;
  939         acpi_cpu_c1();
  940         return;
  941     }
  942 
  943     /*
  944      * For C3, disable bus master arbitration and enable bus master wake
  945      * if BM control is available, otherwise flush the CPU cache.
  946      */
  947     if (cx_next->type == ACPI_STATE_C3) {
  948         if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
  949             AcpiSetRegister(ACPI_BITREG_ARB_DISABLE, 1);
  950             AcpiSetRegister(ACPI_BITREG_BUS_MASTER_RLD, 1);
  951         } else
  952             ACPI_FLUSH_CPU_CACHE();
  953     }
  954 
  955     /*
  956      * Read from P_LVLx to enter C2(+), checking time spent asleep.
  957      * Use the ACPI timer for measuring sleep time.  Since we need to
  958      * get the time very close to the CPU start/stop clock logic, this
  959      * is the only reliable time source.
  960      */
  961     AcpiHwLowLevelRead(32, &start_time, &AcpiGbl_FADT.XPmTimerBlock);
  962     CPU_GET_REG(cx_next->p_lvlx, 1);
  963 
  964     /*
  965      * Read the end time twice.  Since it may take an arbitrary time
  966      * to enter the idle state, the first read may be executed before
  967      * the processor has stopped.  Doing it again provides enough
  968      * margin that we are certain to have a correct value.
  969      */
  970     AcpiHwLowLevelRead(32, &end_time, &AcpiGbl_FADT.XPmTimerBlock);
  971     AcpiHwLowLevelRead(32, &end_time, &AcpiGbl_FADT.XPmTimerBlock);
  972 
  973     /* Enable bus master arbitration and disable bus master wakeup. */
  974     if (cx_next->type == ACPI_STATE_C3 &&
  975         (cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
  976         AcpiSetRegister(ACPI_BITREG_ARB_DISABLE, 0);
  977         AcpiSetRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
  978     }
  979     ACPI_ENABLE_IRQS();
  980 
  981     /* Find the actual time asleep in microseconds, minus overhead. */
  982     end_time = acpi_TimerDelta(end_time, start_time);
  983     sc->cpu_prev_sleep = PM_USEC(end_time) - cx_next->trans_lat;
  984 }
  985 
  986 /*
  987  * Re-evaluate the _CST object when we are notified that it changed.
  988  *
  989  * XXX Re-evaluation disabled until locking is done.
  990  */
  991 static void
  992 acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context)
  993 {
  994     struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)context;
  995 
  996     if (notify != ACPI_NOTIFY_CX_STATES)
  997         return;
  998 
  999     device_printf(sc->cpu_dev, "Cx states changed\n");
 1000     /* acpi_cpu_cx_cst(sc); */
 1001 }
 1002 
 1003 static int
 1004 acpi_cpu_quirks(void)
 1005 {
 1006     device_t acpi_dev;
 1007 
 1008     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
 1009 
 1010     /*
 1011      * Bus mastering arbitration control is needed to keep caches coherent
 1012      * while sleeping in C3.  If it's not present but a working flush cache
 1013      * instruction is present, flush the caches before entering C3 instead.
 1014      * Otherwise, just disable C3 completely.
 1015      */
 1016     if (AcpiGbl_FADT.Pm2ControlBlock == 0 ||
 1017         AcpiGbl_FADT.Pm2ControlLength == 0) {
 1018         if ((AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD) &&
 1019             (AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD_FLUSH) == 0) {
 1020             cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
 1021             ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1022                 "acpi_cpu: no BM control, using flush cache method\n"));
 1023         } else {
 1024             cpu_quirks |= CPU_QUIRK_NO_C3;
 1025             ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1026                 "acpi_cpu: no BM control, C3 not available\n"));
 1027         }
 1028     }
 1029 
 1030     /*
 1031      * If we are using generic Cx mode, C3 on multiple CPUs requires using
 1032      * the expensive flush cache instruction.
 1033      */
 1034     if (cpu_cx_generic && mp_ncpus > 1) {
 1035         cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
 1036         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1037             "acpi_cpu: SMP, using flush cache mode for C3\n"));
 1038     }
 1039 
 1040     /* Look for various quirks of the PIIX4 part. */
 1041     acpi_dev = pci_find_device(PCI_VENDOR_INTEL, PCI_DEVICE_82371AB_3);
 1042     if (acpi_dev != NULL) {
 1043         switch (pci_get_revid(acpi_dev)) {
 1044         /*
 1045          * Disable C3 support for all PIIX4 chipsets.  Some of these parts
 1046          * do not report the BMIDE status to the BM status register and
 1047          * others have a livelock bug if Type-F DMA is enabled.  Linux
 1048          * works around the BMIDE bug by reading the BM status directly
 1049          * but we take the simpler approach of disabling C3 for these
 1050          * parts.
 1051          *
 1052          * See erratum #18 ("C3 Power State/BMIDE and Type-F DMA
 1053          * Livelock") from the January 2002 PIIX4 specification update.
 1054          * Applies to all PIIX4 models.
 1055          */
 1056         case PCI_REVISION_4E:
 1057         case PCI_REVISION_4M:
 1058             cpu_quirks |= CPU_QUIRK_NO_C3;
 1059             ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1060                 "acpi_cpu: working around PIIX4 bug, disabling C3\n"));
 1061             break;
 1062         default:
 1063             break;
 1064         }
 1065     }
 1066 
 1067     return (0);
 1068 }
 1069 
 1070 static int
 1071 acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS)
 1072 {
 1073     struct acpi_cpu_softc *sc;
 1074     struct sbuf  sb;
 1075     char         buf[128];
 1076     int          i;
 1077     uintmax_t    fract, sum, whole;
 1078 
 1079     sc = (struct acpi_cpu_softc *) arg1;
 1080     sum = 0;
 1081     for (i = 0; i < sc->cpu_cx_count; i++)
 1082         sum += sc->cpu_cx_stats[i];
 1083     sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
 1084     for (i = 0; i < sc->cpu_cx_count; i++) {
 1085         if (sum > 0) {
 1086             whole = (uintmax_t)sc->cpu_cx_stats[i] * 100;
 1087             fract = (whole % sum) * 100;
 1088             sbuf_printf(&sb, "%u.%02u%% ", (u_int)(whole / sum),
 1089                 (u_int)(fract / sum));
 1090         } else
 1091             sbuf_printf(&sb, "0%% ");
 1092     }
 1093     sbuf_trim(&sb);
 1094     sbuf_finish(&sb);
 1095     sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
 1096     sbuf_delete(&sb);
 1097 
 1098     return (0);
 1099 }
 1100 
 1101 static int
 1102 acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc, int val)
 1103 {
 1104     int i;
 1105 
 1106     ACPI_SERIAL_ASSERT(cpu);
 1107     sc->cpu_cx_lowest = val;
 1108 
 1109     /* If not disabling, cache the new lowest non-C3 state. */
 1110     sc->cpu_non_c3 = 0;
 1111     for (i = sc->cpu_cx_lowest; i >= 0; i--) {
 1112         if (sc->cpu_cx_states[i].type < ACPI_STATE_C3) {
 1113             sc->cpu_non_c3 = i;
 1114             break;
 1115         }
 1116     }
 1117 
 1118     /* Reset the statistics counters. */
 1119     bzero(sc->cpu_cx_stats, sizeof(sc->cpu_cx_stats));
 1120     return (0);
 1121 }
 1122 
 1123 static int
 1124 acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
 1125 {
 1126     struct       acpi_cpu_softc *sc;
 1127     char         state[8];
 1128     int          val, error;
 1129 
 1130     sc = (struct acpi_cpu_softc *) arg1;
 1131     snprintf(state, sizeof(state), "C%d", sc->cpu_cx_lowest + 1);
 1132     error = sysctl_handle_string(oidp, state, sizeof(state), req);
 1133     if (error != 0 || req->newptr == NULL)
 1134         return (error);
 1135     if (strlen(state) < 2 || toupper(state[0]) != 'C')
 1136         return (EINVAL);
 1137     val = (int) strtol(state + 1, NULL, 10) - 1;
 1138     if (val < 0 || val > sc->cpu_cx_count - 1)
 1139         return (EINVAL);
 1140 
 1141     ACPI_SERIAL_BEGIN(cpu);
 1142     acpi_cpu_set_cx_lowest(sc, val);
 1143     ACPI_SERIAL_END(cpu);
 1144 
 1145     return (0);
 1146 }
 1147 
 1148 static int
 1149 acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
 1150 {
 1151     struct      acpi_cpu_softc *sc;
 1152     char        state[8];
 1153     int         val, error, i;
 1154 
 1155     snprintf(state, sizeof(state), "C%d", cpu_cx_lowest + 1);
 1156     error = sysctl_handle_string(oidp, state, sizeof(state), req);
 1157     if (error != 0 || req->newptr == NULL)
 1158         return (error);
 1159     if (strlen(state) < 2 || toupper(state[0]) != 'C')
 1160         return (EINVAL);
 1161     val = (int) strtol(state + 1, NULL, 10) - 1;
 1162     if (val < 0 || val > cpu_cx_count - 1)
 1163         return (EINVAL);
 1164     cpu_cx_lowest = val;
 1165 
 1166     /* Update the new lowest useable Cx state for all CPUs. */
 1167     ACPI_SERIAL_BEGIN(cpu);
 1168     for (i = 0; i < cpu_ndevices; i++) {
 1169         sc = device_get_softc(cpu_devices[i]);
 1170         acpi_cpu_set_cx_lowest(sc, val);
 1171     }
 1172     ACPI_SERIAL_END(cpu);
 1173 
 1174     return (0);
 1175 }

Cache object: de04cc723b9138fde654c29490c4a1e4


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.