The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/acpica/acpi_cpu.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2003-2005 Nate Lawson (SDG)
    3  * Copyright (c) 2001 Michael Smith
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   25  * SUCH DAMAGE.
   26  */
   27 
   28 #include <sys/cdefs.h>
   29 __FBSDID("$FreeBSD: releng/8.1/sys/dev/acpica/acpi_cpu.c 209473 2010-06-23 17:51:11Z jhb $");
   30 
   31 #include "opt_acpi.h"
   32 #include <sys/param.h>
   33 #include <sys/bus.h>
   34 #include <sys/cpu.h>
   35 #include <sys/kernel.h>
   36 #include <sys/malloc.h>
   37 #include <sys/module.h>
   38 #include <sys/pcpu.h>
   39 #include <sys/power.h>
   40 #include <sys/proc.h>
   41 #include <sys/sbuf.h>
   42 #include <sys/smp.h>
   43 
   44 #include <dev/pci/pcivar.h>
   45 #include <machine/atomic.h>
   46 #include <machine/bus.h>
   47 #include <sys/rman.h>
   48 
   49 #include <contrib/dev/acpica/include/acpi.h>
   50 #include <contrib/dev/acpica/include/accommon.h>
   51 
   52 #include <dev/acpica/acpivar.h>
   53 
   54 /*
   55  * Support for ACPI Processor devices, including C[1-3] sleep states.
   56  */
   57 
   58 /* Hooks for the ACPI CA debugging infrastructure */
   59 #define _COMPONENT      ACPI_PROCESSOR
   60 ACPI_MODULE_NAME("PROCESSOR")
   61 
   62 struct acpi_cx {
   63     struct resource     *p_lvlx;        /* Register to read to enter state. */
   64     uint32_t             type;          /* C1-3 (C4 and up treated as C3). */
   65     uint32_t             trans_lat;     /* Transition latency (usec). */
   66     uint32_t             power;         /* Power consumed (mW). */
   67     int                  res_type;      /* Resource type for p_lvlx. */
   68 };
   69 #define MAX_CX_STATES    8
   70 
   71 struct acpi_cpu_softc {
   72     device_t             cpu_dev;
   73     ACPI_HANDLE          cpu_handle;
   74     struct pcpu         *cpu_pcpu;
   75     uint32_t             cpu_acpi_id;   /* ACPI processor id */
   76     uint32_t             cpu_p_blk;     /* ACPI P_BLK location */
   77     uint32_t             cpu_p_blk_len; /* P_BLK length (must be 6). */
   78     struct acpi_cx       cpu_cx_states[MAX_CX_STATES];
   79     int                  cpu_cx_count;  /* Number of valid Cx states. */
   80     int                  cpu_prev_sleep;/* Last idle sleep duration. */
   81     int                  cpu_features;  /* Child driver supported features. */
   82     /* Runtime state. */
   83     int                  cpu_non_c3;    /* Index of lowest non-C3 state. */
   84     u_int                cpu_cx_stats[MAX_CX_STATES];/* Cx usage history. */
   85     /* Values for sysctl. */
   86     struct sysctl_ctx_list cpu_sysctl_ctx;
   87     struct sysctl_oid   *cpu_sysctl_tree;
   88     int                  cpu_cx_lowest;
   89     char                 cpu_cx_supported[64];
   90     int                  cpu_rid;
   91 };
   92 
   93 struct acpi_cpu_device {
   94     struct resource_list        ad_rl;
   95 };
   96 
   97 #define CPU_GET_REG(reg, width)                                         \
   98     (bus_space_read_ ## width(rman_get_bustag((reg)),                   \
   99                       rman_get_bushandle((reg)), 0))
  100 #define CPU_SET_REG(reg, width, val)                                    \
  101     (bus_space_write_ ## width(rman_get_bustag((reg)),                  \
  102                        rman_get_bushandle((reg)), 0, (val)))
  103 
  104 #define PM_USEC(x)       ((x) >> 2)     /* ~4 clocks per usec (3.57955 Mhz) */
  105 
  106 #define ACPI_NOTIFY_CX_STATES   0x81    /* _CST changed. */
  107 
  108 #define CPU_QUIRK_NO_C3         (1<<0)  /* C3-type states are not usable. */
  109 #define CPU_QUIRK_NO_BM_CTRL    (1<<2)  /* No bus mastering control. */
  110 
  111 #define PCI_VENDOR_INTEL        0x8086
  112 #define PCI_DEVICE_82371AB_3    0x7113  /* PIIX4 chipset for quirks. */
  113 #define PCI_REVISION_A_STEP     0
  114 #define PCI_REVISION_B_STEP     1
  115 #define PCI_REVISION_4E         2
  116 #define PCI_REVISION_4M         3
  117 #define PIIX4_DEVACTB_REG       0x58
  118 #define PIIX4_BRLD_EN_IRQ0      (1<<0)
  119 #define PIIX4_BRLD_EN_IRQ       (1<<1)
  120 #define PIIX4_BRLD_EN_IRQ8      (1<<5)
  121 #define PIIX4_STOP_BREAK_MASK   (PIIX4_BRLD_EN_IRQ0 | PIIX4_BRLD_EN_IRQ | PIIX4_BRLD_EN_IRQ8)
  122 #define PIIX4_PCNTRL_BST_EN     (1<<10)
  123 
  124 /* Platform hardware resource information. */
  125 static uint32_t          cpu_smi_cmd;   /* Value to write to SMI_CMD. */
  126 static uint8_t           cpu_cst_cnt;   /* Indicate we are _CST aware. */
  127 static int               cpu_quirks;    /* Indicate any hardware bugs. */
  128 
  129 /* Runtime state. */
  130 static int               cpu_disable_idle; /* Disable entry to idle function */
  131 static int               cpu_cx_count;  /* Number of valid Cx states */
  132 
  133 /* Values for sysctl. */
  134 static struct sysctl_ctx_list cpu_sysctl_ctx;
  135 static struct sysctl_oid *cpu_sysctl_tree;
  136 static int               cpu_cx_generic;
  137 static int               cpu_cx_lowest;
  138 
  139 static device_t         *cpu_devices;
  140 static int               cpu_ndevices;
  141 static struct acpi_cpu_softc **cpu_softc;
  142 ACPI_SERIAL_DECL(cpu, "ACPI CPU");
  143 
  144 static int      acpi_cpu_probe(device_t dev);
  145 static int      acpi_cpu_attach(device_t dev);
  146 static int      acpi_cpu_suspend(device_t dev);
  147 static int      acpi_cpu_resume(device_t dev);
  148 static int      acpi_pcpu_get_id(uint32_t idx, uint32_t *acpi_id,
  149                     uint32_t *cpu_id);
  150 static struct resource_list *acpi_cpu_get_rlist(device_t dev, device_t child);
  151 static device_t acpi_cpu_add_child(device_t dev, int order, const char *name,
  152                     int unit);
  153 static int      acpi_cpu_read_ivar(device_t dev, device_t child, int index,
  154                     uintptr_t *result);
  155 static int      acpi_cpu_shutdown(device_t dev);
  156 static void     acpi_cpu_cx_probe(struct acpi_cpu_softc *sc);
  157 static void     acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc);
  158 static int      acpi_cpu_cx_cst(struct acpi_cpu_softc *sc);
  159 static void     acpi_cpu_startup(void *arg);
  160 static void     acpi_cpu_startup_cx(struct acpi_cpu_softc *sc);
  161 static void     acpi_cpu_cx_list(struct acpi_cpu_softc *sc);
  162 static void     acpi_cpu_idle(void);
  163 static void     acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context);
  164 static int      acpi_cpu_quirks(void);
  165 static int      acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS);
  166 static int      acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc, int val);
  167 static int      acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
  168 static int      acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
  169 
  170 static device_method_t acpi_cpu_methods[] = {
  171     /* Device interface */
  172     DEVMETHOD(device_probe,     acpi_cpu_probe),
  173     DEVMETHOD(device_attach,    acpi_cpu_attach),
  174     DEVMETHOD(device_detach,    bus_generic_detach),
  175     DEVMETHOD(device_shutdown,  acpi_cpu_shutdown),
  176     DEVMETHOD(device_suspend,   acpi_cpu_suspend),
  177     DEVMETHOD(device_resume,    acpi_cpu_resume),
  178 
  179     /* Bus interface */
  180     DEVMETHOD(bus_add_child,    acpi_cpu_add_child),
  181     DEVMETHOD(bus_read_ivar,    acpi_cpu_read_ivar),
  182     DEVMETHOD(bus_get_resource_list, acpi_cpu_get_rlist),
  183     DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource),
  184     DEVMETHOD(bus_set_resource, bus_generic_rl_set_resource),
  185     DEVMETHOD(bus_alloc_resource, bus_generic_rl_alloc_resource),
  186     DEVMETHOD(bus_release_resource, bus_generic_rl_release_resource),
  187     DEVMETHOD(bus_driver_added, bus_generic_driver_added),
  188     DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
  189     DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
  190     DEVMETHOD(bus_setup_intr,   bus_generic_setup_intr),
  191     DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr),
  192 
  193     {0, 0}
  194 };
  195 
  196 static driver_t acpi_cpu_driver = {
  197     "cpu",
  198     acpi_cpu_methods,
  199     sizeof(struct acpi_cpu_softc),
  200 };
  201 
  202 static devclass_t acpi_cpu_devclass;
  203 DRIVER_MODULE(cpu, acpi, acpi_cpu_driver, acpi_cpu_devclass, 0, 0);
  204 MODULE_DEPEND(cpu, acpi, 1, 1, 1);
  205 
  206 static int
  207 acpi_cpu_probe(device_t dev)
  208 {
  209     int                    acpi_id, cpu_id;
  210     ACPI_BUFFER            buf;
  211     ACPI_HANDLE            handle;
  212     ACPI_OBJECT            *obj;
  213     ACPI_STATUS            status;
  214 
  215     if (acpi_disabled("cpu") || acpi_get_type(dev) != ACPI_TYPE_PROCESSOR)
  216         return (ENXIO);
  217 
  218     handle = acpi_get_handle(dev);
  219     if (cpu_softc == NULL)
  220         cpu_softc = malloc(sizeof(struct acpi_cpu_softc *) *
  221             (mp_maxid + 1), M_TEMP /* XXX */, M_WAITOK | M_ZERO);
  222 
  223     /* Get our Processor object. */
  224     buf.Pointer = NULL;
  225     buf.Length = ACPI_ALLOCATE_BUFFER;
  226     status = AcpiEvaluateObject(handle, NULL, NULL, &buf);
  227     if (ACPI_FAILURE(status)) {
  228         device_printf(dev, "probe failed to get Processor obj - %s\n",
  229                       AcpiFormatException(status));
  230         return (ENXIO);
  231     }
  232     obj = (ACPI_OBJECT *)buf.Pointer;
  233     if (obj->Type != ACPI_TYPE_PROCESSOR) {
  234         device_printf(dev, "Processor object has bad type %d\n", obj->Type);
  235         AcpiOsFree(obj);
  236         return (ENXIO);
  237     }
  238 
  239     /*
  240      * Find the processor associated with our unit.  We could use the
  241      * ProcId as a key, however, some boxes do not have the same values
  242      * in their Processor object as the ProcId values in the MADT.
  243      */
  244     acpi_id = obj->Processor.ProcId;
  245     AcpiOsFree(obj);
  246     if (acpi_pcpu_get_id(device_get_unit(dev), &acpi_id, &cpu_id) != 0)
  247         return (ENXIO);
  248 
  249     /*
  250      * Check if we already probed this processor.  We scan the bus twice
  251      * so it's possible we've already seen this one.
  252      */
  253     if (cpu_softc[cpu_id] != NULL)
  254         return (ENXIO);
  255 
  256     /* Mark this processor as in-use and save our derived id for attach. */
  257     cpu_softc[cpu_id] = (void *)1;
  258     acpi_set_private(dev, (void*)(intptr_t)cpu_id);
  259     device_set_desc(dev, "ACPI CPU");
  260 
  261     return (0);
  262 }
  263 
  264 static int
  265 acpi_cpu_attach(device_t dev)
  266 {
  267     ACPI_BUFFER            buf;
  268     ACPI_OBJECT            arg[4], *obj;
  269     ACPI_OBJECT_LIST       arglist;
  270     struct pcpu            *pcpu_data;
  271     struct acpi_cpu_softc *sc;
  272     struct acpi_softc     *acpi_sc;
  273     ACPI_STATUS            status;
  274     u_int                  features;
  275     int                    cpu_id, drv_count, i;
  276     driver_t              **drivers;
  277     uint32_t               cap_set[3];
  278 
  279     /* UUID needed by _OSC evaluation */
  280     static uint8_t cpu_oscuuid[16] = { 0x16, 0xA6, 0x77, 0x40, 0x0C, 0x29,
  281                                        0xBE, 0x47, 0x9E, 0xBD, 0xD8, 0x70,
  282                                        0x58, 0x71, 0x39, 0x53 };
  283 
  284     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
  285 
  286     sc = device_get_softc(dev);
  287     sc->cpu_dev = dev;
  288     sc->cpu_handle = acpi_get_handle(dev);
  289     cpu_id = (int)(intptr_t)acpi_get_private(dev);
  290     cpu_softc[cpu_id] = sc;
  291     pcpu_data = pcpu_find(cpu_id);
  292     pcpu_data->pc_device = dev;
  293     sc->cpu_pcpu = pcpu_data;
  294     cpu_smi_cmd = AcpiGbl_FADT.SmiCommand;
  295     cpu_cst_cnt = AcpiGbl_FADT.CstControl;
  296 
  297     buf.Pointer = NULL;
  298     buf.Length = ACPI_ALLOCATE_BUFFER;
  299     status = AcpiEvaluateObject(sc->cpu_handle, NULL, NULL, &buf);
  300     if (ACPI_FAILURE(status)) {
  301         device_printf(dev, "attach failed to get Processor obj - %s\n",
  302                       AcpiFormatException(status));
  303         return (ENXIO);
  304     }
  305     obj = (ACPI_OBJECT *)buf.Pointer;
  306     sc->cpu_p_blk = obj->Processor.PblkAddress;
  307     sc->cpu_p_blk_len = obj->Processor.PblkLength;
  308     sc->cpu_acpi_id = obj->Processor.ProcId;
  309     AcpiOsFree(obj);
  310     ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: P_BLK at %#x/%d\n",
  311                      device_get_unit(dev), sc->cpu_p_blk, sc->cpu_p_blk_len));
  312 
  313     /*
  314      * If this is the first cpu we attach, create and initialize the generic
  315      * resources that will be used by all acpi cpu devices.
  316      */
  317     if (device_get_unit(dev) == 0) {
  318         /* Assume we won't be using generic Cx mode by default */
  319         cpu_cx_generic = FALSE;
  320 
  321         /* Install hw.acpi.cpu sysctl tree */
  322         acpi_sc = acpi_device_get_parent_softc(dev);
  323         sysctl_ctx_init(&cpu_sysctl_ctx);
  324         cpu_sysctl_tree = SYSCTL_ADD_NODE(&cpu_sysctl_ctx,
  325             SYSCTL_CHILDREN(acpi_sc->acpi_sysctl_tree), OID_AUTO, "cpu",
  326             CTLFLAG_RD, 0, "node for CPU children");
  327 
  328         /* Queue post cpu-probing task handler */
  329         AcpiOsExecute(OSL_NOTIFY_HANDLER, acpi_cpu_startup, NULL);
  330     }
  331 
  332     /*
  333      * Before calling any CPU methods, collect child driver feature hints
  334      * and notify ACPI of them.  We support unified SMP power control
  335      * so advertise this ourselves.  Note this is not the same as independent
  336      * SMP control where each CPU can have different settings.
  337      */
  338     sc->cpu_features = ACPI_CAP_SMP_SAME | ACPI_CAP_SMP_SAME_C3;
  339     if (devclass_get_drivers(acpi_cpu_devclass, &drivers, &drv_count) == 0) {
  340         for (i = 0; i < drv_count; i++) {
  341             if (ACPI_GET_FEATURES(drivers[i], &features) == 0)
  342                 sc->cpu_features |= features;
  343         }
  344         free(drivers, M_TEMP);
  345     }
  346 
  347     /*
  348      * CPU capabilities are specified in
  349      * Intel Processor Vendor-Specific ACPI Interface Specification.
  350      */
  351     if (sc->cpu_features) {
  352         arglist.Pointer = arg;
  353         arglist.Count = 4;
  354         arg[0].Type = ACPI_TYPE_BUFFER;
  355         arg[0].Buffer.Length = sizeof(cpu_oscuuid);
  356         arg[0].Buffer.Pointer = cpu_oscuuid;    /* UUID */
  357         arg[1].Type = ACPI_TYPE_INTEGER;
  358         arg[1].Integer.Value = 1;               /* revision */
  359         arg[2].Type = ACPI_TYPE_INTEGER;
  360         arg[2].Integer.Value = 1;               /* count */
  361         arg[3].Type = ACPI_TYPE_BUFFER;
  362         arg[3].Buffer.Length = sizeof(cap_set); /* Capabilities buffer */
  363         arg[3].Buffer.Pointer = (uint8_t *)cap_set;
  364         cap_set[0] = 0;                         /* status */
  365         cap_set[1] = sc->cpu_features;
  366         status = AcpiEvaluateObject(sc->cpu_handle, "_OSC", &arglist, NULL);
  367         if (ACPI_SUCCESS(status)) {
  368             if (cap_set[0] != 0)
  369                 device_printf(dev, "_OSC returned status %#x\n", cap_set[0]);
  370         }
  371         else {
  372             arglist.Pointer = arg;
  373             arglist.Count = 1;
  374             arg[0].Type = ACPI_TYPE_BUFFER;
  375             arg[0].Buffer.Length = sizeof(cap_set);
  376             arg[0].Buffer.Pointer = (uint8_t *)cap_set;
  377             cap_set[0] = 1; /* revision */
  378             cap_set[1] = 1; /* number of capabilities integers */
  379             cap_set[2] = sc->cpu_features;
  380             AcpiEvaluateObject(sc->cpu_handle, "_PDC", &arglist, NULL);
  381         }
  382     }
  383 
  384     /* Probe for Cx state support. */
  385     acpi_cpu_cx_probe(sc);
  386 
  387     return (0);
  388 }
  389 
  390 static void
  391 acpi_cpu_postattach(void *unused __unused)
  392 {
  393     device_t *devices;
  394     int err;
  395     int i, n;
  396 
  397     err = devclass_get_devices(acpi_cpu_devclass, &devices, &n);
  398     if (err != 0) {
  399         printf("devclass_get_devices(acpi_cpu_devclass) failed\n");
  400         return;
  401     }
  402     for (i = 0; i < n; i++)
  403         bus_generic_probe(devices[i]);
  404     for (i = 0; i < n; i++)
  405         bus_generic_attach(devices[i]);
  406     free(devices, M_TEMP);
  407 }
  408 
  409 SYSINIT(acpi_cpu, SI_SUB_CONFIGURE, SI_ORDER_MIDDLE,
  410     acpi_cpu_postattach, NULL);
  411 
  412 /*
  413  * Disable any entry to the idle function during suspend and re-enable it
  414  * during resume.
  415  */
  416 static int
  417 acpi_cpu_suspend(device_t dev)
  418 {
  419     int error;
  420 
  421     error = bus_generic_suspend(dev);
  422     if (error)
  423         return (error);
  424     cpu_disable_idle = TRUE;
  425     return (0);
  426 }
  427 
  428 static int
  429 acpi_cpu_resume(device_t dev)
  430 {
  431 
  432     cpu_disable_idle = FALSE;
  433     return (bus_generic_resume(dev));
  434 }
  435 
  436 /*
  437  * Find the nth present CPU and return its pc_cpuid as well as set the
  438  * pc_acpi_id from the most reliable source.
  439  */
  440 static int
  441 acpi_pcpu_get_id(uint32_t idx, uint32_t *acpi_id, uint32_t *cpu_id)
  442 {
  443     struct pcpu *pcpu_data;
  444     uint32_t     i;
  445 
  446     KASSERT(acpi_id != NULL, ("Null acpi_id"));
  447     KASSERT(cpu_id != NULL, ("Null cpu_id"));
  448     for (i = 0; i <= mp_maxid; i++) {
  449         if (CPU_ABSENT(i))
  450             continue;
  451         pcpu_data = pcpu_find(i);
  452         KASSERT(pcpu_data != NULL, ("no pcpu data for %d", i));
  453         if (idx-- == 0) {
  454             /*
  455              * If pc_acpi_id was not initialized (e.g., a non-APIC UP box)
  456              * override it with the value from the ASL.  Otherwise, if the
  457              * two don't match, prefer the MADT-derived value.  Finally,
  458              * return the pc_cpuid to reference this processor.
  459              */
  460             if (pcpu_data->pc_acpi_id == 0xffffffff)
  461                 pcpu_data->pc_acpi_id = *acpi_id;
  462             else if (pcpu_data->pc_acpi_id != *acpi_id)
  463                 *acpi_id = pcpu_data->pc_acpi_id;
  464             *cpu_id = pcpu_data->pc_cpuid;
  465             return (0);
  466         }
  467     }
  468 
  469     return (ESRCH);
  470 }
  471 
  472 static struct resource_list *
  473 acpi_cpu_get_rlist(device_t dev, device_t child)
  474 {
  475     struct acpi_cpu_device *ad;
  476 
  477     ad = device_get_ivars(child);
  478     if (ad == NULL)
  479         return (NULL);
  480     return (&ad->ad_rl);
  481 }
  482 
  483 static device_t
  484 acpi_cpu_add_child(device_t dev, int order, const char *name, int unit)
  485 {
  486     struct acpi_cpu_device *ad;
  487     device_t child;
  488 
  489     if ((ad = malloc(sizeof(*ad), M_TEMP, M_NOWAIT | M_ZERO)) == NULL)
  490         return (NULL);
  491 
  492     resource_list_init(&ad->ad_rl);
  493     
  494     child = device_add_child_ordered(dev, order, name, unit);
  495     if (child != NULL)
  496         device_set_ivars(child, ad);
  497     else
  498         free(ad, M_TEMP);
  499     return (child);
  500 }
  501 
  502 static int
  503 acpi_cpu_read_ivar(device_t dev, device_t child, int index, uintptr_t *result)
  504 {
  505     struct acpi_cpu_softc *sc;
  506 
  507     sc = device_get_softc(dev);
  508     switch (index) {
  509     case ACPI_IVAR_HANDLE:
  510         *result = (uintptr_t)sc->cpu_handle;
  511         break;
  512     case CPU_IVAR_PCPU:
  513         *result = (uintptr_t)sc->cpu_pcpu;
  514         break;
  515     default:
  516         return (ENOENT);
  517     }
  518     return (0);
  519 }
  520 
  521 static int
  522 acpi_cpu_shutdown(device_t dev)
  523 {
  524     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
  525 
  526     /* Allow children to shutdown first. */
  527     bus_generic_shutdown(dev);
  528 
  529     /*
  530      * Disable any entry to the idle function.  There is a small race where
  531      * an idle thread have passed this check but not gone to sleep.  This
  532      * is ok since device_shutdown() does not free the softc, otherwise
  533      * we'd have to be sure all threads were evicted before returning.
  534      */
  535     cpu_disable_idle = TRUE;
  536 
  537     return_VALUE (0);
  538 }
  539 
  540 static void
  541 acpi_cpu_cx_probe(struct acpi_cpu_softc *sc)
  542 {
  543     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
  544 
  545     /* Use initial sleep value of 1 sec. to start with lowest idle state. */
  546     sc->cpu_prev_sleep = 1000000;
  547     sc->cpu_cx_lowest = 0;
  548 
  549     /*
  550      * Check for the ACPI 2.0 _CST sleep states object. If we can't find
  551      * any, we'll revert to generic FADT/P_BLK Cx control method which will
  552      * be handled by acpi_cpu_startup. We need to defer to after having
  553      * probed all the cpus in the system before probing for generic Cx
  554      * states as we may already have found cpus with valid _CST packages
  555      */
  556     if (!cpu_cx_generic && acpi_cpu_cx_cst(sc) != 0) {
  557         /*
  558          * We were unable to find a _CST package for this cpu or there
  559          * was an error parsing it. Switch back to generic mode.
  560          */
  561         cpu_cx_generic = TRUE;
  562         if (bootverbose)
  563             device_printf(sc->cpu_dev, "switching to generic Cx mode\n");
  564     }
  565 
  566     /*
  567      * TODO: _CSD Package should be checked here.
  568      */
  569 }
  570 
  571 static void
  572 acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc)
  573 {
  574     ACPI_GENERIC_ADDRESS         gas;
  575     struct acpi_cx              *cx_ptr;
  576 
  577     sc->cpu_cx_count = 0;
  578     cx_ptr = sc->cpu_cx_states;
  579 
  580     /* Use initial sleep value of 1 sec. to start with lowest idle state. */
  581     sc->cpu_prev_sleep = 1000000;
  582 
  583     /* C1 has been required since just after ACPI 1.0 */
  584     cx_ptr->type = ACPI_STATE_C1;
  585     cx_ptr->trans_lat = 0;
  586     cx_ptr++;
  587     sc->cpu_cx_count++;
  588 
  589     /* 
  590      * The spec says P_BLK must be 6 bytes long.  However, some systems
  591      * use it to indicate a fractional set of features present so we
  592      * take 5 as C2.  Some may also have a value of 7 to indicate
  593      * another C3 but most use _CST for this (as required) and having
  594      * "only" C1-C3 is not a hardship.
  595      */
  596     if (sc->cpu_p_blk_len < 5)
  597         return; 
  598 
  599     /* Validate and allocate resources for C2 (P_LVL2). */
  600     gas.SpaceId = ACPI_ADR_SPACE_SYSTEM_IO;
  601     gas.BitWidth = 8;
  602     if (AcpiGbl_FADT.C2Latency <= 100) {
  603         gas.Address = sc->cpu_p_blk + 4;
  604         acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &sc->cpu_rid,
  605             &gas, &cx_ptr->p_lvlx, RF_SHAREABLE);
  606         if (cx_ptr->p_lvlx != NULL) {
  607             sc->cpu_rid++;
  608             cx_ptr->type = ACPI_STATE_C2;
  609             cx_ptr->trans_lat = AcpiGbl_FADT.C2Latency;
  610             cx_ptr++;
  611             sc->cpu_cx_count++;
  612         }
  613     }
  614     if (sc->cpu_p_blk_len < 6)
  615         return;
  616 
  617     /* Validate and allocate resources for C3 (P_LVL3). */
  618     if (AcpiGbl_FADT.C3Latency <= 1000 && !(cpu_quirks & CPU_QUIRK_NO_C3)) {
  619         gas.Address = sc->cpu_p_blk + 5;
  620         acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &sc->cpu_rid, &gas,
  621             &cx_ptr->p_lvlx, RF_SHAREABLE);
  622         if (cx_ptr->p_lvlx != NULL) {
  623             sc->cpu_rid++;
  624             cx_ptr->type = ACPI_STATE_C3;
  625             cx_ptr->trans_lat = AcpiGbl_FADT.C3Latency;
  626             cx_ptr++;
  627             sc->cpu_cx_count++;
  628         }
  629     }
  630 }
  631 
  632 /*
  633  * Parse a _CST package and set up its Cx states.  Since the _CST object
  634  * can change dynamically, our notify handler may call this function
  635  * to clean up and probe the new _CST package.
  636  */
  637 static int
  638 acpi_cpu_cx_cst(struct acpi_cpu_softc *sc)
  639 {
  640     struct       acpi_cx *cx_ptr;
  641     ACPI_STATUS  status;
  642     ACPI_BUFFER  buf;
  643     ACPI_OBJECT *top;
  644     ACPI_OBJECT *pkg;
  645     uint32_t     count;
  646     int          i;
  647 
  648     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
  649 
  650     buf.Pointer = NULL;
  651     buf.Length = ACPI_ALLOCATE_BUFFER;
  652     status = AcpiEvaluateObject(sc->cpu_handle, "_CST", NULL, &buf);
  653     if (ACPI_FAILURE(status))
  654         return (ENXIO);
  655 
  656     /* _CST is a package with a count and at least one Cx package. */
  657     top = (ACPI_OBJECT *)buf.Pointer;
  658     if (!ACPI_PKG_VALID(top, 2) || acpi_PkgInt32(top, 0, &count) != 0) {
  659         device_printf(sc->cpu_dev, "invalid _CST package\n");
  660         AcpiOsFree(buf.Pointer);
  661         return (ENXIO);
  662     }
  663     if (count != top->Package.Count - 1) {
  664         device_printf(sc->cpu_dev, "invalid _CST state count (%d != %d)\n",
  665                count, top->Package.Count - 1);
  666         count = top->Package.Count - 1;
  667     }
  668     if (count > MAX_CX_STATES) {
  669         device_printf(sc->cpu_dev, "_CST has too many states (%d)\n", count);
  670         count = MAX_CX_STATES;
  671     }
  672 
  673     /* Set up all valid states. */
  674     sc->cpu_cx_count = 0;
  675     cx_ptr = sc->cpu_cx_states;
  676     for (i = 0; i < count; i++) {
  677         pkg = &top->Package.Elements[i + 1];
  678         if (!ACPI_PKG_VALID(pkg, 4) ||
  679             acpi_PkgInt32(pkg, 1, &cx_ptr->type) != 0 ||
  680             acpi_PkgInt32(pkg, 2, &cx_ptr->trans_lat) != 0 ||
  681             acpi_PkgInt32(pkg, 3, &cx_ptr->power) != 0) {
  682 
  683             device_printf(sc->cpu_dev, "skipping invalid Cx state package\n");
  684             continue;
  685         }
  686 
  687         /* Validate the state to see if we should use it. */
  688         switch (cx_ptr->type) {
  689         case ACPI_STATE_C1:
  690             sc->cpu_non_c3 = i;
  691             cx_ptr++;
  692             sc->cpu_cx_count++;
  693             continue;
  694         case ACPI_STATE_C2:
  695             if (cx_ptr->trans_lat > 100) {
  696                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  697                                  "acpi_cpu%d: C2[%d] not available.\n",
  698                                  device_get_unit(sc->cpu_dev), i));
  699                 continue;
  700             }
  701             sc->cpu_non_c3 = i;
  702             break;
  703         case ACPI_STATE_C3:
  704         default:
  705             if (cx_ptr->trans_lat > 1000 ||
  706                 (cpu_quirks & CPU_QUIRK_NO_C3) != 0) {
  707 
  708                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  709                                  "acpi_cpu%d: C3[%d] not available.\n",
  710                                  device_get_unit(sc->cpu_dev), i));
  711                 continue;
  712             }
  713             break;
  714         }
  715 
  716 #ifdef notyet
  717         /* Free up any previous register. */
  718         if (cx_ptr->p_lvlx != NULL) {
  719             bus_release_resource(sc->cpu_dev, 0, 0, cx_ptr->p_lvlx);
  720             cx_ptr->p_lvlx = NULL;
  721         }
  722 #endif
  723 
  724         /* Allocate the control register for C2 or C3. */
  725         acpi_PkgGas(sc->cpu_dev, pkg, 0, &cx_ptr->res_type, &sc->cpu_rid,
  726             &cx_ptr->p_lvlx, RF_SHAREABLE);
  727         if (cx_ptr->p_lvlx) {
  728             sc->cpu_rid++;
  729             ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  730                              "acpi_cpu%d: Got C%d - %d latency\n",
  731                              device_get_unit(sc->cpu_dev), cx_ptr->type,
  732                              cx_ptr->trans_lat));
  733             cx_ptr++;
  734             sc->cpu_cx_count++;
  735         }
  736     }
  737     AcpiOsFree(buf.Pointer);
  738 
  739     return (0);
  740 }
  741 
  742 /*
  743  * Call this *after* all CPUs have been attached.
  744  */
  745 static void
  746 acpi_cpu_startup(void *arg)
  747 {
  748     struct acpi_cpu_softc *sc;
  749     int i;
  750 
  751     /* Get set of CPU devices */
  752     devclass_get_devices(acpi_cpu_devclass, &cpu_devices, &cpu_ndevices);
  753 
  754     /*
  755      * Setup any quirks that might necessary now that we have probed
  756      * all the CPUs
  757      */
  758     acpi_cpu_quirks();
  759 
  760     cpu_cx_count = 0;
  761     if (cpu_cx_generic) {
  762         /*
  763          * We are using generic Cx mode, probe for available Cx states
  764          * for all processors.
  765          */
  766         for (i = 0; i < cpu_ndevices; i++) {
  767             sc = device_get_softc(cpu_devices[i]);
  768             acpi_cpu_generic_cx_probe(sc);
  769             if (sc->cpu_cx_count > cpu_cx_count)
  770                     cpu_cx_count = sc->cpu_cx_count;
  771         }
  772 
  773         /*
  774          * Find the highest Cx state common to all CPUs
  775          * in the system, taking quirks into account.
  776          */
  777         for (i = 0; i < cpu_ndevices; i++) {
  778             sc = device_get_softc(cpu_devices[i]);
  779             if (sc->cpu_cx_count < cpu_cx_count)
  780                 cpu_cx_count = sc->cpu_cx_count;
  781         }
  782     } else {
  783         /*
  784          * We are using _CST mode, remove C3 state if necessary.
  785          * Update the largest Cx state supported in the global cpu_cx_count.
  786          * It will be used in the global Cx sysctl handler.
  787          * As we now know for sure that we will be using _CST mode
  788          * install our notify handler.
  789          */
  790         for (i = 0; i < cpu_ndevices; i++) {
  791             sc = device_get_softc(cpu_devices[i]);
  792             if (cpu_quirks & CPU_QUIRK_NO_C3) {
  793                 sc->cpu_cx_count = sc->cpu_non_c3 + 1;
  794             }
  795             if (sc->cpu_cx_count > cpu_cx_count)
  796                 cpu_cx_count = sc->cpu_cx_count;
  797             AcpiInstallNotifyHandler(sc->cpu_handle, ACPI_DEVICE_NOTIFY,
  798                 acpi_cpu_notify, sc);
  799         }
  800     }
  801 
  802     /* Perform Cx final initialization. */
  803     for (i = 0; i < cpu_ndevices; i++) {
  804         sc = device_get_softc(cpu_devices[i]);
  805         acpi_cpu_startup_cx(sc);
  806     }
  807 
  808     /* Add a sysctl handler to handle global Cx lowest setting */
  809     SYSCTL_ADD_PROC(&cpu_sysctl_ctx, SYSCTL_CHILDREN(cpu_sysctl_tree),
  810         OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW,
  811         NULL, 0, acpi_cpu_global_cx_lowest_sysctl, "A",
  812         "Global lowest Cx sleep state to use");
  813 
  814     /* Take over idling from cpu_idle_default(). */
  815     cpu_cx_lowest = 0;
  816     cpu_disable_idle = FALSE;
  817     cpu_idle_hook = acpi_cpu_idle;
  818 }
  819 
  820 static void
  821 acpi_cpu_cx_list(struct acpi_cpu_softc *sc)
  822 {
  823     struct sbuf sb;
  824     int i;
  825 
  826     /*
  827      * Set up the list of Cx states
  828      */
  829     sc->cpu_non_c3 = 0;
  830     sbuf_new(&sb, sc->cpu_cx_supported, sizeof(sc->cpu_cx_supported),
  831         SBUF_FIXEDLEN);
  832     for (i = 0; i < sc->cpu_cx_count; i++) {
  833         sbuf_printf(&sb, "C%d/%d ", i + 1, sc->cpu_cx_states[i].trans_lat);
  834         if (sc->cpu_cx_states[i].type < ACPI_STATE_C3)
  835             sc->cpu_non_c3 = i;
  836     }
  837     sbuf_trim(&sb);
  838     sbuf_finish(&sb);
  839 }       
  840 
  841 static void
  842 acpi_cpu_startup_cx(struct acpi_cpu_softc *sc)
  843 {
  844     acpi_cpu_cx_list(sc);
  845     
  846     SYSCTL_ADD_STRING(&sc->cpu_sysctl_ctx,
  847                       SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
  848                       OID_AUTO, "cx_supported", CTLFLAG_RD,
  849                       sc->cpu_cx_supported, 0,
  850                       "Cx/microsecond values for supported Cx states");
  851     SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
  852                     SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
  853                     OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW,
  854                     (void *)sc, 0, acpi_cpu_cx_lowest_sysctl, "A",
  855                     "lowest Cx sleep state to use");
  856     SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
  857                     SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
  858                     OID_AUTO, "cx_usage", CTLTYPE_STRING | CTLFLAG_RD,
  859                     (void *)sc, 0, acpi_cpu_usage_sysctl, "A",
  860                     "percent usage for each Cx state");
  861 
  862 #ifdef notyet
  863     /* Signal platform that we can handle _CST notification. */
  864     if (!cpu_cx_generic && cpu_cst_cnt != 0) {
  865         ACPI_LOCK(acpi);
  866         AcpiOsWritePort(cpu_smi_cmd, cpu_cst_cnt, 8);
  867         ACPI_UNLOCK(acpi);
  868     }
  869 #endif
  870 }
  871 
  872 /*
  873  * Idle the CPU in the lowest state possible.  This function is called with
  874  * interrupts disabled.  Note that once it re-enables interrupts, a task
  875  * switch can occur so do not access shared data (i.e. the softc) after
  876  * interrupts are re-enabled.
  877  */
  878 static void
  879 acpi_cpu_idle()
  880 {
  881     struct      acpi_cpu_softc *sc;
  882     struct      acpi_cx *cx_next;
  883     uint32_t    start_time, end_time;
  884     int         bm_active, cx_next_idx, i;
  885 
  886     /* If disabled, return immediately. */
  887     if (cpu_disable_idle) {
  888         ACPI_ENABLE_IRQS();
  889         return;
  890     }
  891 
  892     /*
  893      * Look up our CPU id to get our softc.  If it's NULL, we'll use C1
  894      * since there is no ACPI processor object for this CPU.  This occurs
  895      * for logical CPUs in the HTT case.
  896      */
  897     sc = cpu_softc[PCPU_GET(cpuid)];
  898     if (sc == NULL) {
  899         acpi_cpu_c1();
  900         return;
  901     }
  902 
  903     /* Find the lowest state that has small enough latency. */
  904     cx_next_idx = 0;
  905     for (i = sc->cpu_cx_lowest; i >= 0; i--) {
  906         if (sc->cpu_cx_states[i].trans_lat * 3 <= sc->cpu_prev_sleep) {
  907             cx_next_idx = i;
  908             break;
  909         }
  910     }
  911 
  912     /*
  913      * Check for bus master activity.  If there was activity, clear
  914      * the bit and use the lowest non-C3 state.  Note that the USB
  915      * driver polling for new devices keeps this bit set all the
  916      * time if USB is loaded.
  917      */
  918     if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
  919         AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, &bm_active);
  920         if (bm_active != 0) {
  921             AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, 1);
  922             cx_next_idx = min(cx_next_idx, sc->cpu_non_c3);
  923         }
  924     }
  925 
  926     /* Select the next state and update statistics. */
  927     cx_next = &sc->cpu_cx_states[cx_next_idx];
  928     sc->cpu_cx_stats[cx_next_idx]++;
  929     KASSERT(cx_next->type != ACPI_STATE_C0, ("acpi_cpu_idle: C0 sleep"));
  930 
  931     /*
  932      * Execute HLT (or equivalent) and wait for an interrupt.  We can't
  933      * calculate the time spent in C1 since the place we wake up is an
  934      * ISR.  Assume we slept half of quantum and return.
  935      */
  936     if (cx_next->type == ACPI_STATE_C1) {
  937         sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + 500000 / hz) / 4;
  938         acpi_cpu_c1();
  939         return;
  940     }
  941 
  942     /*
  943      * For C3, disable bus master arbitration and enable bus master wake
  944      * if BM control is available, otherwise flush the CPU cache.
  945      */
  946     if (cx_next->type == ACPI_STATE_C3) {
  947         if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
  948             AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 1);
  949             AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 1);
  950         } else
  951             ACPI_FLUSH_CPU_CACHE();
  952     }
  953 
  954     /*
  955      * Read from P_LVLx to enter C2(+), checking time spent asleep.
  956      * Use the ACPI timer for measuring sleep time.  Since we need to
  957      * get the time very close to the CPU start/stop clock logic, this
  958      * is the only reliable time source.
  959      */
  960     AcpiHwRead(&start_time, &AcpiGbl_FADT.XPmTimerBlock);
  961     CPU_GET_REG(cx_next->p_lvlx, 1);
  962 
  963     /*
  964      * Read the end time twice.  Since it may take an arbitrary time
  965      * to enter the idle state, the first read may be executed before
  966      * the processor has stopped.  Doing it again provides enough
  967      * margin that we are certain to have a correct value.
  968      */
  969     AcpiHwRead(&end_time, &AcpiGbl_FADT.XPmTimerBlock);
  970     AcpiHwRead(&end_time, &AcpiGbl_FADT.XPmTimerBlock);
  971 
  972     /* Enable bus master arbitration and disable bus master wakeup. */
  973     if (cx_next->type == ACPI_STATE_C3 &&
  974         (cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
  975         AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 0);
  976         AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
  977     }
  978     ACPI_ENABLE_IRQS();
  979 
  980     /* Find the actual time asleep in microseconds. */
  981     end_time = acpi_TimerDelta(end_time, start_time);
  982     sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + PM_USEC(end_time)) / 4;
  983 }
  984 
  985 /*
  986  * Re-evaluate the _CST object when we are notified that it changed.
  987  *
  988  * XXX Re-evaluation disabled until locking is done.
  989  */
  990 static void
  991 acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context)
  992 {
  993     struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)context;
  994     struct acpi_cpu_softc *isc;
  995     int i;
  996     
  997     if (notify != ACPI_NOTIFY_CX_STATES)
  998         return;
  999 
 1000     /* Update the list of Cx states. */
 1001     acpi_cpu_cx_cst(sc);
 1002     acpi_cpu_cx_list(sc);
 1003 
 1004     /* Update the new lowest useable Cx state for all CPUs. */
 1005     ACPI_SERIAL_BEGIN(cpu);
 1006     cpu_cx_count = 0;
 1007     for (i = 0; i < cpu_ndevices; i++) {
 1008         isc = device_get_softc(cpu_devices[i]);
 1009         if (isc->cpu_cx_count > cpu_cx_count)
 1010             cpu_cx_count = isc->cpu_cx_count;
 1011     }
 1012     if (sc->cpu_cx_lowest < cpu_cx_lowest)
 1013         acpi_cpu_set_cx_lowest(sc, min(cpu_cx_lowest, sc->cpu_cx_count - 1));
 1014     ACPI_SERIAL_END(cpu);
 1015 }
 1016 
 1017 static int
 1018 acpi_cpu_quirks(void)
 1019 {
 1020     device_t acpi_dev;
 1021     uint32_t val;
 1022 
 1023     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
 1024 
 1025     /*
 1026      * Bus mastering arbitration control is needed to keep caches coherent
 1027      * while sleeping in C3.  If it's not present but a working flush cache
 1028      * instruction is present, flush the caches before entering C3 instead.
 1029      * Otherwise, just disable C3 completely.
 1030      */
 1031     if (AcpiGbl_FADT.Pm2ControlBlock == 0 ||
 1032         AcpiGbl_FADT.Pm2ControlLength == 0) {
 1033         if ((AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD) &&
 1034             (AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD_FLUSH) == 0) {
 1035             cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
 1036             ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1037                 "acpi_cpu: no BM control, using flush cache method\n"));
 1038         } else {
 1039             cpu_quirks |= CPU_QUIRK_NO_C3;
 1040             ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1041                 "acpi_cpu: no BM control, C3 not available\n"));
 1042         }
 1043     }
 1044 
 1045     /*
 1046      * If we are using generic Cx mode, C3 on multiple CPUs requires using
 1047      * the expensive flush cache instruction.
 1048      */
 1049     if (cpu_cx_generic && mp_ncpus > 1) {
 1050         cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
 1051         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1052             "acpi_cpu: SMP, using flush cache mode for C3\n"));
 1053     }
 1054 
 1055     /* Look for various quirks of the PIIX4 part. */
 1056     acpi_dev = pci_find_device(PCI_VENDOR_INTEL, PCI_DEVICE_82371AB_3);
 1057     if (acpi_dev != NULL) {
 1058         switch (pci_get_revid(acpi_dev)) {
 1059         /*
 1060          * Disable C3 support for all PIIX4 chipsets.  Some of these parts
 1061          * do not report the BMIDE status to the BM status register and
 1062          * others have a livelock bug if Type-F DMA is enabled.  Linux
 1063          * works around the BMIDE bug by reading the BM status directly
 1064          * but we take the simpler approach of disabling C3 for these
 1065          * parts.
 1066          *
 1067          * See erratum #18 ("C3 Power State/BMIDE and Type-F DMA
 1068          * Livelock") from the January 2002 PIIX4 specification update.
 1069          * Applies to all PIIX4 models.
 1070          *
 1071          * Also, make sure that all interrupts cause a "Stop Break"
 1072          * event to exit from C2 state.
 1073          * Also, BRLD_EN_BM (ACPI_BITREG_BUS_MASTER_RLD in ACPI-speak)
 1074          * should be set to zero, otherwise it causes C2 to short-sleep.
 1075          * PIIX4 doesn't properly support C3 and bus master activity
 1076          * need not break out of C2.
 1077          */
 1078         case PCI_REVISION_A_STEP:
 1079         case PCI_REVISION_B_STEP:
 1080         case PCI_REVISION_4E:
 1081         case PCI_REVISION_4M:
 1082             cpu_quirks |= CPU_QUIRK_NO_C3;
 1083             ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1084                 "acpi_cpu: working around PIIX4 bug, disabling C3\n"));
 1085 
 1086             val = pci_read_config(acpi_dev, PIIX4_DEVACTB_REG, 4);
 1087             if ((val & PIIX4_STOP_BREAK_MASK) != PIIX4_STOP_BREAK_MASK) {
 1088                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1089                     "acpi_cpu: PIIX4: enabling IRQs to generate Stop Break\n"));
 1090                 val |= PIIX4_STOP_BREAK_MASK;
 1091                 pci_write_config(acpi_dev, PIIX4_DEVACTB_REG, val, 4);
 1092             }
 1093             AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_RLD, &val);
 1094             if (val) {
 1095                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1096                     "acpi_cpu: PIIX4: reset BRLD_EN_BM\n"));
 1097                 AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
 1098             }
 1099             break;
 1100         default:
 1101             break;
 1102         }
 1103     }
 1104 
 1105     return (0);
 1106 }
 1107 
 1108 static int
 1109 acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS)
 1110 {
 1111     struct acpi_cpu_softc *sc;
 1112     struct sbuf  sb;
 1113     char         buf[128];
 1114     int          i;
 1115     uintmax_t    fract, sum, whole;
 1116 
 1117     sc = (struct acpi_cpu_softc *) arg1;
 1118     sum = 0;
 1119     for (i = 0; i < sc->cpu_cx_count; i++)
 1120         sum += sc->cpu_cx_stats[i];
 1121     sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
 1122     for (i = 0; i < sc->cpu_cx_count; i++) {
 1123         if (sum > 0) {
 1124             whole = (uintmax_t)sc->cpu_cx_stats[i] * 100;
 1125             fract = (whole % sum) * 100;
 1126             sbuf_printf(&sb, "%u.%02u%% ", (u_int)(whole / sum),
 1127                 (u_int)(fract / sum));
 1128         } else
 1129             sbuf_printf(&sb, "0.00%% ");
 1130     }
 1131     sbuf_printf(&sb, "last %dus", sc->cpu_prev_sleep);
 1132     sbuf_trim(&sb);
 1133     sbuf_finish(&sb);
 1134     sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
 1135     sbuf_delete(&sb);
 1136 
 1137     return (0);
 1138 }
 1139 
 1140 static int
 1141 acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc, int val)
 1142 {
 1143     int i;
 1144 
 1145     ACPI_SERIAL_ASSERT(cpu);
 1146     sc->cpu_cx_lowest = val;
 1147 
 1148     /* If not disabling, cache the new lowest non-C3 state. */
 1149     sc->cpu_non_c3 = 0;
 1150     for (i = sc->cpu_cx_lowest; i >= 0; i--) {
 1151         if (sc->cpu_cx_states[i].type < ACPI_STATE_C3) {
 1152             sc->cpu_non_c3 = i;
 1153             break;
 1154         }
 1155     }
 1156 
 1157     /* Reset the statistics counters. */
 1158     bzero(sc->cpu_cx_stats, sizeof(sc->cpu_cx_stats));
 1159     return (0);
 1160 }
 1161 
 1162 static int
 1163 acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
 1164 {
 1165     struct       acpi_cpu_softc *sc;
 1166     char         state[8];
 1167     int          val, error;
 1168 
 1169     sc = (struct acpi_cpu_softc *) arg1;
 1170     snprintf(state, sizeof(state), "C%d", sc->cpu_cx_lowest + 1);
 1171     error = sysctl_handle_string(oidp, state, sizeof(state), req);
 1172     if (error != 0 || req->newptr == NULL)
 1173         return (error);
 1174     if (strlen(state) < 2 || toupper(state[0]) != 'C')
 1175         return (EINVAL);
 1176     val = (int) strtol(state + 1, NULL, 10) - 1;
 1177     if (val < 0 || val > sc->cpu_cx_count - 1)
 1178         return (EINVAL);
 1179 
 1180     ACPI_SERIAL_BEGIN(cpu);
 1181     acpi_cpu_set_cx_lowest(sc, val);
 1182     ACPI_SERIAL_END(cpu);
 1183 
 1184     return (0);
 1185 }
 1186 
 1187 static int
 1188 acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
 1189 {
 1190     struct      acpi_cpu_softc *sc;
 1191     char        state[8];
 1192     int         val, error, i;
 1193 
 1194     snprintf(state, sizeof(state), "C%d", cpu_cx_lowest + 1);
 1195     error = sysctl_handle_string(oidp, state, sizeof(state), req);
 1196     if (error != 0 || req->newptr == NULL)
 1197         return (error);
 1198     if (strlen(state) < 2 || toupper(state[0]) != 'C')
 1199         return (EINVAL);
 1200     val = (int) strtol(state + 1, NULL, 10) - 1;
 1201     if (val < 0 || val > cpu_cx_count - 1)
 1202         return (EINVAL);
 1203     cpu_cx_lowest = val;
 1204 
 1205     /* Update the new lowest useable Cx state for all CPUs. */
 1206     ACPI_SERIAL_BEGIN(cpu);
 1207     for (i = 0; i < cpu_ndevices; i++) {
 1208         sc = device_get_softc(cpu_devices[i]);
 1209         acpi_cpu_set_cx_lowest(sc, min(val, sc->cpu_cx_count - 1));
 1210     }
 1211     ACPI_SERIAL_END(cpu);
 1212 
 1213     return (0);
 1214 }

Cache object: 683de9ef441f4ed27f1f6890bcbd3537


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.