The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/acpica/acpi_cpu.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2003-2005 Nate Lawson (SDG)
    3  * Copyright (c) 2001 Michael Smith
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   25  * SUCH DAMAGE.
   26  */
   27 
   28 #include <sys/cdefs.h>
   29 __FBSDID("$FreeBSD: releng/8.3/sys/dev/acpica/acpi_cpu.c 230714 2012-01-29 01:22:48Z marius $");
   30 
   31 #include "opt_acpi.h"
   32 #include <sys/param.h>
   33 #include <sys/bus.h>
   34 #include <sys/cpu.h>
   35 #include <sys/kernel.h>
   36 #include <sys/malloc.h>
   37 #include <sys/module.h>
   38 #include <sys/pcpu.h>
   39 #include <sys/power.h>
   40 #include <sys/proc.h>
   41 #include <sys/sbuf.h>
   42 #include <sys/smp.h>
   43 
   44 #include <dev/pci/pcivar.h>
   45 #include <machine/atomic.h>
   46 #include <machine/bus.h>
   47 #include <sys/rman.h>
   48 
   49 #include <contrib/dev/acpica/include/acpi.h>
   50 #include <contrib/dev/acpica/include/accommon.h>
   51 
   52 #include <dev/acpica/acpivar.h>
   53 
   54 /*
   55  * Support for ACPI Processor devices, including C[1-3] sleep states.
   56  */
   57 
   58 /* Hooks for the ACPI CA debugging infrastructure */
   59 #define _COMPONENT      ACPI_PROCESSOR
   60 ACPI_MODULE_NAME("PROCESSOR")
   61 
   62 struct acpi_cx {
   63     struct resource     *p_lvlx;        /* Register to read to enter state. */
   64     uint32_t             type;          /* C1-3 (C4 and up treated as C3). */
   65     uint32_t             trans_lat;     /* Transition latency (usec). */
   66     uint32_t             power;         /* Power consumed (mW). */
   67     int                  res_type;      /* Resource type for p_lvlx. */
   68 };
   69 #define MAX_CX_STATES    8
   70 
   71 struct acpi_cpu_softc {
   72     device_t             cpu_dev;
   73     ACPI_HANDLE          cpu_handle;
   74     struct pcpu         *cpu_pcpu;
   75     uint32_t             cpu_acpi_id;   /* ACPI processor id */
   76     uint32_t             cpu_p_blk;     /* ACPI P_BLK location */
   77     uint32_t             cpu_p_blk_len; /* P_BLK length (must be 6). */
   78     struct acpi_cx       cpu_cx_states[MAX_CX_STATES];
   79     int                  cpu_cx_count;  /* Number of valid Cx states. */
   80     int                  cpu_prev_sleep;/* Last idle sleep duration. */
   81     int                  cpu_features;  /* Child driver supported features. */
   82     /* Runtime state. */
   83     int                  cpu_non_c3;    /* Index of lowest non-C3 state. */
   84     u_int                cpu_cx_stats[MAX_CX_STATES];/* Cx usage history. */
   85     /* Values for sysctl. */
   86     struct sysctl_ctx_list cpu_sysctl_ctx;
   87     struct sysctl_oid   *cpu_sysctl_tree;
   88     int                  cpu_cx_lowest;
   89     char                 cpu_cx_supported[64];
   90     int                  cpu_rid;
   91 };
   92 
   93 struct acpi_cpu_device {
   94     struct resource_list        ad_rl;
   95 };
   96 
   97 #define CPU_GET_REG(reg, width)                                         \
   98     (bus_space_read_ ## width(rman_get_bustag((reg)),                   \
   99                       rman_get_bushandle((reg)), 0))
  100 #define CPU_SET_REG(reg, width, val)                                    \
  101     (bus_space_write_ ## width(rman_get_bustag((reg)),                  \
  102                        rman_get_bushandle((reg)), 0, (val)))
  103 
  104 #define PM_USEC(x)       ((x) >> 2)     /* ~4 clocks per usec (3.57955 Mhz) */
  105 
  106 #define ACPI_NOTIFY_CX_STATES   0x81    /* _CST changed. */
  107 
  108 #define CPU_QUIRK_NO_C3         (1<<0)  /* C3-type states are not usable. */
  109 #define CPU_QUIRK_NO_BM_CTRL    (1<<2)  /* No bus mastering control. */
  110 
  111 #define PCI_VENDOR_INTEL        0x8086
  112 #define PCI_DEVICE_82371AB_3    0x7113  /* PIIX4 chipset for quirks. */
  113 #define PCI_REVISION_A_STEP     0
  114 #define PCI_REVISION_B_STEP     1
  115 #define PCI_REVISION_4E         2
  116 #define PCI_REVISION_4M         3
  117 #define PIIX4_DEVACTB_REG       0x58
  118 #define PIIX4_BRLD_EN_IRQ0      (1<<0)
  119 #define PIIX4_BRLD_EN_IRQ       (1<<1)
  120 #define PIIX4_BRLD_EN_IRQ8      (1<<5)
  121 #define PIIX4_STOP_BREAK_MASK   (PIIX4_BRLD_EN_IRQ0 | PIIX4_BRLD_EN_IRQ | PIIX4_BRLD_EN_IRQ8)
  122 #define PIIX4_PCNTRL_BST_EN     (1<<10)
  123 
  124 /* Platform hardware resource information. */
  125 static uint32_t          cpu_smi_cmd;   /* Value to write to SMI_CMD. */
  126 static uint8_t           cpu_cst_cnt;   /* Indicate we are _CST aware. */
  127 static int               cpu_quirks;    /* Indicate any hardware bugs. */
  128 
  129 /* Runtime state. */
  130 static int               cpu_disable_idle; /* Disable entry to idle function */
  131 static int               cpu_cx_count;  /* Number of valid Cx states */
  132 
  133 /* Values for sysctl. */
  134 static struct sysctl_ctx_list cpu_sysctl_ctx;
  135 static struct sysctl_oid *cpu_sysctl_tree;
  136 static int               cpu_cx_generic;
  137 static int               cpu_cx_lowest;
  138 
  139 static device_t         *cpu_devices;
  140 static int               cpu_ndevices;
  141 static struct acpi_cpu_softc **cpu_softc;
  142 ACPI_SERIAL_DECL(cpu, "ACPI CPU");
  143 
  144 static int      acpi_cpu_probe(device_t dev);
  145 static int      acpi_cpu_attach(device_t dev);
  146 static int      acpi_cpu_suspend(device_t dev);
  147 static int      acpi_cpu_resume(device_t dev);
  148 static int      acpi_pcpu_get_id(uint32_t idx, uint32_t *acpi_id,
  149                     uint32_t *cpu_id);
  150 static struct resource_list *acpi_cpu_get_rlist(device_t dev, device_t child);
  151 static device_t acpi_cpu_add_child(device_t dev, u_int order, const char *name,
  152                     int unit);
  153 static int      acpi_cpu_read_ivar(device_t dev, device_t child, int index,
  154                     uintptr_t *result);
  155 static int      acpi_cpu_shutdown(device_t dev);
  156 static void     acpi_cpu_cx_probe(struct acpi_cpu_softc *sc);
  157 static void     acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc);
  158 static int      acpi_cpu_cx_cst(struct acpi_cpu_softc *sc);
  159 static void     acpi_cpu_startup(void *arg);
  160 static void     acpi_cpu_startup_cx(struct acpi_cpu_softc *sc);
  161 static void     acpi_cpu_cx_list(struct acpi_cpu_softc *sc);
  162 static void     acpi_cpu_idle(void);
  163 static void     acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context);
  164 static int      acpi_cpu_quirks(void);
  165 static int      acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS);
  166 static int      acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc, int val);
  167 static int      acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
  168 static int      acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
  169 
  170 static device_method_t acpi_cpu_methods[] = {
  171     /* Device interface */
  172     DEVMETHOD(device_probe,     acpi_cpu_probe),
  173     DEVMETHOD(device_attach,    acpi_cpu_attach),
  174     DEVMETHOD(device_detach,    bus_generic_detach),
  175     DEVMETHOD(device_shutdown,  acpi_cpu_shutdown),
  176     DEVMETHOD(device_suspend,   acpi_cpu_suspend),
  177     DEVMETHOD(device_resume,    acpi_cpu_resume),
  178 
  179     /* Bus interface */
  180     DEVMETHOD(bus_add_child,    acpi_cpu_add_child),
  181     DEVMETHOD(bus_read_ivar,    acpi_cpu_read_ivar),
  182     DEVMETHOD(bus_get_resource_list, acpi_cpu_get_rlist),
  183     DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource),
  184     DEVMETHOD(bus_set_resource, bus_generic_rl_set_resource),
  185     DEVMETHOD(bus_alloc_resource, bus_generic_rl_alloc_resource),
  186     DEVMETHOD(bus_release_resource, bus_generic_rl_release_resource),
  187     DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
  188     DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
  189     DEVMETHOD(bus_setup_intr,   bus_generic_setup_intr),
  190     DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr),
  191 
  192     DEVMETHOD_END
  193 };
  194 
  195 static driver_t acpi_cpu_driver = {
  196     "cpu",
  197     acpi_cpu_methods,
  198     sizeof(struct acpi_cpu_softc),
  199 };
  200 
  201 static devclass_t acpi_cpu_devclass;
  202 DRIVER_MODULE(cpu, acpi, acpi_cpu_driver, acpi_cpu_devclass, 0, 0);
  203 MODULE_DEPEND(cpu, acpi, 1, 1, 1);
  204 
  205 static int
  206 acpi_cpu_probe(device_t dev)
  207 {
  208     int                    acpi_id, cpu_id;
  209     ACPI_BUFFER            buf;
  210     ACPI_HANDLE            handle;
  211     ACPI_OBJECT            *obj;
  212     ACPI_STATUS            status;
  213 
  214     if (acpi_disabled("cpu") || acpi_get_type(dev) != ACPI_TYPE_PROCESSOR)
  215         return (ENXIO);
  216 
  217     handle = acpi_get_handle(dev);
  218     if (cpu_softc == NULL)
  219         cpu_softc = malloc(sizeof(struct acpi_cpu_softc *) *
  220             (mp_maxid + 1), M_TEMP /* XXX */, M_WAITOK | M_ZERO);
  221 
  222     /* Get our Processor object. */
  223     buf.Pointer = NULL;
  224     buf.Length = ACPI_ALLOCATE_BUFFER;
  225     status = AcpiEvaluateObject(handle, NULL, NULL, &buf);
  226     if (ACPI_FAILURE(status)) {
  227         device_printf(dev, "probe failed to get Processor obj - %s\n",
  228                       AcpiFormatException(status));
  229         return (ENXIO);
  230     }
  231     obj = (ACPI_OBJECT *)buf.Pointer;
  232     if (obj->Type != ACPI_TYPE_PROCESSOR) {
  233         device_printf(dev, "Processor object has bad type %d\n", obj->Type);
  234         AcpiOsFree(obj);
  235         return (ENXIO);
  236     }
  237 
  238     /*
  239      * Find the processor associated with our unit.  We could use the
  240      * ProcId as a key, however, some boxes do not have the same values
  241      * in their Processor object as the ProcId values in the MADT.
  242      */
  243     acpi_id = obj->Processor.ProcId;
  244     AcpiOsFree(obj);
  245     if (acpi_pcpu_get_id(device_get_unit(dev), &acpi_id, &cpu_id) != 0)
  246         return (ENXIO);
  247 
  248     /*
  249      * Check if we already probed this processor.  We scan the bus twice
  250      * so it's possible we've already seen this one.
  251      */
  252     if (cpu_softc[cpu_id] != NULL)
  253         return (ENXIO);
  254 
  255     /* Mark this processor as in-use and save our derived id for attach. */
  256     cpu_softc[cpu_id] = (void *)1;
  257     acpi_set_private(dev, (void*)(intptr_t)cpu_id);
  258     device_set_desc(dev, "ACPI CPU");
  259 
  260     return (0);
  261 }
  262 
  263 static int
  264 acpi_cpu_attach(device_t dev)
  265 {
  266     ACPI_BUFFER            buf;
  267     ACPI_OBJECT            arg[4], *obj;
  268     ACPI_OBJECT_LIST       arglist;
  269     struct pcpu            *pcpu_data;
  270     struct acpi_cpu_softc *sc;
  271     struct acpi_softc     *acpi_sc;
  272     ACPI_STATUS            status;
  273     u_int                  features;
  274     int                    cpu_id, drv_count, i;
  275     driver_t              **drivers;
  276     uint32_t               cap_set[3];
  277 
  278     /* UUID needed by _OSC evaluation */
  279     static uint8_t cpu_oscuuid[16] = { 0x16, 0xA6, 0x77, 0x40, 0x0C, 0x29,
  280                                        0xBE, 0x47, 0x9E, 0xBD, 0xD8, 0x70,
  281                                        0x58, 0x71, 0x39, 0x53 };
  282 
  283     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
  284 
  285     sc = device_get_softc(dev);
  286     sc->cpu_dev = dev;
  287     sc->cpu_handle = acpi_get_handle(dev);
  288     cpu_id = (int)(intptr_t)acpi_get_private(dev);
  289     cpu_softc[cpu_id] = sc;
  290     pcpu_data = pcpu_find(cpu_id);
  291     pcpu_data->pc_device = dev;
  292     sc->cpu_pcpu = pcpu_data;
  293     cpu_smi_cmd = AcpiGbl_FADT.SmiCommand;
  294     cpu_cst_cnt = AcpiGbl_FADT.CstControl;
  295 
  296     buf.Pointer = NULL;
  297     buf.Length = ACPI_ALLOCATE_BUFFER;
  298     status = AcpiEvaluateObject(sc->cpu_handle, NULL, NULL, &buf);
  299     if (ACPI_FAILURE(status)) {
  300         device_printf(dev, "attach failed to get Processor obj - %s\n",
  301                       AcpiFormatException(status));
  302         return (ENXIO);
  303     }
  304     obj = (ACPI_OBJECT *)buf.Pointer;
  305     sc->cpu_p_blk = obj->Processor.PblkAddress;
  306     sc->cpu_p_blk_len = obj->Processor.PblkLength;
  307     sc->cpu_acpi_id = obj->Processor.ProcId;
  308     AcpiOsFree(obj);
  309     ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: P_BLK at %#x/%d\n",
  310                      device_get_unit(dev), sc->cpu_p_blk, sc->cpu_p_blk_len));
  311 
  312     /*
  313      * If this is the first cpu we attach, create and initialize the generic
  314      * resources that will be used by all acpi cpu devices.
  315      */
  316     if (device_get_unit(dev) == 0) {
  317         /* Assume we won't be using generic Cx mode by default */
  318         cpu_cx_generic = FALSE;
  319 
  320         /* Install hw.acpi.cpu sysctl tree */
  321         acpi_sc = acpi_device_get_parent_softc(dev);
  322         sysctl_ctx_init(&cpu_sysctl_ctx);
  323         cpu_sysctl_tree = SYSCTL_ADD_NODE(&cpu_sysctl_ctx,
  324             SYSCTL_CHILDREN(acpi_sc->acpi_sysctl_tree), OID_AUTO, "cpu",
  325             CTLFLAG_RD, 0, "node for CPU children");
  326 
  327         /* Queue post cpu-probing task handler */
  328         AcpiOsExecute(OSL_NOTIFY_HANDLER, acpi_cpu_startup, NULL);
  329     }
  330 
  331     /*
  332      * Before calling any CPU methods, collect child driver feature hints
  333      * and notify ACPI of them.  We support unified SMP power control
  334      * so advertise this ourselves.  Note this is not the same as independent
  335      * SMP control where each CPU can have different settings.
  336      */
  337     sc->cpu_features = ACPI_CAP_SMP_SAME | ACPI_CAP_SMP_SAME_C3;
  338     if (devclass_get_drivers(acpi_cpu_devclass, &drivers, &drv_count) == 0) {
  339         for (i = 0; i < drv_count; i++) {
  340             if (ACPI_GET_FEATURES(drivers[i], &features) == 0)
  341                 sc->cpu_features |= features;
  342         }
  343         free(drivers, M_TEMP);
  344     }
  345 
  346     /*
  347      * CPU capabilities are specified in
  348      * Intel Processor Vendor-Specific ACPI Interface Specification.
  349      */
  350     if (sc->cpu_features) {
  351         arglist.Pointer = arg;
  352         arglist.Count = 4;
  353         arg[0].Type = ACPI_TYPE_BUFFER;
  354         arg[0].Buffer.Length = sizeof(cpu_oscuuid);
  355         arg[0].Buffer.Pointer = cpu_oscuuid;    /* UUID */
  356         arg[1].Type = ACPI_TYPE_INTEGER;
  357         arg[1].Integer.Value = 1;               /* revision */
  358         arg[2].Type = ACPI_TYPE_INTEGER;
  359         arg[2].Integer.Value = 1;               /* count */
  360         arg[3].Type = ACPI_TYPE_BUFFER;
  361         arg[3].Buffer.Length = sizeof(cap_set); /* Capabilities buffer */
  362         arg[3].Buffer.Pointer = (uint8_t *)cap_set;
  363         cap_set[0] = 0;                         /* status */
  364         cap_set[1] = sc->cpu_features;
  365         status = AcpiEvaluateObject(sc->cpu_handle, "_OSC", &arglist, NULL);
  366         if (ACPI_SUCCESS(status)) {
  367             if (cap_set[0] != 0)
  368                 device_printf(dev, "_OSC returned status %#x\n", cap_set[0]);
  369         }
  370         else {
  371             arglist.Pointer = arg;
  372             arglist.Count = 1;
  373             arg[0].Type = ACPI_TYPE_BUFFER;
  374             arg[0].Buffer.Length = sizeof(cap_set);
  375             arg[0].Buffer.Pointer = (uint8_t *)cap_set;
  376             cap_set[0] = 1; /* revision */
  377             cap_set[1] = 1; /* number of capabilities integers */
  378             cap_set[2] = sc->cpu_features;
  379             AcpiEvaluateObject(sc->cpu_handle, "_PDC", &arglist, NULL);
  380         }
  381     }
  382 
  383     /* Probe for Cx state support. */
  384     acpi_cpu_cx_probe(sc);
  385 
  386     return (0);
  387 }
  388 
  389 static void
  390 acpi_cpu_postattach(void *unused __unused)
  391 {
  392     device_t *devices;
  393     int err;
  394     int i, n;
  395 
  396     err = devclass_get_devices(acpi_cpu_devclass, &devices, &n);
  397     if (err != 0) {
  398         printf("devclass_get_devices(acpi_cpu_devclass) failed\n");
  399         return;
  400     }
  401     for (i = 0; i < n; i++)
  402         bus_generic_probe(devices[i]);
  403     for (i = 0; i < n; i++)
  404         bus_generic_attach(devices[i]);
  405     free(devices, M_TEMP);
  406 }
  407 
  408 SYSINIT(acpi_cpu, SI_SUB_CONFIGURE, SI_ORDER_MIDDLE,
  409     acpi_cpu_postattach, NULL);
  410 
  411 /*
  412  * Disable any entry to the idle function during suspend and re-enable it
  413  * during resume.
  414  */
  415 static int
  416 acpi_cpu_suspend(device_t dev)
  417 {
  418     int error;
  419 
  420     error = bus_generic_suspend(dev);
  421     if (error)
  422         return (error);
  423     cpu_disable_idle = TRUE;
  424     return (0);
  425 }
  426 
  427 static int
  428 acpi_cpu_resume(device_t dev)
  429 {
  430 
  431     cpu_disable_idle = FALSE;
  432     return (bus_generic_resume(dev));
  433 }
  434 
  435 /*
  436  * Find the nth present CPU and return its pc_cpuid as well as set the
  437  * pc_acpi_id from the most reliable source.
  438  */
  439 static int
  440 acpi_pcpu_get_id(uint32_t idx, uint32_t *acpi_id, uint32_t *cpu_id)
  441 {
  442     struct pcpu *pcpu_data;
  443     uint32_t     i;
  444 
  445     KASSERT(acpi_id != NULL, ("Null acpi_id"));
  446     KASSERT(cpu_id != NULL, ("Null cpu_id"));
  447     CPU_FOREACH(i) {
  448         pcpu_data = pcpu_find(i);
  449         KASSERT(pcpu_data != NULL, ("no pcpu data for %d", i));
  450         if (idx-- == 0) {
  451             /*
  452              * If pc_acpi_id was not initialized (e.g., a non-APIC UP box)
  453              * override it with the value from the ASL.  Otherwise, if the
  454              * two don't match, prefer the MADT-derived value.  Finally,
  455              * return the pc_cpuid to reference this processor.
  456              */
  457             if (pcpu_data->pc_acpi_id == 0xffffffff)
  458                 pcpu_data->pc_acpi_id = *acpi_id;
  459             else if (pcpu_data->pc_acpi_id != *acpi_id)
  460                 *acpi_id = pcpu_data->pc_acpi_id;
  461             *cpu_id = pcpu_data->pc_cpuid;
  462             return (0);
  463         }
  464     }
  465 
  466     return (ESRCH);
  467 }
  468 
  469 static struct resource_list *
  470 acpi_cpu_get_rlist(device_t dev, device_t child)
  471 {
  472     struct acpi_cpu_device *ad;
  473 
  474     ad = device_get_ivars(child);
  475     if (ad == NULL)
  476         return (NULL);
  477     return (&ad->ad_rl);
  478 }
  479 
  480 static device_t
  481 acpi_cpu_add_child(device_t dev, u_int order, const char *name, int unit)
  482 {
  483     struct acpi_cpu_device *ad;
  484     device_t child;
  485 
  486     if ((ad = malloc(sizeof(*ad), M_TEMP, M_NOWAIT | M_ZERO)) == NULL)
  487         return (NULL);
  488 
  489     resource_list_init(&ad->ad_rl);
  490     
  491     child = device_add_child_ordered(dev, order, name, unit);
  492     if (child != NULL)
  493         device_set_ivars(child, ad);
  494     else
  495         free(ad, M_TEMP);
  496     return (child);
  497 }
  498 
  499 static int
  500 acpi_cpu_read_ivar(device_t dev, device_t child, int index, uintptr_t *result)
  501 {
  502     struct acpi_cpu_softc *sc;
  503 
  504     sc = device_get_softc(dev);
  505     switch (index) {
  506     case ACPI_IVAR_HANDLE:
  507         *result = (uintptr_t)sc->cpu_handle;
  508         break;
  509     case CPU_IVAR_PCPU:
  510         *result = (uintptr_t)sc->cpu_pcpu;
  511         break;
  512     default:
  513         return (ENOENT);
  514     }
  515     return (0);
  516 }
  517 
  518 static int
  519 acpi_cpu_shutdown(device_t dev)
  520 {
  521     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
  522 
  523     /* Allow children to shutdown first. */
  524     bus_generic_shutdown(dev);
  525 
  526     /*
  527      * Disable any entry to the idle function.  There is a small race where
  528      * an idle thread have passed this check but not gone to sleep.  This
  529      * is ok since device_shutdown() does not free the softc, otherwise
  530      * we'd have to be sure all threads were evicted before returning.
  531      */
  532     cpu_disable_idle = TRUE;
  533 
  534     return_VALUE (0);
  535 }
  536 
  537 static void
  538 acpi_cpu_cx_probe(struct acpi_cpu_softc *sc)
  539 {
  540     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
  541 
  542     /* Use initial sleep value of 1 sec. to start with lowest idle state. */
  543     sc->cpu_prev_sleep = 1000000;
  544     sc->cpu_cx_lowest = 0;
  545 
  546     /*
  547      * Check for the ACPI 2.0 _CST sleep states object. If we can't find
  548      * any, we'll revert to generic FADT/P_BLK Cx control method which will
  549      * be handled by acpi_cpu_startup. We need to defer to after having
  550      * probed all the cpus in the system before probing for generic Cx
  551      * states as we may already have found cpus with valid _CST packages
  552      */
  553     if (!cpu_cx_generic && acpi_cpu_cx_cst(sc) != 0) {
  554         /*
  555          * We were unable to find a _CST package for this cpu or there
  556          * was an error parsing it. Switch back to generic mode.
  557          */
  558         cpu_cx_generic = TRUE;
  559         if (bootverbose)
  560             device_printf(sc->cpu_dev, "switching to generic Cx mode\n");
  561     }
  562 
  563     /*
  564      * TODO: _CSD Package should be checked here.
  565      */
  566 }
  567 
  568 static void
  569 acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc)
  570 {
  571     ACPI_GENERIC_ADDRESS         gas;
  572     struct acpi_cx              *cx_ptr;
  573 
  574     sc->cpu_cx_count = 0;
  575     cx_ptr = sc->cpu_cx_states;
  576 
  577     /* Use initial sleep value of 1 sec. to start with lowest idle state. */
  578     sc->cpu_prev_sleep = 1000000;
  579 
  580     /* C1 has been required since just after ACPI 1.0 */
  581     cx_ptr->type = ACPI_STATE_C1;
  582     cx_ptr->trans_lat = 0;
  583     cx_ptr++;
  584     sc->cpu_cx_count++;
  585 
  586     /* 
  587      * The spec says P_BLK must be 6 bytes long.  However, some systems
  588      * use it to indicate a fractional set of features present so we
  589      * take 5 as C2.  Some may also have a value of 7 to indicate
  590      * another C3 but most use _CST for this (as required) and having
  591      * "only" C1-C3 is not a hardship.
  592      */
  593     if (sc->cpu_p_blk_len < 5)
  594         return; 
  595 
  596     /* Validate and allocate resources for C2 (P_LVL2). */
  597     gas.SpaceId = ACPI_ADR_SPACE_SYSTEM_IO;
  598     gas.BitWidth = 8;
  599     if (AcpiGbl_FADT.C2Latency <= 100) {
  600         gas.Address = sc->cpu_p_blk + 4;
  601         acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &sc->cpu_rid,
  602             &gas, &cx_ptr->p_lvlx, RF_SHAREABLE);
  603         if (cx_ptr->p_lvlx != NULL) {
  604             sc->cpu_rid++;
  605             cx_ptr->type = ACPI_STATE_C2;
  606             cx_ptr->trans_lat = AcpiGbl_FADT.C2Latency;
  607             cx_ptr++;
  608             sc->cpu_cx_count++;
  609         }
  610     }
  611     if (sc->cpu_p_blk_len < 6)
  612         return;
  613 
  614     /* Validate and allocate resources for C3 (P_LVL3). */
  615     if (AcpiGbl_FADT.C3Latency <= 1000 && !(cpu_quirks & CPU_QUIRK_NO_C3)) {
  616         gas.Address = sc->cpu_p_blk + 5;
  617         acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &sc->cpu_rid, &gas,
  618             &cx_ptr->p_lvlx, RF_SHAREABLE);
  619         if (cx_ptr->p_lvlx != NULL) {
  620             sc->cpu_rid++;
  621             cx_ptr->type = ACPI_STATE_C3;
  622             cx_ptr->trans_lat = AcpiGbl_FADT.C3Latency;
  623             cx_ptr++;
  624             sc->cpu_cx_count++;
  625         }
  626     }
  627 }
  628 
  629 /*
  630  * Parse a _CST package and set up its Cx states.  Since the _CST object
  631  * can change dynamically, our notify handler may call this function
  632  * to clean up and probe the new _CST package.
  633  */
  634 static int
  635 acpi_cpu_cx_cst(struct acpi_cpu_softc *sc)
  636 {
  637     struct       acpi_cx *cx_ptr;
  638     ACPI_STATUS  status;
  639     ACPI_BUFFER  buf;
  640     ACPI_OBJECT *top;
  641     ACPI_OBJECT *pkg;
  642     uint32_t     count;
  643     int          i;
  644 
  645     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
  646 
  647     buf.Pointer = NULL;
  648     buf.Length = ACPI_ALLOCATE_BUFFER;
  649     status = AcpiEvaluateObject(sc->cpu_handle, "_CST", NULL, &buf);
  650     if (ACPI_FAILURE(status))
  651         return (ENXIO);
  652 
  653     /* _CST is a package with a count and at least one Cx package. */
  654     top = (ACPI_OBJECT *)buf.Pointer;
  655     if (!ACPI_PKG_VALID(top, 2) || acpi_PkgInt32(top, 0, &count) != 0) {
  656         device_printf(sc->cpu_dev, "invalid _CST package\n");
  657         AcpiOsFree(buf.Pointer);
  658         return (ENXIO);
  659     }
  660     if (count != top->Package.Count - 1) {
  661         device_printf(sc->cpu_dev, "invalid _CST state count (%d != %d)\n",
  662                count, top->Package.Count - 1);
  663         count = top->Package.Count - 1;
  664     }
  665     if (count > MAX_CX_STATES) {
  666         device_printf(sc->cpu_dev, "_CST has too many states (%d)\n", count);
  667         count = MAX_CX_STATES;
  668     }
  669 
  670     /* Set up all valid states. */
  671     sc->cpu_cx_count = 0;
  672     cx_ptr = sc->cpu_cx_states;
  673     for (i = 0; i < count; i++) {
  674         pkg = &top->Package.Elements[i + 1];
  675         if (!ACPI_PKG_VALID(pkg, 4) ||
  676             acpi_PkgInt32(pkg, 1, &cx_ptr->type) != 0 ||
  677             acpi_PkgInt32(pkg, 2, &cx_ptr->trans_lat) != 0 ||
  678             acpi_PkgInt32(pkg, 3, &cx_ptr->power) != 0) {
  679 
  680             device_printf(sc->cpu_dev, "skipping invalid Cx state package\n");
  681             continue;
  682         }
  683 
  684         /* Validate the state to see if we should use it. */
  685         switch (cx_ptr->type) {
  686         case ACPI_STATE_C1:
  687             sc->cpu_non_c3 = i;
  688             cx_ptr++;
  689             sc->cpu_cx_count++;
  690             continue;
  691         case ACPI_STATE_C2:
  692             sc->cpu_non_c3 = i;
  693             break;
  694         case ACPI_STATE_C3:
  695         default:
  696             if ((cpu_quirks & CPU_QUIRK_NO_C3) != 0) {
  697                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  698                                  "acpi_cpu%d: C3[%d] not available.\n",
  699                                  device_get_unit(sc->cpu_dev), i));
  700                 continue;
  701             }
  702             break;
  703         }
  704 
  705 #ifdef notyet
  706         /* Free up any previous register. */
  707         if (cx_ptr->p_lvlx != NULL) {
  708             bus_release_resource(sc->cpu_dev, 0, 0, cx_ptr->p_lvlx);
  709             cx_ptr->p_lvlx = NULL;
  710         }
  711 #endif
  712 
  713         /* Allocate the control register for C2 or C3. */
  714         acpi_PkgGas(sc->cpu_dev, pkg, 0, &cx_ptr->res_type, &sc->cpu_rid,
  715             &cx_ptr->p_lvlx, RF_SHAREABLE);
  716         if (cx_ptr->p_lvlx) {
  717             sc->cpu_rid++;
  718             ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  719                              "acpi_cpu%d: Got C%d - %d latency\n",
  720                              device_get_unit(sc->cpu_dev), cx_ptr->type,
  721                              cx_ptr->trans_lat));
  722             cx_ptr++;
  723             sc->cpu_cx_count++;
  724         }
  725     }
  726     AcpiOsFree(buf.Pointer);
  727 
  728     return (0);
  729 }
  730 
  731 /*
  732  * Call this *after* all CPUs have been attached.
  733  */
  734 static void
  735 acpi_cpu_startup(void *arg)
  736 {
  737     struct acpi_cpu_softc *sc;
  738     int i;
  739 
  740     /* Get set of CPU devices */
  741     devclass_get_devices(acpi_cpu_devclass, &cpu_devices, &cpu_ndevices);
  742 
  743     /*
  744      * Setup any quirks that might necessary now that we have probed
  745      * all the CPUs
  746      */
  747     acpi_cpu_quirks();
  748 
  749     cpu_cx_count = 0;
  750     if (cpu_cx_generic) {
  751         /*
  752          * We are using generic Cx mode, probe for available Cx states
  753          * for all processors.
  754          */
  755         for (i = 0; i < cpu_ndevices; i++) {
  756             sc = device_get_softc(cpu_devices[i]);
  757             acpi_cpu_generic_cx_probe(sc);
  758             if (sc->cpu_cx_count > cpu_cx_count)
  759                     cpu_cx_count = sc->cpu_cx_count;
  760         }
  761 
  762         /*
  763          * Find the highest Cx state common to all CPUs
  764          * in the system, taking quirks into account.
  765          */
  766         for (i = 0; i < cpu_ndevices; i++) {
  767             sc = device_get_softc(cpu_devices[i]);
  768             if (sc->cpu_cx_count < cpu_cx_count)
  769                 cpu_cx_count = sc->cpu_cx_count;
  770         }
  771     } else {
  772         /*
  773          * We are using _CST mode, remove C3 state if necessary.
  774          * Update the largest Cx state supported in the global cpu_cx_count.
  775          * It will be used in the global Cx sysctl handler.
  776          * As we now know for sure that we will be using _CST mode
  777          * install our notify handler.
  778          */
  779         for (i = 0; i < cpu_ndevices; i++) {
  780             sc = device_get_softc(cpu_devices[i]);
  781             if (cpu_quirks & CPU_QUIRK_NO_C3) {
  782                 sc->cpu_cx_count = sc->cpu_non_c3 + 1;
  783             }
  784             if (sc->cpu_cx_count > cpu_cx_count)
  785                 cpu_cx_count = sc->cpu_cx_count;
  786             AcpiInstallNotifyHandler(sc->cpu_handle, ACPI_DEVICE_NOTIFY,
  787                 acpi_cpu_notify, sc);
  788         }
  789     }
  790 
  791     /* Perform Cx final initialization. */
  792     for (i = 0; i < cpu_ndevices; i++) {
  793         sc = device_get_softc(cpu_devices[i]);
  794         acpi_cpu_startup_cx(sc);
  795     }
  796 
  797     /* Add a sysctl handler to handle global Cx lowest setting */
  798     SYSCTL_ADD_PROC(&cpu_sysctl_ctx, SYSCTL_CHILDREN(cpu_sysctl_tree),
  799         OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW,
  800         NULL, 0, acpi_cpu_global_cx_lowest_sysctl, "A",
  801         "Global lowest Cx sleep state to use");
  802 
  803     /* Take over idling from cpu_idle_default(). */
  804     cpu_cx_lowest = 0;
  805     cpu_disable_idle = FALSE;
  806     cpu_idle_hook = acpi_cpu_idle;
  807 }
  808 
  809 static void
  810 acpi_cpu_cx_list(struct acpi_cpu_softc *sc)
  811 {
  812     struct sbuf sb;
  813     int i;
  814 
  815     /*
  816      * Set up the list of Cx states
  817      */
  818     sc->cpu_non_c3 = 0;
  819     sbuf_new(&sb, sc->cpu_cx_supported, sizeof(sc->cpu_cx_supported),
  820         SBUF_FIXEDLEN);
  821     for (i = 0; i < sc->cpu_cx_count; i++) {
  822         sbuf_printf(&sb, "C%d/%d ", i + 1, sc->cpu_cx_states[i].trans_lat);
  823         if (sc->cpu_cx_states[i].type < ACPI_STATE_C3)
  824             sc->cpu_non_c3 = i;
  825     }
  826     sbuf_trim(&sb);
  827     sbuf_finish(&sb);
  828 }       
  829 
  830 static void
  831 acpi_cpu_startup_cx(struct acpi_cpu_softc *sc)
  832 {
  833     acpi_cpu_cx_list(sc);
  834     
  835     SYSCTL_ADD_STRING(&sc->cpu_sysctl_ctx,
  836                       SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
  837                       OID_AUTO, "cx_supported", CTLFLAG_RD,
  838                       sc->cpu_cx_supported, 0,
  839                       "Cx/microsecond values for supported Cx states");
  840     SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
  841                     SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
  842                     OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW,
  843                     (void *)sc, 0, acpi_cpu_cx_lowest_sysctl, "A",
  844                     "lowest Cx sleep state to use");
  845     SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
  846                     SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
  847                     OID_AUTO, "cx_usage", CTLTYPE_STRING | CTLFLAG_RD,
  848                     (void *)sc, 0, acpi_cpu_usage_sysctl, "A",
  849                     "percent usage for each Cx state");
  850 
  851 #ifdef notyet
  852     /* Signal platform that we can handle _CST notification. */
  853     if (!cpu_cx_generic && cpu_cst_cnt != 0) {
  854         ACPI_LOCK(acpi);
  855         AcpiOsWritePort(cpu_smi_cmd, cpu_cst_cnt, 8);
  856         ACPI_UNLOCK(acpi);
  857     }
  858 #endif
  859 }
  860 
  861 /*
  862  * Idle the CPU in the lowest state possible.  This function is called with
  863  * interrupts disabled.  Note that once it re-enables interrupts, a task
  864  * switch can occur so do not access shared data (i.e. the softc) after
  865  * interrupts are re-enabled.
  866  */
  867 static void
  868 acpi_cpu_idle()
  869 {
  870     struct      acpi_cpu_softc *sc;
  871     struct      acpi_cx *cx_next;
  872     uint32_t    start_time, end_time;
  873     int         bm_active, cx_next_idx, i;
  874 
  875     /* If disabled, return immediately. */
  876     if (cpu_disable_idle) {
  877         ACPI_ENABLE_IRQS();
  878         return;
  879     }
  880 
  881     /*
  882      * Look up our CPU id to get our softc.  If it's NULL, we'll use C1
  883      * since there is no ACPI processor object for this CPU.  This occurs
  884      * for logical CPUs in the HTT case.
  885      */
  886     sc = cpu_softc[PCPU_GET(cpuid)];
  887     if (sc == NULL) {
  888         acpi_cpu_c1();
  889         return;
  890     }
  891 
  892     /* Find the lowest state that has small enough latency. */
  893     cx_next_idx = 0;
  894     for (i = sc->cpu_cx_lowest; i >= 0; i--) {
  895         if (sc->cpu_cx_states[i].trans_lat * 3 <= sc->cpu_prev_sleep) {
  896             cx_next_idx = i;
  897             break;
  898         }
  899     }
  900 
  901     /*
  902      * Check for bus master activity.  If there was activity, clear
  903      * the bit and use the lowest non-C3 state.  Note that the USB
  904      * driver polling for new devices keeps this bit set all the
  905      * time if USB is loaded.
  906      */
  907     if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
  908         AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, &bm_active);
  909         if (bm_active != 0) {
  910             AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, 1);
  911             cx_next_idx = min(cx_next_idx, sc->cpu_non_c3);
  912         }
  913     }
  914 
  915     /* Select the next state and update statistics. */
  916     cx_next = &sc->cpu_cx_states[cx_next_idx];
  917     sc->cpu_cx_stats[cx_next_idx]++;
  918     KASSERT(cx_next->type != ACPI_STATE_C0, ("acpi_cpu_idle: C0 sleep"));
  919 
  920     /*
  921      * Execute HLT (or equivalent) and wait for an interrupt.  We can't
  922      * precisely calculate the time spent in C1 since the place we wake up
  923      * is an ISR.  Assume we slept no more then half of quantum.
  924      */
  925     if (cx_next->type == ACPI_STATE_C1) {
  926         AcpiHwRead(&start_time, &AcpiGbl_FADT.XPmTimerBlock);
  927         acpi_cpu_c1();
  928         AcpiHwRead(&end_time, &AcpiGbl_FADT.XPmTimerBlock);
  929         end_time = acpi_TimerDelta(end_time, start_time);
  930         sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 +
  931             min(PM_USEC(end_time), 500000 / hz)) / 4;
  932         return;
  933     }
  934 
  935     /*
  936      * For C3, disable bus master arbitration and enable bus master wake
  937      * if BM control is available, otherwise flush the CPU cache.
  938      */
  939     if (cx_next->type == ACPI_STATE_C3) {
  940         if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
  941             AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 1);
  942             AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 1);
  943         } else
  944             ACPI_FLUSH_CPU_CACHE();
  945     }
  946 
  947     /*
  948      * Read from P_LVLx to enter C2(+), checking time spent asleep.
  949      * Use the ACPI timer for measuring sleep time.  Since we need to
  950      * get the time very close to the CPU start/stop clock logic, this
  951      * is the only reliable time source.
  952      */
  953     AcpiHwRead(&start_time, &AcpiGbl_FADT.XPmTimerBlock);
  954     CPU_GET_REG(cx_next->p_lvlx, 1);
  955 
  956     /*
  957      * Read the end time twice.  Since it may take an arbitrary time
  958      * to enter the idle state, the first read may be executed before
  959      * the processor has stopped.  Doing it again provides enough
  960      * margin that we are certain to have a correct value.
  961      */
  962     AcpiHwRead(&end_time, &AcpiGbl_FADT.XPmTimerBlock);
  963     AcpiHwRead(&end_time, &AcpiGbl_FADT.XPmTimerBlock);
  964 
  965     /* Enable bus master arbitration and disable bus master wakeup. */
  966     if (cx_next->type == ACPI_STATE_C3 &&
  967         (cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
  968         AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 0);
  969         AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
  970     }
  971     ACPI_ENABLE_IRQS();
  972 
  973     /* Find the actual time asleep in microseconds. */
  974     end_time = acpi_TimerDelta(end_time, start_time);
  975     sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + PM_USEC(end_time)) / 4;
  976 }
  977 
  978 /*
  979  * Re-evaluate the _CST object when we are notified that it changed.
  980  *
  981  * XXX Re-evaluation disabled until locking is done.
  982  */
  983 static void
  984 acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context)
  985 {
  986     struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)context;
  987     struct acpi_cpu_softc *isc;
  988     int i;
  989     
  990     if (notify != ACPI_NOTIFY_CX_STATES)
  991         return;
  992 
  993     /* Update the list of Cx states. */
  994     acpi_cpu_cx_cst(sc);
  995     acpi_cpu_cx_list(sc);
  996 
  997     /* Update the new lowest useable Cx state for all CPUs. */
  998     ACPI_SERIAL_BEGIN(cpu);
  999     cpu_cx_count = 0;
 1000     for (i = 0; i < cpu_ndevices; i++) {
 1001         isc = device_get_softc(cpu_devices[i]);
 1002         if (isc->cpu_cx_count > cpu_cx_count)
 1003             cpu_cx_count = isc->cpu_cx_count;
 1004     }
 1005     if (sc->cpu_cx_lowest < cpu_cx_lowest)
 1006         acpi_cpu_set_cx_lowest(sc, min(cpu_cx_lowest, sc->cpu_cx_count - 1));
 1007     ACPI_SERIAL_END(cpu);
 1008 }
 1009 
 1010 static int
 1011 acpi_cpu_quirks(void)
 1012 {
 1013     device_t acpi_dev;
 1014     uint32_t val;
 1015 
 1016     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
 1017 
 1018     /*
 1019      * Bus mastering arbitration control is needed to keep caches coherent
 1020      * while sleeping in C3.  If it's not present but a working flush cache
 1021      * instruction is present, flush the caches before entering C3 instead.
 1022      * Otherwise, just disable C3 completely.
 1023      */
 1024     if (AcpiGbl_FADT.Pm2ControlBlock == 0 ||
 1025         AcpiGbl_FADT.Pm2ControlLength == 0) {
 1026         if ((AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD) &&
 1027             (AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD_FLUSH) == 0) {
 1028             cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
 1029             ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1030                 "acpi_cpu: no BM control, using flush cache method\n"));
 1031         } else {
 1032             cpu_quirks |= CPU_QUIRK_NO_C3;
 1033             ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1034                 "acpi_cpu: no BM control, C3 not available\n"));
 1035         }
 1036     }
 1037 
 1038     /*
 1039      * If we are using generic Cx mode, C3 on multiple CPUs requires using
 1040      * the expensive flush cache instruction.
 1041      */
 1042     if (cpu_cx_generic && mp_ncpus > 1) {
 1043         cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
 1044         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1045             "acpi_cpu: SMP, using flush cache mode for C3\n"));
 1046     }
 1047 
 1048     /* Look for various quirks of the PIIX4 part. */
 1049     acpi_dev = pci_find_device(PCI_VENDOR_INTEL, PCI_DEVICE_82371AB_3);
 1050     if (acpi_dev != NULL) {
 1051         switch (pci_get_revid(acpi_dev)) {
 1052         /*
 1053          * Disable C3 support for all PIIX4 chipsets.  Some of these parts
 1054          * do not report the BMIDE status to the BM status register and
 1055          * others have a livelock bug if Type-F DMA is enabled.  Linux
 1056          * works around the BMIDE bug by reading the BM status directly
 1057          * but we take the simpler approach of disabling C3 for these
 1058          * parts.
 1059          *
 1060          * See erratum #18 ("C3 Power State/BMIDE and Type-F DMA
 1061          * Livelock") from the January 2002 PIIX4 specification update.
 1062          * Applies to all PIIX4 models.
 1063          *
 1064          * Also, make sure that all interrupts cause a "Stop Break"
 1065          * event to exit from C2 state.
 1066          * Also, BRLD_EN_BM (ACPI_BITREG_BUS_MASTER_RLD in ACPI-speak)
 1067          * should be set to zero, otherwise it causes C2 to short-sleep.
 1068          * PIIX4 doesn't properly support C3 and bus master activity
 1069          * need not break out of C2.
 1070          */
 1071         case PCI_REVISION_A_STEP:
 1072         case PCI_REVISION_B_STEP:
 1073         case PCI_REVISION_4E:
 1074         case PCI_REVISION_4M:
 1075             cpu_quirks |= CPU_QUIRK_NO_C3;
 1076             ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1077                 "acpi_cpu: working around PIIX4 bug, disabling C3\n"));
 1078 
 1079             val = pci_read_config(acpi_dev, PIIX4_DEVACTB_REG, 4);
 1080             if ((val & PIIX4_STOP_BREAK_MASK) != PIIX4_STOP_BREAK_MASK) {
 1081                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1082                     "acpi_cpu: PIIX4: enabling IRQs to generate Stop Break\n"));
 1083                 val |= PIIX4_STOP_BREAK_MASK;
 1084                 pci_write_config(acpi_dev, PIIX4_DEVACTB_REG, val, 4);
 1085             }
 1086             AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_RLD, &val);
 1087             if (val) {
 1088                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1089                     "acpi_cpu: PIIX4: reset BRLD_EN_BM\n"));
 1090                 AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
 1091             }
 1092             break;
 1093         default:
 1094             break;
 1095         }
 1096     }
 1097 
 1098     return (0);
 1099 }
 1100 
 1101 static int
 1102 acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS)
 1103 {
 1104     struct acpi_cpu_softc *sc;
 1105     struct sbuf  sb;
 1106     char         buf[128];
 1107     int          i;
 1108     uintmax_t    fract, sum, whole;
 1109 
 1110     sc = (struct acpi_cpu_softc *) arg1;
 1111     sum = 0;
 1112     for (i = 0; i < sc->cpu_cx_count; i++)
 1113         sum += sc->cpu_cx_stats[i];
 1114     sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
 1115     for (i = 0; i < sc->cpu_cx_count; i++) {
 1116         if (sum > 0) {
 1117             whole = (uintmax_t)sc->cpu_cx_stats[i] * 100;
 1118             fract = (whole % sum) * 100;
 1119             sbuf_printf(&sb, "%u.%02u%% ", (u_int)(whole / sum),
 1120                 (u_int)(fract / sum));
 1121         } else
 1122             sbuf_printf(&sb, "0.00%% ");
 1123     }
 1124     sbuf_printf(&sb, "last %dus", sc->cpu_prev_sleep);
 1125     sbuf_trim(&sb);
 1126     sbuf_finish(&sb);
 1127     sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
 1128     sbuf_delete(&sb);
 1129 
 1130     return (0);
 1131 }
 1132 
 1133 static int
 1134 acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc, int val)
 1135 {
 1136     int i;
 1137 
 1138     ACPI_SERIAL_ASSERT(cpu);
 1139     sc->cpu_cx_lowest = val;
 1140 
 1141     /* If not disabling, cache the new lowest non-C3 state. */
 1142     sc->cpu_non_c3 = 0;
 1143     for (i = sc->cpu_cx_lowest; i >= 0; i--) {
 1144         if (sc->cpu_cx_states[i].type < ACPI_STATE_C3) {
 1145             sc->cpu_non_c3 = i;
 1146             break;
 1147         }
 1148     }
 1149 
 1150     /* Reset the statistics counters. */
 1151     bzero(sc->cpu_cx_stats, sizeof(sc->cpu_cx_stats));
 1152     return (0);
 1153 }
 1154 
 1155 static int
 1156 acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
 1157 {
 1158     struct       acpi_cpu_softc *sc;
 1159     char         state[8];
 1160     int          val, error;
 1161 
 1162     sc = (struct acpi_cpu_softc *) arg1;
 1163     snprintf(state, sizeof(state), "C%d", sc->cpu_cx_lowest + 1);
 1164     error = sysctl_handle_string(oidp, state, sizeof(state), req);
 1165     if (error != 0 || req->newptr == NULL)
 1166         return (error);
 1167     if (strlen(state) < 2 || toupper(state[0]) != 'C')
 1168         return (EINVAL);
 1169     val = (int) strtol(state + 1, NULL, 10) - 1;
 1170     if (val < 0 || val > sc->cpu_cx_count - 1)
 1171         return (EINVAL);
 1172 
 1173     ACPI_SERIAL_BEGIN(cpu);
 1174     acpi_cpu_set_cx_lowest(sc, val);
 1175     ACPI_SERIAL_END(cpu);
 1176 
 1177     return (0);
 1178 }
 1179 
 1180 static int
 1181 acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
 1182 {
 1183     struct      acpi_cpu_softc *sc;
 1184     char        state[8];
 1185     int         val, error, i;
 1186 
 1187     snprintf(state, sizeof(state), "C%d", cpu_cx_lowest + 1);
 1188     error = sysctl_handle_string(oidp, state, sizeof(state), req);
 1189     if (error != 0 || req->newptr == NULL)
 1190         return (error);
 1191     if (strlen(state) < 2 || toupper(state[0]) != 'C')
 1192         return (EINVAL);
 1193     val = (int) strtol(state + 1, NULL, 10) - 1;
 1194     if (val < 0 || val > cpu_cx_count - 1)
 1195         return (EINVAL);
 1196     cpu_cx_lowest = val;
 1197 
 1198     /* Update the new lowest useable Cx state for all CPUs. */
 1199     ACPI_SERIAL_BEGIN(cpu);
 1200     for (i = 0; i < cpu_ndevices; i++) {
 1201         sc = device_get_softc(cpu_devices[i]);
 1202         acpi_cpu_set_cx_lowest(sc, min(val, sc->cpu_cx_count - 1));
 1203     }
 1204     ACPI_SERIAL_END(cpu);
 1205 
 1206     return (0);
 1207 }

Cache object: d7cf19e0e2f0c536579d8b3f45bfef7d


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.