The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/acpica/acpi_cpu.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2003-2005 Nate Lawson (SDG)
    3  * Copyright (c) 2001 Michael Smith
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   25  * SUCH DAMAGE.
   26  */
   27 
   28 #include <sys/cdefs.h>
   29 __FBSDID("$FreeBSD: releng/9.1/sys/dev/acpica/acpi_cpu.c 239819 2012-08-29 11:28:59Z avg $");
   30 
   31 #include "opt_acpi.h"
   32 #include <sys/param.h>
   33 #include <sys/bus.h>
   34 #include <sys/cpu.h>
   35 #include <sys/kernel.h>
   36 #include <sys/malloc.h>
   37 #include <sys/module.h>
   38 #include <sys/pcpu.h>
   39 #include <sys/power.h>
   40 #include <sys/proc.h>
   41 #include <sys/sbuf.h>
   42 #include <sys/smp.h>
   43 
   44 #include <dev/pci/pcivar.h>
   45 #include <machine/atomic.h>
   46 #include <machine/bus.h>
   47 #if defined(__amd64__) || defined(__i386__)
   48 #include <machine/clock.h>
   49 #endif
   50 #include <sys/rman.h>
   51 
   52 #include <contrib/dev/acpica/include/acpi.h>
   53 #include <contrib/dev/acpica/include/accommon.h>
   54 
   55 #include <dev/acpica/acpivar.h>
   56 
   57 /*
   58  * Support for ACPI Processor devices, including C[1-3] sleep states.
   59  */
   60 
   61 /* Hooks for the ACPI CA debugging infrastructure */
   62 #define _COMPONENT      ACPI_PROCESSOR
   63 ACPI_MODULE_NAME("PROCESSOR")
   64 
   65 struct acpi_cx {
   66     struct resource     *p_lvlx;        /* Register to read to enter state. */
   67     uint32_t             type;          /* C1-3 (C4 and up treated as C3). */
   68     uint32_t             trans_lat;     /* Transition latency (usec). */
   69     uint32_t             power;         /* Power consumed (mW). */
   70     int                  res_type;      /* Resource type for p_lvlx. */
   71 };
   72 #define MAX_CX_STATES    8
   73 
   74 struct acpi_cpu_softc {
   75     device_t             cpu_dev;
   76     ACPI_HANDLE          cpu_handle;
   77     struct pcpu         *cpu_pcpu;
   78     uint32_t             cpu_acpi_id;   /* ACPI processor id */
   79     uint32_t             cpu_p_blk;     /* ACPI P_BLK location */
   80     uint32_t             cpu_p_blk_len; /* P_BLK length (must be 6). */
   81     struct acpi_cx       cpu_cx_states[MAX_CX_STATES];
   82     int                  cpu_cx_count;  /* Number of valid Cx states. */
   83     int                  cpu_prev_sleep;/* Last idle sleep duration. */
   84     int                  cpu_features;  /* Child driver supported features. */
   85     /* Runtime state. */
   86     int                  cpu_non_c3;    /* Index of lowest non-C3 state. */
   87     u_int                cpu_cx_stats[MAX_CX_STATES];/* Cx usage history. */
   88     /* Values for sysctl. */
   89     struct sysctl_ctx_list cpu_sysctl_ctx;
   90     struct sysctl_oid   *cpu_sysctl_tree;
   91     int                  cpu_cx_lowest;
   92     int                  cpu_cx_lowest_lim;
   93     char                 cpu_cx_supported[64];
   94     int                  cpu_rid;
   95 };
   96 
   97 struct acpi_cpu_device {
   98     struct resource_list        ad_rl;
   99 };
  100 
  101 #define CPU_GET_REG(reg, width)                                         \
  102     (bus_space_read_ ## width(rman_get_bustag((reg)),                   \
  103                       rman_get_bushandle((reg)), 0))
  104 #define CPU_SET_REG(reg, width, val)                                    \
  105     (bus_space_write_ ## width(rman_get_bustag((reg)),                  \
  106                        rman_get_bushandle((reg)), 0, (val)))
  107 
  108 #define PM_USEC(x)       ((x) >> 2)     /* ~4 clocks per usec (3.57955 Mhz) */
  109 
  110 #define ACPI_NOTIFY_CX_STATES   0x81    /* _CST changed. */
  111 
  112 #define CPU_QUIRK_NO_C3         (1<<0)  /* C3-type states are not usable. */
  113 #define CPU_QUIRK_NO_BM_CTRL    (1<<2)  /* No bus mastering control. */
  114 
  115 #define PCI_VENDOR_INTEL        0x8086
  116 #define PCI_DEVICE_82371AB_3    0x7113  /* PIIX4 chipset for quirks. */
  117 #define PCI_REVISION_A_STEP     0
  118 #define PCI_REVISION_B_STEP     1
  119 #define PCI_REVISION_4E         2
  120 #define PCI_REVISION_4M         3
  121 #define PIIX4_DEVACTB_REG       0x58
  122 #define PIIX4_BRLD_EN_IRQ0      (1<<0)
  123 #define PIIX4_BRLD_EN_IRQ       (1<<1)
  124 #define PIIX4_BRLD_EN_IRQ8      (1<<5)
  125 #define PIIX4_STOP_BREAK_MASK   (PIIX4_BRLD_EN_IRQ0 | PIIX4_BRLD_EN_IRQ | PIIX4_BRLD_EN_IRQ8)
  126 #define PIIX4_PCNTRL_BST_EN     (1<<10)
  127 
  128 /* Allow users to ignore processor orders in MADT. */
  129 static int cpu_unordered;
  130 TUNABLE_INT("debug.acpi.cpu_unordered", &cpu_unordered);
  131 SYSCTL_INT(_debug_acpi, OID_AUTO, cpu_unordered, CTLFLAG_RDTUN,
  132     &cpu_unordered, 0,
  133     "Do not use the MADT to match ACPI Processor objects to CPUs.");
  134 
  135 /* Platform hardware resource information. */
  136 static uint32_t          cpu_smi_cmd;   /* Value to write to SMI_CMD. */
  137 static uint8_t           cpu_cst_cnt;   /* Indicate we are _CST aware. */
  138 static int               cpu_quirks;    /* Indicate any hardware bugs. */
  139 
  140 /* Runtime state. */
  141 static int               cpu_disable_idle; /* Disable entry to idle function */
  142 
  143 /* Values for sysctl. */
  144 static struct sysctl_ctx_list cpu_sysctl_ctx;
  145 static struct sysctl_oid *cpu_sysctl_tree;
  146 static int               cpu_cx_generic;
  147 static int               cpu_cx_lowest_lim;
  148 
  149 static device_t         *cpu_devices;
  150 static int               cpu_ndevices;
  151 static struct acpi_cpu_softc **cpu_softc;
  152 ACPI_SERIAL_DECL(cpu, "ACPI CPU");
  153 
  154 static int      acpi_cpu_probe(device_t dev);
  155 static int      acpi_cpu_attach(device_t dev);
  156 static int      acpi_cpu_suspend(device_t dev);
  157 static int      acpi_cpu_resume(device_t dev);
  158 static int      acpi_pcpu_get_id(device_t dev, uint32_t *acpi_id,
  159                     uint32_t *cpu_id);
  160 static struct resource_list *acpi_cpu_get_rlist(device_t dev, device_t child);
  161 static device_t acpi_cpu_add_child(device_t dev, u_int order, const char *name,
  162                     int unit);
  163 static int      acpi_cpu_read_ivar(device_t dev, device_t child, int index,
  164                     uintptr_t *result);
  165 static int      acpi_cpu_shutdown(device_t dev);
  166 static void     acpi_cpu_cx_probe(struct acpi_cpu_softc *sc);
  167 static void     acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc);
  168 static int      acpi_cpu_cx_cst(struct acpi_cpu_softc *sc);
  169 static void     acpi_cpu_startup(void *arg);
  170 static void     acpi_cpu_startup_cx(struct acpi_cpu_softc *sc);
  171 static void     acpi_cpu_cx_list(struct acpi_cpu_softc *sc);
  172 static void     acpi_cpu_idle(void);
  173 static void     acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context);
  174 static int      acpi_cpu_quirks(void);
  175 static int      acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS);
  176 static int      acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc);
  177 static int      acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
  178 static int      acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
  179 
  180 static device_method_t acpi_cpu_methods[] = {
  181     /* Device interface */
  182     DEVMETHOD(device_probe,     acpi_cpu_probe),
  183     DEVMETHOD(device_attach,    acpi_cpu_attach),
  184     DEVMETHOD(device_detach,    bus_generic_detach),
  185     DEVMETHOD(device_shutdown,  acpi_cpu_shutdown),
  186     DEVMETHOD(device_suspend,   acpi_cpu_suspend),
  187     DEVMETHOD(device_resume,    acpi_cpu_resume),
  188 
  189     /* Bus interface */
  190     DEVMETHOD(bus_add_child,    acpi_cpu_add_child),
  191     DEVMETHOD(bus_read_ivar,    acpi_cpu_read_ivar),
  192     DEVMETHOD(bus_get_resource_list, acpi_cpu_get_rlist),
  193     DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource),
  194     DEVMETHOD(bus_set_resource, bus_generic_rl_set_resource),
  195     DEVMETHOD(bus_alloc_resource, bus_generic_rl_alloc_resource),
  196     DEVMETHOD(bus_release_resource, bus_generic_rl_release_resource),
  197     DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
  198     DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
  199     DEVMETHOD(bus_setup_intr,   bus_generic_setup_intr),
  200     DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr),
  201 
  202     DEVMETHOD_END
  203 };
  204 
  205 static driver_t acpi_cpu_driver = {
  206     "cpu",
  207     acpi_cpu_methods,
  208     sizeof(struct acpi_cpu_softc),
  209 };
  210 
  211 static devclass_t acpi_cpu_devclass;
  212 DRIVER_MODULE(cpu, acpi, acpi_cpu_driver, acpi_cpu_devclass, 0, 0);
  213 MODULE_DEPEND(cpu, acpi, 1, 1, 1);
  214 
  215 static int
  216 acpi_cpu_probe(device_t dev)
  217 {
  218     int                    acpi_id, cpu_id;
  219     ACPI_BUFFER            buf;
  220     ACPI_HANDLE            handle;
  221     ACPI_OBJECT            *obj;
  222     ACPI_STATUS            status;
  223 
  224     if (acpi_disabled("cpu") || acpi_get_type(dev) != ACPI_TYPE_PROCESSOR)
  225         return (ENXIO);
  226 
  227     handle = acpi_get_handle(dev);
  228     if (cpu_softc == NULL)
  229         cpu_softc = malloc(sizeof(struct acpi_cpu_softc *) *
  230             (mp_maxid + 1), M_TEMP /* XXX */, M_WAITOK | M_ZERO);
  231 
  232     /* Get our Processor object. */
  233     buf.Pointer = NULL;
  234     buf.Length = ACPI_ALLOCATE_BUFFER;
  235     status = AcpiEvaluateObject(handle, NULL, NULL, &buf);
  236     if (ACPI_FAILURE(status)) {
  237         device_printf(dev, "probe failed to get Processor obj - %s\n",
  238                       AcpiFormatException(status));
  239         return (ENXIO);
  240     }
  241     obj = (ACPI_OBJECT *)buf.Pointer;
  242     if (obj->Type != ACPI_TYPE_PROCESSOR) {
  243         device_printf(dev, "Processor object has bad type %d\n", obj->Type);
  244         AcpiOsFree(obj);
  245         return (ENXIO);
  246     }
  247 
  248     /*
  249      * Find the processor associated with our unit.  We could use the
  250      * ProcId as a key, however, some boxes do not have the same values
  251      * in their Processor object as the ProcId values in the MADT.
  252      */
  253     acpi_id = obj->Processor.ProcId;
  254     AcpiOsFree(obj);
  255     if (acpi_pcpu_get_id(dev, &acpi_id, &cpu_id) != 0)
  256         return (ENXIO);
  257 
  258     /*
  259      * Check if we already probed this processor.  We scan the bus twice
  260      * so it's possible we've already seen this one.
  261      */
  262     if (cpu_softc[cpu_id] != NULL)
  263         return (ENXIO);
  264 
  265     /* Mark this processor as in-use and save our derived id for attach. */
  266     cpu_softc[cpu_id] = (void *)1;
  267     acpi_set_private(dev, (void*)(intptr_t)cpu_id);
  268     device_set_desc(dev, "ACPI CPU");
  269 
  270     return (0);
  271 }
  272 
  273 static int
  274 acpi_cpu_attach(device_t dev)
  275 {
  276     ACPI_BUFFER            buf;
  277     ACPI_OBJECT            arg[4], *obj;
  278     ACPI_OBJECT_LIST       arglist;
  279     struct pcpu            *pcpu_data;
  280     struct acpi_cpu_softc *sc;
  281     struct acpi_softc     *acpi_sc;
  282     ACPI_STATUS            status;
  283     u_int                  features;
  284     int                    cpu_id, drv_count, i;
  285     driver_t              **drivers;
  286     uint32_t               cap_set[3];
  287 
  288     /* UUID needed by _OSC evaluation */
  289     static uint8_t cpu_oscuuid[16] = { 0x16, 0xA6, 0x77, 0x40, 0x0C, 0x29,
  290                                        0xBE, 0x47, 0x9E, 0xBD, 0xD8, 0x70,
  291                                        0x58, 0x71, 0x39, 0x53 };
  292 
  293     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
  294 
  295     sc = device_get_softc(dev);
  296     sc->cpu_dev = dev;
  297     sc->cpu_handle = acpi_get_handle(dev);
  298     cpu_id = (int)(intptr_t)acpi_get_private(dev);
  299     cpu_softc[cpu_id] = sc;
  300     pcpu_data = pcpu_find(cpu_id);
  301     pcpu_data->pc_device = dev;
  302     sc->cpu_pcpu = pcpu_data;
  303     cpu_smi_cmd = AcpiGbl_FADT.SmiCommand;
  304     cpu_cst_cnt = AcpiGbl_FADT.CstControl;
  305 
  306     buf.Pointer = NULL;
  307     buf.Length = ACPI_ALLOCATE_BUFFER;
  308     status = AcpiEvaluateObject(sc->cpu_handle, NULL, NULL, &buf);
  309     if (ACPI_FAILURE(status)) {
  310         device_printf(dev, "attach failed to get Processor obj - %s\n",
  311                       AcpiFormatException(status));
  312         return (ENXIO);
  313     }
  314     obj = (ACPI_OBJECT *)buf.Pointer;
  315     sc->cpu_p_blk = obj->Processor.PblkAddress;
  316     sc->cpu_p_blk_len = obj->Processor.PblkLength;
  317     sc->cpu_acpi_id = obj->Processor.ProcId;
  318     AcpiOsFree(obj);
  319     ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: P_BLK at %#x/%d\n",
  320                      device_get_unit(dev), sc->cpu_p_blk, sc->cpu_p_blk_len));
  321 
  322     /*
  323      * If this is the first cpu we attach, create and initialize the generic
  324      * resources that will be used by all acpi cpu devices.
  325      */
  326     if (device_get_unit(dev) == 0) {
  327         /* Assume we won't be using generic Cx mode by default */
  328         cpu_cx_generic = FALSE;
  329 
  330         /* Install hw.acpi.cpu sysctl tree */
  331         acpi_sc = acpi_device_get_parent_softc(dev);
  332         sysctl_ctx_init(&cpu_sysctl_ctx);
  333         cpu_sysctl_tree = SYSCTL_ADD_NODE(&cpu_sysctl_ctx,
  334             SYSCTL_CHILDREN(acpi_sc->acpi_sysctl_tree), OID_AUTO, "cpu",
  335             CTLFLAG_RD, 0, "node for CPU children");
  336 
  337         /* Queue post cpu-probing task handler */
  338         AcpiOsExecute(OSL_NOTIFY_HANDLER, acpi_cpu_startup, NULL);
  339     }
  340 
  341     /*
  342      * Before calling any CPU methods, collect child driver feature hints
  343      * and notify ACPI of them.  We support unified SMP power control
  344      * so advertise this ourselves.  Note this is not the same as independent
  345      * SMP control where each CPU can have different settings.
  346      */
  347     sc->cpu_features = ACPI_CAP_SMP_SAME | ACPI_CAP_SMP_SAME_C3;
  348     if (devclass_get_drivers(acpi_cpu_devclass, &drivers, &drv_count) == 0) {
  349         for (i = 0; i < drv_count; i++) {
  350             if (ACPI_GET_FEATURES(drivers[i], &features) == 0)
  351                 sc->cpu_features |= features;
  352         }
  353         free(drivers, M_TEMP);
  354     }
  355 
  356     /*
  357      * CPU capabilities are specified in
  358      * Intel Processor Vendor-Specific ACPI Interface Specification.
  359      */
  360     if (sc->cpu_features) {
  361         arglist.Pointer = arg;
  362         arglist.Count = 4;
  363         arg[0].Type = ACPI_TYPE_BUFFER;
  364         arg[0].Buffer.Length = sizeof(cpu_oscuuid);
  365         arg[0].Buffer.Pointer = cpu_oscuuid;    /* UUID */
  366         arg[1].Type = ACPI_TYPE_INTEGER;
  367         arg[1].Integer.Value = 1;               /* revision */
  368         arg[2].Type = ACPI_TYPE_INTEGER;
  369         arg[2].Integer.Value = 1;               /* count */
  370         arg[3].Type = ACPI_TYPE_BUFFER;
  371         arg[3].Buffer.Length = sizeof(cap_set); /* Capabilities buffer */
  372         arg[3].Buffer.Pointer = (uint8_t *)cap_set;
  373         cap_set[0] = 0;                         /* status */
  374         cap_set[1] = sc->cpu_features;
  375         status = AcpiEvaluateObject(sc->cpu_handle, "_OSC", &arglist, NULL);
  376         if (ACPI_SUCCESS(status)) {
  377             if (cap_set[0] != 0)
  378                 device_printf(dev, "_OSC returned status %#x\n", cap_set[0]);
  379         }
  380         else {
  381             arglist.Pointer = arg;
  382             arglist.Count = 1;
  383             arg[0].Type = ACPI_TYPE_BUFFER;
  384             arg[0].Buffer.Length = sizeof(cap_set);
  385             arg[0].Buffer.Pointer = (uint8_t *)cap_set;
  386             cap_set[0] = 1; /* revision */
  387             cap_set[1] = 1; /* number of capabilities integers */
  388             cap_set[2] = sc->cpu_features;
  389             AcpiEvaluateObject(sc->cpu_handle, "_PDC", &arglist, NULL);
  390         }
  391     }
  392 
  393     /* Probe for Cx state support. */
  394     acpi_cpu_cx_probe(sc);
  395 
  396     return (0);
  397 }
  398 
  399 static void
  400 acpi_cpu_postattach(void *unused __unused)
  401 {
  402     device_t *devices;
  403     int err;
  404     int i, n;
  405 
  406     err = devclass_get_devices(acpi_cpu_devclass, &devices, &n);
  407     if (err != 0) {
  408         printf("devclass_get_devices(acpi_cpu_devclass) failed\n");
  409         return;
  410     }
  411     for (i = 0; i < n; i++)
  412         bus_generic_probe(devices[i]);
  413     for (i = 0; i < n; i++)
  414         bus_generic_attach(devices[i]);
  415     free(devices, M_TEMP);
  416 }
  417 
  418 SYSINIT(acpi_cpu, SI_SUB_CONFIGURE, SI_ORDER_MIDDLE,
  419     acpi_cpu_postattach, NULL);
  420 
  421 /*
  422  * Disable any entry to the idle function during suspend and re-enable it
  423  * during resume.
  424  */
  425 static int
  426 acpi_cpu_suspend(device_t dev)
  427 {
  428     int error;
  429 
  430     error = bus_generic_suspend(dev);
  431     if (error)
  432         return (error);
  433     cpu_disable_idle = TRUE;
  434     return (0);
  435 }
  436 
  437 static int
  438 acpi_cpu_resume(device_t dev)
  439 {
  440 
  441     cpu_disable_idle = FALSE;
  442     return (bus_generic_resume(dev));
  443 }
  444 
  445 /*
  446  * Find the processor associated with a given ACPI ID.  By default,
  447  * use the MADT to map ACPI IDs to APIC IDs and use that to locate a
  448  * processor.  Some systems have inconsistent ASL and MADT however.
  449  * For these systems the cpu_unordered tunable can be set in which
  450  * case we assume that Processor objects are listed in the same order
  451  * in both the MADT and ASL.
  452  */
  453 static int
  454 acpi_pcpu_get_id(device_t dev, uint32_t *acpi_id, uint32_t *cpu_id)
  455 {
  456     struct pcpu *pc;
  457     uint32_t     i, idx;
  458 
  459     KASSERT(acpi_id != NULL, ("Null acpi_id"));
  460     KASSERT(cpu_id != NULL, ("Null cpu_id"));
  461     idx = device_get_unit(dev);
  462 
  463     /*
  464      * If pc_acpi_id for CPU 0 is not initialized (e.g. a non-APIC
  465      * UP box) use the ACPI ID from the first processor we find.
  466      */
  467     if (idx == 0 && mp_ncpus == 1) {
  468         pc = pcpu_find(0);
  469         if (pc->pc_acpi_id == 0xffffffff)
  470             pc->pc_acpi_id = *acpi_id;
  471         *cpu_id = 0;
  472         return (0);
  473     }
  474 
  475     CPU_FOREACH(i) {
  476         pc = pcpu_find(i);
  477         KASSERT(pc != NULL, ("no pcpu data for %d", i));
  478         if (cpu_unordered) {
  479             if (idx-- == 0) {
  480                 /*
  481                  * If pc_acpi_id doesn't match the ACPI ID from the
  482                  * ASL, prefer the MADT-derived value.
  483                  */
  484                 if (pc->pc_acpi_id != *acpi_id)
  485                     *acpi_id = pc->pc_acpi_id;
  486                 *cpu_id = pc->pc_cpuid;
  487                 return (0);
  488             }
  489         } else {
  490             if (pc->pc_acpi_id == *acpi_id) {
  491                 if (bootverbose)
  492                     device_printf(dev,
  493                         "Processor %s (ACPI ID %u) -> APIC ID %d\n",
  494                         acpi_name(acpi_get_handle(dev)), *acpi_id,
  495                         pc->pc_cpuid);
  496                 *cpu_id = pc->pc_cpuid;
  497                 return (0);
  498             }
  499         }
  500     }
  501 
  502     if (bootverbose)
  503         printf("ACPI: Processor %s (ACPI ID %u) ignored\n",
  504             acpi_name(acpi_get_handle(dev)), *acpi_id);
  505 
  506     return (ESRCH);
  507 }
  508 
  509 static struct resource_list *
  510 acpi_cpu_get_rlist(device_t dev, device_t child)
  511 {
  512     struct acpi_cpu_device *ad;
  513 
  514     ad = device_get_ivars(child);
  515     if (ad == NULL)
  516         return (NULL);
  517     return (&ad->ad_rl);
  518 }
  519 
  520 static device_t
  521 acpi_cpu_add_child(device_t dev, u_int order, const char *name, int unit)
  522 {
  523     struct acpi_cpu_device *ad;
  524     device_t child;
  525 
  526     if ((ad = malloc(sizeof(*ad), M_TEMP, M_NOWAIT | M_ZERO)) == NULL)
  527         return (NULL);
  528 
  529     resource_list_init(&ad->ad_rl);
  530     
  531     child = device_add_child_ordered(dev, order, name, unit);
  532     if (child != NULL)
  533         device_set_ivars(child, ad);
  534     else
  535         free(ad, M_TEMP);
  536     return (child);
  537 }
  538 
  539 static int
  540 acpi_cpu_read_ivar(device_t dev, device_t child, int index, uintptr_t *result)
  541 {
  542     struct acpi_cpu_softc *sc;
  543 
  544     sc = device_get_softc(dev);
  545     switch (index) {
  546     case ACPI_IVAR_HANDLE:
  547         *result = (uintptr_t)sc->cpu_handle;
  548         break;
  549     case CPU_IVAR_PCPU:
  550         *result = (uintptr_t)sc->cpu_pcpu;
  551         break;
  552 #if defined(__amd64__) || defined(__i386__)
  553     case CPU_IVAR_NOMINAL_MHZ:
  554         if (tsc_is_invariant) {
  555             *result = (uintptr_t)(atomic_load_acq_64(&tsc_freq) / 1000000);
  556             break;
  557         }
  558         /* FALLTHROUGH */
  559 #endif
  560     default:
  561         return (ENOENT);
  562     }
  563     return (0);
  564 }
  565 
  566 static int
  567 acpi_cpu_shutdown(device_t dev)
  568 {
  569     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
  570 
  571     /* Allow children to shutdown first. */
  572     bus_generic_shutdown(dev);
  573 
  574     /*
  575      * Disable any entry to the idle function.  There is a small race where
  576      * an idle thread have passed this check but not gone to sleep.  This
  577      * is ok since device_shutdown() does not free the softc, otherwise
  578      * we'd have to be sure all threads were evicted before returning.
  579      */
  580     cpu_disable_idle = TRUE;
  581 
  582     return_VALUE (0);
  583 }
  584 
  585 static void
  586 acpi_cpu_cx_probe(struct acpi_cpu_softc *sc)
  587 {
  588     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
  589 
  590     /* Use initial sleep value of 1 sec. to start with lowest idle state. */
  591     sc->cpu_prev_sleep = 1000000;
  592     sc->cpu_cx_lowest = 0;
  593     sc->cpu_cx_lowest_lim = 0;
  594 
  595     /*
  596      * Check for the ACPI 2.0 _CST sleep states object. If we can't find
  597      * any, we'll revert to generic FADT/P_BLK Cx control method which will
  598      * be handled by acpi_cpu_startup. We need to defer to after having
  599      * probed all the cpus in the system before probing for generic Cx
  600      * states as we may already have found cpus with valid _CST packages
  601      */
  602     if (!cpu_cx_generic && acpi_cpu_cx_cst(sc) != 0) {
  603         /*
  604          * We were unable to find a _CST package for this cpu or there
  605          * was an error parsing it. Switch back to generic mode.
  606          */
  607         cpu_cx_generic = TRUE;
  608         if (bootverbose)
  609             device_printf(sc->cpu_dev, "switching to generic Cx mode\n");
  610     }
  611 
  612     /*
  613      * TODO: _CSD Package should be checked here.
  614      */
  615 }
  616 
  617 static void
  618 acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc)
  619 {
  620     ACPI_GENERIC_ADDRESS         gas;
  621     struct acpi_cx              *cx_ptr;
  622 
  623     sc->cpu_cx_count = 0;
  624     cx_ptr = sc->cpu_cx_states;
  625 
  626     /* Use initial sleep value of 1 sec. to start with lowest idle state. */
  627     sc->cpu_prev_sleep = 1000000;
  628 
  629     /* C1 has been required since just after ACPI 1.0 */
  630     cx_ptr->type = ACPI_STATE_C1;
  631     cx_ptr->trans_lat = 0;
  632     cx_ptr++;
  633     sc->cpu_cx_count++;
  634 
  635     /* 
  636      * The spec says P_BLK must be 6 bytes long.  However, some systems
  637      * use it to indicate a fractional set of features present so we
  638      * take 5 as C2.  Some may also have a value of 7 to indicate
  639      * another C3 but most use _CST for this (as required) and having
  640      * "only" C1-C3 is not a hardship.
  641      */
  642     if (sc->cpu_p_blk_len < 5)
  643         return; 
  644 
  645     /* Validate and allocate resources for C2 (P_LVL2). */
  646     gas.SpaceId = ACPI_ADR_SPACE_SYSTEM_IO;
  647     gas.BitWidth = 8;
  648     if (AcpiGbl_FADT.C2Latency <= 100) {
  649         gas.Address = sc->cpu_p_blk + 4;
  650         acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &sc->cpu_rid,
  651             &gas, &cx_ptr->p_lvlx, RF_SHAREABLE);
  652         if (cx_ptr->p_lvlx != NULL) {
  653             sc->cpu_rid++;
  654             cx_ptr->type = ACPI_STATE_C2;
  655             cx_ptr->trans_lat = AcpiGbl_FADT.C2Latency;
  656             cx_ptr++;
  657             sc->cpu_cx_count++;
  658         }
  659     }
  660     if (sc->cpu_p_blk_len < 6)
  661         return;
  662 
  663     /* Validate and allocate resources for C3 (P_LVL3). */
  664     if (AcpiGbl_FADT.C3Latency <= 1000 && !(cpu_quirks & CPU_QUIRK_NO_C3)) {
  665         gas.Address = sc->cpu_p_blk + 5;
  666         acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &sc->cpu_rid, &gas,
  667             &cx_ptr->p_lvlx, RF_SHAREABLE);
  668         if (cx_ptr->p_lvlx != NULL) {
  669             sc->cpu_rid++;
  670             cx_ptr->type = ACPI_STATE_C3;
  671             cx_ptr->trans_lat = AcpiGbl_FADT.C3Latency;
  672             cx_ptr++;
  673             sc->cpu_cx_count++;
  674         }
  675     }
  676 }
  677 
  678 /*
  679  * Parse a _CST package and set up its Cx states.  Since the _CST object
  680  * can change dynamically, our notify handler may call this function
  681  * to clean up and probe the new _CST package.
  682  */
  683 static int
  684 acpi_cpu_cx_cst(struct acpi_cpu_softc *sc)
  685 {
  686     struct       acpi_cx *cx_ptr;
  687     ACPI_STATUS  status;
  688     ACPI_BUFFER  buf;
  689     ACPI_OBJECT *top;
  690     ACPI_OBJECT *pkg;
  691     uint32_t     count;
  692     int          i;
  693 
  694     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
  695 
  696     buf.Pointer = NULL;
  697     buf.Length = ACPI_ALLOCATE_BUFFER;
  698     status = AcpiEvaluateObject(sc->cpu_handle, "_CST", NULL, &buf);
  699     if (ACPI_FAILURE(status))
  700         return (ENXIO);
  701 
  702     /* _CST is a package with a count and at least one Cx package. */
  703     top = (ACPI_OBJECT *)buf.Pointer;
  704     if (!ACPI_PKG_VALID(top, 2) || acpi_PkgInt32(top, 0, &count) != 0) {
  705         device_printf(sc->cpu_dev, "invalid _CST package\n");
  706         AcpiOsFree(buf.Pointer);
  707         return (ENXIO);
  708     }
  709     if (count != top->Package.Count - 1) {
  710         device_printf(sc->cpu_dev, "invalid _CST state count (%d != %d)\n",
  711                count, top->Package.Count - 1);
  712         count = top->Package.Count - 1;
  713     }
  714     if (count > MAX_CX_STATES) {
  715         device_printf(sc->cpu_dev, "_CST has too many states (%d)\n", count);
  716         count = MAX_CX_STATES;
  717     }
  718 
  719     sc->cpu_non_c3 = 0;
  720     sc->cpu_cx_count = 0;
  721     cx_ptr = sc->cpu_cx_states;
  722 
  723     /*
  724      * C1 has been required since just after ACPI 1.0.
  725      * Reserve the first slot for it.
  726      */
  727     cx_ptr->type = ACPI_STATE_C0;
  728     cx_ptr++;
  729     sc->cpu_cx_count++;
  730 
  731     /* Set up all valid states. */
  732     for (i = 0; i < count; i++) {
  733         pkg = &top->Package.Elements[i + 1];
  734         if (!ACPI_PKG_VALID(pkg, 4) ||
  735             acpi_PkgInt32(pkg, 1, &cx_ptr->type) != 0 ||
  736             acpi_PkgInt32(pkg, 2, &cx_ptr->trans_lat) != 0 ||
  737             acpi_PkgInt32(pkg, 3, &cx_ptr->power) != 0) {
  738 
  739             device_printf(sc->cpu_dev, "skipping invalid Cx state package\n");
  740             continue;
  741         }
  742 
  743         /* Validate the state to see if we should use it. */
  744         switch (cx_ptr->type) {
  745         case ACPI_STATE_C1:
  746             if (sc->cpu_cx_states[0].type == ACPI_STATE_C0) {
  747                 /* This is the first C1 state.  Use the reserved slot. */
  748                 sc->cpu_cx_states[0] = *cx_ptr;
  749             } else {
  750                 sc->cpu_non_c3 = i;
  751                 cx_ptr++;
  752                 sc->cpu_cx_count++;
  753             }
  754             continue;
  755         case ACPI_STATE_C2:
  756             sc->cpu_non_c3 = i;
  757             break;
  758         case ACPI_STATE_C3:
  759         default:
  760             if ((cpu_quirks & CPU_QUIRK_NO_C3) != 0) {
  761                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  762                                  "acpi_cpu%d: C3[%d] not available.\n",
  763                                  device_get_unit(sc->cpu_dev), i));
  764                 continue;
  765             }
  766             break;
  767         }
  768 
  769 #ifdef notyet
  770         /* Free up any previous register. */
  771         if (cx_ptr->p_lvlx != NULL) {
  772             bus_release_resource(sc->cpu_dev, 0, 0, cx_ptr->p_lvlx);
  773             cx_ptr->p_lvlx = NULL;
  774         }
  775 #endif
  776 
  777         /* Allocate the control register for C2 or C3. */
  778         acpi_PkgGas(sc->cpu_dev, pkg, 0, &cx_ptr->res_type, &sc->cpu_rid,
  779             &cx_ptr->p_lvlx, RF_SHAREABLE);
  780         if (cx_ptr->p_lvlx) {
  781             sc->cpu_rid++;
  782             ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  783                              "acpi_cpu%d: Got C%d - %d latency\n",
  784                              device_get_unit(sc->cpu_dev), cx_ptr->type,
  785                              cx_ptr->trans_lat));
  786             cx_ptr++;
  787             sc->cpu_cx_count++;
  788         }
  789     }
  790     AcpiOsFree(buf.Pointer);
  791 
  792     /* If C1 state was not found, we need one now. */
  793     cx_ptr = sc->cpu_cx_states;
  794     if (cx_ptr->type == ACPI_STATE_C0) {
  795         cx_ptr->type = ACPI_STATE_C1;
  796         cx_ptr->trans_lat = 0;
  797     }
  798 
  799     return (0);
  800 }
  801 
  802 /*
  803  * Call this *after* all CPUs have been attached.
  804  */
  805 static void
  806 acpi_cpu_startup(void *arg)
  807 {
  808     struct acpi_cpu_softc *sc;
  809     int i;
  810 
  811     /* Get set of CPU devices */
  812     devclass_get_devices(acpi_cpu_devclass, &cpu_devices, &cpu_ndevices);
  813 
  814     /*
  815      * Setup any quirks that might necessary now that we have probed
  816      * all the CPUs
  817      */
  818     acpi_cpu_quirks();
  819 
  820     if (cpu_cx_generic) {
  821         /*
  822          * We are using generic Cx mode, probe for available Cx states
  823          * for all processors.
  824          */
  825         for (i = 0; i < cpu_ndevices; i++) {
  826             sc = device_get_softc(cpu_devices[i]);
  827             acpi_cpu_generic_cx_probe(sc);
  828         }
  829     } else {
  830         /*
  831          * We are using _CST mode, remove C3 state if necessary.
  832          * As we now know for sure that we will be using _CST mode
  833          * install our notify handler.
  834          */
  835         for (i = 0; i < cpu_ndevices; i++) {
  836             sc = device_get_softc(cpu_devices[i]);
  837             if (cpu_quirks & CPU_QUIRK_NO_C3) {
  838                 sc->cpu_cx_count = sc->cpu_non_c3 + 1;
  839             }
  840             AcpiInstallNotifyHandler(sc->cpu_handle, ACPI_DEVICE_NOTIFY,
  841                 acpi_cpu_notify, sc);
  842         }
  843     }
  844 
  845     /* Perform Cx final initialization. */
  846     for (i = 0; i < cpu_ndevices; i++) {
  847         sc = device_get_softc(cpu_devices[i]);
  848         acpi_cpu_startup_cx(sc);
  849     }
  850 
  851     /* Add a sysctl handler to handle global Cx lowest setting */
  852     SYSCTL_ADD_PROC(&cpu_sysctl_ctx, SYSCTL_CHILDREN(cpu_sysctl_tree),
  853         OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW,
  854         NULL, 0, acpi_cpu_global_cx_lowest_sysctl, "A",
  855         "Global lowest Cx sleep state to use");
  856 
  857     /* Take over idling from cpu_idle_default(). */
  858     cpu_cx_lowest_lim = 0;
  859     cpu_disable_idle = FALSE;
  860     cpu_idle_hook = acpi_cpu_idle;
  861 }
  862 
  863 static void
  864 acpi_cpu_cx_list(struct acpi_cpu_softc *sc)
  865 {
  866     struct sbuf sb;
  867     int i;
  868 
  869     /*
  870      * Set up the list of Cx states
  871      */
  872     sc->cpu_non_c3 = 0;
  873     sbuf_new(&sb, sc->cpu_cx_supported, sizeof(sc->cpu_cx_supported),
  874         SBUF_FIXEDLEN);
  875     for (i = 0; i < sc->cpu_cx_count; i++) {
  876         sbuf_printf(&sb, "C%d/%d ", i + 1, sc->cpu_cx_states[i].trans_lat);
  877         if (sc->cpu_cx_states[i].type < ACPI_STATE_C3)
  878             sc->cpu_non_c3 = i;
  879         else
  880             cpu_can_deep_sleep = 1;
  881     }
  882     sbuf_trim(&sb);
  883     sbuf_finish(&sb);
  884 }       
  885 
  886 static void
  887 acpi_cpu_startup_cx(struct acpi_cpu_softc *sc)
  888 {
  889     acpi_cpu_cx_list(sc);
  890     
  891     SYSCTL_ADD_STRING(&sc->cpu_sysctl_ctx,
  892                       SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
  893                       OID_AUTO, "cx_supported", CTLFLAG_RD,
  894                       sc->cpu_cx_supported, 0,
  895                       "Cx/microsecond values for supported Cx states");
  896     SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
  897                     SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
  898                     OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW,
  899                     (void *)sc, 0, acpi_cpu_cx_lowest_sysctl, "A",
  900                     "lowest Cx sleep state to use");
  901     SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
  902                     SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
  903                     OID_AUTO, "cx_usage", CTLTYPE_STRING | CTLFLAG_RD,
  904                     (void *)sc, 0, acpi_cpu_usage_sysctl, "A",
  905                     "percent usage for each Cx state");
  906 
  907 #ifdef notyet
  908     /* Signal platform that we can handle _CST notification. */
  909     if (!cpu_cx_generic && cpu_cst_cnt != 0) {
  910         ACPI_LOCK(acpi);
  911         AcpiOsWritePort(cpu_smi_cmd, cpu_cst_cnt, 8);
  912         ACPI_UNLOCK(acpi);
  913     }
  914 #endif
  915 }
  916 
  917 /*
  918  * Idle the CPU in the lowest state possible.  This function is called with
  919  * interrupts disabled.  Note that once it re-enables interrupts, a task
  920  * switch can occur so do not access shared data (i.e. the softc) after
  921  * interrupts are re-enabled.
  922  */
  923 static void
  924 acpi_cpu_idle()
  925 {
  926     struct      acpi_cpu_softc *sc;
  927     struct      acpi_cx *cx_next;
  928     uint32_t    start_time, end_time;
  929     int         bm_active, cx_next_idx, i;
  930 
  931     /* If disabled, return immediately. */
  932     if (cpu_disable_idle) {
  933         ACPI_ENABLE_IRQS();
  934         return;
  935     }
  936 
  937     /*
  938      * Look up our CPU id to get our softc.  If it's NULL, we'll use C1
  939      * since there is no ACPI processor object for this CPU.  This occurs
  940      * for logical CPUs in the HTT case.
  941      */
  942     sc = cpu_softc[PCPU_GET(cpuid)];
  943     if (sc == NULL) {
  944         acpi_cpu_c1();
  945         return;
  946     }
  947 
  948     /* Find the lowest state that has small enough latency. */
  949     cx_next_idx = 0;
  950     if (cpu_disable_deep_sleep)
  951         i = min(sc->cpu_cx_lowest, sc->cpu_non_c3);
  952     else
  953         i = sc->cpu_cx_lowest;
  954     for (; i >= 0; i--) {
  955         if (sc->cpu_cx_states[i].trans_lat * 3 <= sc->cpu_prev_sleep) {
  956             cx_next_idx = i;
  957             break;
  958         }
  959     }
  960 
  961     /*
  962      * Check for bus master activity.  If there was activity, clear
  963      * the bit and use the lowest non-C3 state.  Note that the USB
  964      * driver polling for new devices keeps this bit set all the
  965      * time if USB is loaded.
  966      */
  967     if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
  968         AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, &bm_active);
  969         if (bm_active != 0) {
  970             AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, 1);
  971             cx_next_idx = min(cx_next_idx, sc->cpu_non_c3);
  972         }
  973     }
  974 
  975     /* Select the next state and update statistics. */
  976     cx_next = &sc->cpu_cx_states[cx_next_idx];
  977     sc->cpu_cx_stats[cx_next_idx]++;
  978     KASSERT(cx_next->type != ACPI_STATE_C0, ("acpi_cpu_idle: C0 sleep"));
  979 
  980     /*
  981      * Execute HLT (or equivalent) and wait for an interrupt.  We can't
  982      * precisely calculate the time spent in C1 since the place we wake up
  983      * is an ISR.  Assume we slept no more then half of quantum, unless
  984      * we are called inside critical section, delaying context switch.
  985      */
  986     if (cx_next->type == ACPI_STATE_C1) {
  987         AcpiHwRead(&start_time, &AcpiGbl_FADT.XPmTimerBlock);
  988         acpi_cpu_c1();
  989         AcpiHwRead(&end_time, &AcpiGbl_FADT.XPmTimerBlock);
  990         end_time = PM_USEC(acpi_TimerDelta(end_time, start_time));
  991         if (curthread->td_critnest == 0)
  992                 end_time = min(end_time, 500000 / hz);
  993         sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + end_time) / 4;
  994         return;
  995     }
  996 
  997     /*
  998      * For C3, disable bus master arbitration and enable bus master wake
  999      * if BM control is available, otherwise flush the CPU cache.
 1000      */
 1001     if (cx_next->type == ACPI_STATE_C3) {
 1002         if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
 1003             AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 1);
 1004             AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 1);
 1005         } else
 1006             ACPI_FLUSH_CPU_CACHE();
 1007     }
 1008 
 1009     /*
 1010      * Read from P_LVLx to enter C2(+), checking time spent asleep.
 1011      * Use the ACPI timer for measuring sleep time.  Since we need to
 1012      * get the time very close to the CPU start/stop clock logic, this
 1013      * is the only reliable time source.
 1014      */
 1015     AcpiHwRead(&start_time, &AcpiGbl_FADT.XPmTimerBlock);
 1016     CPU_GET_REG(cx_next->p_lvlx, 1);
 1017 
 1018     /*
 1019      * Read the end time twice.  Since it may take an arbitrary time
 1020      * to enter the idle state, the first read may be executed before
 1021      * the processor has stopped.  Doing it again provides enough
 1022      * margin that we are certain to have a correct value.
 1023      */
 1024     AcpiHwRead(&end_time, &AcpiGbl_FADT.XPmTimerBlock);
 1025     AcpiHwRead(&end_time, &AcpiGbl_FADT.XPmTimerBlock);
 1026 
 1027     /* Enable bus master arbitration and disable bus master wakeup. */
 1028     if (cx_next->type == ACPI_STATE_C3 &&
 1029         (cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
 1030         AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 0);
 1031         AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
 1032     }
 1033     ACPI_ENABLE_IRQS();
 1034 
 1035     /* Find the actual time asleep in microseconds. */
 1036     end_time = acpi_TimerDelta(end_time, start_time);
 1037     sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + PM_USEC(end_time)) / 4;
 1038 }
 1039 
 1040 /*
 1041  * Re-evaluate the _CST object when we are notified that it changed.
 1042  *
 1043  * XXX Re-evaluation disabled until locking is done.
 1044  */
 1045 static void
 1046 acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context)
 1047 {
 1048     struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)context;
 1049     
 1050     if (notify != ACPI_NOTIFY_CX_STATES)
 1051         return;
 1052 
 1053     /* Update the list of Cx states. */
 1054     acpi_cpu_cx_cst(sc);
 1055     acpi_cpu_cx_list(sc);
 1056 
 1057     ACPI_SERIAL_BEGIN(cpu);
 1058     acpi_cpu_set_cx_lowest(sc);
 1059     ACPI_SERIAL_END(cpu);
 1060 }
 1061 
 1062 static int
 1063 acpi_cpu_quirks(void)
 1064 {
 1065     device_t acpi_dev;
 1066     uint32_t val;
 1067 
 1068     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
 1069 
 1070     /*
 1071      * Bus mastering arbitration control is needed to keep caches coherent
 1072      * while sleeping in C3.  If it's not present but a working flush cache
 1073      * instruction is present, flush the caches before entering C3 instead.
 1074      * Otherwise, just disable C3 completely.
 1075      */
 1076     if (AcpiGbl_FADT.Pm2ControlBlock == 0 ||
 1077         AcpiGbl_FADT.Pm2ControlLength == 0) {
 1078         if ((AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD) &&
 1079             (AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD_FLUSH) == 0) {
 1080             cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
 1081             ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1082                 "acpi_cpu: no BM control, using flush cache method\n"));
 1083         } else {
 1084             cpu_quirks |= CPU_QUIRK_NO_C3;
 1085             ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1086                 "acpi_cpu: no BM control, C3 not available\n"));
 1087         }
 1088     }
 1089 
 1090     /*
 1091      * If we are using generic Cx mode, C3 on multiple CPUs requires using
 1092      * the expensive flush cache instruction.
 1093      */
 1094     if (cpu_cx_generic && mp_ncpus > 1) {
 1095         cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
 1096         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1097             "acpi_cpu: SMP, using flush cache mode for C3\n"));
 1098     }
 1099 
 1100     /* Look for various quirks of the PIIX4 part. */
 1101     acpi_dev = pci_find_device(PCI_VENDOR_INTEL, PCI_DEVICE_82371AB_3);
 1102     if (acpi_dev != NULL) {
 1103         switch (pci_get_revid(acpi_dev)) {
 1104         /*
 1105          * Disable C3 support for all PIIX4 chipsets.  Some of these parts
 1106          * do not report the BMIDE status to the BM status register and
 1107          * others have a livelock bug if Type-F DMA is enabled.  Linux
 1108          * works around the BMIDE bug by reading the BM status directly
 1109          * but we take the simpler approach of disabling C3 for these
 1110          * parts.
 1111          *
 1112          * See erratum #18 ("C3 Power State/BMIDE and Type-F DMA
 1113          * Livelock") from the January 2002 PIIX4 specification update.
 1114          * Applies to all PIIX4 models.
 1115          *
 1116          * Also, make sure that all interrupts cause a "Stop Break"
 1117          * event to exit from C2 state.
 1118          * Also, BRLD_EN_BM (ACPI_BITREG_BUS_MASTER_RLD in ACPI-speak)
 1119          * should be set to zero, otherwise it causes C2 to short-sleep.
 1120          * PIIX4 doesn't properly support C3 and bus master activity
 1121          * need not break out of C2.
 1122          */
 1123         case PCI_REVISION_A_STEP:
 1124         case PCI_REVISION_B_STEP:
 1125         case PCI_REVISION_4E:
 1126         case PCI_REVISION_4M:
 1127             cpu_quirks |= CPU_QUIRK_NO_C3;
 1128             ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1129                 "acpi_cpu: working around PIIX4 bug, disabling C3\n"));
 1130 
 1131             val = pci_read_config(acpi_dev, PIIX4_DEVACTB_REG, 4);
 1132             if ((val & PIIX4_STOP_BREAK_MASK) != PIIX4_STOP_BREAK_MASK) {
 1133                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1134                     "acpi_cpu: PIIX4: enabling IRQs to generate Stop Break\n"));
 1135                 val |= PIIX4_STOP_BREAK_MASK;
 1136                 pci_write_config(acpi_dev, PIIX4_DEVACTB_REG, val, 4);
 1137             }
 1138             AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_RLD, &val);
 1139             if (val) {
 1140                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1141                     "acpi_cpu: PIIX4: reset BRLD_EN_BM\n"));
 1142                 AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
 1143             }
 1144             break;
 1145         default:
 1146             break;
 1147         }
 1148     }
 1149 
 1150     return (0);
 1151 }
 1152 
 1153 static int
 1154 acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS)
 1155 {
 1156     struct acpi_cpu_softc *sc;
 1157     struct sbuf  sb;
 1158     char         buf[128];
 1159     int          i;
 1160     uintmax_t    fract, sum, whole;
 1161 
 1162     sc = (struct acpi_cpu_softc *) arg1;
 1163     sum = 0;
 1164     for (i = 0; i < sc->cpu_cx_count; i++)
 1165         sum += sc->cpu_cx_stats[i];
 1166     sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
 1167     for (i = 0; i < sc->cpu_cx_count; i++) {
 1168         if (sum > 0) {
 1169             whole = (uintmax_t)sc->cpu_cx_stats[i] * 100;
 1170             fract = (whole % sum) * 100;
 1171             sbuf_printf(&sb, "%u.%02u%% ", (u_int)(whole / sum),
 1172                 (u_int)(fract / sum));
 1173         } else
 1174             sbuf_printf(&sb, "0.00%% ");
 1175     }
 1176     sbuf_printf(&sb, "last %dus", sc->cpu_prev_sleep);
 1177     sbuf_trim(&sb);
 1178     sbuf_finish(&sb);
 1179     sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
 1180     sbuf_delete(&sb);
 1181 
 1182     return (0);
 1183 }
 1184 
 1185 static int
 1186 acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc)
 1187 {
 1188     int i;
 1189 
 1190     ACPI_SERIAL_ASSERT(cpu);
 1191     sc->cpu_cx_lowest = min(sc->cpu_cx_lowest_lim, sc->cpu_cx_count - 1);
 1192 
 1193     /* If not disabling, cache the new lowest non-C3 state. */
 1194     sc->cpu_non_c3 = 0;
 1195     for (i = sc->cpu_cx_lowest; i >= 0; i--) {
 1196         if (sc->cpu_cx_states[i].type < ACPI_STATE_C3) {
 1197             sc->cpu_non_c3 = i;
 1198             break;
 1199         }
 1200     }
 1201 
 1202     /* Reset the statistics counters. */
 1203     bzero(sc->cpu_cx_stats, sizeof(sc->cpu_cx_stats));
 1204     return (0);
 1205 }
 1206 
 1207 static int
 1208 acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
 1209 {
 1210     struct       acpi_cpu_softc *sc;
 1211     char         state[8];
 1212     int          val, error;
 1213 
 1214     sc = (struct acpi_cpu_softc *) arg1;
 1215     snprintf(state, sizeof(state), "C%d", sc->cpu_cx_lowest_lim + 1);
 1216     error = sysctl_handle_string(oidp, state, sizeof(state), req);
 1217     if (error != 0 || req->newptr == NULL)
 1218         return (error);
 1219     if (strlen(state) < 2 || toupper(state[0]) != 'C')
 1220         return (EINVAL);
 1221     if (strcasecmp(state, "Cmax") == 0)
 1222         val = MAX_CX_STATES;
 1223     else {
 1224         val = (int) strtol(state + 1, NULL, 10);
 1225         if (val < 1 || val > MAX_CX_STATES)
 1226             return (EINVAL);
 1227     }
 1228 
 1229     ACPI_SERIAL_BEGIN(cpu);
 1230     sc->cpu_cx_lowest_lim = val - 1;
 1231     acpi_cpu_set_cx_lowest(sc);
 1232     ACPI_SERIAL_END(cpu);
 1233 
 1234     return (0);
 1235 }
 1236 
 1237 static int
 1238 acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
 1239 {
 1240     struct      acpi_cpu_softc *sc;
 1241     char        state[8];
 1242     int         val, error, i;
 1243 
 1244     snprintf(state, sizeof(state), "C%d", cpu_cx_lowest_lim + 1);
 1245     error = sysctl_handle_string(oidp, state, sizeof(state), req);
 1246     if (error != 0 || req->newptr == NULL)
 1247         return (error);
 1248     if (strlen(state) < 2 || toupper(state[0]) != 'C')
 1249         return (EINVAL);
 1250     if (strcasecmp(state, "Cmax") == 0)
 1251         val = MAX_CX_STATES;
 1252     else {
 1253         val = (int) strtol(state + 1, NULL, 10);
 1254         if (val < 1 || val > MAX_CX_STATES)
 1255             return (EINVAL);
 1256     }
 1257 
 1258     /* Update the new lowest useable Cx state for all CPUs. */
 1259     ACPI_SERIAL_BEGIN(cpu);
 1260     cpu_cx_lowest_lim = val - 1;
 1261     for (i = 0; i < cpu_ndevices; i++) {
 1262         sc = device_get_softc(cpu_devices[i]);
 1263         sc->cpu_cx_lowest_lim = cpu_cx_lowest_lim;
 1264         acpi_cpu_set_cx_lowest(sc);
 1265     }
 1266     ACPI_SERIAL_END(cpu);
 1267 
 1268     return (0);
 1269 }

Cache object: 1725e0a34e5c029a21fac40ec6acc37c


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.