The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/acpica/acpi_cpu.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2003-2005 Nate Lawson (SDG)
    3  * Copyright (c) 2001 Michael Smith
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   25  * SUCH DAMAGE.
   26  */
   27 
   28 #include <sys/cdefs.h>
   29 __FBSDID("$FreeBSD: releng/9.2/sys/dev/acpica/acpi_cpu.c 244618 2012-12-23 12:09:41Z avg $");
   30 
   31 #include "opt_acpi.h"
   32 #include <sys/param.h>
   33 #include <sys/bus.h>
   34 #include <sys/cpu.h>
   35 #include <sys/kernel.h>
   36 #include <sys/malloc.h>
   37 #include <sys/module.h>
   38 #include <sys/pcpu.h>
   39 #include <sys/power.h>
   40 #include <sys/proc.h>
   41 #include <sys/sched.h>
   42 #include <sys/sbuf.h>
   43 #include <sys/smp.h>
   44 
   45 #include <dev/pci/pcivar.h>
   46 #include <machine/atomic.h>
   47 #include <machine/bus.h>
   48 #if defined(__amd64__) || defined(__i386__)
   49 #include <machine/clock.h>
   50 #endif
   51 #include <sys/rman.h>
   52 
   53 #include <contrib/dev/acpica/include/acpi.h>
   54 #include <contrib/dev/acpica/include/accommon.h>
   55 
   56 #include <dev/acpica/acpivar.h>
   57 
   58 /*
   59  * Support for ACPI Processor devices, including C[1-3] sleep states.
   60  */
   61 
   62 /* Hooks for the ACPI CA debugging infrastructure */
   63 #define _COMPONENT      ACPI_PROCESSOR
   64 ACPI_MODULE_NAME("PROCESSOR")
   65 
   66 struct acpi_cx {
   67     struct resource     *p_lvlx;        /* Register to read to enter state. */
   68     uint32_t             type;          /* C1-3 (C4 and up treated as C3). */
   69     uint32_t             trans_lat;     /* Transition latency (usec). */
   70     uint32_t             power;         /* Power consumed (mW). */
   71     int                  res_type;      /* Resource type for p_lvlx. */
   72     int                  res_rid;       /* Resource ID for p_lvlx. */
   73 };
   74 #define MAX_CX_STATES    8
   75 
   76 struct acpi_cpu_softc {
   77     device_t             cpu_dev;
   78     ACPI_HANDLE          cpu_handle;
   79     struct pcpu         *cpu_pcpu;
   80     uint32_t             cpu_acpi_id;   /* ACPI processor id */
   81     uint32_t             cpu_p_blk;     /* ACPI P_BLK location */
   82     uint32_t             cpu_p_blk_len; /* P_BLK length (must be 6). */
   83     struct acpi_cx       cpu_cx_states[MAX_CX_STATES];
   84     int                  cpu_cx_count;  /* Number of valid Cx states. */
   85     int                  cpu_prev_sleep;/* Last idle sleep duration. */
   86     int                  cpu_features;  /* Child driver supported features. */
   87     /* Runtime state. */
   88     int                  cpu_non_c3;    /* Index of lowest non-C3 state. */
   89     u_int                cpu_cx_stats[MAX_CX_STATES];/* Cx usage history. */
   90     /* Values for sysctl. */
   91     struct sysctl_ctx_list cpu_sysctl_ctx;
   92     struct sysctl_oid   *cpu_sysctl_tree;
   93     int                  cpu_cx_lowest;
   94     int                  cpu_cx_lowest_lim;
   95     int                  cpu_disable_idle; /* Disable entry to idle function */
   96     char                 cpu_cx_supported[64];
   97 };
   98 
   99 struct acpi_cpu_device {
  100     struct resource_list        ad_rl;
  101 };
  102 
  103 #define CPU_GET_REG(reg, width)                                         \
  104     (bus_space_read_ ## width(rman_get_bustag((reg)),                   \
  105                       rman_get_bushandle((reg)), 0))
  106 #define CPU_SET_REG(reg, width, val)                                    \
  107     (bus_space_write_ ## width(rman_get_bustag((reg)),                  \
  108                        rman_get_bushandle((reg)), 0, (val)))
  109 
  110 #define PM_USEC(x)       ((x) >> 2)     /* ~4 clocks per usec (3.57955 Mhz) */
  111 
  112 #define ACPI_NOTIFY_CX_STATES   0x81    /* _CST changed. */
  113 
  114 #define CPU_QUIRK_NO_C3         (1<<0)  /* C3-type states are not usable. */
  115 #define CPU_QUIRK_NO_BM_CTRL    (1<<2)  /* No bus mastering control. */
  116 
  117 #define PCI_VENDOR_INTEL        0x8086
  118 #define PCI_DEVICE_82371AB_3    0x7113  /* PIIX4 chipset for quirks. */
  119 #define PCI_REVISION_A_STEP     0
  120 #define PCI_REVISION_B_STEP     1
  121 #define PCI_REVISION_4E         2
  122 #define PCI_REVISION_4M         3
  123 #define PIIX4_DEVACTB_REG       0x58
  124 #define PIIX4_BRLD_EN_IRQ0      (1<<0)
  125 #define PIIX4_BRLD_EN_IRQ       (1<<1)
  126 #define PIIX4_BRLD_EN_IRQ8      (1<<5)
  127 #define PIIX4_STOP_BREAK_MASK   (PIIX4_BRLD_EN_IRQ0 | PIIX4_BRLD_EN_IRQ | PIIX4_BRLD_EN_IRQ8)
  128 #define PIIX4_PCNTRL_BST_EN     (1<<10)
  129 
  130 /* Allow users to ignore processor orders in MADT. */
  131 static int cpu_unordered;
  132 TUNABLE_INT("debug.acpi.cpu_unordered", &cpu_unordered);
  133 SYSCTL_INT(_debug_acpi, OID_AUTO, cpu_unordered, CTLFLAG_RDTUN,
  134     &cpu_unordered, 0,
  135     "Do not use the MADT to match ACPI Processor objects to CPUs.");
  136 
  137 /* Platform hardware resource information. */
  138 static uint32_t          cpu_smi_cmd;   /* Value to write to SMI_CMD. */
  139 static uint8_t           cpu_cst_cnt;   /* Indicate we are _CST aware. */
  140 static int               cpu_quirks;    /* Indicate any hardware bugs. */
  141 
  142 /* Values for sysctl. */
  143 static struct sysctl_ctx_list cpu_sysctl_ctx;
  144 static struct sysctl_oid *cpu_sysctl_tree;
  145 static int               cpu_cx_generic;
  146 static int               cpu_cx_lowest_lim;
  147 
  148 static device_t         *cpu_devices;
  149 static int               cpu_ndevices;
  150 static struct acpi_cpu_softc **cpu_softc;
  151 ACPI_SERIAL_DECL(cpu, "ACPI CPU");
  152 
  153 static int      acpi_cpu_probe(device_t dev);
  154 static int      acpi_cpu_attach(device_t dev);
  155 static int      acpi_cpu_suspend(device_t dev);
  156 static int      acpi_cpu_resume(device_t dev);
  157 static int      acpi_pcpu_get_id(device_t dev, uint32_t *acpi_id,
  158                     uint32_t *cpu_id);
  159 static struct resource_list *acpi_cpu_get_rlist(device_t dev, device_t child);
  160 static device_t acpi_cpu_add_child(device_t dev, u_int order, const char *name,
  161                     int unit);
  162 static int      acpi_cpu_read_ivar(device_t dev, device_t child, int index,
  163                     uintptr_t *result);
  164 static int      acpi_cpu_shutdown(device_t dev);
  165 static void     acpi_cpu_cx_probe(struct acpi_cpu_softc *sc);
  166 static void     acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc);
  167 static int      acpi_cpu_cx_cst(struct acpi_cpu_softc *sc);
  168 static void     acpi_cpu_startup(void *arg);
  169 static void     acpi_cpu_startup_cx(struct acpi_cpu_softc *sc);
  170 static void     acpi_cpu_cx_list(struct acpi_cpu_softc *sc);
  171 static void     acpi_cpu_idle(void);
  172 static void     acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context);
  173 static int      acpi_cpu_quirks(void);
  174 static int      acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS);
  175 static int      acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc);
  176 static int      acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
  177 static int      acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
  178 
  179 static device_method_t acpi_cpu_methods[] = {
  180     /* Device interface */
  181     DEVMETHOD(device_probe,     acpi_cpu_probe),
  182     DEVMETHOD(device_attach,    acpi_cpu_attach),
  183     DEVMETHOD(device_detach,    bus_generic_detach),
  184     DEVMETHOD(device_shutdown,  acpi_cpu_shutdown),
  185     DEVMETHOD(device_suspend,   acpi_cpu_suspend),
  186     DEVMETHOD(device_resume,    acpi_cpu_resume),
  187 
  188     /* Bus interface */
  189     DEVMETHOD(bus_add_child,    acpi_cpu_add_child),
  190     DEVMETHOD(bus_read_ivar,    acpi_cpu_read_ivar),
  191     DEVMETHOD(bus_get_resource_list, acpi_cpu_get_rlist),
  192     DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource),
  193     DEVMETHOD(bus_set_resource, bus_generic_rl_set_resource),
  194     DEVMETHOD(bus_alloc_resource, bus_generic_rl_alloc_resource),
  195     DEVMETHOD(bus_release_resource, bus_generic_rl_release_resource),
  196     DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
  197     DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
  198     DEVMETHOD(bus_setup_intr,   bus_generic_setup_intr),
  199     DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr),
  200 
  201     DEVMETHOD_END
  202 };
  203 
  204 static driver_t acpi_cpu_driver = {
  205     "cpu",
  206     acpi_cpu_methods,
  207     sizeof(struct acpi_cpu_softc),
  208 };
  209 
  210 static devclass_t acpi_cpu_devclass;
  211 DRIVER_MODULE(cpu, acpi, acpi_cpu_driver, acpi_cpu_devclass, 0, 0);
  212 MODULE_DEPEND(cpu, acpi, 1, 1, 1);
  213 
  214 static int
  215 acpi_cpu_probe(device_t dev)
  216 {
  217     int                    acpi_id, cpu_id;
  218     ACPI_BUFFER            buf;
  219     ACPI_HANDLE            handle;
  220     ACPI_OBJECT            *obj;
  221     ACPI_STATUS            status;
  222 
  223     if (acpi_disabled("cpu") || acpi_get_type(dev) != ACPI_TYPE_PROCESSOR)
  224         return (ENXIO);
  225 
  226     handle = acpi_get_handle(dev);
  227     if (cpu_softc == NULL)
  228         cpu_softc = malloc(sizeof(struct acpi_cpu_softc *) *
  229             (mp_maxid + 1), M_TEMP /* XXX */, M_WAITOK | M_ZERO);
  230 
  231     /* Get our Processor object. */
  232     buf.Pointer = NULL;
  233     buf.Length = ACPI_ALLOCATE_BUFFER;
  234     status = AcpiEvaluateObject(handle, NULL, NULL, &buf);
  235     if (ACPI_FAILURE(status)) {
  236         device_printf(dev, "probe failed to get Processor obj - %s\n",
  237                       AcpiFormatException(status));
  238         return (ENXIO);
  239     }
  240     obj = (ACPI_OBJECT *)buf.Pointer;
  241     if (obj->Type != ACPI_TYPE_PROCESSOR) {
  242         device_printf(dev, "Processor object has bad type %d\n", obj->Type);
  243         AcpiOsFree(obj);
  244         return (ENXIO);
  245     }
  246 
  247     /*
  248      * Find the processor associated with our unit.  We could use the
  249      * ProcId as a key, however, some boxes do not have the same values
  250      * in their Processor object as the ProcId values in the MADT.
  251      */
  252     acpi_id = obj->Processor.ProcId;
  253     AcpiOsFree(obj);
  254     if (acpi_pcpu_get_id(dev, &acpi_id, &cpu_id) != 0)
  255         return (ENXIO);
  256 
  257     /*
  258      * Check if we already probed this processor.  We scan the bus twice
  259      * so it's possible we've already seen this one.
  260      */
  261     if (cpu_softc[cpu_id] != NULL)
  262         return (ENXIO);
  263 
  264     /* Mark this processor as in-use and save our derived id for attach. */
  265     cpu_softc[cpu_id] = (void *)1;
  266     acpi_set_private(dev, (void*)(intptr_t)cpu_id);
  267     device_set_desc(dev, "ACPI CPU");
  268 
  269     return (0);
  270 }
  271 
  272 static int
  273 acpi_cpu_attach(device_t dev)
  274 {
  275     ACPI_BUFFER            buf;
  276     ACPI_OBJECT            arg[4], *obj;
  277     ACPI_OBJECT_LIST       arglist;
  278     struct pcpu            *pcpu_data;
  279     struct acpi_cpu_softc *sc;
  280     struct acpi_softc     *acpi_sc;
  281     ACPI_STATUS            status;
  282     u_int                  features;
  283     int                    cpu_id, drv_count, i;
  284     driver_t              **drivers;
  285     uint32_t               cap_set[3];
  286 
  287     /* UUID needed by _OSC evaluation */
  288     static uint8_t cpu_oscuuid[16] = { 0x16, 0xA6, 0x77, 0x40, 0x0C, 0x29,
  289                                        0xBE, 0x47, 0x9E, 0xBD, 0xD8, 0x70,
  290                                        0x58, 0x71, 0x39, 0x53 };
  291 
  292     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
  293 
  294     sc = device_get_softc(dev);
  295     sc->cpu_dev = dev;
  296     sc->cpu_handle = acpi_get_handle(dev);
  297     cpu_id = (int)(intptr_t)acpi_get_private(dev);
  298     cpu_softc[cpu_id] = sc;
  299     pcpu_data = pcpu_find(cpu_id);
  300     pcpu_data->pc_device = dev;
  301     sc->cpu_pcpu = pcpu_data;
  302     cpu_smi_cmd = AcpiGbl_FADT.SmiCommand;
  303     cpu_cst_cnt = AcpiGbl_FADT.CstControl;
  304 
  305     buf.Pointer = NULL;
  306     buf.Length = ACPI_ALLOCATE_BUFFER;
  307     status = AcpiEvaluateObject(sc->cpu_handle, NULL, NULL, &buf);
  308     if (ACPI_FAILURE(status)) {
  309         device_printf(dev, "attach failed to get Processor obj - %s\n",
  310                       AcpiFormatException(status));
  311         return (ENXIO);
  312     }
  313     obj = (ACPI_OBJECT *)buf.Pointer;
  314     sc->cpu_p_blk = obj->Processor.PblkAddress;
  315     sc->cpu_p_blk_len = obj->Processor.PblkLength;
  316     sc->cpu_acpi_id = obj->Processor.ProcId;
  317     AcpiOsFree(obj);
  318     ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: P_BLK at %#x/%d\n",
  319                      device_get_unit(dev), sc->cpu_p_blk, sc->cpu_p_blk_len));
  320 
  321     /*
  322      * If this is the first cpu we attach, create and initialize the generic
  323      * resources that will be used by all acpi cpu devices.
  324      */
  325     if (device_get_unit(dev) == 0) {
  326         /* Assume we won't be using generic Cx mode by default */
  327         cpu_cx_generic = FALSE;
  328 
  329         /* Install hw.acpi.cpu sysctl tree */
  330         acpi_sc = acpi_device_get_parent_softc(dev);
  331         sysctl_ctx_init(&cpu_sysctl_ctx);
  332         cpu_sysctl_tree = SYSCTL_ADD_NODE(&cpu_sysctl_ctx,
  333             SYSCTL_CHILDREN(acpi_sc->acpi_sysctl_tree), OID_AUTO, "cpu",
  334             CTLFLAG_RD, 0, "node for CPU children");
  335 
  336         /* Queue post cpu-probing task handler */
  337         AcpiOsExecute(OSL_NOTIFY_HANDLER, acpi_cpu_startup, NULL);
  338     }
  339 
  340     /*
  341      * Before calling any CPU methods, collect child driver feature hints
  342      * and notify ACPI of them.  We support unified SMP power control
  343      * so advertise this ourselves.  Note this is not the same as independent
  344      * SMP control where each CPU can have different settings.
  345      */
  346     sc->cpu_features = ACPI_CAP_SMP_SAME | ACPI_CAP_SMP_SAME_C3;
  347     if (devclass_get_drivers(acpi_cpu_devclass, &drivers, &drv_count) == 0) {
  348         for (i = 0; i < drv_count; i++) {
  349             if (ACPI_GET_FEATURES(drivers[i], &features) == 0)
  350                 sc->cpu_features |= features;
  351         }
  352         free(drivers, M_TEMP);
  353     }
  354 
  355     /*
  356      * CPU capabilities are specified in
  357      * Intel Processor Vendor-Specific ACPI Interface Specification.
  358      */
  359     if (sc->cpu_features) {
  360         arglist.Pointer = arg;
  361         arglist.Count = 4;
  362         arg[0].Type = ACPI_TYPE_BUFFER;
  363         arg[0].Buffer.Length = sizeof(cpu_oscuuid);
  364         arg[0].Buffer.Pointer = cpu_oscuuid;    /* UUID */
  365         arg[1].Type = ACPI_TYPE_INTEGER;
  366         arg[1].Integer.Value = 1;               /* revision */
  367         arg[2].Type = ACPI_TYPE_INTEGER;
  368         arg[2].Integer.Value = 1;               /* count */
  369         arg[3].Type = ACPI_TYPE_BUFFER;
  370         arg[3].Buffer.Length = sizeof(cap_set); /* Capabilities buffer */
  371         arg[3].Buffer.Pointer = (uint8_t *)cap_set;
  372         cap_set[0] = 0;                         /* status */
  373         cap_set[1] = sc->cpu_features;
  374         status = AcpiEvaluateObject(sc->cpu_handle, "_OSC", &arglist, NULL);
  375         if (ACPI_SUCCESS(status)) {
  376             if (cap_set[0] != 0)
  377                 device_printf(dev, "_OSC returned status %#x\n", cap_set[0]);
  378         }
  379         else {
  380             arglist.Pointer = arg;
  381             arglist.Count = 1;
  382             arg[0].Type = ACPI_TYPE_BUFFER;
  383             arg[0].Buffer.Length = sizeof(cap_set);
  384             arg[0].Buffer.Pointer = (uint8_t *)cap_set;
  385             cap_set[0] = 1; /* revision */
  386             cap_set[1] = 1; /* number of capabilities integers */
  387             cap_set[2] = sc->cpu_features;
  388             AcpiEvaluateObject(sc->cpu_handle, "_PDC", &arglist, NULL);
  389         }
  390     }
  391 
  392     /* Probe for Cx state support. */
  393     acpi_cpu_cx_probe(sc);
  394 
  395     return (0);
  396 }
  397 
  398 static void
  399 acpi_cpu_postattach(void *unused __unused)
  400 {
  401     device_t *devices;
  402     int err;
  403     int i, n;
  404 
  405     err = devclass_get_devices(acpi_cpu_devclass, &devices, &n);
  406     if (err != 0) {
  407         printf("devclass_get_devices(acpi_cpu_devclass) failed\n");
  408         return;
  409     }
  410     for (i = 0; i < n; i++)
  411         bus_generic_probe(devices[i]);
  412     for (i = 0; i < n; i++)
  413         bus_generic_attach(devices[i]);
  414     free(devices, M_TEMP);
  415 }
  416 
  417 SYSINIT(acpi_cpu, SI_SUB_CONFIGURE, SI_ORDER_MIDDLE,
  418     acpi_cpu_postattach, NULL);
  419 
  420 static void
  421 disable_idle(struct acpi_cpu_softc *sc)
  422 {
  423     cpuset_t cpuset;
  424 
  425     CPU_SETOF(sc->cpu_pcpu->pc_cpuid, &cpuset);
  426     sc->cpu_disable_idle = TRUE;
  427 
  428     /*
  429      * Ensure that the CPU is not in idle state or in acpi_cpu_idle().
  430      * Note that this code depends on the fact that the rendezvous IPI
  431      * can not penetrate context where interrupts are disabled and acpi_cpu_idle
  432      * is called and executed in such a context with interrupts being re-enabled
  433      * right before return.
  434      */
  435     smp_rendezvous_cpus(cpuset, smp_no_rendevous_barrier, NULL,
  436         smp_no_rendevous_barrier, NULL);
  437 }
  438 
  439 static void
  440 enable_idle(struct acpi_cpu_softc *sc)
  441 {
  442 
  443     sc->cpu_disable_idle = FALSE;
  444 }
  445 
  446 static int
  447 is_idle_disabled(struct acpi_cpu_softc *sc)
  448 {
  449 
  450     return (sc->cpu_disable_idle);
  451 }
  452 
  453 /*
  454  * Disable any entry to the idle function during suspend and re-enable it
  455  * during resume.
  456  */
  457 static int
  458 acpi_cpu_suspend(device_t dev)
  459 {
  460     int error;
  461 
  462     error = bus_generic_suspend(dev);
  463     if (error)
  464         return (error);
  465     disable_idle(device_get_softc(dev));
  466     return (0);
  467 }
  468 
  469 static int
  470 acpi_cpu_resume(device_t dev)
  471 {
  472 
  473     enable_idle(device_get_softc(dev));
  474     return (bus_generic_resume(dev));
  475 }
  476 
  477 /*
  478  * Find the processor associated with a given ACPI ID.  By default,
  479  * use the MADT to map ACPI IDs to APIC IDs and use that to locate a
  480  * processor.  Some systems have inconsistent ASL and MADT however.
  481  * For these systems the cpu_unordered tunable can be set in which
  482  * case we assume that Processor objects are listed in the same order
  483  * in both the MADT and ASL.
  484  */
  485 static int
  486 acpi_pcpu_get_id(device_t dev, uint32_t *acpi_id, uint32_t *cpu_id)
  487 {
  488     struct pcpu *pc;
  489     uint32_t     i, idx;
  490 
  491     KASSERT(acpi_id != NULL, ("Null acpi_id"));
  492     KASSERT(cpu_id != NULL, ("Null cpu_id"));
  493     idx = device_get_unit(dev);
  494 
  495     /*
  496      * If pc_acpi_id for CPU 0 is not initialized (e.g. a non-APIC
  497      * UP box) use the ACPI ID from the first processor we find.
  498      */
  499     if (idx == 0 && mp_ncpus == 1) {
  500         pc = pcpu_find(0);
  501         if (pc->pc_acpi_id == 0xffffffff)
  502             pc->pc_acpi_id = *acpi_id;
  503         *cpu_id = 0;
  504         return (0);
  505     }
  506 
  507     CPU_FOREACH(i) {
  508         pc = pcpu_find(i);
  509         KASSERT(pc != NULL, ("no pcpu data for %d", i));
  510         if (cpu_unordered) {
  511             if (idx-- == 0) {
  512                 /*
  513                  * If pc_acpi_id doesn't match the ACPI ID from the
  514                  * ASL, prefer the MADT-derived value.
  515                  */
  516                 if (pc->pc_acpi_id != *acpi_id)
  517                     *acpi_id = pc->pc_acpi_id;
  518                 *cpu_id = pc->pc_cpuid;
  519                 return (0);
  520             }
  521         } else {
  522             if (pc->pc_acpi_id == *acpi_id) {
  523                 if (bootverbose)
  524                     device_printf(dev,
  525                         "Processor %s (ACPI ID %u) -> APIC ID %d\n",
  526                         acpi_name(acpi_get_handle(dev)), *acpi_id,
  527                         pc->pc_cpuid);
  528                 *cpu_id = pc->pc_cpuid;
  529                 return (0);
  530             }
  531         }
  532     }
  533 
  534     if (bootverbose)
  535         printf("ACPI: Processor %s (ACPI ID %u) ignored\n",
  536             acpi_name(acpi_get_handle(dev)), *acpi_id);
  537 
  538     return (ESRCH);
  539 }
  540 
  541 static struct resource_list *
  542 acpi_cpu_get_rlist(device_t dev, device_t child)
  543 {
  544     struct acpi_cpu_device *ad;
  545 
  546     ad = device_get_ivars(child);
  547     if (ad == NULL)
  548         return (NULL);
  549     return (&ad->ad_rl);
  550 }
  551 
  552 static device_t
  553 acpi_cpu_add_child(device_t dev, u_int order, const char *name, int unit)
  554 {
  555     struct acpi_cpu_device *ad;
  556     device_t child;
  557 
  558     if ((ad = malloc(sizeof(*ad), M_TEMP, M_NOWAIT | M_ZERO)) == NULL)
  559         return (NULL);
  560 
  561     resource_list_init(&ad->ad_rl);
  562     
  563     child = device_add_child_ordered(dev, order, name, unit);
  564     if (child != NULL)
  565         device_set_ivars(child, ad);
  566     else
  567         free(ad, M_TEMP);
  568     return (child);
  569 }
  570 
  571 static int
  572 acpi_cpu_read_ivar(device_t dev, device_t child, int index, uintptr_t *result)
  573 {
  574     struct acpi_cpu_softc *sc;
  575 
  576     sc = device_get_softc(dev);
  577     switch (index) {
  578     case ACPI_IVAR_HANDLE:
  579         *result = (uintptr_t)sc->cpu_handle;
  580         break;
  581     case CPU_IVAR_PCPU:
  582         *result = (uintptr_t)sc->cpu_pcpu;
  583         break;
  584 #if defined(__amd64__) || defined(__i386__)
  585     case CPU_IVAR_NOMINAL_MHZ:
  586         if (tsc_is_invariant) {
  587             *result = (uintptr_t)(atomic_load_acq_64(&tsc_freq) / 1000000);
  588             break;
  589         }
  590         /* FALLTHROUGH */
  591 #endif
  592     default:
  593         return (ENOENT);
  594     }
  595     return (0);
  596 }
  597 
  598 static int
  599 acpi_cpu_shutdown(device_t dev)
  600 {
  601     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
  602 
  603     /* Allow children to shutdown first. */
  604     bus_generic_shutdown(dev);
  605 
  606     /*
  607      * Disable any entry to the idle function.
  608      */
  609     disable_idle(device_get_softc(dev));
  610 
  611     /*
  612      * CPU devices are not truely detached and remain referenced,
  613      * so their resources are not freed.
  614      */
  615 
  616     return_VALUE (0);
  617 }
  618 
  619 static void
  620 acpi_cpu_cx_probe(struct acpi_cpu_softc *sc)
  621 {
  622     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
  623 
  624     /* Use initial sleep value of 1 sec. to start with lowest idle state. */
  625     sc->cpu_prev_sleep = 1000000;
  626     sc->cpu_cx_lowest = 0;
  627     sc->cpu_cx_lowest_lim = 0;
  628 
  629     /*
  630      * Check for the ACPI 2.0 _CST sleep states object. If we can't find
  631      * any, we'll revert to generic FADT/P_BLK Cx control method which will
  632      * be handled by acpi_cpu_startup. We need to defer to after having
  633      * probed all the cpus in the system before probing for generic Cx
  634      * states as we may already have found cpus with valid _CST packages
  635      */
  636     if (!cpu_cx_generic && acpi_cpu_cx_cst(sc) != 0) {
  637         /*
  638          * We were unable to find a _CST package for this cpu or there
  639          * was an error parsing it. Switch back to generic mode.
  640          */
  641         cpu_cx_generic = TRUE;
  642         if (bootverbose)
  643             device_printf(sc->cpu_dev, "switching to generic Cx mode\n");
  644     }
  645 
  646     /*
  647      * TODO: _CSD Package should be checked here.
  648      */
  649 }
  650 
  651 static void
  652 acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc)
  653 {
  654     ACPI_GENERIC_ADDRESS         gas;
  655     struct acpi_cx              *cx_ptr;
  656 
  657     sc->cpu_cx_count = 0;
  658     cx_ptr = sc->cpu_cx_states;
  659 
  660     /* Use initial sleep value of 1 sec. to start with lowest idle state. */
  661     sc->cpu_prev_sleep = 1000000;
  662 
  663     /* C1 has been required since just after ACPI 1.0 */
  664     cx_ptr->type = ACPI_STATE_C1;
  665     cx_ptr->trans_lat = 0;
  666     cx_ptr++;
  667     sc->cpu_non_c3 = sc->cpu_cx_count;
  668     sc->cpu_cx_count++;
  669 
  670     /* 
  671      * The spec says P_BLK must be 6 bytes long.  However, some systems
  672      * use it to indicate a fractional set of features present so we
  673      * take 5 as C2.  Some may also have a value of 7 to indicate
  674      * another C3 but most use _CST for this (as required) and having
  675      * "only" C1-C3 is not a hardship.
  676      */
  677     if (sc->cpu_p_blk_len < 5)
  678         return; 
  679 
  680     /* Validate and allocate resources for C2 (P_LVL2). */
  681     gas.SpaceId = ACPI_ADR_SPACE_SYSTEM_IO;
  682     gas.BitWidth = 8;
  683     if (AcpiGbl_FADT.C2Latency <= 100) {
  684         gas.Address = sc->cpu_p_blk + 4;
  685         cx_ptr->res_rid = 0;
  686         acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &cx_ptr->res_rid,
  687             &gas, &cx_ptr->p_lvlx, RF_SHAREABLE);
  688         if (cx_ptr->p_lvlx != NULL) {
  689             cx_ptr->type = ACPI_STATE_C2;
  690             cx_ptr->trans_lat = AcpiGbl_FADT.C2Latency;
  691             cx_ptr++;
  692             sc->cpu_non_c3 = sc->cpu_cx_count;
  693             sc->cpu_cx_count++;
  694         }
  695     }
  696     if (sc->cpu_p_blk_len < 6)
  697         return;
  698 
  699     /* Validate and allocate resources for C3 (P_LVL3). */
  700     if (AcpiGbl_FADT.C3Latency <= 1000 && !(cpu_quirks & CPU_QUIRK_NO_C3)) {
  701         gas.Address = sc->cpu_p_blk + 5;
  702         cx_ptr->res_rid = 1;
  703         acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &cx_ptr->res_rid,
  704             &gas, &cx_ptr->p_lvlx, RF_SHAREABLE);
  705         if (cx_ptr->p_lvlx != NULL) {
  706             cx_ptr->type = ACPI_STATE_C3;
  707             cx_ptr->trans_lat = AcpiGbl_FADT.C3Latency;
  708             cx_ptr++;
  709             sc->cpu_cx_count++;
  710             cpu_can_deep_sleep = 1;
  711         }
  712     }
  713 }
  714 
  715 /*
  716  * Parse a _CST package and set up its Cx states.  Since the _CST object
  717  * can change dynamically, our notify handler may call this function
  718  * to clean up and probe the new _CST package.
  719  */
  720 static int
  721 acpi_cpu_cx_cst(struct acpi_cpu_softc *sc)
  722 {
  723     struct       acpi_cx *cx_ptr;
  724     ACPI_STATUS  status;
  725     ACPI_BUFFER  buf;
  726     ACPI_OBJECT *top;
  727     ACPI_OBJECT *pkg;
  728     uint32_t     count;
  729     int          i;
  730 
  731     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
  732 
  733     buf.Pointer = NULL;
  734     buf.Length = ACPI_ALLOCATE_BUFFER;
  735     status = AcpiEvaluateObject(sc->cpu_handle, "_CST", NULL, &buf);
  736     if (ACPI_FAILURE(status))
  737         return (ENXIO);
  738 
  739     /* _CST is a package with a count and at least one Cx package. */
  740     top = (ACPI_OBJECT *)buf.Pointer;
  741     if (!ACPI_PKG_VALID(top, 2) || acpi_PkgInt32(top, 0, &count) != 0) {
  742         device_printf(sc->cpu_dev, "invalid _CST package\n");
  743         AcpiOsFree(buf.Pointer);
  744         return (ENXIO);
  745     }
  746     if (count != top->Package.Count - 1) {
  747         device_printf(sc->cpu_dev, "invalid _CST state count (%d != %d)\n",
  748                count, top->Package.Count - 1);
  749         count = top->Package.Count - 1;
  750     }
  751     if (count > MAX_CX_STATES) {
  752         device_printf(sc->cpu_dev, "_CST has too many states (%d)\n", count);
  753         count = MAX_CX_STATES;
  754     }
  755 
  756     sc->cpu_non_c3 = 0;
  757     sc->cpu_cx_count = 0;
  758     cx_ptr = sc->cpu_cx_states;
  759 
  760     /*
  761      * C1 has been required since just after ACPI 1.0.
  762      * Reserve the first slot for it.
  763      */
  764     cx_ptr->type = ACPI_STATE_C0;
  765     cx_ptr++;
  766     sc->cpu_cx_count++;
  767 
  768     /* Set up all valid states. */
  769     for (i = 0; i < count; i++) {
  770         pkg = &top->Package.Elements[i + 1];
  771         if (!ACPI_PKG_VALID(pkg, 4) ||
  772             acpi_PkgInt32(pkg, 1, &cx_ptr->type) != 0 ||
  773             acpi_PkgInt32(pkg, 2, &cx_ptr->trans_lat) != 0 ||
  774             acpi_PkgInt32(pkg, 3, &cx_ptr->power) != 0) {
  775 
  776             device_printf(sc->cpu_dev, "skipping invalid Cx state package\n");
  777             continue;
  778         }
  779 
  780         /* Validate the state to see if we should use it. */
  781         switch (cx_ptr->type) {
  782         case ACPI_STATE_C1:
  783             if (sc->cpu_cx_states[0].type == ACPI_STATE_C0) {
  784                 /* This is the first C1 state.  Use the reserved slot. */
  785                 sc->cpu_cx_states[0] = *cx_ptr;
  786             } else {
  787                 sc->cpu_non_c3 = sc->cpu_cx_count;
  788                 cx_ptr++;
  789                 sc->cpu_cx_count++;
  790             }
  791             continue;
  792         case ACPI_STATE_C2:
  793             sc->cpu_non_c3 = sc->cpu_cx_count;
  794             break;
  795         case ACPI_STATE_C3:
  796         default:
  797             if ((cpu_quirks & CPU_QUIRK_NO_C3) != 0) {
  798                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  799                                  "acpi_cpu%d: C3[%d] not available.\n",
  800                                  device_get_unit(sc->cpu_dev), i));
  801                 continue;
  802             } else
  803                 cpu_can_deep_sleep = 1;
  804             break;
  805         }
  806 
  807         /* Free up any previous register. */
  808         if (cx_ptr->p_lvlx != NULL) {
  809             bus_release_resource(sc->cpu_dev, cx_ptr->res_type, cx_ptr->res_rid,
  810                 cx_ptr->p_lvlx);
  811             cx_ptr->p_lvlx = NULL;
  812         }
  813 
  814         /* Allocate the control register for C2 or C3. */
  815         cx_ptr->res_rid = sc->cpu_cx_count;
  816         acpi_PkgGas(sc->cpu_dev, pkg, 0, &cx_ptr->res_type, &cx_ptr->res_rid,
  817             &cx_ptr->p_lvlx, RF_SHAREABLE);
  818         if (cx_ptr->p_lvlx) {
  819             ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  820                              "acpi_cpu%d: Got C%d - %d latency\n",
  821                              device_get_unit(sc->cpu_dev), cx_ptr->type,
  822                              cx_ptr->trans_lat));
  823             cx_ptr++;
  824             sc->cpu_cx_count++;
  825         }
  826     }
  827     AcpiOsFree(buf.Pointer);
  828 
  829     /* If C1 state was not found, we need one now. */
  830     cx_ptr = sc->cpu_cx_states;
  831     if (cx_ptr->type == ACPI_STATE_C0) {
  832         cx_ptr->type = ACPI_STATE_C1;
  833         cx_ptr->trans_lat = 0;
  834     }
  835 
  836     return (0);
  837 }
  838 
  839 /*
  840  * Call this *after* all CPUs have been attached.
  841  */
  842 static void
  843 acpi_cpu_startup(void *arg)
  844 {
  845     struct acpi_cpu_softc *sc;
  846     int i;
  847 
  848     /* Get set of CPU devices */
  849     devclass_get_devices(acpi_cpu_devclass, &cpu_devices, &cpu_ndevices);
  850 
  851     /*
  852      * Setup any quirks that might necessary now that we have probed
  853      * all the CPUs
  854      */
  855     acpi_cpu_quirks();
  856 
  857     if (cpu_cx_generic) {
  858         /*
  859          * We are using generic Cx mode, probe for available Cx states
  860          * for all processors.
  861          */
  862         for (i = 0; i < cpu_ndevices; i++) {
  863             sc = device_get_softc(cpu_devices[i]);
  864             acpi_cpu_generic_cx_probe(sc);
  865         }
  866     } else {
  867         /*
  868          * We are using _CST mode, remove C3 state if necessary.
  869          * As we now know for sure that we will be using _CST mode
  870          * install our notify handler.
  871          */
  872         for (i = 0; i < cpu_ndevices; i++) {
  873             sc = device_get_softc(cpu_devices[i]);
  874             if (cpu_quirks & CPU_QUIRK_NO_C3) {
  875                 sc->cpu_cx_count = sc->cpu_non_c3 + 1;
  876             }
  877             AcpiInstallNotifyHandler(sc->cpu_handle, ACPI_DEVICE_NOTIFY,
  878                 acpi_cpu_notify, sc);
  879         }
  880     }
  881 
  882     /* Perform Cx final initialization. */
  883     for (i = 0; i < cpu_ndevices; i++) {
  884         sc = device_get_softc(cpu_devices[i]);
  885         acpi_cpu_startup_cx(sc);
  886     }
  887 
  888     /* Add a sysctl handler to handle global Cx lowest setting */
  889     SYSCTL_ADD_PROC(&cpu_sysctl_ctx, SYSCTL_CHILDREN(cpu_sysctl_tree),
  890         OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW,
  891         NULL, 0, acpi_cpu_global_cx_lowest_sysctl, "A",
  892         "Global lowest Cx sleep state to use");
  893 
  894     /* Take over idling from cpu_idle_default(). */
  895     cpu_cx_lowest_lim = 0;
  896     for (i = 0; i < cpu_ndevices; i++) {
  897         sc = device_get_softc(cpu_devices[i]);
  898         enable_idle(sc);
  899     }
  900     cpu_idle_hook = acpi_cpu_idle;
  901 }
  902 
  903 static void
  904 acpi_cpu_cx_list(struct acpi_cpu_softc *sc)
  905 {
  906     struct sbuf sb;
  907     int i;
  908 
  909     /*
  910      * Set up the list of Cx states
  911      */
  912     sbuf_new(&sb, sc->cpu_cx_supported, sizeof(sc->cpu_cx_supported),
  913         SBUF_FIXEDLEN);
  914     for (i = 0; i < sc->cpu_cx_count; i++)
  915         sbuf_printf(&sb, "C%d/%d/%d ", i + 1, sc->cpu_cx_states[i].type,
  916             sc->cpu_cx_states[i].trans_lat);
  917     sbuf_trim(&sb);
  918     sbuf_finish(&sb);
  919 }       
  920 
  921 static void
  922 acpi_cpu_startup_cx(struct acpi_cpu_softc *sc)
  923 {
  924     acpi_cpu_cx_list(sc);
  925     
  926     SYSCTL_ADD_STRING(&sc->cpu_sysctl_ctx,
  927                       SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
  928                       OID_AUTO, "cx_supported", CTLFLAG_RD,
  929                       sc->cpu_cx_supported, 0,
  930                       "Cx/microsecond values for supported Cx states");
  931     SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
  932                     SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
  933                     OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW,
  934                     (void *)sc, 0, acpi_cpu_cx_lowest_sysctl, "A",
  935                     "lowest Cx sleep state to use");
  936     SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
  937                     SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
  938                     OID_AUTO, "cx_usage", CTLTYPE_STRING | CTLFLAG_RD,
  939                     (void *)sc, 0, acpi_cpu_usage_sysctl, "A",
  940                     "percent usage for each Cx state");
  941 
  942     /* Signal platform that we can handle _CST notification. */
  943     if (!cpu_cx_generic && cpu_cst_cnt != 0) {
  944         ACPI_LOCK(acpi);
  945         AcpiOsWritePort(cpu_smi_cmd, cpu_cst_cnt, 8);
  946         ACPI_UNLOCK(acpi);
  947     }
  948 }
  949 
  950 /*
  951  * Idle the CPU in the lowest state possible.  This function is called with
  952  * interrupts disabled.  Note that once it re-enables interrupts, a task
  953  * switch can occur so do not access shared data (i.e. the softc) after
  954  * interrupts are re-enabled.
  955  */
  956 static void
  957 acpi_cpu_idle()
  958 {
  959     struct      acpi_cpu_softc *sc;
  960     struct      acpi_cx *cx_next;
  961     uint64_t    cputicks;
  962     uint32_t    start_time, end_time;
  963     int         bm_active, cx_next_idx, i;
  964 
  965     /*
  966      * Look up our CPU id to get our softc.  If it's NULL, we'll use C1
  967      * since there is no ACPI processor object for this CPU.  This occurs
  968      * for logical CPUs in the HTT case.
  969      */
  970     sc = cpu_softc[PCPU_GET(cpuid)];
  971     if (sc == NULL) {
  972         acpi_cpu_c1();
  973         return;
  974     }
  975 
  976     /* If disabled, take the safe path. */
  977     if (is_idle_disabled(sc)) {
  978         acpi_cpu_c1();
  979         return;
  980     }
  981 
  982     /* Find the lowest state that has small enough latency. */
  983     cx_next_idx = 0;
  984     if (cpu_disable_deep_sleep)
  985         i = min(sc->cpu_cx_lowest, sc->cpu_non_c3);
  986     else
  987         i = sc->cpu_cx_lowest;
  988     for (; i >= 0; i--) {
  989         if (sc->cpu_cx_states[i].trans_lat * 3 <= sc->cpu_prev_sleep) {
  990             cx_next_idx = i;
  991             break;
  992         }
  993     }
  994 
  995     /*
  996      * Check for bus master activity.  If there was activity, clear
  997      * the bit and use the lowest non-C3 state.  Note that the USB
  998      * driver polling for new devices keeps this bit set all the
  999      * time if USB is loaded.
 1000      */
 1001     if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0 &&
 1002         cx_next_idx > sc->cpu_non_c3) {
 1003         AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, &bm_active);
 1004         if (bm_active != 0) {
 1005             AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, 1);
 1006             cx_next_idx = sc->cpu_non_c3;
 1007         }
 1008     }
 1009 
 1010     /* Select the next state and update statistics. */
 1011     cx_next = &sc->cpu_cx_states[cx_next_idx];
 1012     sc->cpu_cx_stats[cx_next_idx]++;
 1013     KASSERT(cx_next->type != ACPI_STATE_C0, ("acpi_cpu_idle: C0 sleep"));
 1014 
 1015     /*
 1016      * Execute HLT (or equivalent) and wait for an interrupt.  We can't
 1017      * precisely calculate the time spent in C1 since the place we wake up
 1018      * is an ISR.  Assume we slept no more then half of quantum, unless
 1019      * we are called inside critical section, delaying context switch.
 1020      */
 1021     if (cx_next->type == ACPI_STATE_C1) {
 1022         cputicks = cpu_ticks();
 1023         acpi_cpu_c1();
 1024         end_time = ((cpu_ticks() - cputicks) << 20) / cpu_tickrate();
 1025         if (curthread->td_critnest == 0)
 1026                 end_time = min(end_time, 500000 / hz);
 1027         sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + end_time) / 4;
 1028         return;
 1029     }
 1030 
 1031     /*
 1032      * For C3, disable bus master arbitration and enable bus master wake
 1033      * if BM control is available, otherwise flush the CPU cache.
 1034      */
 1035     if (cx_next->type == ACPI_STATE_C3) {
 1036         if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
 1037             AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 1);
 1038             AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 1);
 1039         } else
 1040             ACPI_FLUSH_CPU_CACHE();
 1041     }
 1042 
 1043     /*
 1044      * Read from P_LVLx to enter C2(+), checking time spent asleep.
 1045      * Use the ACPI timer for measuring sleep time.  Since we need to
 1046      * get the time very close to the CPU start/stop clock logic, this
 1047      * is the only reliable time source.
 1048      */
 1049     if (cx_next->type == ACPI_STATE_C3) {
 1050         AcpiHwRead(&start_time, &AcpiGbl_FADT.XPmTimerBlock);
 1051         cputicks = 0;
 1052     } else {
 1053         start_time = 0;
 1054         cputicks = cpu_ticks();
 1055     }
 1056     CPU_GET_REG(cx_next->p_lvlx, 1);
 1057 
 1058     /*
 1059      * Read the end time twice.  Since it may take an arbitrary time
 1060      * to enter the idle state, the first read may be executed before
 1061      * the processor has stopped.  Doing it again provides enough
 1062      * margin that we are certain to have a correct value.
 1063      */
 1064     AcpiHwRead(&end_time, &AcpiGbl_FADT.XPmTimerBlock);
 1065     if (cx_next->type == ACPI_STATE_C3) {
 1066         AcpiHwRead(&end_time, &AcpiGbl_FADT.XPmTimerBlock);
 1067         end_time = acpi_TimerDelta(end_time, start_time);
 1068     } else
 1069         end_time = ((cpu_ticks() - cputicks) << 20) / cpu_tickrate();
 1070 
 1071     /* Enable bus master arbitration and disable bus master wakeup. */
 1072     if (cx_next->type == ACPI_STATE_C3 &&
 1073         (cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
 1074         AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 0);
 1075         AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
 1076     }
 1077     ACPI_ENABLE_IRQS();
 1078 
 1079     sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + PM_USEC(end_time)) / 4;
 1080 }
 1081 
 1082 /*
 1083  * Re-evaluate the _CST object when we are notified that it changed.
 1084  */
 1085 static void
 1086 acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context)
 1087 {
 1088     struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)context;
 1089 
 1090     if (notify != ACPI_NOTIFY_CX_STATES)
 1091         return;
 1092 
 1093     /*
 1094      * C-state data for target CPU is going to be in flux while we execute
 1095      * acpi_cpu_cx_cst, so disable entering acpi_cpu_idle.
 1096      * Also, it may happen that multiple ACPI taskqueues may concurrently
 1097      * execute notifications for the same CPU.  ACPI_SERIAL is used to
 1098      * protect against that.
 1099      */
 1100     ACPI_SERIAL_BEGIN(cpu);
 1101     disable_idle(sc);
 1102 
 1103     /* Update the list of Cx states. */
 1104     acpi_cpu_cx_cst(sc);
 1105     acpi_cpu_cx_list(sc);
 1106     acpi_cpu_set_cx_lowest(sc);
 1107 
 1108     enable_idle(sc);
 1109     ACPI_SERIAL_END(cpu);
 1110 
 1111     acpi_UserNotify("PROCESSOR", sc->cpu_handle, notify);
 1112 }
 1113 
 1114 static int
 1115 acpi_cpu_quirks(void)
 1116 {
 1117     device_t acpi_dev;
 1118     uint32_t val;
 1119 
 1120     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
 1121 
 1122     /*
 1123      * Bus mastering arbitration control is needed to keep caches coherent
 1124      * while sleeping in C3.  If it's not present but a working flush cache
 1125      * instruction is present, flush the caches before entering C3 instead.
 1126      * Otherwise, just disable C3 completely.
 1127      */
 1128     if (AcpiGbl_FADT.Pm2ControlBlock == 0 ||
 1129         AcpiGbl_FADT.Pm2ControlLength == 0) {
 1130         if ((AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD) &&
 1131             (AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD_FLUSH) == 0) {
 1132             cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
 1133             ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1134                 "acpi_cpu: no BM control, using flush cache method\n"));
 1135         } else {
 1136             cpu_quirks |= CPU_QUIRK_NO_C3;
 1137             ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1138                 "acpi_cpu: no BM control, C3 not available\n"));
 1139         }
 1140     }
 1141 
 1142     /*
 1143      * If we are using generic Cx mode, C3 on multiple CPUs requires using
 1144      * the expensive flush cache instruction.
 1145      */
 1146     if (cpu_cx_generic && mp_ncpus > 1) {
 1147         cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
 1148         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1149             "acpi_cpu: SMP, using flush cache mode for C3\n"));
 1150     }
 1151 
 1152     /* Look for various quirks of the PIIX4 part. */
 1153     acpi_dev = pci_find_device(PCI_VENDOR_INTEL, PCI_DEVICE_82371AB_3);
 1154     if (acpi_dev != NULL) {
 1155         switch (pci_get_revid(acpi_dev)) {
 1156         /*
 1157          * Disable C3 support for all PIIX4 chipsets.  Some of these parts
 1158          * do not report the BMIDE status to the BM status register and
 1159          * others have a livelock bug if Type-F DMA is enabled.  Linux
 1160          * works around the BMIDE bug by reading the BM status directly
 1161          * but we take the simpler approach of disabling C3 for these
 1162          * parts.
 1163          *
 1164          * See erratum #18 ("C3 Power State/BMIDE and Type-F DMA
 1165          * Livelock") from the January 2002 PIIX4 specification update.
 1166          * Applies to all PIIX4 models.
 1167          *
 1168          * Also, make sure that all interrupts cause a "Stop Break"
 1169          * event to exit from C2 state.
 1170          * Also, BRLD_EN_BM (ACPI_BITREG_BUS_MASTER_RLD in ACPI-speak)
 1171          * should be set to zero, otherwise it causes C2 to short-sleep.
 1172          * PIIX4 doesn't properly support C3 and bus master activity
 1173          * need not break out of C2.
 1174          */
 1175         case PCI_REVISION_A_STEP:
 1176         case PCI_REVISION_B_STEP:
 1177         case PCI_REVISION_4E:
 1178         case PCI_REVISION_4M:
 1179             cpu_quirks |= CPU_QUIRK_NO_C3;
 1180             ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1181                 "acpi_cpu: working around PIIX4 bug, disabling C3\n"));
 1182 
 1183             val = pci_read_config(acpi_dev, PIIX4_DEVACTB_REG, 4);
 1184             if ((val & PIIX4_STOP_BREAK_MASK) != PIIX4_STOP_BREAK_MASK) {
 1185                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1186                     "acpi_cpu: PIIX4: enabling IRQs to generate Stop Break\n"));
 1187                 val |= PIIX4_STOP_BREAK_MASK;
 1188                 pci_write_config(acpi_dev, PIIX4_DEVACTB_REG, val, 4);
 1189             }
 1190             AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_RLD, &val);
 1191             if (val) {
 1192                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1193                     "acpi_cpu: PIIX4: reset BRLD_EN_BM\n"));
 1194                 AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
 1195             }
 1196             break;
 1197         default:
 1198             break;
 1199         }
 1200     }
 1201 
 1202     return (0);
 1203 }
 1204 
 1205 static int
 1206 acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS)
 1207 {
 1208     struct acpi_cpu_softc *sc;
 1209     struct sbuf  sb;
 1210     char         buf[128];
 1211     int          i;
 1212     uintmax_t    fract, sum, whole;
 1213 
 1214     sc = (struct acpi_cpu_softc *) arg1;
 1215     sum = 0;
 1216     for (i = 0; i < sc->cpu_cx_count; i++)
 1217         sum += sc->cpu_cx_stats[i];
 1218     sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
 1219     for (i = 0; i < sc->cpu_cx_count; i++) {
 1220         if (sum > 0) {
 1221             whole = (uintmax_t)sc->cpu_cx_stats[i] * 100;
 1222             fract = (whole % sum) * 100;
 1223             sbuf_printf(&sb, "%u.%02u%% ", (u_int)(whole / sum),
 1224                 (u_int)(fract / sum));
 1225         } else
 1226             sbuf_printf(&sb, "0.00%% ");
 1227     }
 1228     sbuf_printf(&sb, "last %dus", sc->cpu_prev_sleep);
 1229     sbuf_trim(&sb);
 1230     sbuf_finish(&sb);
 1231     sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
 1232     sbuf_delete(&sb);
 1233 
 1234     return (0);
 1235 }
 1236 
 1237 static int
 1238 acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc)
 1239 {
 1240     int i;
 1241 
 1242     ACPI_SERIAL_ASSERT(cpu);
 1243     sc->cpu_cx_lowest = min(sc->cpu_cx_lowest_lim, sc->cpu_cx_count - 1);
 1244 
 1245     /* If not disabling, cache the new lowest non-C3 state. */
 1246     sc->cpu_non_c3 = 0;
 1247     for (i = sc->cpu_cx_lowest; i >= 0; i--) {
 1248         if (sc->cpu_cx_states[i].type < ACPI_STATE_C3) {
 1249             sc->cpu_non_c3 = i;
 1250             break;
 1251         }
 1252     }
 1253 
 1254     /* Reset the statistics counters. */
 1255     bzero(sc->cpu_cx_stats, sizeof(sc->cpu_cx_stats));
 1256     return (0);
 1257 }
 1258 
 1259 static int
 1260 acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
 1261 {
 1262     struct       acpi_cpu_softc *sc;
 1263     char         state[8];
 1264     int          val, error;
 1265 
 1266     sc = (struct acpi_cpu_softc *) arg1;
 1267     snprintf(state, sizeof(state), "C%d", sc->cpu_cx_lowest_lim + 1);
 1268     error = sysctl_handle_string(oidp, state, sizeof(state), req);
 1269     if (error != 0 || req->newptr == NULL)
 1270         return (error);
 1271     if (strlen(state) < 2 || toupper(state[0]) != 'C')
 1272         return (EINVAL);
 1273     if (strcasecmp(state, "Cmax") == 0)
 1274         val = MAX_CX_STATES;
 1275     else {
 1276         val = (int) strtol(state + 1, NULL, 10);
 1277         if (val < 1 || val > MAX_CX_STATES)
 1278             return (EINVAL);
 1279     }
 1280 
 1281     ACPI_SERIAL_BEGIN(cpu);
 1282     sc->cpu_cx_lowest_lim = val - 1;
 1283     acpi_cpu_set_cx_lowest(sc);
 1284     ACPI_SERIAL_END(cpu);
 1285 
 1286     return (0);
 1287 }
 1288 
 1289 static int
 1290 acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
 1291 {
 1292     struct      acpi_cpu_softc *sc;
 1293     char        state[8];
 1294     int         val, error, i;
 1295 
 1296     snprintf(state, sizeof(state), "C%d", cpu_cx_lowest_lim + 1);
 1297     error = sysctl_handle_string(oidp, state, sizeof(state), req);
 1298     if (error != 0 || req->newptr == NULL)
 1299         return (error);
 1300     if (strlen(state) < 2 || toupper(state[0]) != 'C')
 1301         return (EINVAL);
 1302     if (strcasecmp(state, "Cmax") == 0)
 1303         val = MAX_CX_STATES;
 1304     else {
 1305         val = (int) strtol(state + 1, NULL, 10);
 1306         if (val < 1 || val > MAX_CX_STATES)
 1307             return (EINVAL);
 1308     }
 1309 
 1310     /* Update the new lowest useable Cx state for all CPUs. */
 1311     ACPI_SERIAL_BEGIN(cpu);
 1312     cpu_cx_lowest_lim = val - 1;
 1313     for (i = 0; i < cpu_ndevices; i++) {
 1314         sc = device_get_softc(cpu_devices[i]);
 1315         sc->cpu_cx_lowest_lim = cpu_cx_lowest_lim;
 1316         acpi_cpu_set_cx_lowest(sc);
 1317     }
 1318     ACPI_SERIAL_END(cpu);
 1319 
 1320     return (0);
 1321 }

Cache object: 642a8c11f692f3743c23526bff215047


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.