The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/acpica/acpi_cpu.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2003-2005 Nate Lawson (SDG)
    3  * Copyright (c) 2001 Michael Smith
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   25  * SUCH DAMAGE.
   26  */
   27 
   28 #include <sys/cdefs.h>
   29 __FBSDID("$FreeBSD: releng/9.0/sys/dev/acpica/acpi_cpu.c 223527 2011-06-25 02:49:47Z marcel $");
   30 
   31 #include "opt_acpi.h"
   32 #include <sys/param.h>
   33 #include <sys/bus.h>
   34 #include <sys/cpu.h>
   35 #include <sys/kernel.h>
   36 #include <sys/malloc.h>
   37 #include <sys/module.h>
   38 #include <sys/pcpu.h>
   39 #include <sys/power.h>
   40 #include <sys/proc.h>
   41 #include <sys/sbuf.h>
   42 #include <sys/smp.h>
   43 
   44 #include <dev/pci/pcivar.h>
   45 #include <machine/atomic.h>
   46 #include <machine/bus.h>
   47 #if defined(__amd64__) || defined(__i386__)
   48 #include <machine/clock.h>
   49 #endif
   50 #include <sys/rman.h>
   51 
   52 #include <contrib/dev/acpica/include/acpi.h>
   53 #include <contrib/dev/acpica/include/accommon.h>
   54 
   55 #include <dev/acpica/acpivar.h>
   56 
   57 /*
   58  * Support for ACPI Processor devices, including C[1-3] sleep states.
   59  */
   60 
   61 /* Hooks for the ACPI CA debugging infrastructure */
   62 #define _COMPONENT      ACPI_PROCESSOR
   63 ACPI_MODULE_NAME("PROCESSOR")
   64 
   65 struct acpi_cx {
   66     struct resource     *p_lvlx;        /* Register to read to enter state. */
   67     uint32_t             type;          /* C1-3 (C4 and up treated as C3). */
   68     uint32_t             trans_lat;     /* Transition latency (usec). */
   69     uint32_t             power;         /* Power consumed (mW). */
   70     int                  res_type;      /* Resource type for p_lvlx. */
   71 };
   72 #define MAX_CX_STATES    8
   73 
   74 struct acpi_cpu_softc {
   75     device_t             cpu_dev;
   76     ACPI_HANDLE          cpu_handle;
   77     struct pcpu         *cpu_pcpu;
   78     uint32_t             cpu_acpi_id;   /* ACPI processor id */
   79     uint32_t             cpu_p_blk;     /* ACPI P_BLK location */
   80     uint32_t             cpu_p_blk_len; /* P_BLK length (must be 6). */
   81     struct acpi_cx       cpu_cx_states[MAX_CX_STATES];
   82     int                  cpu_cx_count;  /* Number of valid Cx states. */
   83     int                  cpu_prev_sleep;/* Last idle sleep duration. */
   84     int                  cpu_features;  /* Child driver supported features. */
   85     /* Runtime state. */
   86     int                  cpu_non_c3;    /* Index of lowest non-C3 state. */
   87     u_int                cpu_cx_stats[MAX_CX_STATES];/* Cx usage history. */
   88     /* Values for sysctl. */
   89     struct sysctl_ctx_list cpu_sysctl_ctx;
   90     struct sysctl_oid   *cpu_sysctl_tree;
   91     int                  cpu_cx_lowest;
   92     char                 cpu_cx_supported[64];
   93     int                  cpu_rid;
   94 };
   95 
   96 struct acpi_cpu_device {
   97     struct resource_list        ad_rl;
   98 };
   99 
  100 #define CPU_GET_REG(reg, width)                                         \
  101     (bus_space_read_ ## width(rman_get_bustag((reg)),                   \
  102                       rman_get_bushandle((reg)), 0))
  103 #define CPU_SET_REG(reg, width, val)                                    \
  104     (bus_space_write_ ## width(rman_get_bustag((reg)),                  \
  105                        rman_get_bushandle((reg)), 0, (val)))
  106 
  107 #define PM_USEC(x)       ((x) >> 2)     /* ~4 clocks per usec (3.57955 Mhz) */
  108 
  109 #define ACPI_NOTIFY_CX_STATES   0x81    /* _CST changed. */
  110 
  111 #define CPU_QUIRK_NO_C3         (1<<0)  /* C3-type states are not usable. */
  112 #define CPU_QUIRK_NO_BM_CTRL    (1<<2)  /* No bus mastering control. */
  113 
  114 #define PCI_VENDOR_INTEL        0x8086
  115 #define PCI_DEVICE_82371AB_3    0x7113  /* PIIX4 chipset for quirks. */
  116 #define PCI_REVISION_A_STEP     0
  117 #define PCI_REVISION_B_STEP     1
  118 #define PCI_REVISION_4E         2
  119 #define PCI_REVISION_4M         3
  120 #define PIIX4_DEVACTB_REG       0x58
  121 #define PIIX4_BRLD_EN_IRQ0      (1<<0)
  122 #define PIIX4_BRLD_EN_IRQ       (1<<1)
  123 #define PIIX4_BRLD_EN_IRQ8      (1<<5)
  124 #define PIIX4_STOP_BREAK_MASK   (PIIX4_BRLD_EN_IRQ0 | PIIX4_BRLD_EN_IRQ | PIIX4_BRLD_EN_IRQ8)
  125 #define PIIX4_PCNTRL_BST_EN     (1<<10)
  126 
  127 /* Platform hardware resource information. */
  128 static uint32_t          cpu_smi_cmd;   /* Value to write to SMI_CMD. */
  129 static uint8_t           cpu_cst_cnt;   /* Indicate we are _CST aware. */
  130 static int               cpu_quirks;    /* Indicate any hardware bugs. */
  131 
  132 /* Runtime state. */
  133 static int               cpu_disable_idle; /* Disable entry to idle function */
  134 static int               cpu_cx_count;  /* Number of valid Cx states */
  135 
  136 /* Values for sysctl. */
  137 static struct sysctl_ctx_list cpu_sysctl_ctx;
  138 static struct sysctl_oid *cpu_sysctl_tree;
  139 static int               cpu_cx_generic;
  140 static int               cpu_cx_lowest;
  141 
  142 static device_t         *cpu_devices;
  143 static int               cpu_ndevices;
  144 static struct acpi_cpu_softc **cpu_softc;
  145 ACPI_SERIAL_DECL(cpu, "ACPI CPU");
  146 
  147 static int      acpi_cpu_probe(device_t dev);
  148 static int      acpi_cpu_attach(device_t dev);
  149 static int      acpi_cpu_suspend(device_t dev);
  150 static int      acpi_cpu_resume(device_t dev);
  151 static int      acpi_pcpu_get_id(uint32_t idx, uint32_t *acpi_id,
  152                     uint32_t *cpu_id);
  153 static struct resource_list *acpi_cpu_get_rlist(device_t dev, device_t child);
  154 static device_t acpi_cpu_add_child(device_t dev, u_int order, const char *name,
  155                     int unit);
  156 static int      acpi_cpu_read_ivar(device_t dev, device_t child, int index,
  157                     uintptr_t *result);
  158 static int      acpi_cpu_shutdown(device_t dev);
  159 static void     acpi_cpu_cx_probe(struct acpi_cpu_softc *sc);
  160 static void     acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc);
  161 static int      acpi_cpu_cx_cst(struct acpi_cpu_softc *sc);
  162 static void     acpi_cpu_startup(void *arg);
  163 static void     acpi_cpu_startup_cx(struct acpi_cpu_softc *sc);
  164 static void     acpi_cpu_cx_list(struct acpi_cpu_softc *sc);
  165 static void     acpi_cpu_idle(void);
  166 static void     acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context);
  167 static int      acpi_cpu_quirks(void);
  168 static int      acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS);
  169 static int      acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc, int val);
  170 static int      acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
  171 static int      acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
  172 
  173 static device_method_t acpi_cpu_methods[] = {
  174     /* Device interface */
  175     DEVMETHOD(device_probe,     acpi_cpu_probe),
  176     DEVMETHOD(device_attach,    acpi_cpu_attach),
  177     DEVMETHOD(device_detach,    bus_generic_detach),
  178     DEVMETHOD(device_shutdown,  acpi_cpu_shutdown),
  179     DEVMETHOD(device_suspend,   acpi_cpu_suspend),
  180     DEVMETHOD(device_resume,    acpi_cpu_resume),
  181 
  182     /* Bus interface */
  183     DEVMETHOD(bus_add_child,    acpi_cpu_add_child),
  184     DEVMETHOD(bus_read_ivar,    acpi_cpu_read_ivar),
  185     DEVMETHOD(bus_get_resource_list, acpi_cpu_get_rlist),
  186     DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource),
  187     DEVMETHOD(bus_set_resource, bus_generic_rl_set_resource),
  188     DEVMETHOD(bus_alloc_resource, bus_generic_rl_alloc_resource),
  189     DEVMETHOD(bus_release_resource, bus_generic_rl_release_resource),
  190     DEVMETHOD(bus_driver_added, bus_generic_driver_added),
  191     DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
  192     DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
  193     DEVMETHOD(bus_setup_intr,   bus_generic_setup_intr),
  194     DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr),
  195 
  196     {0, 0}
  197 };
  198 
  199 static driver_t acpi_cpu_driver = {
  200     "cpu",
  201     acpi_cpu_methods,
  202     sizeof(struct acpi_cpu_softc),
  203 };
  204 
  205 static devclass_t acpi_cpu_devclass;
  206 DRIVER_MODULE(cpu, acpi, acpi_cpu_driver, acpi_cpu_devclass, 0, 0);
  207 MODULE_DEPEND(cpu, acpi, 1, 1, 1);
  208 
  209 static int
  210 acpi_cpu_probe(device_t dev)
  211 {
  212     int                    acpi_id, cpu_id;
  213     ACPI_BUFFER            buf;
  214     ACPI_HANDLE            handle;
  215     ACPI_OBJECT            *obj;
  216     ACPI_STATUS            status;
  217 
  218     if (acpi_disabled("cpu") || acpi_get_type(dev) != ACPI_TYPE_PROCESSOR)
  219         return (ENXIO);
  220 
  221     handle = acpi_get_handle(dev);
  222     if (cpu_softc == NULL)
  223         cpu_softc = malloc(sizeof(struct acpi_cpu_softc *) *
  224             (mp_maxid + 1), M_TEMP /* XXX */, M_WAITOK | M_ZERO);
  225 
  226     /* Get our Processor object. */
  227     buf.Pointer = NULL;
  228     buf.Length = ACPI_ALLOCATE_BUFFER;
  229     status = AcpiEvaluateObject(handle, NULL, NULL, &buf);
  230     if (ACPI_FAILURE(status)) {
  231         device_printf(dev, "probe failed to get Processor obj - %s\n",
  232                       AcpiFormatException(status));
  233         return (ENXIO);
  234     }
  235     obj = (ACPI_OBJECT *)buf.Pointer;
  236     if (obj->Type != ACPI_TYPE_PROCESSOR) {
  237         device_printf(dev, "Processor object has bad type %d\n", obj->Type);
  238         AcpiOsFree(obj);
  239         return (ENXIO);
  240     }
  241 
  242     /*
  243      * Find the processor associated with our unit.  We could use the
  244      * ProcId as a key, however, some boxes do not have the same values
  245      * in their Processor object as the ProcId values in the MADT.
  246      */
  247     acpi_id = obj->Processor.ProcId;
  248     AcpiOsFree(obj);
  249     if (acpi_pcpu_get_id(device_get_unit(dev), &acpi_id, &cpu_id) != 0)
  250         return (ENXIO);
  251 
  252     /*
  253      * Check if we already probed this processor.  We scan the bus twice
  254      * so it's possible we've already seen this one.
  255      */
  256     if (cpu_softc[cpu_id] != NULL)
  257         return (ENXIO);
  258 
  259     /* Mark this processor as in-use and save our derived id for attach. */
  260     cpu_softc[cpu_id] = (void *)1;
  261     acpi_set_private(dev, (void*)(intptr_t)cpu_id);
  262     device_set_desc(dev, "ACPI CPU");
  263 
  264     return (0);
  265 }
  266 
  267 static int
  268 acpi_cpu_attach(device_t dev)
  269 {
  270     ACPI_BUFFER            buf;
  271     ACPI_OBJECT            arg[4], *obj;
  272     ACPI_OBJECT_LIST       arglist;
  273     struct pcpu            *pcpu_data;
  274     struct acpi_cpu_softc *sc;
  275     struct acpi_softc     *acpi_sc;
  276     ACPI_STATUS            status;
  277     u_int                  features;
  278     int                    cpu_id, drv_count, i;
  279     driver_t              **drivers;
  280     uint32_t               cap_set[3];
  281 
  282     /* UUID needed by _OSC evaluation */
  283     static uint8_t cpu_oscuuid[16] = { 0x16, 0xA6, 0x77, 0x40, 0x0C, 0x29,
  284                                        0xBE, 0x47, 0x9E, 0xBD, 0xD8, 0x70,
  285                                        0x58, 0x71, 0x39, 0x53 };
  286 
  287     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
  288 
  289     sc = device_get_softc(dev);
  290     sc->cpu_dev = dev;
  291     sc->cpu_handle = acpi_get_handle(dev);
  292     cpu_id = (int)(intptr_t)acpi_get_private(dev);
  293     cpu_softc[cpu_id] = sc;
  294     pcpu_data = pcpu_find(cpu_id);
  295     pcpu_data->pc_device = dev;
  296     sc->cpu_pcpu = pcpu_data;
  297     cpu_smi_cmd = AcpiGbl_FADT.SmiCommand;
  298     cpu_cst_cnt = AcpiGbl_FADT.CstControl;
  299 
  300     buf.Pointer = NULL;
  301     buf.Length = ACPI_ALLOCATE_BUFFER;
  302     status = AcpiEvaluateObject(sc->cpu_handle, NULL, NULL, &buf);
  303     if (ACPI_FAILURE(status)) {
  304         device_printf(dev, "attach failed to get Processor obj - %s\n",
  305                       AcpiFormatException(status));
  306         return (ENXIO);
  307     }
  308     obj = (ACPI_OBJECT *)buf.Pointer;
  309     sc->cpu_p_blk = obj->Processor.PblkAddress;
  310     sc->cpu_p_blk_len = obj->Processor.PblkLength;
  311     sc->cpu_acpi_id = obj->Processor.ProcId;
  312     AcpiOsFree(obj);
  313     ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: P_BLK at %#x/%d\n",
  314                      device_get_unit(dev), sc->cpu_p_blk, sc->cpu_p_blk_len));
  315 
  316     /*
  317      * If this is the first cpu we attach, create and initialize the generic
  318      * resources that will be used by all acpi cpu devices.
  319      */
  320     if (device_get_unit(dev) == 0) {
  321         /* Assume we won't be using generic Cx mode by default */
  322         cpu_cx_generic = FALSE;
  323 
  324         /* Install hw.acpi.cpu sysctl tree */
  325         acpi_sc = acpi_device_get_parent_softc(dev);
  326         sysctl_ctx_init(&cpu_sysctl_ctx);
  327         cpu_sysctl_tree = SYSCTL_ADD_NODE(&cpu_sysctl_ctx,
  328             SYSCTL_CHILDREN(acpi_sc->acpi_sysctl_tree), OID_AUTO, "cpu",
  329             CTLFLAG_RD, 0, "node for CPU children");
  330 
  331         /* Queue post cpu-probing task handler */
  332         AcpiOsExecute(OSL_NOTIFY_HANDLER, acpi_cpu_startup, NULL);
  333     }
  334 
  335     /*
  336      * Before calling any CPU methods, collect child driver feature hints
  337      * and notify ACPI of them.  We support unified SMP power control
  338      * so advertise this ourselves.  Note this is not the same as independent
  339      * SMP control where each CPU can have different settings.
  340      */
  341     sc->cpu_features = ACPI_CAP_SMP_SAME | ACPI_CAP_SMP_SAME_C3;
  342     if (devclass_get_drivers(acpi_cpu_devclass, &drivers, &drv_count) == 0) {
  343         for (i = 0; i < drv_count; i++) {
  344             if (ACPI_GET_FEATURES(drivers[i], &features) == 0)
  345                 sc->cpu_features |= features;
  346         }
  347         free(drivers, M_TEMP);
  348     }
  349 
  350     /*
  351      * CPU capabilities are specified in
  352      * Intel Processor Vendor-Specific ACPI Interface Specification.
  353      */
  354     if (sc->cpu_features) {
  355         arglist.Pointer = arg;
  356         arglist.Count = 4;
  357         arg[0].Type = ACPI_TYPE_BUFFER;
  358         arg[0].Buffer.Length = sizeof(cpu_oscuuid);
  359         arg[0].Buffer.Pointer = cpu_oscuuid;    /* UUID */
  360         arg[1].Type = ACPI_TYPE_INTEGER;
  361         arg[1].Integer.Value = 1;               /* revision */
  362         arg[2].Type = ACPI_TYPE_INTEGER;
  363         arg[2].Integer.Value = 1;               /* count */
  364         arg[3].Type = ACPI_TYPE_BUFFER;
  365         arg[3].Buffer.Length = sizeof(cap_set); /* Capabilities buffer */
  366         arg[3].Buffer.Pointer = (uint8_t *)cap_set;
  367         cap_set[0] = 0;                         /* status */
  368         cap_set[1] = sc->cpu_features;
  369         status = AcpiEvaluateObject(sc->cpu_handle, "_OSC", &arglist, NULL);
  370         if (ACPI_SUCCESS(status)) {
  371             if (cap_set[0] != 0)
  372                 device_printf(dev, "_OSC returned status %#x\n", cap_set[0]);
  373         }
  374         else {
  375             arglist.Pointer = arg;
  376             arglist.Count = 1;
  377             arg[0].Type = ACPI_TYPE_BUFFER;
  378             arg[0].Buffer.Length = sizeof(cap_set);
  379             arg[0].Buffer.Pointer = (uint8_t *)cap_set;
  380             cap_set[0] = 1; /* revision */
  381             cap_set[1] = 1; /* number of capabilities integers */
  382             cap_set[2] = sc->cpu_features;
  383             AcpiEvaluateObject(sc->cpu_handle, "_PDC", &arglist, NULL);
  384         }
  385     }
  386 
  387     /* Probe for Cx state support. */
  388     acpi_cpu_cx_probe(sc);
  389 
  390     return (0);
  391 }
  392 
  393 static void
  394 acpi_cpu_postattach(void *unused __unused)
  395 {
  396     device_t *devices;
  397     int err;
  398     int i, n;
  399 
  400     err = devclass_get_devices(acpi_cpu_devclass, &devices, &n);
  401     if (err != 0) {
  402         printf("devclass_get_devices(acpi_cpu_devclass) failed\n");
  403         return;
  404     }
  405     for (i = 0; i < n; i++)
  406         bus_generic_probe(devices[i]);
  407     for (i = 0; i < n; i++)
  408         bus_generic_attach(devices[i]);
  409     free(devices, M_TEMP);
  410 }
  411 
  412 SYSINIT(acpi_cpu, SI_SUB_CONFIGURE, SI_ORDER_MIDDLE,
  413     acpi_cpu_postattach, NULL);
  414 
  415 /*
  416  * Disable any entry to the idle function during suspend and re-enable it
  417  * during resume.
  418  */
  419 static int
  420 acpi_cpu_suspend(device_t dev)
  421 {
  422     int error;
  423 
  424     error = bus_generic_suspend(dev);
  425     if (error)
  426         return (error);
  427     cpu_disable_idle = TRUE;
  428     return (0);
  429 }
  430 
  431 static int
  432 acpi_cpu_resume(device_t dev)
  433 {
  434 
  435     cpu_disable_idle = FALSE;
  436     return (bus_generic_resume(dev));
  437 }
  438 
  439 /*
  440  * Find the nth present CPU and return its pc_cpuid as well as set the
  441  * pc_acpi_id from the most reliable source.
  442  */
  443 static int
  444 acpi_pcpu_get_id(uint32_t idx, uint32_t *acpi_id, uint32_t *cpu_id)
  445 {
  446     struct pcpu *pcpu_data;
  447     uint32_t     i;
  448 
  449     KASSERT(acpi_id != NULL, ("Null acpi_id"));
  450     KASSERT(cpu_id != NULL, ("Null cpu_id"));
  451     CPU_FOREACH(i) {
  452         pcpu_data = pcpu_find(i);
  453         KASSERT(pcpu_data != NULL, ("no pcpu data for %d", i));
  454         if (idx-- == 0) {
  455             /*
  456              * If pc_acpi_id was not initialized (e.g., a non-APIC UP box)
  457              * override it with the value from the ASL.  Otherwise, if the
  458              * two don't match, prefer the MADT-derived value.  Finally,
  459              * return the pc_cpuid to reference this processor.
  460              */
  461             if (pcpu_data->pc_acpi_id == 0xffffffff)
  462                 pcpu_data->pc_acpi_id = *acpi_id;
  463             else if (pcpu_data->pc_acpi_id != *acpi_id)
  464                 *acpi_id = pcpu_data->pc_acpi_id;
  465             *cpu_id = pcpu_data->pc_cpuid;
  466             return (0);
  467         }
  468     }
  469 
  470     return (ESRCH);
  471 }
  472 
  473 static struct resource_list *
  474 acpi_cpu_get_rlist(device_t dev, device_t child)
  475 {
  476     struct acpi_cpu_device *ad;
  477 
  478     ad = device_get_ivars(child);
  479     if (ad == NULL)
  480         return (NULL);
  481     return (&ad->ad_rl);
  482 }
  483 
  484 static device_t
  485 acpi_cpu_add_child(device_t dev, u_int order, const char *name, int unit)
  486 {
  487     struct acpi_cpu_device *ad;
  488     device_t child;
  489 
  490     if ((ad = malloc(sizeof(*ad), M_TEMP, M_NOWAIT | M_ZERO)) == NULL)
  491         return (NULL);
  492 
  493     resource_list_init(&ad->ad_rl);
  494     
  495     child = device_add_child_ordered(dev, order, name, unit);
  496     if (child != NULL)
  497         device_set_ivars(child, ad);
  498     else
  499         free(ad, M_TEMP);
  500     return (child);
  501 }
  502 
  503 static int
  504 acpi_cpu_read_ivar(device_t dev, device_t child, int index, uintptr_t *result)
  505 {
  506     struct acpi_cpu_softc *sc;
  507 
  508     sc = device_get_softc(dev);
  509     switch (index) {
  510     case ACPI_IVAR_HANDLE:
  511         *result = (uintptr_t)sc->cpu_handle;
  512         break;
  513     case CPU_IVAR_PCPU:
  514         *result = (uintptr_t)sc->cpu_pcpu;
  515         break;
  516 #if defined(__amd64__) || defined(__i386__)
  517     case CPU_IVAR_NOMINAL_MHZ:
  518         if (tsc_is_invariant) {
  519             *result = (uintptr_t)(atomic_load_acq_64(&tsc_freq) / 1000000);
  520             break;
  521         }
  522         /* FALLTHROUGH */
  523 #endif
  524     default:
  525         return (ENOENT);
  526     }
  527     return (0);
  528 }
  529 
  530 static int
  531 acpi_cpu_shutdown(device_t dev)
  532 {
  533     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
  534 
  535     /* Allow children to shutdown first. */
  536     bus_generic_shutdown(dev);
  537 
  538     /*
  539      * Disable any entry to the idle function.  There is a small race where
  540      * an idle thread have passed this check but not gone to sleep.  This
  541      * is ok since device_shutdown() does not free the softc, otherwise
  542      * we'd have to be sure all threads were evicted before returning.
  543      */
  544     cpu_disable_idle = TRUE;
  545 
  546     return_VALUE (0);
  547 }
  548 
  549 static void
  550 acpi_cpu_cx_probe(struct acpi_cpu_softc *sc)
  551 {
  552     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
  553 
  554     /* Use initial sleep value of 1 sec. to start with lowest idle state. */
  555     sc->cpu_prev_sleep = 1000000;
  556     sc->cpu_cx_lowest = 0;
  557 
  558     /*
  559      * Check for the ACPI 2.0 _CST sleep states object. If we can't find
  560      * any, we'll revert to generic FADT/P_BLK Cx control method which will
  561      * be handled by acpi_cpu_startup. We need to defer to after having
  562      * probed all the cpus in the system before probing for generic Cx
  563      * states as we may already have found cpus with valid _CST packages
  564      */
  565     if (!cpu_cx_generic && acpi_cpu_cx_cst(sc) != 0) {
  566         /*
  567          * We were unable to find a _CST package for this cpu or there
  568          * was an error parsing it. Switch back to generic mode.
  569          */
  570         cpu_cx_generic = TRUE;
  571         if (bootverbose)
  572             device_printf(sc->cpu_dev, "switching to generic Cx mode\n");
  573     }
  574 
  575     /*
  576      * TODO: _CSD Package should be checked here.
  577      */
  578 }
  579 
  580 static void
  581 acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc)
  582 {
  583     ACPI_GENERIC_ADDRESS         gas;
  584     struct acpi_cx              *cx_ptr;
  585 
  586     sc->cpu_cx_count = 0;
  587     cx_ptr = sc->cpu_cx_states;
  588 
  589     /* Use initial sleep value of 1 sec. to start with lowest idle state. */
  590     sc->cpu_prev_sleep = 1000000;
  591 
  592     /* C1 has been required since just after ACPI 1.0 */
  593     cx_ptr->type = ACPI_STATE_C1;
  594     cx_ptr->trans_lat = 0;
  595     cx_ptr++;
  596     sc->cpu_cx_count++;
  597 
  598     /* 
  599      * The spec says P_BLK must be 6 bytes long.  However, some systems
  600      * use it to indicate a fractional set of features present so we
  601      * take 5 as C2.  Some may also have a value of 7 to indicate
  602      * another C3 but most use _CST for this (as required) and having
  603      * "only" C1-C3 is not a hardship.
  604      */
  605     if (sc->cpu_p_blk_len < 5)
  606         return; 
  607 
  608     /* Validate and allocate resources for C2 (P_LVL2). */
  609     gas.SpaceId = ACPI_ADR_SPACE_SYSTEM_IO;
  610     gas.BitWidth = 8;
  611     if (AcpiGbl_FADT.C2Latency <= 100) {
  612         gas.Address = sc->cpu_p_blk + 4;
  613         acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &sc->cpu_rid,
  614             &gas, &cx_ptr->p_lvlx, RF_SHAREABLE);
  615         if (cx_ptr->p_lvlx != NULL) {
  616             sc->cpu_rid++;
  617             cx_ptr->type = ACPI_STATE_C2;
  618             cx_ptr->trans_lat = AcpiGbl_FADT.C2Latency;
  619             cx_ptr++;
  620             sc->cpu_cx_count++;
  621         }
  622     }
  623     if (sc->cpu_p_blk_len < 6)
  624         return;
  625 
  626     /* Validate and allocate resources for C3 (P_LVL3). */
  627     if (AcpiGbl_FADT.C3Latency <= 1000 && !(cpu_quirks & CPU_QUIRK_NO_C3)) {
  628         gas.Address = sc->cpu_p_blk + 5;
  629         acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &sc->cpu_rid, &gas,
  630             &cx_ptr->p_lvlx, RF_SHAREABLE);
  631         if (cx_ptr->p_lvlx != NULL) {
  632             sc->cpu_rid++;
  633             cx_ptr->type = ACPI_STATE_C3;
  634             cx_ptr->trans_lat = AcpiGbl_FADT.C3Latency;
  635             cx_ptr++;
  636             sc->cpu_cx_count++;
  637         }
  638     }
  639 }
  640 
  641 /*
  642  * Parse a _CST package and set up its Cx states.  Since the _CST object
  643  * can change dynamically, our notify handler may call this function
  644  * to clean up and probe the new _CST package.
  645  */
  646 static int
  647 acpi_cpu_cx_cst(struct acpi_cpu_softc *sc)
  648 {
  649     struct       acpi_cx *cx_ptr;
  650     ACPI_STATUS  status;
  651     ACPI_BUFFER  buf;
  652     ACPI_OBJECT *top;
  653     ACPI_OBJECT *pkg;
  654     uint32_t     count;
  655     int          i;
  656 
  657     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
  658 
  659     buf.Pointer = NULL;
  660     buf.Length = ACPI_ALLOCATE_BUFFER;
  661     status = AcpiEvaluateObject(sc->cpu_handle, "_CST", NULL, &buf);
  662     if (ACPI_FAILURE(status))
  663         return (ENXIO);
  664 
  665     /* _CST is a package with a count and at least one Cx package. */
  666     top = (ACPI_OBJECT *)buf.Pointer;
  667     if (!ACPI_PKG_VALID(top, 2) || acpi_PkgInt32(top, 0, &count) != 0) {
  668         device_printf(sc->cpu_dev, "invalid _CST package\n");
  669         AcpiOsFree(buf.Pointer);
  670         return (ENXIO);
  671     }
  672     if (count != top->Package.Count - 1) {
  673         device_printf(sc->cpu_dev, "invalid _CST state count (%d != %d)\n",
  674                count, top->Package.Count - 1);
  675         count = top->Package.Count - 1;
  676     }
  677     if (count > MAX_CX_STATES) {
  678         device_printf(sc->cpu_dev, "_CST has too many states (%d)\n", count);
  679         count = MAX_CX_STATES;
  680     }
  681 
  682     sc->cpu_non_c3 = 0;
  683     sc->cpu_cx_count = 0;
  684     cx_ptr = sc->cpu_cx_states;
  685 
  686     /*
  687      * C1 has been required since just after ACPI 1.0.
  688      * Reserve the first slot for it.
  689      */
  690     cx_ptr->type = ACPI_STATE_C0;
  691     cx_ptr++;
  692     sc->cpu_cx_count++;
  693 
  694     /* Set up all valid states. */
  695     for (i = 0; i < count; i++) {
  696         pkg = &top->Package.Elements[i + 1];
  697         if (!ACPI_PKG_VALID(pkg, 4) ||
  698             acpi_PkgInt32(pkg, 1, &cx_ptr->type) != 0 ||
  699             acpi_PkgInt32(pkg, 2, &cx_ptr->trans_lat) != 0 ||
  700             acpi_PkgInt32(pkg, 3, &cx_ptr->power) != 0) {
  701 
  702             device_printf(sc->cpu_dev, "skipping invalid Cx state package\n");
  703             continue;
  704         }
  705 
  706         /* Validate the state to see if we should use it. */
  707         switch (cx_ptr->type) {
  708         case ACPI_STATE_C1:
  709             if (sc->cpu_cx_states[0].type == ACPI_STATE_C0) {
  710                 /* This is the first C1 state.  Use the reserved slot. */
  711                 sc->cpu_cx_states[0] = *cx_ptr;
  712             } else {
  713                 sc->cpu_non_c3 = i;
  714                 cx_ptr++;
  715                 sc->cpu_cx_count++;
  716             }
  717             continue;
  718         case ACPI_STATE_C2:
  719             sc->cpu_non_c3 = i;
  720             break;
  721         case ACPI_STATE_C3:
  722         default:
  723             if ((cpu_quirks & CPU_QUIRK_NO_C3) != 0) {
  724                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  725                                  "acpi_cpu%d: C3[%d] not available.\n",
  726                                  device_get_unit(sc->cpu_dev), i));
  727                 continue;
  728             }
  729             break;
  730         }
  731 
  732 #ifdef notyet
  733         /* Free up any previous register. */
  734         if (cx_ptr->p_lvlx != NULL) {
  735             bus_release_resource(sc->cpu_dev, 0, 0, cx_ptr->p_lvlx);
  736             cx_ptr->p_lvlx = NULL;
  737         }
  738 #endif
  739 
  740         /* Allocate the control register for C2 or C3. */
  741         acpi_PkgGas(sc->cpu_dev, pkg, 0, &cx_ptr->res_type, &sc->cpu_rid,
  742             &cx_ptr->p_lvlx, RF_SHAREABLE);
  743         if (cx_ptr->p_lvlx) {
  744             sc->cpu_rid++;
  745             ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  746                              "acpi_cpu%d: Got C%d - %d latency\n",
  747                              device_get_unit(sc->cpu_dev), cx_ptr->type,
  748                              cx_ptr->trans_lat));
  749             cx_ptr++;
  750             sc->cpu_cx_count++;
  751         }
  752     }
  753     AcpiOsFree(buf.Pointer);
  754 
  755     /* If C1 state was not found, we need one now. */
  756     cx_ptr = sc->cpu_cx_states;
  757     if (cx_ptr->type == ACPI_STATE_C0) {
  758         cx_ptr->type = ACPI_STATE_C1;
  759         cx_ptr->trans_lat = 0;
  760     }
  761 
  762     return (0);
  763 }
  764 
  765 /*
  766  * Call this *after* all CPUs have been attached.
  767  */
  768 static void
  769 acpi_cpu_startup(void *arg)
  770 {
  771     struct acpi_cpu_softc *sc;
  772     int i;
  773 
  774     /* Get set of CPU devices */
  775     devclass_get_devices(acpi_cpu_devclass, &cpu_devices, &cpu_ndevices);
  776 
  777     /*
  778      * Setup any quirks that might necessary now that we have probed
  779      * all the CPUs
  780      */
  781     acpi_cpu_quirks();
  782 
  783     cpu_cx_count = 0;
  784     if (cpu_cx_generic) {
  785         /*
  786          * We are using generic Cx mode, probe for available Cx states
  787          * for all processors.
  788          */
  789         for (i = 0; i < cpu_ndevices; i++) {
  790             sc = device_get_softc(cpu_devices[i]);
  791             acpi_cpu_generic_cx_probe(sc);
  792             if (sc->cpu_cx_count > cpu_cx_count)
  793                     cpu_cx_count = sc->cpu_cx_count;
  794         }
  795 
  796         /*
  797          * Find the highest Cx state common to all CPUs
  798          * in the system, taking quirks into account.
  799          */
  800         for (i = 0; i < cpu_ndevices; i++) {
  801             sc = device_get_softc(cpu_devices[i]);
  802             if (sc->cpu_cx_count < cpu_cx_count)
  803                 cpu_cx_count = sc->cpu_cx_count;
  804         }
  805     } else {
  806         /*
  807          * We are using _CST mode, remove C3 state if necessary.
  808          * Update the largest Cx state supported in the global cpu_cx_count.
  809          * It will be used in the global Cx sysctl handler.
  810          * As we now know for sure that we will be using _CST mode
  811          * install our notify handler.
  812          */
  813         for (i = 0; i < cpu_ndevices; i++) {
  814             sc = device_get_softc(cpu_devices[i]);
  815             if (cpu_quirks & CPU_QUIRK_NO_C3) {
  816                 sc->cpu_cx_count = sc->cpu_non_c3 + 1;
  817             }
  818             if (sc->cpu_cx_count > cpu_cx_count)
  819                 cpu_cx_count = sc->cpu_cx_count;
  820             AcpiInstallNotifyHandler(sc->cpu_handle, ACPI_DEVICE_NOTIFY,
  821                 acpi_cpu_notify, sc);
  822         }
  823     }
  824 
  825     /* Perform Cx final initialization. */
  826     for (i = 0; i < cpu_ndevices; i++) {
  827         sc = device_get_softc(cpu_devices[i]);
  828         acpi_cpu_startup_cx(sc);
  829     }
  830 
  831     /* Add a sysctl handler to handle global Cx lowest setting */
  832     SYSCTL_ADD_PROC(&cpu_sysctl_ctx, SYSCTL_CHILDREN(cpu_sysctl_tree),
  833         OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW,
  834         NULL, 0, acpi_cpu_global_cx_lowest_sysctl, "A",
  835         "Global lowest Cx sleep state to use");
  836 
  837     /* Take over idling from cpu_idle_default(). */
  838     cpu_cx_lowest = 0;
  839     cpu_disable_idle = FALSE;
  840     cpu_idle_hook = acpi_cpu_idle;
  841 }
  842 
  843 static void
  844 acpi_cpu_cx_list(struct acpi_cpu_softc *sc)
  845 {
  846     struct sbuf sb;
  847     int i;
  848 
  849     /*
  850      * Set up the list of Cx states
  851      */
  852     sc->cpu_non_c3 = 0;
  853     sbuf_new(&sb, sc->cpu_cx_supported, sizeof(sc->cpu_cx_supported),
  854         SBUF_FIXEDLEN);
  855     for (i = 0; i < sc->cpu_cx_count; i++) {
  856         sbuf_printf(&sb, "C%d/%d ", i + 1, sc->cpu_cx_states[i].trans_lat);
  857         if (sc->cpu_cx_states[i].type < ACPI_STATE_C3)
  858             sc->cpu_non_c3 = i;
  859         else
  860             cpu_can_deep_sleep = 1;
  861     }
  862     sbuf_trim(&sb);
  863     sbuf_finish(&sb);
  864 }       
  865 
  866 static void
  867 acpi_cpu_startup_cx(struct acpi_cpu_softc *sc)
  868 {
  869     acpi_cpu_cx_list(sc);
  870     
  871     SYSCTL_ADD_STRING(&sc->cpu_sysctl_ctx,
  872                       SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
  873                       OID_AUTO, "cx_supported", CTLFLAG_RD,
  874                       sc->cpu_cx_supported, 0,
  875                       "Cx/microsecond values for supported Cx states");
  876     SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
  877                     SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
  878                     OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW,
  879                     (void *)sc, 0, acpi_cpu_cx_lowest_sysctl, "A",
  880                     "lowest Cx sleep state to use");
  881     SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
  882                     SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
  883                     OID_AUTO, "cx_usage", CTLTYPE_STRING | CTLFLAG_RD,
  884                     (void *)sc, 0, acpi_cpu_usage_sysctl, "A",
  885                     "percent usage for each Cx state");
  886 
  887 #ifdef notyet
  888     /* Signal platform that we can handle _CST notification. */
  889     if (!cpu_cx_generic && cpu_cst_cnt != 0) {
  890         ACPI_LOCK(acpi);
  891         AcpiOsWritePort(cpu_smi_cmd, cpu_cst_cnt, 8);
  892         ACPI_UNLOCK(acpi);
  893     }
  894 #endif
  895 }
  896 
  897 /*
  898  * Idle the CPU in the lowest state possible.  This function is called with
  899  * interrupts disabled.  Note that once it re-enables interrupts, a task
  900  * switch can occur so do not access shared data (i.e. the softc) after
  901  * interrupts are re-enabled.
  902  */
  903 static void
  904 acpi_cpu_idle()
  905 {
  906     struct      acpi_cpu_softc *sc;
  907     struct      acpi_cx *cx_next;
  908     uint32_t    start_time, end_time;
  909     int         bm_active, cx_next_idx, i;
  910 
  911     /* If disabled, return immediately. */
  912     if (cpu_disable_idle) {
  913         ACPI_ENABLE_IRQS();
  914         return;
  915     }
  916 
  917     /*
  918      * Look up our CPU id to get our softc.  If it's NULL, we'll use C1
  919      * since there is no ACPI processor object for this CPU.  This occurs
  920      * for logical CPUs in the HTT case.
  921      */
  922     sc = cpu_softc[PCPU_GET(cpuid)];
  923     if (sc == NULL) {
  924         acpi_cpu_c1();
  925         return;
  926     }
  927 
  928     /* Find the lowest state that has small enough latency. */
  929     cx_next_idx = 0;
  930     if (cpu_disable_deep_sleep)
  931         i = min(sc->cpu_cx_lowest, sc->cpu_non_c3);
  932     else
  933         i = sc->cpu_cx_lowest;
  934     for (; i >= 0; i--) {
  935         if (sc->cpu_cx_states[i].trans_lat * 3 <= sc->cpu_prev_sleep) {
  936             cx_next_idx = i;
  937             break;
  938         }
  939     }
  940 
  941     /*
  942      * Check for bus master activity.  If there was activity, clear
  943      * the bit and use the lowest non-C3 state.  Note that the USB
  944      * driver polling for new devices keeps this bit set all the
  945      * time if USB is loaded.
  946      */
  947     if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
  948         AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, &bm_active);
  949         if (bm_active != 0) {
  950             AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, 1);
  951             cx_next_idx = min(cx_next_idx, sc->cpu_non_c3);
  952         }
  953     }
  954 
  955     /* Select the next state and update statistics. */
  956     cx_next = &sc->cpu_cx_states[cx_next_idx];
  957     sc->cpu_cx_stats[cx_next_idx]++;
  958     KASSERT(cx_next->type != ACPI_STATE_C0, ("acpi_cpu_idle: C0 sleep"));
  959 
  960     /*
  961      * Execute HLT (or equivalent) and wait for an interrupt.  We can't
  962      * precisely calculate the time spent in C1 since the place we wake up
  963      * is an ISR.  Assume we slept no more then half of quantum, unless
  964      * we are called inside critical section, delaying context switch.
  965      */
  966     if (cx_next->type == ACPI_STATE_C1) {
  967         AcpiHwRead(&start_time, &AcpiGbl_FADT.XPmTimerBlock);
  968         acpi_cpu_c1();
  969         AcpiHwRead(&end_time, &AcpiGbl_FADT.XPmTimerBlock);
  970         end_time = PM_USEC(acpi_TimerDelta(end_time, start_time));
  971         if (curthread->td_critnest == 0)
  972                 end_time = min(end_time, 500000 / hz);
  973         sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + end_time) / 4;
  974         return;
  975     }
  976 
  977     /*
  978      * For C3, disable bus master arbitration and enable bus master wake
  979      * if BM control is available, otherwise flush the CPU cache.
  980      */
  981     if (cx_next->type == ACPI_STATE_C3) {
  982         if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
  983             AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 1);
  984             AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 1);
  985         } else
  986             ACPI_FLUSH_CPU_CACHE();
  987     }
  988 
  989     /*
  990      * Read from P_LVLx to enter C2(+), checking time spent asleep.
  991      * Use the ACPI timer for measuring sleep time.  Since we need to
  992      * get the time very close to the CPU start/stop clock logic, this
  993      * is the only reliable time source.
  994      */
  995     AcpiHwRead(&start_time, &AcpiGbl_FADT.XPmTimerBlock);
  996     CPU_GET_REG(cx_next->p_lvlx, 1);
  997 
  998     /*
  999      * Read the end time twice.  Since it may take an arbitrary time
 1000      * to enter the idle state, the first read may be executed before
 1001      * the processor has stopped.  Doing it again provides enough
 1002      * margin that we are certain to have a correct value.
 1003      */
 1004     AcpiHwRead(&end_time, &AcpiGbl_FADT.XPmTimerBlock);
 1005     AcpiHwRead(&end_time, &AcpiGbl_FADT.XPmTimerBlock);
 1006 
 1007     /* Enable bus master arbitration and disable bus master wakeup. */
 1008     if (cx_next->type == ACPI_STATE_C3 &&
 1009         (cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
 1010         AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 0);
 1011         AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
 1012     }
 1013     ACPI_ENABLE_IRQS();
 1014 
 1015     /* Find the actual time asleep in microseconds. */
 1016     end_time = acpi_TimerDelta(end_time, start_time);
 1017     sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + PM_USEC(end_time)) / 4;
 1018 }
 1019 
 1020 /*
 1021  * Re-evaluate the _CST object when we are notified that it changed.
 1022  *
 1023  * XXX Re-evaluation disabled until locking is done.
 1024  */
 1025 static void
 1026 acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context)
 1027 {
 1028     struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)context;
 1029     struct acpi_cpu_softc *isc;
 1030     int i;
 1031     
 1032     if (notify != ACPI_NOTIFY_CX_STATES)
 1033         return;
 1034 
 1035     /* Update the list of Cx states. */
 1036     acpi_cpu_cx_cst(sc);
 1037     acpi_cpu_cx_list(sc);
 1038 
 1039     /* Update the new lowest useable Cx state for all CPUs. */
 1040     ACPI_SERIAL_BEGIN(cpu);
 1041     cpu_cx_count = 0;
 1042     for (i = 0; i < cpu_ndevices; i++) {
 1043         isc = device_get_softc(cpu_devices[i]);
 1044         if (isc->cpu_cx_count > cpu_cx_count)
 1045             cpu_cx_count = isc->cpu_cx_count;
 1046     }
 1047     if (sc->cpu_cx_lowest < cpu_cx_lowest)
 1048         acpi_cpu_set_cx_lowest(sc, min(cpu_cx_lowest, sc->cpu_cx_count - 1));
 1049     ACPI_SERIAL_END(cpu);
 1050 }
 1051 
 1052 static int
 1053 acpi_cpu_quirks(void)
 1054 {
 1055     device_t acpi_dev;
 1056     uint32_t val;
 1057 
 1058     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
 1059 
 1060     /*
 1061      * Bus mastering arbitration control is needed to keep caches coherent
 1062      * while sleeping in C3.  If it's not present but a working flush cache
 1063      * instruction is present, flush the caches before entering C3 instead.
 1064      * Otherwise, just disable C3 completely.
 1065      */
 1066     if (AcpiGbl_FADT.Pm2ControlBlock == 0 ||
 1067         AcpiGbl_FADT.Pm2ControlLength == 0) {
 1068         if ((AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD) &&
 1069             (AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD_FLUSH) == 0) {
 1070             cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
 1071             ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1072                 "acpi_cpu: no BM control, using flush cache method\n"));
 1073         } else {
 1074             cpu_quirks |= CPU_QUIRK_NO_C3;
 1075             ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1076                 "acpi_cpu: no BM control, C3 not available\n"));
 1077         }
 1078     }
 1079 
 1080     /*
 1081      * If we are using generic Cx mode, C3 on multiple CPUs requires using
 1082      * the expensive flush cache instruction.
 1083      */
 1084     if (cpu_cx_generic && mp_ncpus > 1) {
 1085         cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
 1086         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1087             "acpi_cpu: SMP, using flush cache mode for C3\n"));
 1088     }
 1089 
 1090     /* Look for various quirks of the PIIX4 part. */
 1091     acpi_dev = pci_find_device(PCI_VENDOR_INTEL, PCI_DEVICE_82371AB_3);
 1092     if (acpi_dev != NULL) {
 1093         switch (pci_get_revid(acpi_dev)) {
 1094         /*
 1095          * Disable C3 support for all PIIX4 chipsets.  Some of these parts
 1096          * do not report the BMIDE status to the BM status register and
 1097          * others have a livelock bug if Type-F DMA is enabled.  Linux
 1098          * works around the BMIDE bug by reading the BM status directly
 1099          * but we take the simpler approach of disabling C3 for these
 1100          * parts.
 1101          *
 1102          * See erratum #18 ("C3 Power State/BMIDE and Type-F DMA
 1103          * Livelock") from the January 2002 PIIX4 specification update.
 1104          * Applies to all PIIX4 models.
 1105          *
 1106          * Also, make sure that all interrupts cause a "Stop Break"
 1107          * event to exit from C2 state.
 1108          * Also, BRLD_EN_BM (ACPI_BITREG_BUS_MASTER_RLD in ACPI-speak)
 1109          * should be set to zero, otherwise it causes C2 to short-sleep.
 1110          * PIIX4 doesn't properly support C3 and bus master activity
 1111          * need not break out of C2.
 1112          */
 1113         case PCI_REVISION_A_STEP:
 1114         case PCI_REVISION_B_STEP:
 1115         case PCI_REVISION_4E:
 1116         case PCI_REVISION_4M:
 1117             cpu_quirks |= CPU_QUIRK_NO_C3;
 1118             ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1119                 "acpi_cpu: working around PIIX4 bug, disabling C3\n"));
 1120 
 1121             val = pci_read_config(acpi_dev, PIIX4_DEVACTB_REG, 4);
 1122             if ((val & PIIX4_STOP_BREAK_MASK) != PIIX4_STOP_BREAK_MASK) {
 1123                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1124                     "acpi_cpu: PIIX4: enabling IRQs to generate Stop Break\n"));
 1125                 val |= PIIX4_STOP_BREAK_MASK;
 1126                 pci_write_config(acpi_dev, PIIX4_DEVACTB_REG, val, 4);
 1127             }
 1128             AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_RLD, &val);
 1129             if (val) {
 1130                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 1131                     "acpi_cpu: PIIX4: reset BRLD_EN_BM\n"));
 1132                 AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
 1133             }
 1134             break;
 1135         default:
 1136             break;
 1137         }
 1138     }
 1139 
 1140     return (0);
 1141 }
 1142 
 1143 static int
 1144 acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS)
 1145 {
 1146     struct acpi_cpu_softc *sc;
 1147     struct sbuf  sb;
 1148     char         buf[128];
 1149     int          i;
 1150     uintmax_t    fract, sum, whole;
 1151 
 1152     sc = (struct acpi_cpu_softc *) arg1;
 1153     sum = 0;
 1154     for (i = 0; i < sc->cpu_cx_count; i++)
 1155         sum += sc->cpu_cx_stats[i];
 1156     sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
 1157     for (i = 0; i < sc->cpu_cx_count; i++) {
 1158         if (sum > 0) {
 1159             whole = (uintmax_t)sc->cpu_cx_stats[i] * 100;
 1160             fract = (whole % sum) * 100;
 1161             sbuf_printf(&sb, "%u.%02u%% ", (u_int)(whole / sum),
 1162                 (u_int)(fract / sum));
 1163         } else
 1164             sbuf_printf(&sb, "0.00%% ");
 1165     }
 1166     sbuf_printf(&sb, "last %dus", sc->cpu_prev_sleep);
 1167     sbuf_trim(&sb);
 1168     sbuf_finish(&sb);
 1169     sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
 1170     sbuf_delete(&sb);
 1171 
 1172     return (0);
 1173 }
 1174 
 1175 static int
 1176 acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc, int val)
 1177 {
 1178     int i;
 1179 
 1180     ACPI_SERIAL_ASSERT(cpu);
 1181     sc->cpu_cx_lowest = val;
 1182 
 1183     /* If not disabling, cache the new lowest non-C3 state. */
 1184     sc->cpu_non_c3 = 0;
 1185     for (i = sc->cpu_cx_lowest; i >= 0; i--) {
 1186         if (sc->cpu_cx_states[i].type < ACPI_STATE_C3) {
 1187             sc->cpu_non_c3 = i;
 1188             break;
 1189         }
 1190     }
 1191 
 1192     /* Reset the statistics counters. */
 1193     bzero(sc->cpu_cx_stats, sizeof(sc->cpu_cx_stats));
 1194     return (0);
 1195 }
 1196 
 1197 static int
 1198 acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
 1199 {
 1200     struct       acpi_cpu_softc *sc;
 1201     char         state[8];
 1202     int          val, error;
 1203 
 1204     sc = (struct acpi_cpu_softc *) arg1;
 1205     snprintf(state, sizeof(state), "C%d", sc->cpu_cx_lowest + 1);
 1206     error = sysctl_handle_string(oidp, state, sizeof(state), req);
 1207     if (error != 0 || req->newptr == NULL)
 1208         return (error);
 1209     if (strlen(state) < 2 || toupper(state[0]) != 'C')
 1210         return (EINVAL);
 1211     val = (int) strtol(state + 1, NULL, 10) - 1;
 1212     if (val < 0 || val > sc->cpu_cx_count - 1)
 1213         return (EINVAL);
 1214 
 1215     ACPI_SERIAL_BEGIN(cpu);
 1216     acpi_cpu_set_cx_lowest(sc, val);
 1217     ACPI_SERIAL_END(cpu);
 1218 
 1219     return (0);
 1220 }
 1221 
 1222 static int
 1223 acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
 1224 {
 1225     struct      acpi_cpu_softc *sc;
 1226     char        state[8];
 1227     int         val, error, i;
 1228 
 1229     snprintf(state, sizeof(state), "C%d", cpu_cx_lowest + 1);
 1230     error = sysctl_handle_string(oidp, state, sizeof(state), req);
 1231     if (error != 0 || req->newptr == NULL)
 1232         return (error);
 1233     if (strlen(state) < 2 || toupper(state[0]) != 'C')
 1234         return (EINVAL);
 1235     val = (int) strtol(state + 1, NULL, 10) - 1;
 1236     if (val < 0 || val > cpu_cx_count - 1)
 1237         return (EINVAL);
 1238     cpu_cx_lowest = val;
 1239 
 1240     /* Update the new lowest useable Cx state for all CPUs. */
 1241     ACPI_SERIAL_BEGIN(cpu);
 1242     for (i = 0; i < cpu_ndevices; i++) {
 1243         sc = device_get_softc(cpu_devices[i]);
 1244         acpi_cpu_set_cx_lowest(sc, min(val, sc->cpu_cx_count - 1));
 1245     }
 1246     ACPI_SERIAL_END(cpu);
 1247 
 1248     return (0);
 1249 }

Cache object: 0daf8af618402ad0f694bdfda2e7ce5b


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.